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A Feedback Spin-Valve Memristive System
Weiran Cai, Student Member, IEEE, Torsten Schmidt, Udo Jörges, and Frank Ellinger, Senior Member, IEEE

Abstract—We propose theoretically a generalized memristive
system based on controlled spin polarizations in the giant
magnetoresistive material using a feedback loop with the classical
Hall Effect. The dynamics can exhibit a memristive pinched
hysteretic loop that possesses the self-crossing knot not located
at the origin. Additionally, one can also observe a single-looped
orbit in the device. We also provide a sufficient condition for
the stability based on an estimation of the Floquet exponent.
The analysis shows that the non-origin-crossing dynamics is
generally permitted in a class of passive memory systems that
are not subject to Ohm’s Law. We further develop the prevailing
homogeneous definition to a broadened concept of generalized
heterogeneous memristive systems, permitting no self-crossing
knot at the origin, and ultimately to the compound memory
electronic systems.

Index Terms—memristor, nonlinear dynamics, spintronics,
Hall Effect.

I. INTRODUCTION

IN 1971, the concept of the memristor was coined by Leon
O. Chua at Berkeley [1]. But it was not until 2008 that

S. Williams and his group at Hewlett-Packard Laboratories
shed the first light on this scientific preemie with their
TiO2-x memristor [2]. It was also from then on that nonlinear
electronics has been recognized as one of the comprising
bases of the entire mansion of electronics. No later than this
revival had Di Ventra, et al, pushed the concept forward
to a large family of passive memory systems, consisting of
memristive, memcapacitive and meminductive systems [3].
Deeper insights have also permeated into the territory of
biophysiology, building links between neuronal transmissions,
learning rules and memristive behaviours [4]-[7], making it
an indeed interdisciplinary research subject. Parallel to the
conceptual development, researchers have been enthused in
seeking memristive systems on new physical mechanisms, at
both the material level and the device level [8]-[15]. Among
them is the spintronics of great interest, which has linked
the memristive concept to amounts of established research
results in this area. The spin Hall Effect in a semicon-
ducting system with an inhomogeneous electron density has
demonstrated a hysteretic pinch under periodically driving
voltages [12], and the spin diffusion and relaxation processes
in the semiconductor/half-metal junction can also exhibit a
memristive behaviour [13]. On the other hand, in the metal
material, memristive systems are realizable by employing spin-
torque-induced magnetization switching or magnetic-domain-
wall motion [14][15]. While people have been focused on
other spin polarization mechanisms, in this paper we propose

Weiran Cai, Udo Jörges and Frank Ellinger are with the Chair for Circuit
Design and Network Theory, and Torsten Schmidt is with the Chair for Fun-
damentals of Electronics, Faculty of Electronic and Information Engineering,
Technische Universität Dresden, Helmholtzstrasse 18, Barkhausenbau, 01069
Dresden, Germany. e-mail: weiran.cai@tu-dresden.de.

theoretically a memristive system based on the controlled
spin polarization in the giant magnetoresistive material using
a feedback loop with the classical Hall Effect. The system
is of special interest in exhibiting hysteretic-pinched (as in
a standard memristor) loop, which, however, has the self-
crossing knot not at the origin. This characteristic has grown
out of the prevailing categorization of memristive systems
proposed by Di Ventra, et al, but is still within a more general
frame of memristive systems, as also suggested by Chua
recently. It is hence defined as a generalized memristor model,
which we name as the heterogeneous memristive system.
The paper is organized as follows: we will introduce the
generalized memristive systeml in Sec. II. The memristive
dynamics is depicted and analyzed in Sec. III, including a
sufficient condition for stability. In Sec. IV, we will relocate at
the system’s quasi-standard memristive dynamics, and discuss
the generalization to the concept of heterogeneous memristive
systems and compound memory systems. We will draw the
conclusions in Sec. V.

II. THE PROPOSED SPIN-VALVE MEMRISTIVE SYSTEM

We propose a spin-valve memristive system established on
a feedback loop. The loop controls the spin polarization in a
giant magnetoresistive material via the classical Hall Effect, as
shown in Fig. 1, which gives rise to a memory behaviour. Let
us first consider a giant magnetoresistive (GMR) material in
the form of stacked thin-films based on the spin-valve mech-
anism, of which the resistance reveals a strong dependence
on the applied magnetic field [16][18]. The principle of the
significant change in the resistance is caused by the parallel
or antiparallel spin polarizations: an electron passing through
the GMR material will be scattered more if the spin of the
electron is opposite to the direction of the magnetisation in the
ferromagnetic layer, and the material hence expresses a larger
resistance r↑↓; otherwise, it expresses a smaller resistance r↑↑.
With this mechanism, an equivalent circuit for a stack of films
can be constructed, so that the compound resistance under a
magnetic field R↑↑ (corresponding to parallel spin alignment
in the material) is much lower than that without the magnetic
field R↑↓ (corresponding to unparallel spin alignment in the
material). For our interest in the study of the dynamics, we
can characterize the resistance empirically by a hyperbolic
function of the magnetic flux φm as

R(φm) = R↑↑ + (R↑↓ −R↑↑) sech
(
φm
φm0

)
(1)

with φm0 denoting a normalization quantity with the dimen-
sion of magnetic flux. The hyperbolic function is a fitting
curve to the characteristic curves of a typical class of GMR
materials. For example, as shown in Fig. 1, the hyperbolic
curve (dashed line) given in Eq. 1 can well fit the experimental
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results (solid line) in the report of A. Fert, et.al, where the
thin-film structure is composed of alternating ferromagnetic
and non-magnetic layers, namely, ...|Fe|Cr|Fe|Cr|..., with the
thickness of Fe at 3 nm and Cr at 0.9∼1.8 nm [16]. On
the other hand, the sech function has a parabolic form when
expanded to the second order for small fields, which has a
decent match with the existing theorectical formalizations (for
independent moment models) in [19] and [20]. In spite of
various GMR structures with specific quantum models, this
empirical formalization deals with the problem of interest
without losing generality. The characteristic curves of GMR
materials are also not limited to the form given in [16], but
they will generally give similar memristive dynamics in our
proposed structure.

To give rise to a memristive effect, we employ the classical
Hall Effect to feed back a magnetic field as a control of
the spin polarization in the ferromagnetic layers of the GMR
material(the red-coloured layers in Fig. 1). The classical Hall
Effect is based on a balance between the Lorenz force and the
established inner electric field [21]. The Hall electromotive
force EH is related to a magnetic field on the conductor by

EH =
1

ned
Bi =

1

nedS
φmi (2)

where n is the carrier density in the magnetoresistive conduc-
tor, e is the absolute value of the electron charge, d is the
transverse scale of the conductor, S = ab is the horizontal
cross-section area of the conductor. However, in this model,
the magnetic field B is supplied internally by the Hall current
iH . When the Hall current is drawn by the Hall electromotive
force out to a coil, feeding back a controlling magnetic flux φm
on the conductor itself, the balance is sustained in a dynamic
way. The electromotive force equals the voltage drop on the
coil

EH =
dφm
dt

+RLiH (3)

where RL is the coil resistance. It is to note that attributed to
the ferromagnetic core, the inductance L increases to a large
extent with the enhanced permeability (by a factor of several
hundred to thousand) and the dimension of the coil is allowed
to be larger than that of the core due to the magnetic flux
confinement. On the other hand, with the energy conservation,
the entire system absorbs the power offered by an external
voltage u(t), equaling to the dissipation in the resistance of
the conductor and the power in the coil:

ui = i2R(φm) + EH iH (4)

in which it is especially notable that due to the extraction
of the Hall current, Ohm’s law does not simply apply. In
order to reveal the dominant factors contributing to the mem-
ristive dynamics, we base our modelling on the following
approximations: 1.the magnetic flux changes with the Hall
current iH linearly through an inductance L of the coil, i.
e., φm = L · iH . However, in terms of accuracy, it is worth
pointing out that the ferromagnetic core saturation can cause a
deviation from the linear relation at a high coil current. 2. the
coil resistance RL is constant. In a more accurate manner,
this resistance also includes a transverse resistance of the

Fig. 1. The proposed feedback spin-valve memristor model in a giant magne-
toresistive material of the current-perpendicular-to-plane (CPP) configuration.
(a) structure: the spin in the ferromagnetic layers (red) are polarized adaptively
to the temporally changing magnetic flux induced by the Hall current. (b) the
principle of spin-valve in the GMR material and the equivalent circuit model.
(c) the relation between the giant magnetoresistance R(φm) and the magnetic
flux φm described by an empirical formula with a hyperbolic function, which
is here used as a fitting curve to the experimental result in [16]. The solid
line is the experimental curve, and the dashed line is the fitting hyperbolic
curve.
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ferromagnetic conductor. For simplicity, we suppose that the
transverse resistance is relatively small (by properly choosing
the size ratio of the GMR material) and its temporal change
is negligible in series with the main coil resistance, and hence
RL is regarded constant. 3. other energy losses in the GMR
material are not counted in for simplicity, which are mainly
caused by the Eddy currents and the coercive losses (see, e.
g., the GMR material in Ref. [16] with a low coercitivity).
These approximations aid to simplify the model, while also
maintains the factors determining the dynamics, esp. the
orbital topologies of our main interest. The nonlinearity in the
inductance of the coil will limit the magnetic flux in practice.
When these non-ideal effects are involved, they will deform the
orbital shapes and modify the parameters into a more realistic
range, but the system will not lose the memristive dynamics in
general. Based on the above factors and approximations, the
complete dynamics of the proposed memristive system can
eventually be defined by the following equation set:

u(t) = R(φm)i+
D0

L
φ2m (5)

with

R(φm) = R↑↑ + (R↑↓ −R↑↑) sech
(
φm
φm0

)
and

dφm
dt

= D0φmi−
RL
L
φm (6)

in which D0 denotes the coefficient 1/nedS. It is supposed
here that the average exertion time of spin torques under
the magnetic field is sufficiently short compared to the time
scale of the dynamics, and hence no time delay is involved
in the above model. Special notice is to take on the extra
term deviating to the resistive relation in Eq. (5), which is
responsible for giving rise to a new memory effect beyond
standard memristive systems. For material implementation,
the current-perpendicular-to-plane (CPP) configuration of thin-
films is to adopt (as shown in Fig. 1), for yielding the highest
giant magnetoresistance along the external current [22]-[24],
which possesses a coefficient GMR ≡ (R↑↓ − R↑↑)/R↑↑
exceeding 1 at the present time.

III. THE DYNAMICS OF THE MEMRISTIVE SYSTEM

The numerical calculations display that the proposed system
can exhibit a memristive hysteretic pinch in the voltage-
current phase plane when driven by a sinusoidal voltage signal
(u(t) = u0 cos(ωt)), as shown in Fig. (2(a)), which realizes
a memory effect of the dynamics produced by the feedback
loop. However, unlike the typical hysteretic pinch in standard
memristors, this generalized memristive system has its self-
crossing knot of the orbit deviated from the origin of the
phase plane, though the deviation can be rather small. This
interesting characteristic is caused by the heterogeneous term
in Eq. (5), in which the voltage u is no loner a homogeneous
equation about the current i with the L-containing term. In
this regarding, we will name such a system as a Heteroge-
neous Memristive System, as a generalization of the standard
memristive system, which we will name specifically as the

Fig. 2. The memristive dynamics of the spin-valve system, with (a) the
sinusoidal input signal and (b) the square-wave input signal (hard switching
response). The parameters are chosen as e = 1.6 × 10−19 C, n =
1020/cm3, R↑↑ = 0.33 Ω, R↑↓ = 0.66 Ω, RL = 0.5 Ω, a = 1 µm, b =
6 µm, d = 1 µm, L = 50 nH and φm0 = 30 pWb. The sinusoidal
and square-wave amplitudes are both u0 = 80 mV at the frequency
f = ω/2π = 10 GHz. The zoomed-in display the deviation of the trajectory
from the origin. The initial condition is set to be φm(0) = 9 pWb.

Homogeneous Memristive System. We will discuss in details
the significance of this categorization in Sec. IV. For this
specific system, it is worth pointing out that the proposed
memristive system can be regarded as a standard memristive
system in a limit. In fact, if we simplify Eq. (5) and (6)
by diminishing the terms containing L when these terms are
small-valued (e.g., with a relatively large L) and integrating
Eq. (6), we can recognize this degenerate model as a charge-
controlled memristor with the memristance M(q) = R(φm),
by taking φ2m as the state-variable:

u(t) = R(
√
φ2m)i (7a)

d ln(φ2m/φ
2
m0)

dt
= 2D0i (7b)
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Fig. 3. The differential resistance Rd(t) as a function of time, corresponding
to the hysteretic loop in Fig. 2(a). The dashed lines denote the values of R↑↑
and R↑↓, which Rd(t) approaches. T denotes one period.

noting that R(φm) is an even function of φm. Henceforth,
the proposed memristive system can be regarded as charge-
controlled memristor in this limit. Hard switching also demon-
strates a hysteretic loop, as shown in Fig. 2(b).

Regarding the local properties, we use the instantaneous
differential resistance Rd(t) ≡ du/di = (du/dt) · (di/dt)−1
to characterize the orbits, as shown in Fig. 3. The behavior of
Rd(t) is a compound expression of both the dynamical process
of the giant magnetoresistance and the non-Ohmic effect.
We divide the Rd(t) into two sections: the upward section
R+
d (t) ≡ Rd(t | u(t) : −u0 → +u0) and the downward

section R−d (t) ≡ Rd(t | u(t) : +u0 → −u0). The differ-
ential resistance of the upward section at the orgin R+

d (to)
approximates to R↑↓ (when u(to) = 0 and dφm(to)/dt ≈ 0,
φm(to) ≈ 0), while the downward section R−d (t) approaches
R↑↑ at the self-crossing knot tc.

We have also observed that the system can also evolve to
a memory system, which expresses a single-looped orbit (see
Fig. (2(b)). Such orbit rises up when the L-containing terms
gain dominancy in Eq. (5) and (b). In contrast to the standard
memristive systems, the single-looped orbit also has a part of
the trajectory that does not cross the origin when the voltage is
zero. This is also simply attributed to the additional non-zero
term to the resistive relation in Eq. (5). The hard switching
also demonstrates a single-looped orbit, as shown in Fig. 2(c).

Globally, the bi-looped and single-looped orbits are topo-
logically homeomorphic to the Lissajous figures for the ratio
of 1 and 2, respectively. In fact, if we look at the dynamics in
the u−φm phase plane, the two orbits are both homeomorphic
to a circle. The uprising of the single-looped orbit is because
the terms containing L gain dominancy in Eq. (5) and (b).

We are interested now in the condition for stability. Given
proper parametric conditions, this proposed memristive sys-
tems can display a stable behavior after experiencing a tran-
sient. It is observable that the dynamics of the model in the
u−φm phase plane displays a one-looped limit cycle under a
sinusoidal driving signal, e. g., as displayed in Fig. 5. But
to confirm it as an attractor, it is necessary to know the
parameter range for stability. The model has one state-variable,

Fig. 4. The single-looped dynamics of the spin-valve system, with a
sinusoidal input signal. The parameters are chosen as e = 1.6×10−19 C, n =
1020/cm3, R↑↑ = 0.33 Ω, R↑↓ = 0.66 Ω, RL = 0.5 Ω, a = 1 µm, b =
6 µm, d = 1 µm, L = 4 nH and φm0 = 5 pWb. The sinusoidal amplitudes
is u0 = 20 mV at the frequency f = ω/2π = 0.25 GHz. The zoomed-in
display the deviation of the trajectory from the origin. The initial condition
is set to be φm(0) = 9 pWb.

as rewritten in the following form

dφm
dt

=
D0

R(φm)
φmu(t)− D2

0

R(φm)L
φ3m −

RL
L
φm (8a)

u(t) = u0 cos(ωt) (8b)

We here use the Poincaré map to study the stability of the
periodic u − φm planar orbit [25]. The method converts
a problem about a closed orbit into a problem about the
fixed points of a mapping. However, the rare possibility of
achieving an analytical expression of the mapping constrains
most of on-hand analysis on numerical calculations for specific
parameters. In order to see the parameter range for stability,
we here rather provide a sufficient condition for the asymptotic
stability by estimating the Floquet exponent of the system.

Let φ∗m(t) be the closed orbit and η(t) be an infinitesimal
perturbation: φm(t) = φ∗m(t) + η(t). Substituting this relation
into Eq. (8a) and using the Taylor expansion to the first order
of η, we can rewrite the equation in the following form:

d(φ∗m + η)

dt
=
{[
D0(R↑↓ −R↑↑)

φ∗m
φm0

sech
(
φ∗m
φm0

)
tanh

(
φ∗m
φm0

)
+D0R(φ∗m)

] u(t)

R(φ∗m)2
−
[
D2

0(R↑↓ −R↑↑)
φ∗3m
φm0

sech
(
φ∗m
φm0

)
· tanh

(
φ∗m
φm0

)
+ 3D2

0φ
∗2
mR(φ∗m)

] 1

R(φ∗m)2L
− RL

L

}
η

+
D0

R(φ∗m)
φ∗mu(t) − D2

0

R(φ∗m)L
φ∗3m − RL

L
φ∗m

(9)

Since φ∗m(t) is a solution of Eq. (8a), the following relation
should hold

dφ∗m
dt

=
D0

R(φ∗m)
φ∗mu(t)− D2

0

R(φ∗m)L
φ∗3m −

RL
L
φ∗m (10)
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Fig. 5. The limit cycle in the u− φm plane, with the parameters given in
Fig. 2. The dashed line represents a part of the transient.

Substracting Eq. (9) by Eq. (10), we can arrive at the equation
about the error function η(t), given by

dη(t)

dt
= S(t)η(t) (11)

where

S(t) =
[
D0(R↑↓ −R↑↑)

φ∗m
φm0

sech
(
φ∗m
φm0

)
tanh

(
φ∗m
φm0

)
+D0R(φ∗m)

] u(t)

R(φ∗m)2
−
[
D2

0(R↑↓ −R↑↑)
φ∗3m
φm0

sech
(
φ∗m
φm0

)
· tanh

(
φ∗m
φm0

)
+ 3D2

0φ
∗2
mR(φ∗m)

] 1

R(φ∗m)2L
− RL

L
(12)

In order to calculate the evolution of the perturbation on the
surface of section after each period T = 2π/ω, we integrate
over t from nT to (n+ 1)T . It comes to

|η ((n+ 1)T ) | = eλ|η(nT )| (13)

where

λ =

∫ T

0

S(t)dt (14)

is the Floquet exponent of the linearized Poincaré map.
Let us now estimate the λ without knowing the an-
alytical solution φ∗m(t). The even function φ∗m/φm0 ·
sech(φ∗m/φm0) tanh(φ∗m/φm0) in the integral is actually a
positive bounded function in φ∗m, having 0 as the minimum
value and Γ0 as the maximum value, where Γ0 ≈ 0.577
denotes a positive real value at its two symmetric extrema
(see Fig. (6)); also is φ∗3m/φm0·sech(φ∗m/φm0) tanh(φ∗m/φm0)
positive bounded. Therefore, the two parts in the integrand are
bounded:

M1 ≡ 1

R↑↓
≤
[
(R↑↓ −R↑↑)

φ∗m
φm0

sech
(
φm

φm0

)
tanh

(
φm

φm0

)
+R(φ∗m)

] 1

R(φ∗m)2
≤ (R↑↓ −R↑↑)Γ0 +R↑↑

R2
↑↑

≡M2

(15a)

Fig. 6. The function y(x) = xsech(x)tanh(x) plotted numerically. It has
two extremas, i.e., (xmax, ymax) = (±1.463, 0.577), which are symmetric
about the y axis. The parameter Γ0 is defined as the maximum value of the
function.

and

D2
0

[
(R↑↓ −R↑↑)

φ∗m
φm0

sech
(
φ∗m
φm0

)
tanh

(
φ∗m
φm0

)
+ 3R(φ∗m)

] φ∗2m
R(φ∗m)2

≥ 0 (15b)

Noting that u(t) = u0 cos(ωt) is alternatingly positive
and negative in half-periods, i.e., 0 ≤ u(t) ≤ u0, for t ∈
[0, T/4]∪[3T/4, T ] and −u0 ≤ u(t) ≤ 0, for t ∈ [T/4, 3T/4],
we integrate and estimate Eq. (14) in three intervals with the
relations in Eq. (15a) and (15b). This can lead to the following
inequation:

λ ≤ D0M2

(∫ T/4

0

+

∫ T

3T/4

)
u(t)dt+D0M1

∫ 3T/4

T/4

u(t)dt

− RLT

L
=

2u0D0(M2 −M1)

ω
− 2πRL

ωL
(16)

Therefore, when the following condition is satisfied,

D0

(
(R↑↓ −R↑↑)Γ0 +R↑↑

R2
↑↑

− 1

R↑↓

)
<
πRL
u0L

(17)

the Floquet exponent is guaranteed negative, which indicates
that the system is asymptotically stable (a stable limit cycle).
This condition is frequency independent. The left hand side
of Eq. (17) is determined solely by the GMR material, while
the right hand side is determined by the feedback coil and the
input signal.

IV. DISCUSSIONS

1. The spin-valve model as a standard memristor
Let us relocate at the degenerate model (with the L-

containing terms being non-dominant). Being both charge-
controlled memristor models, we find it especially interesting
that the spin-valve memristive system has a close analogy to
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the often referred TiO2-x memristor of S. Williams, et al [2].
To see this, we expand the sech term in Eq. (1) to the second
order (valid for small fields: sech(x) = 1−x2/2+O(x4)) and
compare the degenerated equation set with that of the TiO2-x
model:

u(t) = R(φm)i ←→ u(t) = R(w)i (18a)
d ln(φ2m/φ

2
m0)

dt
=

2

nedS
i ←→ dw

dt
=
µVRON
D

i (18b)

R(φm) = R↑↓ − (R↑↓ −R↑↑)
φ2m

2φ2m0

∼ φ2m

←→

R(w) = ROFF−(ROFF −RON )
w

D
∼ w (18c)

Apparently, for small φm, taking φ2m as the state-variable,
they have general similarities in the function relations, except
a logarithmic function in the former. However, they have a
complete distinction in their physical mechanisms. They differ
also in the resistance range, being a low conductive resistance
for the spin-valve model. Furthermore, it is notable that
opposite to the TiO2-x memristor, the spin-valve memristor
does not have a nonvolatile memory when switched off, as
the current in the coil cannot hold permanently.

2. Generalized memristive systems
Since Di Ventra, et al, generalized the concept of memristor

of Chua, to memristive, memcapacitive and meminductive
systems, any newly born elementary passive memory system
has been seeking a belonging category in the form of

y(t) = g(x, z, t) · z(t) (19a)
ẋ = f(x, z, t) (19b)

or of its variations, describing two complementary constitutive
variables (current, charge, voltage or flux), where g is a
generalized response, and f is a vector function, with y being
the input signal, z the output signal, and x the state-variable
vector [3]. It has been successful for a very large class of
memristive device structures [2][8]-[15]. This formal descrip-
tion, however, is based on the linear fundamental electronic
elements, i.e., the resistor, capacitor and inductor, which in
common has a homogeneous characteristic that the trajectory
must cross the origin in the u − i phase plane, due to Eq.
(19a). We are curious about the necessity of holding this strong
constraint for an arbitrary non-combinatorial passive memory
system beyond the above. Apparently, our proposed spin-valve
systeml has grown out of the prevailing categorization of
memristive systems, which resembles a standard memristive
system (pinched with self-crossing at the origin). In fact, the
non-origin-self-crossing characteristic is permitted in a class
of systems that are not subject to the Ohm’s law. On the
other hand, any passive system that can express a memory
effect should be regarded as a memristive system in a general
sense. In [26], L. Chua also concluded such property of
resistance switching memory devices as: ”If it’s pinched, it’s a
memristor.” This implies that the memory effect is the essential
property of a memristor, while the origin-crossing property
holds only for a class of memristors. In this context, it leads us

to the generalized description of a heterogeneous memristive
system:

u(t) = g(x, i, t) · i(t) + g̃(x, i, t) (20a)
ẋ = f(x, i, t) (20b)

which does not require a solution for {i(t0) =
0, g̃ (x(t0), 0, t0) = 0}. Such systems are of special interest
to exhibit hysteretic loop with the self-crossing knot not
located at the origin of the u− i phase plane for the non-zero
heterogeneous term g̃(x, i, t) in Eq. (20a). Heterogeneous
memcapacitive and meminductive systems are also permitted
for existence and can be defined in the same manner.

This generalization can lead to a further broadened concept,
as we have noticed that when the heterogeneous term g̃(x, i, t)
gains sufficient dominancy, the dynamics of the system may
express characteristics beyond a standard memristive system.
This implies that intrinsic passive memory systems can possess
more than one attributes. These attributes are, however, so
physically entangled to each other that the boundaries of
memristive (resistive), memcapacitive (capacitive) and memin-
ductive (inductive) systems are vague, and hence they should
have a compound form in general

H(V) = 0 (21a)
ẋ = F(V) (21b)

where H and F are two vectors of implicit algebraic functions
of a set of variables V:

V ≡

{
u, i, u(n), i(m),

∫ (k)

udt,

∫ (l)

idt,x, t | n,m, k, l ∈ N

}
.

Due to the shifted boundaries, we would refer to such a
system simply as a compound memory electronic system (or
a memtronic system in short). It is foreseeable that some com-
plex nano-, organic or biological systems possessing electric
memory have to be described in such a general manner.

V. CONCLUSIONS

We have proposed theoretically a generalized memristive
system based on the feedback spin-valve mechanism in the
giant magnetoresistive material with the classical Hall Effect.
The dynamics can exhibit a pinched hysteretic loop that
possesses the self-crossing knot not located at the origin of
the phase plane, which is of its uniqueness with regard to
standard memristive systems. We have also observed that
a single-looped orbit is allowed for this system, when the
heterogeneous terms in the governing equations gain sufficient
dominancy. Our analysis shows that such non-origin-crossing
dynamics is generally permitted in a class of passive memory
systems that are not subject to Ohm’s Law, which has grown
out of the prevailing homogeneous categorization of memris-
tive systems. We have hence introduced a broadened concept
of the heterogeneous memristive systems and ultimately the
compound memory electronic systems. For the stability of the
proposed model, we have provided a sufficient condition based
on an estimation of the Floquet exponent in the linearized
Poincaré map.
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