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Optimal Tracking Performance Limitation of
Networked Control Systems with Limited
Bandwidth and Additive Colored White

Gaussian Noise
Zhi-Hong Guan, Chao-Yang Chen, Gang Feng, and Tao Li

Abstract—This paper studies optimal tracking performance
issues for multi-input-multi-output linear time-invaria nt systems
under networked control with limited bandwidth and additiv e
colored white Gaussian noise channel. The tracking performance
is measured by control input energy and the energy of the error
signal between the output of the system and the reference signal
with respect to a Brownian motion random process. This paper
focuses on two kinds of network parameters, the basic network
parameter-bandwidth and the additive colored white Gaussian
noise, and studies the tracking performance limitation problem.
The best attainable tracking performance is obtained, and the
impact of limited bandwidth and additive colored white Gaussian
noise of the communication channel on the attainable tracking
performance is revealed. It is shown that the optimal tracking
performance depends on nonminimum phase zeros, gain at all
frequencies and their directions unitary vector of the given plant,
as well as the limited bandwidth and additive colored white
Gaussian noise of the communication channel. The simulation
results are finally given to illustrate the theoretical results.

Index Terms—Networked control systems, bandwidth, additive
colored white Gaussian noise, performance limitation.

I. I NTRODUCTION

M ORE and more researchers are interested in networked
control systems in the past decade, please see, for

example, [1]–[7] and references therein. Most works focus
on analysis and synthesis of networked control systems with
quantization effects (e.g. [8]–[12]), time delays [13]–[15],
bandwidth constraint [4], [16], [17], data rate constraint[1],
[16], and/or data packet dropout [17]–[20]. In spite of the
significant progress in those studies, the more inspiring and
challenging issues of control performance limitation under
such network environment remain largely open.
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Performance limitations resulting from nonminimum phase
(NMP) zeros and unstable poles of given systems have been
known for a long time. The issue has been attracting a growing
amount of interest in the control community, see [21]–[24] for
example. The tracking performance achievable via feedback
was studied in [25] with respect to single-input-single-output
(SISO) stable systems. The result was extended to multi-input-
multi-output (MIMO) unstable systems in [26], and it was
found that the minimal tracking error depends not only on the
location of the system nonminimum phase zeros, but also on
how the input signal may interact with those zeros, i.e., the
angles between the input and zero directions. Optimal tracking
and regulation control problems were studied in [22], where
objective functions of tracking error and regulated response,
defined by integral square measures, are minimized jointly
with the control effort, and the latter is measured by the system
input energy. In [24], the optimal tracking control problem
was studied with both the forward and feedback channel dis-
turbances. The authors of [23] investigated the regulationper-
formance limitations of unstable non-minimum phase single-
input-multi-output (SIMO) continuous-time and discrete-time
systems, respectively. However, all these mentioned works
have not taken into account the effects of networks, which
would make the study of the optimal performance limitation
much more challenging.

Networked control systems are ubiquitous in industry. More
and more control systems are operating over a network. In
recent years, the research on the performance limitation of
networked control systems attracts some attention. For exam-
ple, the authors in [10] studied the tracking performance of
discrete-time SISO networked feedback systems, by modeling
the quantization error as a white noise. The tracking perfor-
mance of continuous-time MIMO systems with the additive
white Gaussian noise (AWGN) was studied through one- and
two-parameter control schemes in [27], [29]. The result was
further generalized to other noisy channels with bandwidth
limitation in [8], where the optimal tracking performance is
measured by the achievable minimal tracking error. However,
it was showed in [24] that, in the optimal tracking problem,
in order to attain the minimal tracking error, the control
input of systems is often required to have an infinite energy.
This requirement cannot be met in general in practice. Thus
the control input energy of systems should be considered in
the performance index to address this issue. In this paper,
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we consider the optimal tracking problem in terms of both
the tracking error energy and the control input energy, and
meanwhile we consider communication link over bandwidth-
limited additive colored Gaussian noise (ACGN) channels,
which are more realistic models of communication link than
those in [1], [24].

In this paper, we study optimal tracking performance issues
pertaining to MIMO feedback control systems. The objective
is to minimize the tracking error between the output and the
reference signals of a feedback system under the constraint
of control input energy. The optimal tracking performance is
attained by stabilizing compensators under a two-parameter
structure. The tracking error is defined in an square error sense,
and the reference signals are considered as a Brownian motion,
which can be roughly considered as the integral of a standard
white noise [2], [27], [28]. The tracking performance indexis
given by the weighted sum between the power of the tracking
error energy and the system input energy.

The rest of the the paper is organized as follows. The prob-
lem formulation and preliminaries are given in section II. In
section III, the main results of this paper are presented. Results
of extensive simulation studies and discussions are shown
to validate the theoretical results in section IV. Concluding
remarks are made in Section V.

II. PRELIMINARIES

We begin by summarizing briefly the notations used
throughout this paper. For any complex numbers, we denote
its complex conjugate bysH . The expectation operator is
denoted byE{·}, respectively. For any vectoru, we denote
its conjugate transpose byuH , and its Euclidean norm by
‖u‖. For a matrixA, we denote its conjugate transpose by
AH . All the vectors and matrices involved in the sequel are
assumed to have compatible dimensions, and for simplicity
their dimensions will be omitted. Let the open right-half plane
be denoted byC+ := {s : Re(s) > 0}, the open left-half
plane byC− := {s : Re(s) < 0}, and the imaginary axis
by C0. DefineL2 := {f : f(s) measurable in C0, ‖f‖22 :=
1
2π

∫∞

−∞
‖f(jω)‖2Fdω < ∞}. Then,L2 is a Hilbert space with

an inner product〈f, g〉 := 1
2π

∫∞

−∞
tr{fH(jω)g(jω)}dω.

Next, defineH2 as a subspace of functions inL2 with func-
tions f(s) analytic inC−, H2 := {f : f(s) analytic in C,

‖f‖22 := supσ>0
1
2π

∫∞

−∞
‖f(σ + jω)‖2Fdω < ∞}. and the

orthogonal complement ofH2 in L2 as H⊥
2 : H⊥

2 := {f :
f(s)analyticin C, ‖f‖22 := supσ<0

1
2π

∫∞

−∞
‖f(σ + jω)‖2Fdω

< ∞}. Thus, for anyf ∈ H⊥
2 and g ∈ H2, 〈f, g〉 = 0.

We use the same notation‖·‖2 to denote the corresponding
norm. Finally, we denote byRH∞ the class of all stable,
proper rational transfer function matrices. We introduce a
factorization formula for non-minimum phase systems. For the
right-invertible rational transfer function matrixP , let its right
and left coprime factorizations be given by

P = NM−1 = M̃−1Ñ , (1)

where N,M, M̃, Ñ ∈ RH∞. A complex numbers ∈ C

is said to be a zero ofP (s), if ηHP (s) = 0 for some
unitary vectorη, whereη is called an output direction vector

associated withs, and‖η‖ = 1. For such a zero, it is always
true thatηHN(s) = 0, for some unitary vectorη. On the
other hand, a complex number is said to be a pole of P(s) if
P (p) = ∞. If p is an unstable pole ofP (s), i.e., p ∈ C+,
then equivalent statement is thatM̃(p)ω = 0 for some unitary
vectorω, ‖ω‖ = 1. In order to facilitate the subsequent proof,
we introduce two specific factorization forN(s) : N(s) =
L(s)Nm(s) = L̂(s)N̂m(s). And, allpass factorL(s) andL̂(s)
have the formL(s) :=

∏nz

i=1 Li(s), L̂(s) :=
∏nz

i=1 L̂i(s), and

Li(s) :=[ηi Ui]

[ z̄i
zi

zi−s
z̄i+s 0

0 I

] [

ηHi
UH
i

]

, (2)

L̂i(s) :=[η̂i Ûi]

[ s−zi
s+z̄i

0

0 I

] [

η̂Hi
ÛH
i

]

, (3)

whereηi are unitary vectors obtained by factorizing the zeros
one at a time, andUi are matrices which together withηi form
a unitary matrix. Similarly,̂ηi andÛi have same definition and
nature.

Likewise, M̃ has the allpass factorizatioñM = M̃m(s)
×B̃(s), where B̃(s) is an allpass factor and̃Mm(s) is the
minimum phase part of̃M(s). One particular allpass factor is
given by B̃(s) :=

∏np

i=1 B̃i(s), and

B̃i(s) :=[ω̃i W̃i]

[ s−pi

s+p̄i
0

0 I

] [

ω̃H
i

W̃H
i

]

. (4)

Consider the class of functions inF := {f : f(s) analytic in
C+, limR→∞ maxθ∈[−π/2,π/2] ‖f(Rejθ)/R‖ = 0}.. Lemma 1
and 2 can be found in [22].

Lemma 1: Let f(s) ∈ F and denotef(jω) = h1(ω) +
jh2(ω). Suppose thatf(s) is conjugate symmetric, i.e.,f(s) =
f(s̄). Thenf ′(0) = (1/π)

∫∞

∞

(

h1(ω)− h1(0)
)

/ω2dω .
Lemma 2: Consider a conjugate symmetric functionf(s).

Suppose thatf(s) is analytic and has no zero inC+,
and that log f(s) ∈ F. Then provided thatf ′(0)/f(0) =

(1/π)
∫ +∞

−∞
(1/ω2) log |f(jω)/f(0)|dω , f(0) 6= 0.

Lemma 3: Let L andLi be defined by (3). Then, for any
X ∈ RH∞, the equalityXL−1 = S +

∑Nz

i=1 X(zi)L
−1
1 (zi)

· · ·L−1
i−1(zi)L

−1
i L−1

i+1(zi) · · ·L−1
Nz

(zi) holds for someS ∈
RH∞.

Proof: We assume thatA is an allpass factor. From lemma
4.1 in [30], for someY ∈ RH∞, we haveA−1Y = S1 +
∑Nz

i=1 A
−1
Nz

(zi) · · ·A−1
i+1(zi)A

−1
i A−1

i−1(zi) · · ·A−1
1 (zi)Y (zi).

Then, we haveY HA−H = SH
1 +

∑Nz

i=1 Y
H(zi)A

−H
1 (zi) · · ·

A−H
i−1(zi)A

−H
i A−H

i+1(zi) · · ·A−H
Nz

(zi). Let L = AH , S = SH
1 ,

X = Y H , thenXL−1 = S+
∑Nz

i=1 X(zi)L
−1
1 (zi)L

−1
i−1(zi) · · ·

L−1
i L−1

i+1(zi) · · ·L−1
Nz

(zi). Therefore, the proof is completed.

III. T RACKING PERFORMANCE LIMITATIONS

Consider the control feedback loop shown in Fig.1, where
the plant modelP is a rational transfer function matrix. The
channel model is the bandwidth-limited ACGN channel, where
n = [n1, n2, · · · , nl] with ni(1 ≤ i ≤ l) being a zero-
mean stationary white Gaussian noise process and spectral
density γ2

i (when l = 1, note γ = γ1). The reference
signal r is a vector of the step signal generated by passing
a standard white noiseω through an integrator, which can
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be roughly considered as a Brownian motion process [28]
and emulate the step signal in the deterministic setting [2],
[27]. Therefore, the formulation resembles the tracking ofa
deterministic step signal. For the channeli, we denote the
spectral density ofwi by σ2

i (when l = 1, note σ = σ1).
It is assumed that the system reference inputs in different
channels are independent, and that the reference input and the
noise are uncorrelated.[K1, K2] denotes the two-parameter

Fig. 1. Feedback control over bandwidth limited ACGN channels

compensators. The communication channel is characterizedby
three parameters: the AWGN n, the channel transfer functions
F and H. The channel transfer functionF (s) ∈ RH∞

modeling the bandwidth limitation is assumed to be stable and
NMP [4]. ThenF (s) = diag[f1(s), f2(s), · · · , fl(s)], where
f1(s) = f2(s) = · · · = fl(s). F (s) has nf distinct NMP
zeros. The channel transfer functionH(s) ∈ RH∞, colors the
additive white Gaussian noise. The performance index of the
system is defined as

J = E[(1− ǫ)(r(t)−y(t))T (r(t)−y(t))+ ǫuT
c (t)uc(t)], (5)

where the parameterǫ (0 ≤ ǫ ≤ 1) is pre-set and can be
used to weigh the relative importance of tracking objective
and the plant control input energy constraint. For the transfer
function matricesP andPF , let their right and left coprime
factorizations respectively be given byPF = NM−1 =
M̃−1Ñ, P = N0M

−1, whereN,N0,M, Ñ, M̃ ∈ RH∞,
and satisfy the double Bezout identity

[

X̃ −Ỹ

−Ñ M̃

] [

M Y
N X

]

= I. (6)

Then the set of all stabilizing two parameter compensators is
characterized by

Ks := {K : K = [K1 K2] = (X̃ −RÑ)−1

× [Q Ỹ −RM̃ ], Q ∈ RH∞, R ∈ RH∞}.
According to (5), we may rewrite the performance indexJ as

J := E

{

(1− ǫ)(‖r(t) − yr(t)‖2

+ ‖yn(t)‖2) + ǫ‖uc(t)‖2
}

, (7)

whereyr(t) andyn(t) are the outputs in response tor andn,
respectively. And the tracking error̂e is given by

ê(t) := r(t) − yr(t).

The optimal performance attainable by all possible stabilizing
controllers is

J∗ := inf
k∈Ks

J.

Theorem 1: Let ω and n be uncorrelated white Gaussian
signals. Suppose thatP (s) = Po(s)/s

n, for some integer
n ≥ 1, such thatPo(s) is proper and has no zero ats = 0. P is
supposed to be unstable, NMP and invertible (including right
invertible and left invertible). Denote the NMP zeros ofP (s)
andF (s) by zi, (i = 1, · · · , nz + nf ) and assume also that
these zeros are distinct. Definef(s) := tr{(1− ǫ)UTNm(s)
Θ−1

o (s)Θ−T
o (0)NT

m(0)U} and factorizef(s) as f(s) :=
(
∏Ns

i=1 s̄i(si − s)(si(s̄i + s))
)

fm(s), wheresi ∈ C+ are the
nonminimum phase zeros off(s) and fm(s) is minimum
phase. It is noted that,f(s), fm(s) ∈ RH∞, f(0) = fm(0) =
∑l

i=1 σ
2
i . Then, with the two-parameter controller given in

Fig.1

J∗ =2(1− ǫ)

[ nz+nf
∑

i=1

Re(zi)

|zi|2
l
∑

j=1

σ2
j cos

2
∠(ηi, ej)

+ (

l
∑

i=1

σ2
i )

(

Ns
∑

i=1

Resi
|si|2

− 1

π

∫ +∞

0

log |f(jω)|
ω2

dω

)]

+

nz+nf
∑

i,j=1

4Re(zi)Re(zj)

z̄i + zj
ωH
j Dr

i (zj)D
rH
i (zi)ωi

× ωH
i Dl

i

H
(zi)V

HOH(zi)O(zj)V Dl
j(zj)ωj .

Proof: From (7), we have

J := (1− ǫ)tr{Rêr(0) +Ryn
(0)}

+ ǫtr{Rucr
(0) +Rucn

(0)}, (8)

whereRêr (t), Ryn
(t), Rucr

(t) andRucn
(t), are the autocor-

relation functions of the random processesêr(t), yn(t), ucr(t)
anducn(t), respectively. Denote the spectral densities ofr and
n asSr(jω) andSn(jω) respectively.

Then we have

J =(1− ǫ)
1

2π

[
∫ +∞

−∞

tr(TêrSr(jω)T
T
êr)dω

+

∫ +∞

−∞

tr(Tyn
Sn(jω)T

T
yn
)dω

]

+ ǫ
1

2π

[
∫ +∞

−∞

tr(Tucr
Sr(jω)T

T
ucr

)dω

+

∫ +∞

−∞

tr(Tucn
Sn(jω)T

T
ucn

)dω

]

=(1− ǫ)

(

∥

∥

∥

∥

TêrU
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

Tyn
V

∥

∥

∥

∥

2

2

)

+ ǫ

(

∥

∥

∥

∥

Tucr
U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

Tucn
V

∥

∥

∥

∥

2

2

)
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=(1− ǫ)

(

∥

∥

∥

∥

[

I − (I − PFK2)
−1PFK1

]

U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

(I − PFK2)
−1PHV

∥

∥

∥

∥

2

2

)

+ ǫ

(

∥

∥

∥

∥

(I − FK2P )−1FK1U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

(I − FK2P )−1HV

∥

∥

∥

∥

2

2

)

=

∥

∥

∥

∥

[√
1− ǫ(I −NQ)√

ǫFMQ

]

U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

[√
1− ǫPM(X̃ −RÑ)√

ǫM(X̃ −RÑ)

]

HV

∥

∥

∥

∥

2

2

=JU + JV ,

where

U = diag[σ1, σ2, · · · , σl], V = diag[γ1, γ2, · · · , γl].

Evidently, we have

J∗ = inf
K∈K

J = inf
Q∈RH∞

JU + inf
R∈RH∞

JV = J∗
U + J∗

V .

Firstly, for JU , using the allpass factorization (2), we have

J∗
U = inf

Q∈RH∞

∥

∥

∥

∥

[√
1− ǫ(I −NQ)√

ǫFMQ

]

U
1

s

∥

∥

∥

∥

2

2

= inf
Q∈RH∞

∥

∥

∥

∥

[√
1− ǫ(L−1 − I)

0

]

U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

[√
1− ǫI
0

]

U
1

s
+

[

−
√
1− ǫNm√
ǫCFM

]

QU
1

s

∥

∥

∥

∥

2

2

=2(1− ǫ)

nz+nf
∑

i=1

Re(zi)

|zi|2
‖ηHi U‖2F + inf

Q∈RH∞

JU1

=2(1− ǫ)

nz+nf
∑

i=1

Re(zi)

|zi|2
m
∑

j=1

σ2
j cos

2
∠(ηi, ej) + J∗

U1
,

whereCFM is the minimum phase part ofFM , ηi is the
direction vector associated with the zero ofPF , ej is unitary
a column vector, whose j-th element is 1 and the remaining
elements 0, and

J∗
U1

= inf
Q∈RH∞

∥

∥

∥

∥

{[√
1− ǫI
0

]

+

[

−
√
1− ǫNm√
ǫCFM

]

Q

}

U
1

s

∥

∥

∥

∥

2

2

= inf
Q∈RH∞

∥

∥

∥

∥

{[

−
√
1− ǫI
0

]

+

[√
1− ǫNm√
ǫCFM

]

Q

}

U
1

s

∥

∥

∥

∥

2

2

.

Furthermore, we perform an inner-outer factorization given in
[32], such that

[√
1− ǫNm√
ǫCFM

]

= ΘiΘo, (9)

whereΘi ∈ RH∞ is an inner matrix function, andΘo ∈ RH∞

is an outer. According to the definition of an inner matrix
function, we have

ΘT
i (−jω)Θi(jω) = I. (10)

From (9), the following equation can be obtained

ΘT
o (−jω)Θo(jω) = (1− ǫ)NT

m(−jω)Nm(jω)

+ ǫ(CT
FM (−jω)CFM (jω)).

From (10), one can define the following matrix function with
its module equal to 1,

Ψ(jω) =

[

ΘT
i (−jω)

1−Θi(jω)Θ
T
i (−jω)

]

.

So according to the property of the matrix norm,JU1
becomes

J∗
U1

= inf
Q∈RH∞

∥

∥

∥

∥

Ψ

{[

−
√
1− ǫI
0

]

+

[√
1− ǫNm√
ǫCFM

]

Q

}

U
1

s

∥

∥

∥

∥

2

2

= inf
Q∈RH∞

∥

∥

∥

∥

(A1 +ΘoQ)U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

A2U
1

s

∥

∥

∥

∥

2

2

,

where

A1 =ΘH
i

[

−
√
1− ǫI
0

]

= −(1− ǫ)Θ−H
o NH

m ,

A2 =(1 −ΘiΘ
H
i )

[

−
√
1− εI
0

]

=

[

−
√
1− ǫI
0

]

−ΘiA1

=

[√
1− ε

(

−I + (1− ǫ)NmΘ−1
o Θ−H

o NH
m

)

(1− ε)
√
ǫCFMΘ−1

o Θ−H
o NH

m

]

.

We then obtain

J∗
U1

= (1 − ǫ)2
∥

∥

∥

∥

(

Θ−H
o NH

m

−Θ−H
o (0)NH

m (0)
)

U
1

s

∥

∥

∥

∥

+

∥

∥

∥

∥

A2U
1

s

∥

∥

∥

∥

.

Similar to [22], we may invoke lemma 1, and obtainsJ∗
U1

=
−(1− ǫ)f ′(0). In light of lemma 2, one also obtains

J∗
U1

= (1−ǫ)(

l
∑

i=1

σ2
i )

[

2

Ns
∑

i=1

Resi
|si|

− 1

π

∫ +∞

−∞

log |f(jω)|
ω2

dω

]

.

Thus, we have

J∗
U =2(1− ǫ)

[ nz+nf
∑

i=1

Re(zi)

|zi|2
l
∑

j=1

σ2
j cos

2
∠(ηi, ej)

+ (

l
∑

i=1

σ2
i )

(

Ns
∑

i=1

Resi
|si|2

− 1

π

∫ +∞

0

log |f(jω)|
ω2

dω

)]

.

Secondly, forJV , we have

JV =

∥

∥

∥

∥

[√
1− ǫPM(X̃ −RÑ)√

ǫM(X̃ −RÑ)

]

HV

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

[√
1− ǫNom√
ǫMm

]

(X̃ −RÑ)HV

∥

∥

∥

∥

2

2

,

whereNom is the minimum phase part ofNo.
Similar to the equation (9), we perform an inner-outer

factorization such that
[√

1− ǫNom√
ǫMm

]

= ∆i∆0.
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In addition, similar to [31], we factorizẽNHV = CD, where
C is the minimum phase part,D ∈ RH∞ is an allpass factor
which can be formed as

D(s) :=

nz+nf
∏

i=1

Di(s),

Di(s) :=[ωi Wi]

[ s−zi
s+z̄i

0

0 I

] [

ωH
i

WH
i

]

. (11)

Hence, in light of Lemma 3, we have

JV =
∥

∥

∥
∆0(X̃HV −RCD)

∥

∥

∥

2

2
=
∥

∥

∥
∆0X̃HV D−1 −∆0RC

∥

∥

∥

2

2

=

∥

∥

∥

∥

nz+nf
∑

i=1

O(zi)V Dl
i(zi)[D

−1
i

−D−1
i (∞)]Dr

i (zi) +R1 −∆0RC

∥

∥

∥

∥

2

2

,

whereR1 ∈ RH∞, and

O(zi) =∆0(zi)X̃(zi)H(zi) = ∆0(zi)M
−1(zi)H(zi),

Dl
i(zi) =D−1

1 (zi)D
−1
2 (zi) · · ·D−1

i−1(zi),

Dr
i (zi) =D−1

i+1(zi)D
−1
i+2(zi) · · ·D−1

nz+nf
(zi).

Since∆0 is right invertible andC left invertible, we have

J∗
V = inf

R∈RH∞

∥

∥

∥

∥

∥

nz+nf
∑

i=1

O(zi)V Dl
i(zi)[D

−1
i

−D−1
i (∞)]Dr

i (zi)

∥

∥

∥

∥

∥

2

2

+ ‖R1 −∆0RC‖22

=

∥

∥

∥

∥

∥

nz+nf
∑

i=1

O(zi)V Dl
i(zi)

2Re(zi)

s− zi
ωiω

H
i Dr

i (zi)

∥

∥

∥

∥

∥

2

2

=

nz+nf
∑

i,j=1

4Re(zi)Re(zj)

z̄i + zj
ωH
j Dr

i (zj)D
rH
i (zi)ωi

ωH
i Dl

i

H
(zi)V

HOH(zi)O(zj)V Dl
j(zj)ωj .

The proof is thus completed.
Remark 1: When there is no network channel, because the

Brownian motion random process is different from the step
signal vector with deterministic direction, this result can not
be degraded to the results in literature [22].

Corollary 1: If the systemP (s) are SISO in Theorem 1,
then the optimal tracking performance can be written as

J∗ =2(1− ǫ)σ2

[ nz+nf
∑

i=1

Re(zi)

|zi|2
+

Ns
∑

i=1

Resi
|si|2

− 1

π

∫ +∞

0

log |f(jω)|
ω2

dω

]

+ γ2

nz+nf
∑

i,j=1

¯̃rir̃j
z̄i + zj

.

where
r̃i = Ress=zi∆o(zi)M

−1(zi)H(zi)L̂
−1
i

Corollary 2: Consider the simple channel case withF = I
and H = I. Under the assumptions in Theorem 1, de-
fine f(s) := tr{(1 − ǫ)UTNm(s)Λ−1

o (s)Λ−T
o (0)NT

m(0)U},

Fig. 2. Feedback control over AWGN channels

and factorizef(s) :=
(
∏Ns

i=1 s̄i(si − s)/(si(s̄i + s))
)

fm(s),
where si ∈ C+ are the nonminimum phase zeros off(s)
andfm(s) is minimum phase. It is noted that,f(s), fm(s) ∈
RH∞, f(0) = fm(0) =

∑l
i=1 σ

2
i . Then, with the two-

parameter controller given in Fig.2,

J∗ =2(1− ǫ)

[

nz
∑

i=1

Re(zi)

|zi|2
m
∑

j=1

σ2
j cos

2
∠(ηi, ej)

+ (

l
∑

i=1

σ2
i )

(

Ns
∑

i=1

Resi
|si|2

− 1

π

∫ +∞

0

log |f(jω)|
ω2

dω

)]

+

nz
∑

i,j=1

4Re(zi)Re(zj)

z̄i + zj
ω̂H
j D̂r

i (zj)D̂
rH
i (zi)ω̂i

× ÔH(zi)Ô(zj)V D̂l
j(zj)ω̂jω̂

H
i D̂l H

i (zi)V
H .

Proof: Similar to the proof of Theorem 1, we have the
performance index

J :=(1 − ǫ)tr{Rêr(0) +Ryn
(0)}+ ǫtr{Rucr

(0) +Rucn
(0)}

=(1 − ǫ)(‖TêrU
1

s
‖+ ‖Tyn

V ‖)

+ ǫ(‖Tucr
U
1

s
‖+ ‖Tucn

V ‖)

=

∥

∥

∥

∥

[√
1− ǫ(I −NQ)√

ǫMQ

]

U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

[√
1− ǫN(X̃ −RÑ)√
ǫM(X̃ −RÑ)

]

V

∥

∥

∥

∥

2

2

=JU + JV .

Let
[√

1− ǫNH
m

√
ǫMH

m

]H
= ΛiΛo, we can obtain

J∗
U = 2(1− ǫ)

[

nz
∑

i=1

Re(zi)

|zi|2
n
∑

j=1

σ2
j cos

2
∠(ηi, ej)

+(
l
∑

i=1

σ2
i )

(

Ns
∑

i=1

Resi
|si|2

− 1

π

∫ +∞

0

log |f(jω)|
ω2

dω

)]

.

For JV , we have

JV =

∥

∥

∥

∥

[√
1− ǫN(X̃ −RÑ)√
ǫM(X̃ −RÑ)

]

V

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

[√
1− ǫNm√
ǫMm

]

(X̃ −RÑ)V

∥

∥

∥

∥

2

2

.

In addition, we factorizẽNV = ĈD̂, whereĈ is the minimum
phase part,̂D ∈ RH∞ is an allpass factor which can be formed
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as

D̂(s) :=

nz
∏

i=1

D̂i(s),

D̂i(s) :=[ω̂i Ŵi]

[ s−zi
s+z̄i

0

0 I

] [

ω̂H
i

ŴH
i

]

.

Similar to the proof of Theorem 1, we can obtain

J∗
V =

nz
∑

i,j=1

4Re(zi)Re(zj)

z̄i + zj
ω̂H
j D̂r

i (zj)D̂
rH
i (zi)ω̂i

ω̂H
i D̂l H

i (zi)V
HÔH(zi)Ô(zj)V D̂l

j(zj)ω̂j ,

where

Ô(zi) =Λ0(zi)M
−1(zi),

D̂l
i(zi) =D̂−1

1 (zi)D̂
−1
2 (zi) · · · D̂−1

i−1(zi),

D̂r
i (zi) =D̂−1

i+1(zi)D̂
−1
i+2(zi) · · · D̂−1

nz
(zi).

The proof is thus completed.
If there is no channel noise in the configuration of the

feedback control system depicted in Fig.2, then the following
result can be immediately obtained.

Corollary 3: Consider the case of Fig.2, and suppose that
the channel is noise-free. Under the same assumptions de-
scribed in Theorem 1, we have

J∗ =J∗
U = 2(1− ǫ)

[ nz
∑

i=1

Re(zi)

|zi|2
l
∑

j=1

σ2
j cos

2
∠(ηi, ej)

+ (

l
∑

j=1

σ2
j )

(

Ns
∑

i=1

Resfi
|sfi|2

− 1

π

∫ +∞

0

log |f(jω)|
ω2

dω

)

]

.

Remark 2: If we do not consider the impact of the system
control input, i.e. settingǫ = 0, andσj = 1, (j = 1, 2, · · · , l).
From the expression in corollary 3, it can be observed that for
a feedback control system with a two-parameter compensators,
when the tracking target is the Brownian motion, the perfor-
mance limitation depends on the nonminimum phase zeros,
the plant gain at all frequencies and their directions unitary
vectors.

In what follows, we will discuss the relationship between
stabilizability, the performance limits and channel character-
istics under simplified conditions, we do some appropriate
simplifications and assumptions. Consider the SISO system
P (s) in Fig.1 and the simplified performanceJ as

J := E
{

‖r(t) − yr(t)‖2 + ‖yn(t)‖2
}

. (12)

The relationship between the stabilizability, tracking perfor-
mance and the channel signal-to-noise ratio (SNR) can be
summarized as shown in the following theorem.

Theorem 2: Consider the feedback control system of Fig.1.
Suppose thatP (s) is a scalar transfer function. Under the
assumptions in Theorem 1, the systemP (s) is stabilizable
only if the admissible channel SNR satisfies

P
γ2

>

np
∑

i,j=1

r̄irj
p̄i + pj

,

whereP is the predetermined input power threshold. With
the performance index (12), for the system to be stabilizable
and obtain the optimal tracking performance, the channel SNR
must satisfy

P
γ2

>

np
∑

i,j=1

r̄irj
p̄i + pj

+ PAd,

where

PAd =

∥

∥

∥

∥

∥

np
∑

i=1

Nom(pi)N
−1(pi)H(pi)

np
∏

k=1,k 6=i

B̃−1
k (pi)

−
( nz+nf
∑

i=1

Nom(zi)M
−1(zi)H(zi)

nz+nf
∏

k=1,k 6=i

L̂−1
k (zi)

+ S

)

N−1
m M̃m

∥

∥

∥

∥

∥

2

2

, (13)

and the optimal tracking performance is given as

J∗ = 2σ2

nz+nf
∑

i=1

Re(zi)

|zi|2
+ γ2

nz+nf
∑

i,j=1

¯̂rir̂j
(z̄i + zj)

where

ri =Ress=pi
Nom(pi)N

−1(pi)H(pi)B̃
−1
i ;

r̂i =Ress=ziNom(zi)M
−1(zi)H(zi)L̂

−1
i .

Proof: Using the equation (12), similar to the proof of
the theorem 1, we have

J :=tr
(

Rêr(0) + Ryn
(0)
)

=

∥

∥

∥

∥

TêrU
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

Tyn
V

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

(1 −NQ)U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

PM(X −RN)HV

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

[

(L−1 − 1) + (1−NmQ)
]

U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

Nom(XL̂−1 −RNm)HV

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

(L−1 − 1)U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

(1−NmQ)U
1

s

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

Nom(XL̂−1 −RNm)HV

∥

∥

∥

∥

2

2

=2σ2

nz+nf
∑

i=1

Re(zi)

|zi|2

+

∥

∥

∥

∥

Nom(XL̂−1 −RNm)HV

∥

∥

∥

∥

2

2

. (14)

Based on the allpass factorization (3) and Lemma 3, we can
write

NomXHL̂−1 = S +

nz+nf
∑

i=1

Nom(zi)

×X(zi)H(zi)L̂
−1(zi)L̂i(zi)L̂

−1
i ,
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whereS ∈ RH∞. Then

∥

∥

∥

∥

Nom(XL̂−1 −RNm)HV

∥

∥

∥

∥

2

2

=γ2

∥

∥

∥

∥

R1 −NomRNmH +

nz+nf
∑

i=1

Nom(zi)X(zi)

×H(zi)L̂
l
i(zi)L̂

r
i (zi)

(

L̂−1
i − L̂−1

i (∞)
)

∥

∥

∥

∥

=γ2

∥

∥

∥

∥

R1 −NomRNmH

∥

∥

∥

∥

2

2

+ γ2

∥

∥

∥

∥

nz+nf
∑

i=1

O1(zi)

× L̂l
i(zi)L̂

r
i (zi)

(

L̂−1
i − L̂−1

i (∞)
)

∥

∥

∥

∥

(15)

where
O1(zi) = Nom(zi)X(zi)H(zi),

L̂l
i(zi) = L̂−1

1 (zi)L̂
−1
2 (zi) · · · L̂−1

i−1(zi),

L̂r
i (zi) = L̂−1

i+1(zi)L̂
−1
i+2(zi) · · · L̂−1

nz
(zi),

R1(s) =S +

nz+nf
∑

i=1

O1(zi)L̂
l
i(zi)L̂

r
i (zi). (16)

By using the Bezout identityXM − Y N = 1, O1(zi) can be
written as

O1(zi) = Nom(zi)M
−1(zi)H(zi). (17)

From equations (14),(15) and (17), we have

J∗ =2σ2

nz+nf
∑

i=1

Re(zi)

|zi|2
+ γ2

nz+nf
∑

i,j=1

4Re(zi)Re(zj)

z̄i + zj

×
(

O1(zi)L̂
l
i(zi)L̂

r
i (zi)

)H
O1(zi)L̂

l
i(zi)L̂

r
i (zi)

=2σ2

nz+nf
∑

i=1

Re(zi)

|zi|2
+ γ2

nz+nf
∑

i,j=1

OH
1 (zi)O1(zi)

× 4Re(zi)Re(zj)

(z̄i + zj)

nz
∏

k=1,k 6=i

(z̄k + zi)(zk + z̄j)

(z̄k − z̄i)(zk − zj)

=2σ2

nz+nf
∑

i=1

Re(zi)

|zi|2
+ γ2

nz+nf
∑

i,j=1

¯̂rir̂j
(z̄i + zj)

wherer̂i is the residue ofO1(pi)L̂
−1(s) at s = zi.

In addition, suppose that the inputr(t) = 0. The channel
input is required to satisfy the power constraint‖u‖Pow < P
for some predetermined input power levelP > 0.

‖u(t)‖Pow =E[uT (t)u(t)] = tr[Run
(0)]

=

∫ +∞

−∞

tr
(

Tun
Sn(jw)T

T
un

)

dw

=‖Tun
V ‖22 = ‖No(Ỹ −RM̃)HV ‖22

=γ2‖Nom

(

Y HB̃−1 −RHM̃m

)

‖22

=γ2

∥

∥

∥

∥

∥

np
∑

i=1

Nom(pi)Y (pi)H(pi)

np
∏

k=1,k 6=i

B̃−1
k (pi)

× [B̃−1
i − B̃−1

i (∞)]

∥

∥

∥

∥

∥

2

2

+ γ2

∥

∥

∥

∥

∥

np
∑

i=1

Nom(pi)Y (pi)H(pi)

×
np
∏

k=1,k 6=i

B̃−1
k (pi)−NomRHM̃m

∥

∥

∥

∥

∥

2

2

. (18)

When only the stabilizability is considered regardless of the
tracking performance, we have

‖u(t)∗‖Pow S = γ2

∥

∥

∥

∥

∥

np
∑

i=1

Nom(pi)Y (pi)H(pi)

np
∏

k=1,k 6=i

B̃−1
k (pi)

× [B̃−1
i − B̃−1

i (∞)]

∥

∥

∥

∥

∥

2

2

= γ2

np
∑

i,j=1

r̄irj
p̄i + pj

(19)

whereri = Ress=pi
Nom(pi)N

−1(pi)H(pi)B̃
−1
i is the residue

of Nom(pi)N
−1(pi)H(pi)B̃

−1
i at s = pi. Therefore, for the

feedback system to be stabilizable, the channel SNR must
satisfy

P
γ2

>

np
∑

i,j=1

r̄irj
p̄i + pj

. (20)

This is the result of [4]. However, in many cases, not only
the stabilizability needs to be considered, but also the sys-
tem tracking performance. In this case, via noting equations
(16),(18) and (19), we have

‖u∗(t)‖Pow SL = γ2

∥

∥

∥

∥

∥

np
∑

i=1

Nom(pi)Y (pi)H(pi)

×
np
∏

k=1,k 6=i

B̃−1
k (pi)−NomRHM̃m

∥

∥

∥

∥

∥

2

2

+ γ2

np
∑

i,j=1

r̄irj
p̄i + pj

= ‖u∗(t)‖Pow S + γ2PAd.

wherePAd is given by equation (13). Then,

P
γ2

> ‖u∗(t)‖Pow S/γ
2 + PAd.

The proof is now completed.
Remark 3: Theorem 2 shows that for a system to achieve

for a best tracking performance in addition to stabilization, its
signal-to-noise ratio must be greater than that required only
for stabilization.

IV. SIMULATION STUDIES

Consider the plant

P = (s− k)/(s(s+ 1)).

The LTI filters used to model the finite bandwidthF (s) and
colored noiseH(s) of the communication link are both chosen
to be low-pass Butterworth filters of order 1.

F (s) = f/(s+ f), H(s) = h/(s+ h),

wherek ∈ [1, 10], andf > 0, h > 0.
Clearly,P (s) is of minimum phase. Fig.3 shows the optimal

performances plotted for different values ofǫ. Two observa-
tions can be obtained from Fig.4, where the optimal perfor-
mance is plotted with respect to bandwidth of both F(s) and
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Fig. 3. J∗ with respect tok for different ǫ.(f = 3, h = 4, σ = 1, γ = 0.8)
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Fig. 4. J∗ with respect toF andH.(k = 2, ǫ = 0.5, σ = 1, γ = 0.8)
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Fig. 5. J∗ with respect toσ andγ.(k = 2, ǫ = 0.5, f = 3, h = 4)

H(s). First, the system tracking performance becomes better
as the available bandwidth of the communication channel
decreases. Secondly, if the noise is colored by a low pass filter,
the decrease of its cutoff frequency would lead to the better
tracking performance. Fig.5 shows that the reference signal
and ACGN will deteriorate tracking performance.

V. CONCLUSIONS

In this paper, we have investigated the best attainable
tracking performance of networked MIMO control systems
in tracking the Brownian motion over a limited bandwidth
and additive colored white Gaussian noise channel. We have
derived explicit expressions of the best performance in terms
of the tracking error and the control input energy. It has been
shown that, due to the existence of the network, the best
achievable tracking performance will be adversely affected
by several factors, such as the nonminimum phase zeros and
their directions of the plant, the colored additive white Gaus-
sian noise, the basic network parameters, such as bandwidth.
Finally, some simulation results are given to illustrate the
obtained results.

Furthermore, one possible future work is to consider more
realistic network-induced constraints, such as time-delay and
dropout issues which is much more challenging. When the
networked control system contains the nondeterministic or
hybrid switching [33]–[35], the issue of tracking performance
also deserves further study.
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