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Abstract—This paper studies optimal tracking performance
issues for multi-input-multi-output linear time-invaria nt systems
under networked control with limited bandwidth and additiv e
colored white Gaussian noise channel. The tracking performnce
is measured by control input energy and the energy of the ermo
signal between the output of the system and the reference sigl
with respect to a Brownian motion random process. This paper
focuses on two kinds of network parameters, the basic netwér
parameter-bandwidth and the additive colored white Gaussan
noise, and studies the tracking performance limitation prdlem.
The best attainable tracking performance is obtained, and he
impact of limited bandwidth and additive colored white Gaussian
noise of the communication channel on the attainable trackig
performance is revealed. It is shown that the optimal tracking

performance depends on nonminimum phase zeros, gain at all

frequencies and their directions unitary vector of the given plant,
as well as the limited bandwidth and additive colored white
Gaussian noise of the communication channel. The simulatio
results are finally given to illustrate the theoretical resuts.

Index Terms—Networked control systems, bandwidth, additive
colored white Gaussian noise, performance limitation.

I. INTRODUCTION

. ) S
ORE and more researchers are interested in networl?%g/

Performance limitations resulting from nonminimum phase
(NMP) zeros and unstable poles of given systems have been
known for a long time. The issue has been attracting a growing
amount of interest in the control community, seel [21]+-[2#] f
example. The tracking performance achievable via feedback
was studied in[[25] with respect to single-input-singlepau
(SISO) stable systems. The result was extended to multitinp
multi-output (MIMO) unstable systems in_[26], and it was
found that the minimal tracking error depends not only on the
location of the system nonminimum phase zeros, but also on
how the input signal may interact with those zeros, i.e., the
angles between the input and zero directions. Optimal imgck
and regulation control problems were studiedlin! [22], where
objective functions of tracking error and regulated reggon
defined by integral square measures, are minimized jointly
with the control effort, and the latter is measured by théesys
input energy. In[[24], the optimal tracking control problem
was studied with both the forward and feedback channel dis-
turbances. The authors 6f 23] investigated the regulaiiem
formance limitations of unstable non-minimum phase single
input-multi-output (SIMO) continuous-time and discreiae
tems, respectively. However, all these mentioned works
e not taken into account the effects of networks, which

control systems in the past decade, please see, Wéuld make the study of the optimal performance limitation

example, [[1]4[7] and references therein. Most works foc
on analysis and synthesis of networked control systems wi

guantization effects (e.gll[8]=[12]), time delayis [[13]5]1
bandwidth constraint_[4],[16]/[17], data rate constrdi,
[16], and/or data packet dropout [17]=[20].

such network environment remain largely open.
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uch more challenging.
'\ etworked control systems are ubiquitous in industry. More
and more control systems are operating over a network. In
recent years, the research on the performance limitation of

S ) X In spite .Of th?1etworked control systems attracts some attention. Fanexa
significant progress in those studies, the more inspiring) a

challenging issues of control performance limitation und

le, the authors in[[10] studied the tracking performance of

iscrete-time SISO networked feedback systems, by maglelin
the quantization error as a white noise. The tracking perfor
mance of continuous-time MIMO systems with the additive
white Gaussian noise (AWGN) was studied through one- and
two-parameter control schemes [n [27],[29]. The result was
further generalized to other noisy channels with bandwidth
limitation in [8], where the optimal tracking performance i
measured by the achievable minimal tracking error. However
it was showed in [24] that, in the optimal tracking problem,
in order to attain the minimal tracking error, the control
input of systems is often required to have an infinite energy.
This requirement cannot be met in general in practice. Thus
the control input energy of systems should be considered in
the performance index to address this issue. In this paper,
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we consider the optimal tracking problem in terms of botassociated withs, and||n|| = 1. For such a zero, it is always
the tracking error energy and the control input energy, amdie thatn N(s) = 0, for some unitary vector. On the
meanwhile we consider communication link over bandwidtiother hand, a complex number is said to be a pole of P(s) if
limited additive colored Gaussian noise (ACGN) channel®(p) = co. If p is an unstable pole oP(s), i.e.,p € C,,
which are more realistic models of communication link thathen equivalent statement is th@t(p)w = 0 for some unitary
those in [1], [24]. vectorw, ||w|| = 1. In order to facilitate the subsequent proof,
In this paper, we study optimal tracking performance issueg introduce two specific factorization fa¥(s) : N(s) =
pertaining to MIMO feedback control systems. The objectivB(s)N,,(s) = L(s)N,.(s). And, allpass factoL.(s) and L(s)
is to minimize the tracking error between the output and tteve the formZ(s) := [[7%, Li(s), L(s) := [[}*, Li(s), and
reference signals of a feedback system under the constraint

Zi 2i—S H
of control input energy. The optimal tracking performanse i Li(s) =[n; U] { Z_? ? } [ ZfH ], 2)
attained by stabilizing compensators under a two-paramete v
structure. The tracking error is defined in an square ermsese i-(s) = [ U-] { zlj 0 } [ mH ] 3)
and the reference signals are considered as a Brownianmotio ‘ v 0 I Uf |’

which can b? roughly considered as the integral of a stand@ffieres;; are unitary vectors obtained by factorizing the zeros
white noise[2], [[27],[[28]. The tracking performance indeX gne at a time, and; are matrices which together with form

given by the weighted sum between the power of the trackingnitary matrix. Similarlyj; and(; have same definition and
error energy and the system input energy. nature.

The rest of the the paper is organized as follows. The prOb'Likewise, M has the allpass factorizatiohl = M,,(s)

lem formulation and preliminaries are given in section H. 'xB(s) whereB(s) is an allpass factor andem(s) is the

section IlI, the main results of this paper are presenteduRe yinimum phase part alZ(s). One particular allpass factor is
of extensive simulation studies and discussions are Sho@’lOen by B(s) := [, Bi(s), and
: P ,

to validate the theoretical results in section V. Conahgdi

k de in Section V. 5 sy mio | e O [ @
remarks are made in Section Bi(s) :==[@: Wi [ Bpm ; ] [ W | (4)
Il. PRELIMINARIES Consider the class of functions #:= {f : f(s) analytic in

We begin by summarizing briefly the notations use+ Mg o MaXge x/2.7/2) [ f(Re’)/R|| = 0}.. Lemmdl
throughout this paper. For any complex numbkewe denote and[2 can be found in_[22].
its complex conjugate byf. The expectation operator is Lemma l: Let f(s) € F and denotef(jw) = hi(w) +
denoted byE{-}, respectively. For any vectar, we denote jhz(w). Suppose thaf(s) is conjugate symmetric, i.ef(s) =
its conjugate transpose by, and its Euclidean norm by f(5)- Thenf'(0) = (1/7) [7 (h1(w) = h1(0)) /w?dw .
|u]. For a matrix4, we denote its conjugate transpose by Lemma 2: Consider a conjugate symmetric functigis).
AH . All the vectors and matrices involved in the sequel ar@Uppose thatf(s) is analytic and has no zero i,
assumed to have compatible dimensions, and for simplic@d thatlog f(s) € F. Then provided thatf’(0)/f(0) =
their dimensions will be omitted. Let the open right-halime (1/7) [ (1/w?)log | f(jw)/ f(0)|dw, £(0) # 0.
be denoted byC, := {s : Re(s) > 0}, the open left-half Lemma3: Let L and L; be defined by[(8). Then, for any
plane byC_ := {s : Re(s) < 0}, and the imaginary axis X € R¥, the equalityX L~ = S + >, X(z;)L; " (2:)

by Co. Define Ly := {f : f(s) measurable in Co, || f||3 := L () L L () - Lz_vi (2i) holds for somesS <
L [% |l f(jw)||mdw < co}. Then, Ly is a Hilbert space with Koo
an inner product(f,g) = o= [~ tr{f¥ (jw)g(jw)}dw. Proof: We assume that is an allpass factor. From lemma

Next, defineH, as a subspace of functions Ip, with func- 4-1Ni” L3(1?'], for somleY € RZ'[OO'I we haveAl‘ly =51+

tions f(s) analytic inC_, Hy := {f : f(s) analytic in C, Y1 AN, (zi) - A () A AT (20) - A (20) Y (24).

IFI3 = supymg 5[5, 1f (0 + jew)|[}dew < oo} and the Then, we have’ " A~H = S 4 570 Y (2)A; 7 (z) -

orthogonal complement off, in L as Hi: Hy = {f : A1(z)A7TA (z) - AT (z:). Let L = A% S = SfT,

f(s)analyticin C_ || |3 := sup, <o 5= 5, [ f(0 + jw)|[3dw X = Y7 thenX L1 = S+377 X(z) Ly (z0) Ly (z0) - -

< oo}. Thus, for anyf € Hi andg € Hs (f,g) = 0. L;j'Li}(z)--Ly'(z). Therefore, the proof is completed.

We use the same notatidf||, to denote the corresponding u

norm. Finally, we denote byRH., the class of all stable,

proper rational transfer function matrices. We introduce a I1l. TRACKING PERFORMANCE LIMITATIONS

factorization formula for non-minimum phase systems. Rert  consider the control feedback loop shown in Fig.1, where

right-invertible rational transfer function matrig, let its right  the plant modelP is a rational transfer function matrix. The

and left coprime factorizations be given by channel model is the bandwidth-limited ACGN channel, where
P=NM"'= N, L "= [nl,@,--- ,m]_with ni(l_ < i _g 1) being a zero-

mean stationary white Gaussian noise process and spectral

where N, M, M,N € RH.. A complex numbers ¢ C density 7?2 (whenl = 1, note y = ;). The reference

is said to be a zero ofP(s), if n"P(s) = 0 for some signalr is a vector of the step signal generated by passing

unitary vectorn, wheren is called an output direction vectora standard white noise through an integrator, which can
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be roughly considered as a Brownian motion procéss [28Bhe optimal performance attainable by all possible stzibi
and emulate the step signal in the deterministic setling [Zontrollers is

[27]. Therefore, the formulation resembles the trackingaof . )

deterministic step signal. For the chanrielwe denote the JU= ik J.
spectral density ofw; by o2 (when! = 1, noteo = o).

It is assumed that the system reference inputs in different

channels are independent, and that the reference inpuhand t Theorem 1: Let w and n be uncorrelated white Gaussian

noise are uncorrelatedlK;, K,] denotes the two-parametersignals. Suppose thab(s) = F,(s)/s", for some integer
n > 1, such thatP,(s) is proper and has no zeroat 0. P is

s

o e e ; supposed to be unstable, NMP and invertible (includingtrigh
channel §n invertible and left invertible). Denote the NMP zeros Bfs)
and F(s) by z;, (i = 1,--- ,n, + ny) and assume also that

@;%s)@;T(O)NZ(O)U} and factorize f(s) as f(s) :=

3 (TL2 5i(si — s)(si(5: + 5))) fn(s), wheres; € Cy are the
Y nonminimum phase zeros of(s) and f,,(s) is minimum
"""""""" phase. It is noted thaf,(s), fi.(s) € RHoo, f(0) = f,(0) =
22:1 o?. Then, with the two-parameter controller given in
Figd

! |
i |
E i these zeros are distinct. Defirfés) := tr{(1 — €)UT N,,(s)

Fig. 1. Feedback control over bandwidth limited ACGN chadsne

compensators. The communication channel is charactdnized Jr=21-e) [ Z |z |2
three parameters: the AWGN n, the channel transfer fungtion . N
F and H. The channel transfer functioRi(s) € RH n (Z o2) <Z Res; 1 /+oo 1Og|f(jw)|dw> 1
modeling the bandwidth limitation is assumed to be stabte an

NMP [4]. Then F(s) = diag[fi(s), f2(s),-- , fi(s)], where

n.+n
fi(s) = fa(s) = --- = fi(s). F(s) hasn; distinct NMP n ! 4Re(zi)Re(Zj)wHDr(2,)DTH(ZZ,)%
zeros. The channel transfer functiéh(s) € RH ., colors the Pt Z; + z; J TR
additive white Gaussian noise. The performance index of the H JH oo z
system is defined as x w; Di (2:)V7 07 (2:)O(2;)V Dy (25)w;.
J = E[(1-o)(r(®) ~y()" r(t) ~y() +eul Duc®). 6)  proot: From ), we have

where the parameter (0 < e < 1) is pre-set and can be
used to weigh the re_Iative importance of_ tracking objective j._ (1= )tr{Re, (0) + Ry, (0)}
and the plant control input energy constraint. For the feans + tr{Ru. (0) + Ru. (0)}, (8)
function matricesP and PF, let their right and left coprime U ey ten ’
factorizations respectively be given blfF = NM~! =
M-'N, P = NoM~', where N, Ny, M, N, M € RHo, where R;, (t), Ry, (t), R...(t) and R, (t), are the autocor-
and satisfy the double Bezout identity relation functions of the random processe&t), v, (t), uer(t)
~ _ andu., (t), respectively. Denote the spectral densities ahd
[ X -Y } [ M Y ] _I (6) ™ @asS:(jw) ands, (jw) respectively.

-N M N X Then we have
Then the set of all stabilizing two parameter compensasors i . oo
characterized by J=01- 6)2_ [/ tr(Te, S, (jw) TE )dw
™ —00
Ks:={K:K=[K, Ko=(X—RN)™! +00 & (7T
«[Q Y — RM),Q € RMoo, R € RH.}. + /700 tr(Ty, “(J“)Tw)d“]
According to [5), we may rewrite the performance indeas " Ei [/Jroo (TS (jw)TT )dw
27T e Ucr T Ucr
+oo
aa E{(l ~9Ir®) = w1 +/ (T, S () T )dw}
+ nt2+euct 2}, 7 2 2
[yn (%) + elluc (D] (@) :(1_6)<’TéTU3 +’TynV )
Slla 2

wherey,.(t) andy, (t) are the outputs in responset@ndn,
respectively. And the tracking erréris given by te (‘

e(t) = r(t) — yr(t).

2
1.,V

Uen

1
T, U-
S

"

)

2
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1 2

=(1—¢) <H (I — PFK,)"'PFK;|U-

Sll2
E(

- )l

+ H(I—PFK2)1PHV

2
1

(I - FKyP) ' FK U~
Slla

+ H(I—FKQP)lHV

2

H [MPM (X — RN)
VeM (X — RN)

2

2
=Ju + Jv,

where

U= diag[O'l,O'g,"' 70l]a V:dia’g[/yla’)/Qa"' 7’7l]-

Evidently, we have

J* = inf J= f J f Jv=J5+Jy.
A= Jut i v=Jdutdy
Firstly, for .J;7, using the allpass factorizationl (2), we have
. VI—eI-NQ), 1|
To = dn, [ vermq Y5,
(- — 2
~inf [\/1 e(L I)] Ul
QERH oo 0 5|4
VI—ell. 1 [—/I=eN,, 1]
U- U-
[ 0 s VeCrum @ 5|l
nzt+nys
Re(z;) .
:2(1_6) ; | |2 || UHF+ Ellgilx ']Ul
" Re(z)

=2(1—¢) Y

i=1

ZO’? cos® Z (i, ef) + J,
i—1

|2i?

where Cr), is the minimum phase part af'M, n; is the
direction vector associated with the zerof®f , e; is unitary

a column vector, whose j-th element is 1 and the remaining

elements 0, and
2

. VI=el|  [-VI=€Np, 1

Ton = o du {[ 0 ] * [ VeCru ]Q}Ug 2
. —VI—el| | [VI=€Nn L
_Qel]g{oo {[ 0 } + [ VeCrnr ]Q}Ug .

Furthermore, we perform an inner-outer factorization giire
[32], such that

V1 —¢€eN,,
[ VeCru ©

where®; € RH, is an inner matrix function, an@®, € RH .

:| = @i@07

From [9), the following equation can be obtained

0 (—jw)Oo(jw) = (1 = )Ny (—jw) N (jw)
+ e(Char (—jw)Cru (jw)).
From [10), one can define the following matrix function with

its module equal to 1,

o 0 (—jw)
¥(jw) = [1 - ®i(jW)(z)iT(—jw)} '

So according to the property of the matrix noriy, becomes

. V1=l VI—=€N,, 1]
o, _Qelll%f-[Oc v {|: 0 + VeCr @ US 9
2 1 2
:Qel]l%f-too (A1+90Q)U— 2+HA2U§ 2,
where

A, =0l {_\/?I] =—(1-¢)0O, N
Ay =(1 - 6,0M) [_\/10?[} _ {_\/?I} — 0,4

_[VI=e(-I+(1-¢N,0,'0,ANH)
B (1 -e)VeCrn©, 0, "N '

We then obtain

Jg, = 1= (657N,

- GOH(O)N,{;’(O))Ulu + HAgUlH :
S S

Similar to [22], we may invoke lemmid 1, and obtaifis =
—(1 —¢)f(0). In light of lemmal2, one also obtains

Z [Z _E/MMM]

w?
i=1

Res;

|5l

J;}1 :(

o0

Thus, we have

anrnf
2(1 —e)[ >

=1

N Res; 1 /+°° log | f(jw)]
- — ———dw .
— [si]> 7™ Jo w?

Secondly, forJy, we have

H {EPM (X — RN)
VeEM (X — RN)

H {‘/—N Om} (X = RN)HV

where N,,,,, is the minimum phase part a¥,.
Similar to the equation[{9), we perform an inner-outer

Re(z;)

Jir =
v |2i?

Zcr cos® Z(n;, e;)

2
}HV

2
2

)

2

is an outer. According to the definition of an inner matri¥actorization such that

function, we have

Of (—jw)0;(jw) =1I. (10)

1- Nom
{V \/51\64 ]_AZ—AO.
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In addition, similar to[[31], we factoriz& HV = CD, where
C' is the minimum phase parf) € RH, is an allpass factor
which can be formed as

D(s) _"ﬁf Di(s)
Di(s) =[wi Wi [ % ? ] [ VQ;}; } (11)

Hence, in light of Lemma&]3, we have

~ 2 ~ 2
Jy = HAO(XHV - RCD)H2 - HAOXHVD—l - AORCH2
anrnf

Z O(z:)V Di(z)[D;

=1

2

— D;l(OO)]DZ(Zz) + R1 — AgRC
2
whereR; € RH., and
O(zi) =Ao(2i) X (2:)H (z) = Do(z:)M " (2)H(2),
Dj(z;) =Dy ' (z:)D3 " (2:) - - Dy (1),
Dj(z:) =D}y (z)Di5(2:) - Dy (20).

Since A is right invertible andC' left invertible, we have

anrnf
. , LoDt
=il 2 OtovPeID
2
— DN (00)I D (z1)|| + IRy — AoRC2
2
2
nz+ng
2 i
—| S 0GavDi ) 2R ot by 2
i=1 o 2
nz+ng 4Re(2‘)R€(2')
_ 5 ARGIREE) by oz
Zi+Zj ’

1,j=1
WD (2) VI OH (2)0(2))V D! (2w,

The proof is thus completed. ]

Remark 1: When there is no network channel, because the
Brownian motion random process is different from the steL t

signal vector with deterministic direction, this resulincaot
be degraded to the results in literaturel[22].

Corollary 1: If the systemP(s) are SISO in Theoreml 1,

then the optimal tracking performance can be written as

" Ref R

e(z) es

J*=2(1—-¢€ 02{ ! !

( ) ; 22 Z|sl|2
nytng = _

1 [T j
_ _/ Og|f§jw)|dw} 42
0 w

s

>
= Zi + z;
where R
i = Resss, Ao(2) M (i) H(2;) L]
Corollary 2: Consider the simple channel case with= I
and H
fine f(s) :=

tr{(1 — U N (s)A5H (s)AZT(0) N, (U},

u

[K“@

[

Fig. 2. Feedback control over AWGN channels

and factorizef(s) := (vazsl 5i(si — 8)/(5i(3i + 8))) fm(s),
wheres; € C, are the nonminimum phase zeros ffs)
and f,,,(s) is minimum phase. It is noted thaf(s), f(s) €
RHoo, f(0) = fm(0) = ', 2. Then, with the two-
parameter controller given in Fig.2,

J* =21 —

w

lo f jw
4R8 Zz Re ZJ) H

rH ~
PR Di (z;) Dy (zi)wi

+Z

7,j=1

x O (2)0(2;)V Dl (z))i;0f DL () V.

Proof: Similar to the proof of Theorem 1, we have the
performance index

=(1— e)tr{Re,.(0) + Ry, (0)} + etr{R,.,.(0) + Ry, (0)}
=(1 = (I, U] + T, V)

J:

1
+ellTu, U+ 1 Tuc, VI

|
‘ ’ 2 2
A 1,
=Ju+ Jv.

[VI—eNH JemH]"

= A;A,, we can obtain

N Re(z;)
Jir=2(1-¢) Z P Zo cos® Z(ni, e;)
l N +o0
Res; 1 log | f(jw)|
2
H¥o (z e L[ il ) |
i=1 i=1

For Jy,, we have

il

‘H{ m;

2
2

m] (X = RN)V

2

I. Under the assumptions in Theorem 1, den addition, we factorizeVV = C'D, whereC is the minimum

phase partD € RH. is an allpass factor which can be formed
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as where P is the predetermined input power threshold. With
s the performance indeX_(IL2), for the system to be stabileabl
= H D;(s), and obtain the optimal tracking performance, the chann& SN
must satisfy
Do) =l W[ 5 ][ | PSS T p
e T H | - Ad)
0 I Wz 72 5= 1p +pj
Similar to the proof of Theorefnl 1, we can obtain
where
<~ 4Re(z)Re(zj) . o rH np ny
Jy = — 20 Dr(z )D (2:)w; .
Y Jzz:l Zit 7 ’ Paa =Y Nom@)N')Hp:) [[ Bi'w)
o A A . R i=1 k=1,ksi
o' D} (2 VIO (2)0(2))V Dj(25)@;, Ratny natny
where ( Z Nom(z)M ' (z)H(z) [ Li'(z)
. k=1,ki
O(Zl) ZAo(Zi)Mil(Zi) 2
Di(zz) :f)fl(zi)DQ 1(21) Az‘ 11 (2i) + S) ' My, (13)
D:(Zz) :D;rll (Zi)Di+2(Zi)' D ( i) _ ) ? o
} and the optimal tracking performance is given as
The proof is thus completed. [ ]
If there is no channel noise in the configuration of the natny Re(z:) "Z*"f Pofs
. . . . 2 K 1]
feedback control system depicted in Fig.2, then the foltawi =20 Z B |2 Z m
result can be immediately obtained. ij=1 70 1
Corollary 3: Consider the case of Fig.2, and suppose thahere
the channel is noise-free. Under the same assumptions de-
scribed in Theorem 1, we have 7 =Ress—p, Nom (pi)N " (pi)H (ps) B Y
“ Re(z; 7 =ReSsmy; Nom (2:) M~ (2:) H (2;) L.
Jr=J5 =201 - )[Z e(-zz) Zo? cos? Z(ni, e;)
i=1 =il j=1 Proof: Using the equation(12), similar to the proof of
l N oo : the theorem 1, we have
Resp; 1 [T log|f(jw)] '
2 fi gl7
”ZC’“(Z ek )] 1| :
=t =t J :=tr(Re, (0) + Ry, (0)) = HTéx,UT + ‘ Ty, V
Remark 2: If we do not consider the impact of the system ) Sll2 ) 2
control input, i.e. setting =0, ando; =1,(j =1,2,---,1). —la=-n PM(X — RNVHV
From the expression in corollary 3, it can be observed that fo QU 2 ( ) 5
a feedback control system with a two-parameter comperssator 1112
when the tracking target is the Brownian motion, the perfor- —H [(L_1 -1)+(1- NmQ)} U-
mance limitation depends on the nonminimum phase zeros, 2 )
the plant gain at all frequencies and their directions upita v (XL—l — RN,)HV
vectors. o " )
In what follows, we will discuss the relationship between ) 1112 11|12
stabilizability, the performance limits and channel clotea —H(L —DU-|| + H(l — NnQ)U=
istics under simplified conditions, we do some appropriate 2 2 5
simplifications and assumptions. Consider the SISO system + ||Nom(XL™' = RN, )HV
P(s) in Fig[d and the simplified performanceas I 2
— Re
2
Ji=E{Ir®) =y @I+ lm@®2}. 12 2
The relationship between the stabilizability, trackingfpe . 2
mance and the channel signal-to-noise ratio (SNR) can be + H]Vom(XL1 — RN,,)HV (14)
2

summarized as shown in the following theorem.
Theorem 2: Consider the feedback control system of [Hig.1Based on the allpass factorizatidd (3) and Lenfiha 3, we can

Suppose thatP(s) is a scalar transfer function. Under thewrite

assumptions in Theorem 1, the systdiis) is stabilizable

only if the admissible channel SNR satisfies netny

NomXHL™' =8+ > Nom(z)

Np

P S Z 75T i=1
2 pi+pj’ x X (2;)H ()L™ (z:)Li(zi) L "

i,5=1
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whereS € RH,. Then

2
HNom(Xffl — RN,,)HV

2
nzt+nys

— Nom RN, H + Z Nom(zl)X(Zl)

i=1

X H(2) EL ()P0 (2:) (ﬁi—l - 17 (0) H

fQRl

=2 Rl_Nom

x LL(z) L7 (2) (LI L) H

where
01( ) Nom(ZZ)X(Zl)H(Zl)v

l:/i(z )= Ll (ZZ)Lz (2i) -
L:(Z ) = Lz-l—l(zl) z+2(21)

nzt+nyg

=S+ > Oi(zi)Li(=)L
=1

By using the Bezout identitk M — YN = 1, O;(z;) can be
written as

(16)

01(21) = Nom(Zl)Mil(Zl)H(Zl) (17)

From equationd (14).(15) and {17), we have

anrnf

=202 Z
x (O (z)Li(z) L (= )) Ol(Zz) Nz L7 (2)

Re zZ i) 4Re(z;)Re(z;)

Zl-—l-zj

nztnyg Re Z nztnyg
=20" Z S+ Y Of (2)01(2)
ij=1
% 4RG(ZZ)R6(ZJ) (Ek =+ zl)(zk =+ Zj)
(Zitz) o Gr =2 (e = 2))
gy Re [EAECE
—9g2 2 —J

where7; is the residue of); (p;)L1(s) ats = z.

In addition, suppose that the inpuft) = 0. The channel
input is required to satisfy the power constrajint|poy, < P
for some predetermined input power leval> 0.

lu()llpow =Elu” (t)u(t)]

—+oo
:/ tr
—00

=T, V|3 = | No(Y — RM)HV |3

tr[Ruy,, (0)]

(T, Sn(Gw)TL ) dw

—72||Nom(YHB‘1 — RHM,,)|3
Np
= ZNom p)Y()H@p:) [] Bi'(:)
k=1,k#i

2

x Bt = B (0|l 477D Nom(pi)Y (pi)H (pi)
=1
? 2
H B (pi) — NowRHM,, (18)
k=1,k#i 2

When only the stabilizability is considered regardlesshaf t
tracking performance, we have

[u())*[pow_s = 7| > Nom®:)Y (0i)H(p:) [[ Bi'(pi)
i=1 k=1,k#i
2 np _
< [Bi' = Bleo)l|| =22 Y - (19)
5 =1 Pi + Dj

wherer; = ResszpiNom(pl)N (pZ)H(pZ)B is the residue

of Nom(pi)N~(pi)H (p;)B; " at s = p;. Therefore, for the
feedback system to be stabilizable, the channel SNR must
satisfy

np

P
<>

v i,7=1

rir;
—_— 20
Di +pj (20)

This is the result of[[4]. However, in many cases, not only
the stabilizability needs to be considered, but also the sys
tem tracking performance. In this case, via noting equation

(18),(18) and[(I9), we have

Z Nom(pi)Y (pi)H (pi)

=1
—1—72 Z

i,j=1

lu* () [Pow_st = 7

7‘17”7

NomRHM
Pi + Dy

HB

k=1,k#i

= [[u*(t)[|Pow_s + ’YQPAd-
whereP a4 is given by equation (13). Then,

P .
) > ||lu* ()|l pow_s /7> + Paa-

The proof is now completed. [ ]

Remark 3: Theorem 2 shows that for a system to achieve
for a best tracking performance in addition to stabilizatiibs
signal-to-noise ratio must be greater than that requirdg on
for stabilization.

IV. SIMULATION STUDIES
Consider the plant

P=(s—k)/(s(s+1)).

The LTI filters used to model the finite bandwidfy(s) and
colored noiséH (s) of the communication link are both chosen
to be low-pass Butterworth filters of order 1.

F(s)=f/(s+[f), H(s)=h/(s+h),

wherek € [1,10], and f > 0, h > 0.

Clearly, P(s) is of minimum phase. Figl3 shows the optimal
performances plotted for different values of Two observa-
tions can be obtained from Hig.4, where the optimal perfor-
mance is plotted with respect to bandwidth of both F(s) and
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Fig. 3. J* with respect tok for differente.(f =3,h =4,0 =1,y =

16
15
14

13

150
60

H Bandwidth [rad/sec] 0o F Bandwidth [rad/sec]

Fig. 4. J* with respect toF and H.(k = 2,e = 0.5,0 = 1,7 = 0.8)

Fig. 5. J* with respect too andv.(k = 2,¢ = 0.5, f = 3,h = 4)

H(s). First, the system tracking performance becomes ette
as the available bandwidth of the communication channel
decreases. Secondly, if the noise is colored by a low pass filt
the decrease of its cutoff frequency would lead to the better
tracking performance. F[d.5 shows that the reference kigna
and ACGN will deteriorate tracking performance.

V. CONCLUSIONS

In this paper, we have investigated the best attainable
tracking performance of networked MIMO control systems
in tracking the Brownian motion over a limited bandwidth
and additive colored white Gaussian noise channel. We have
derived explicit expressions of the best performance imser
of the tracking error and the control input energy. It hasrbee
shown that, due to the existence of the network, the best
achievable tracking performance will be adversely affeécte
by several factors, such as the nonminimum phase zeros and
their directions of the plant, the colored additive whiteu&a
sian noise, the basic network parameters, such as bandwidth
Finally, some simulation results are given to illustrate th
obtained results.

Furthermore, one possible future work is to consider more
realistic network-induced constraints, such as timeydaiad
dropout issues which is much more challenging. When the
networked control system contains the nondeterministic or
hybrid switching [38]-[35], the issue of tracking perfomua
also deserves further study.
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