
c©2013

SHIVA KUMAR MADISHETTY

ALL RIGHTS RESERVED

VLSI ARCHITECTURES FOR THE 4-TAP AND 6-TAP 2-D DAUBECHIES

WAVELET FILTERS USING ALGEBRAIC INTEGERS

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Shiva Kumar Madishetty

August, 2013

VLSI ARCHITECTURES FOR THE 4-TAP AND 6-TAP 2-D DAUBECHIES

WAVELET FILTERS USING ALGEBRAIC INTEGERS

Shiva Kumar Madishetty

Thesis

Approved:

Advisor
Dr. Arjuna Madanayake

Faculty Reader
Dr. George C. Giakos

Faculty Reader
Dr. Hamid R. Bahrami

Faculty Reader
Dr. Dale H. Mugler

Department Chair
Dr. Alex De Abreu Garcia

Accepted:

Dean of the College
Dr. George K. Haritos

Dean of the Graduate School
Dr. George R. Newkome

Date

ii

ABSTRACT

Discrete wavelet transforms (DWTs) are of special interest in signal and im-

age processing due to their capability of signal decomposition, denoising, and event

detection. This thesis proposes a novel algebraic integer (AI) based multi-encoding

of Daubechies-4 and -6 2-D wavelet filters having error-free integer-based computa-

tion. Digital VLSI architectures employing parallel channels are proposed, physically

realized and tested. The multi-encoded AI framework allows a multiplication-free

and computationally accurate architecture. It also guarantees a noise-free compu-

tation throughput the multi-level multi-rate 2-D filtering operation. A single final

reconstruction step (FRS) furnishes filtered and down-sampled image outputs in

fixed-point, resulting in low levels of quantization noise.

Significant SNR and PSNR improvements were observed in favour of AI-

based systems, when compared to 8-bit fixed-point schemes (six fractional bits). The

designs are physically implemented for a 4-level 2-D decomposition using Daubechies-

4 and -6 4-level VLSI architectures on a Xilinx Virtex-6 vcx240t-1ff1156 FPGA device

and verified on an FPGA chip using an ML605 platform. A 45 nm CMOS synthesis

shows improved clock frequencies for a supply voltage of 1.1 V.

iii

ACKNOWLEDGEMENTS

With great pleasure I pay deep sense of gratitude and heartfelt thanks to

my advisor Dr. H. L. P. Arjuna Madanayake, Asst. Professor, Department of

Electrical and Computer Engineering for the outstanding guidance, help, support,

constant encouragement and motivation throughout the progress of this work. It was

really a great experience working under him and his guidance, which was of immense

help in my thesis work without which it would have been an unachievable task.

I profusely thank Dr. Renato J. Cintra, Universidade Federal de Pernam-

buco, Brazil for his invaluable collaborative support and help in my thesis work.

I would like to express my sincere thanks to Dr. Vassil Dimitrov, University

of Calgary, AB, Canada and Dr. Dale Mugler, The University of Akron for their

great technical support and help.

My gratitude and immense respect to my advisory committee, Department of

Electrical and Computer Engineering for the Teaching Assistantship, infrastructure,

all other essential facilities and encouragement given to me during the project work.

I am thankful to my parents and friends for their love, motivation and con-

tinuous support. I thank THE ALMIGHTY for being with me throughout.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . x

CHAPTER

I. INTRODUCTION . 1

1.1 Research Publications . 3

1.2 Contributions from External Collaborators 4

1.3 Thesis Outline . 6

II. REVIEW OF SUBBAND CODING 7

2.1 Review of Sub-band Coding . 7

2.2 The Problem of Fixed-Point Errors 9

2.3 Prior Art on AI based DWT . 10

2.4 Proposed Encoding Scheme . 12

III. AI BASED 4-TAP AND 6-TAP 2-D DAUBECHIES WAVELET
FILTER BANKS . 14

3.1 Introduction . 14

3.2 AI-based Daubechies-4 and -6 Scaling Filters 15

v

3.3 Final Reconstruction Step . 30

3.4 FPGA Implementation and Results 35

3.5 Conclusion . 49

IV. AI BASED LOW ADDER COUNT ARCHITECTURE FOR
THE 2-D DAUBECHIES 4-TAP WAVELET FILTER BANK 54

4.1 Introduction . 54

4.2 AI Encoding of Daubechies 4-tap Filter Bank 55

4.3 Optimized AI Encoding . 58

4.4 FPGA and ASIC Implementation and Results 68

4.5 Conclusion . 75

V. AI BASED LOW ADDER COUNT ARCHITECTURE FOR
THE 1-D/ 2-D DAUBECHIES 6-TAP WAVELET FILTER BANKS 79

5.1 Introduction . 79

5.2 Daubechies 6-tap Filter Coefficients and AI basis 80

5.3 Optimized AI Encoding . 83

5.4 Final Reconstruction Step . 87

5.5 1-D Designs and Results . 88

5.6 2-D Designs and Results . 98

5.7 Conclusion . 105

VI. CONCLUSIONS & FUTURE WORK 110

BIBLIOGRAPHY . 112

vi

LIST OF TABLES

Table Page

3.1 Daub-4 Decompositions . 20

3.2 Daub-6 Decompositions . 26

3.3 CSD Encoding for ζ . 32

3.4 CSD Encoding for ζ1, ζ2, and ζ1ζ2 . 32

3.5 FRS Based on the Expansion Factor Method 34

3.6 Comparison of Daub-4 and -6 Performances 37

3.7 Resource Consumption for Proposed Daub-4 Architecture 40

3.8 Resource Consumption for Proposed Daub-6 Architecture 40

3.9 Comparison of Proposed Architectures with Existing 2-D DWT
Architectures . 41

3.10 Memory Requirements . 43

3.11 Daub-4 and Daub-6 ISE XPower Results 44

3.12 SNR and PSNR for Daub-4 and Daub-6 Filter Banks Based on
Fixed-point and AI Encoding . 45

3.13 Comparison of Proposed Architectures with Existing AI Based
DWT Architectures . 50

4.1 Filter Parametrization and Optimization 61

4.2 CSD Representation for ζ . 64

vii

4.3 Daub-4 Decomposition Approximations 66

4.4 SNR and PSNR for Daubechies 4-tap Filter Bank Based on Fixed-
point and AI Encoding . 70

4.5 Hardware Resource Consumption for Xilinx Virtex-6 vcx240t-
1ff1156 Implementation . 73

4.6 ISE XPower Results . 73

4.7 Hardware Resource Consumption for CMOS 45 nm ASIC Synthesis
(Supply Voltage VDD = 1.1 V) . 74

4.8 Power Consumption for CMOS 45 nm ASIC Synthesis (Supply Volt-
age VDD = 1.1 V) . 74

4.9 Comparison of Proposed Architectures with Existing AI Based
DWT Architectures . 76

5.1 Filter Parametrization and Optimization 87

5.2 CSD Encoding for ζ ′1, ζ
′
2 and ζ ′1ζ

′
2 for Methods 1 through 4 89

5.3 CSD Encoding for ζ ′1, ζ
′
2 and ζ ′1ζ

′
2 for Methods 1 through 4 90

5.4 Number of Adders Required for all Proposed 1-D Designs using
Proposed CSD in Table 3.4 . 96

5.5 Hardware resource consumption with Xilinx Virtex-6 vcx240t-
1ff1156 for 1-D Daub-6 implementation 97

5.6 Xilinx ISE XPower estimation results for 1-D Daub-6 filter 97

5.7 CSD realization of the constants required in Combinational
blocks A, B1, and B2 . 99

5.8 Number of Adders Required and Error Introduced 101

5.9 Hardware Resource Consumption with Xilinx Virtex-6 vcx240t-
1ff1156 for 2-D Daub-6 Implementation 103

5.10 Xilinx ISE XPower Estimation Results for 2-D Daub-6 Filter 103

5.11 Hardware Resource Consumption for CMOS 45 nm ASIC Synthesis
(Supply Voltage VDD = 1.1 V) . 104

viii

5.12 Power Consumption for CMOS 45 nm ASIC Synthesis (Supply Volt-
age VDD = 1.1 V) . 105

5.13 Comparison of Proposed Architectures with Existing AI Based
DWT Architectures in Literature . 106

5.14 SNR and PSNR for Lena Image Approximation for 2-D Daub-6 109

ix

LIST OF FIGURES

Figure Page

2.1 Diagram of a single application of the 2-D wavelet filter bank. 8

2.2 Recursive application of the 2-D wavelet filter bank. 8

3.1 (a) Single AI filter bank decomposition, (b) multi-level AI filter
bank with final reconstruction step, and (c) combinational block B. . . 22

3.2 Daub-4 AI Filter Structure . 23

3.3 Daub-6 AI Filter Structure . 25

3.4 (a) Single AI filter bank decomposition, (b) multi-level AI filter
bank with final reconstruction step, and (c) combinational block D. . . 29

3.5 Approximation sub-images A1, A2, A3, and A4 obtained from on-
chip physical verification on a Virtex-6 vcx240t-1ff1156. 36

3.6 Approximation sub-images A1, A2, A3, and A4 obtained from FP
scheme (8-bit word length and 6 fractional bits) Daubechies 4- and
6-tap wavelet filters. 38

4.1 Single AI filter bank decomposition. 57

4.2 Multi-level AI filter bank with final reconstruction step (FRS) 58

4.3 Proposed AI based Daubechies 4-tap high-pass filter. 61

4.4 (a) Proposed AI based Daubechies 4-tap filter; (b) Combinational
Block B. 65

x

4.5 Approximation sub-images A1, A2, A3, and A4 obtained from on-
chip physical verification on a Virtex-6 vcx240t-1ff1156. 69

5.1 Multi-level wavelet decomposition with Daubechies 6-tap filter. 83

5.2 Combinational Block A for 1-D/ 2-D Daub-6 filter. 92

5.3 Combinational Block B1 for 1-D Daub-6 filter. 93

5.4 Proposed optimal realization of the Daub-6 filter. 95

5.5 Combinational block B2 for 2-D Daub-6 filter. 99

5.6 (a)–(d) Approximation sub-images A1, A2, A3, and A4 obtained
from on-chip physical verification on a Virtex-6 vcx240t-1ff1156
considering Method 1. 108

xi

CHAPTER I

INTRODUCTION

The field of discrete wavelet transforms (DWT) has been attracting substan-

tial interest in part due to the wavelet analysis being capable of decomposing a signal

into a particular set of basis functions equipped with good spectral properties [1–4].

Wavelet analysis has been used to detect system non-linearities by making use of its

localization feature [5]. DWT-based multi-resolution analysis leads to both time and

frequency localization [4, 6–11].

Indeed, wavelet filter banks establish a strong support for many signal pro-

cessing systems [12–16]. Wavelets are employed in numerical analysis [17, 18], real-

time processing [17], image compression and reconstruction [3,15,19–23,23–28], pat-

tern recognition [17], biomedicine [18, 20], approximation theory, computer graph-

ics [29, 30] and image, video coding standards (H.265) [4, 22, 31–35]. Follow-

ing the adoption of the bi-orthogonal 2.2 wavelet filters in the JPEG2000 stan-

dard [3, 6, 19, 28], much research effort has been employed on reducing compu-

tational and circuit complexities of DWT hardware architectures in VLSI sys-

tems [2, 17, 19, 36–42].

A particular class of DWT are the Daubechies wavelets [43]. They are well-

suited and commonly used in image compression applications [3,12,24–26,37]. Herein

1

we refer to the Daubechies wavelets generated from 4- and 6-tap filter banks as

Daub-4 and -6 wavelets, respectively. In particular, whereas the Daub-4 wavelets are

often employed in applications where the signals are smooth and slowly varying, the

Daub-6 wavelets are used for signals bearing abrupt changes, spikes, and having high

undesired noise levels [17]. Daub-4 wavelets can be highly localized to smooth [2,26]

and Daub-6 wavelets have found applications in medical imaging, such as wireless

capsule endoscopy where images of fine details are regarded important [17, 43, 44].

Since wavelets can be associated to specific filter banks, practical wavelet

analysis is achieved by means of sub-band coding [13,34,43,45]. Sub-band coding is

a basic filtering principle which splits a given signal in several frequency bands for

subsequent encoding [8, 14]. In particular, 2-D multi-resolution analysis is obtained

via sub-band coding [43, 45, 46].

Daubechies-4 and -6 tap filter coefficients are irrational numbers and cannot

be represented exactly in standard finite precision number systems such as the two’s

complement fixed-point format. Therefore, fixed-point representations incur errors

when employed in arithmetic processors. These errors, due to quantization, overflow,

and underflow, propagate through the entire process of wavelet decomposition. Hence

the results of the wavelet analysis possess a reduced signal-to-noise ratio.

Conventional 2-D Daubechies-4 and -6 filter banks employ 1-D filters as

their building block. The 1-D Daubechies-4 filters are repeatedly applied to row-

and column-wise operations to yield 2-D filtering [45]. This aggravates the above

mentioned noise issue.

2

1.1 Research Publications

The following is a list of conference and journal research papers where this

research has been published or in press to publish.

1.1.1 Conference Papers

1. Madishetty, Shiva; Madanayake, A.; Cintra, R.J.; Mugler, Dale; Dimitrov,

V.S., “Error-free VLSI architecture for the 2-D Daubechies 4-tap filter us-

ing algebraic integers,” Circuits and Systems (ISCAS), 2012 IEEE Interna-

tional Symposium on , vol., pp.1484,1487, 20-23 May 2012 doi: 10.1109/IS-

CAS.2012.6271528

2. Madishetty, S. K.; Madanayake, A.; Cintra, R. J. ; Tay, D. B. H.; Sel-

varaju, Murugesan; , “VLSI Implementation of Rationalized 1-D Orthogonal

Daubechies and Bi-orthogonal wavelet filters” (In Progress, not submitted)

1.1.2 Journal Papers

1. Madishetty, S.K.; Madanayake, A.; Cintra, R.J.; Dimitrov, V.S.; Mu-

gler, D.H., ”VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies

Wavelet Filters Using Algebraic Integers,” Circuits and Systems I: Regular

Papers, IEEE Transactions on , vol.60, no.6, pp.1455,1468, June 2013 doi:

10.1109/TCSI.2012.2221171

2. Madishetty, S. K.; Madanayake, A.; Cintra, R. J.; Dimitrov, V. S.; Mugler,

D. H.; , “Algebraic Integer Architecture with Minimum Adder count for the 2-D

3

Daubechies 4-Tap wavelet Filter Banks ” Journal of Multidimensional systems

and signal processing. (Accepted, In press)

3. Madishetty, S. K.; Madanayake, A.; Cintra, R. J.; Dimitrov, V. S.; , “Pre-

cise Algebraic Integer Architecture with Low Adder count for the 1-D/ 2-D

Daubechies 6-Tap wavelet Filter Banks” Circuits and Systems I: Regular Pa-

pers, IEEE Transactions. (Submitted, Under Review)

4. Arjuna Madanayake; Renato J. Cintra; Nilanka Rajapaksha; Uma Potluri;

Shiva Madishetty;Vassil Dimitrov; Fabio Bayer and Khan Wahid “Advanced

VLSI Signal Processing Circuits using Number Theoretic Methods” (Accepted

for Extended Abstract)

1.2 Contributions from External Collaborators

This research work has significant technical contributions from Dr.

Madanayake’s collaborators Dr. Renato J. Cintra from Universidade Federal de

Pernambuco, Brazil and Dr. Vassil S. Dimitrov from University of Calgary, AB,

Canada.

To emphasize collaborator’s contributions in this work, the following shows

a list of exhaustive numerical search results used in this work.

1. In Chapter 3, Section 3.3 discusses the final reconstruction step (FRS) using

canonical signed digit (CSD) encoding and expansion factor methods (EFM)for

4

Daubechies 4-tap and 6-tap wavelet filter banks. Tables 3.3, 3.4 and 3.5

provide the data from the contributions.

2. In Chapter 5, Section 5.3 provides numerical search results for filter

parametrization and optimization in Table 5.1.

3. In Chapter 5, Section 5.4 describes the FRS using CSD for optimized 1-D/

2-D Daubechies 6-tap wavelet filter bank leading to low adder count designs.

Table 5.3 offers the CSD encoding for 8-bit approximations of algebraic integer

(AI) bases.

5

1.3 Thesis Outline

The rest of this research work is organized as follows:

Chapter 2 reviews fundamental algorithm behind wavelet decomposition known as

subband coding and details significant research efforts on AI based DWTs. Also,

it presents our proposed encoding scheme that addresses the computational noise

injection issue of the wavelet decomposition.

Chapter 3 provides exhaustive analysis of AI based multi-encoded

Daubechies 4-tap and 6-tap wavelet filter banks, final reconstruction step methods

and FPGA implementation and results.

In chapter 4 we optimized the filter parameters to reduce arithmetic com-

plexity and thereby yielding a low adder count architecture for 2-D Daubechies 4-tap

filter bank. Exhaustive numerical search methods are used to optimize the filter

parametrization and optimization.

Chapter 5 extends the optimized encoding to 1-D/ 2-D Daubechies 6-tap

filter bank with FPGA implementation and results. The chosen filter optimization

resulted in significant savings in adder counts as detailed in this chapter.

This thesis work has its conclusive remarks in Chapter 6 with feasible scope

for future work to improve and stir innovative ideas in AI based wavelet filter imple-

mentation.

6

CHAPTER II

REVIEW OF SUBBAND CODING

2.1 Review of Sub-band Coding

Wavelet decomposition of input image data can be accomplished by sub-

band coding. A 2-D finite impulse response (FIR) filter bank processes the input

data resulting in an approximation and detail sub-images.

The input image An−1 is of resolution N ×N pixels; and it is input to a pair

of low-pass (approximation) and high-pass (detail) filters h and g, respectively. The

filters operate column-wise on the image followed by dyadic down-sampling, i.e., only

one of every two columns are retained. Then the same process is applied row-wise.

The outputs are four sub-images An, Dvn, Dhn, and Ddn, which represent the 2-D

wavelet coefficients for the coarse approximation, vertical details, horizontal details,

and diagonal details, respectively. This process is shown in Fig. 2.1 for one-level

wavelet analysis via filter banks. Symbols 2 ↓ 1 and 1 ↓ 2 are used to denote the

column-wise and row-wise down-sampling. respectively [47, pp. 6-26]. The resultant

sub-images are all of size N/2×N/2, because of dyadic down-sampling.

These operations can be performed recursively [43,45]. The resulting approx-

imation An can be re-submitted to the signal flow architecture shown in Fig. 2.1.

7

column−wise

row−wise

h 1 ↓ 2

1 ↓ 2g

2 ↓ 1

2 ↓ 1

2 ↓ 1

2 ↓ 1

h

h

g

g

An

Dvn

Dhn

Ddn

An−1

Figure 2.1: Diagram of a single application of the 2-D wavelet filter bank.

F
ilt

er
B

an
k

F
ilt

er
B

an
k

F
ilt

er
B

an
k

F
ilt

er
B

an
k

1st Level 2nd Level 3rd Level 4th Level
Details Details Details Details

A0 A2 A3 A4A1

Figure 2.2: Recursive application of the 2-D wavelet filter bank.

As a result, after each iteration a coarser approximation can be achieved. Let the

original image to be analyzed be denoted by A0. Fig. 2.2 shows the recursive di-

agram of the multi-level wavelet analysis. After each set of filter banks, a coarser

approximation An, n = 1, 2, 3, 4, is furnished. Each level also produces the detail

information.

In this work, we focus on the computation of the coarser approximations An,

n ≥ 1. The topmost branch of the signal flow shown in Fig. 2.1 computes the

approximation data. Detail data Dvn, Dhn, and Ddn are normally discarded or

thresholded in data compression applications [43].

The 2-D FIR filter bank based on the Daub-4 and -6 filter bank is of par-

ticular relevance [2, 45]. Let the low-pass filter associate to these filter banks be

8

denoted as h(Daub-4) and h(Daub-6), respectively. These particular filters possess irra-

tional quantities as shown below [2, 3, 6, 43, 48]:

h(Daub-4) =
1

4
√
2

[

1 +
√
3 3 +

√
3 3−

√
3 1−

√
3

]⊤

,

h(Daub-6) =
1

16
√
2

1 +
√
10 +

√

5 + 2
√
10

5 +
√
10 + 3

√

5 + 2
√
10

10− 2
√
10 + 2

√

5 + 2
√
10

10− 2
√
10− 2

√

5 + 2
√
10

5 +
√
10− 3

√

5 + 2
√
10

1 +
√
10−

√

5 + 2
√
10

,

where the superscript ⊤ denotes transposition.

2.2 The Problem of Fixed-Point Errors

Filter banks associated to Daubechies wavelets have irrational coefficients

whose representation in fixed-point requires truncation or rounding off [2,6,16]. Such

approximations introduce representation errors which propagate through a given fil-

ter bank. Moreover, the longer the required filter bank is, the greater the computa-

tional error may become. This process effects a lower obtained signal-to-noise of the

resulting data.

9

2.3 Prior Art on AI based DWT

One way of addressing the computational noise injection is to employ a

number representation based on algebraic integers (AI) [6]. Pioneered by Cozzens

and Finkelstein [3, 49–51], algebraic integer (AI) quantization has been employed in

several signal processing schemes, including wavelet and discrete cosine transform

analysis [1, 17, 19, 29, 52–54].

In the AI representation, irrational numbers involved in the DWT process

are encoded into integers associated to a given AI basis. The computing architecture

is replaced with a parallel channel model [52]. After computation, resulting encoded

numbers are mapped back into fixed-point representation in the final reconstruction

step (FRS). The FRS is the only possible source of computational error in a given

AI-based framework.

AI encoding can address the computational noise injection in wavelet analysis

systems [6]. A significant advantage of the AI encoding is its capability of mapping

the required irrational wavelet coefficients into vectors or arrays of integers. There-

fore, wavelet decomposition can be performed without errors in a vectorial framework

consisting exclusively of integer operations. Thus, the irrational coefficients of the

Daubechies filters can be represented into integers, according to a selected AI ba-

sis [3, 6, 55].

The design of digital architectures for the 1-D Daub-4 and -6 filters were

10

pioneered by Wahid and Dimitrov in the recent past. Importantly, the 2-D archi-

tectures proposed by Wahid et al. [1–3, 6, 19] require intermediate reconstruction

steps that map the AI encoded transform coefficients back into fixed-point format.

These are 1-D DWT architectures that compute the 2-D DWT by repeated use of a

1-D AI-encoded architecture. Some AI-based 2-D Daubechies-4 implementations are

archived in literature. In [2, 31], such architecture was realized on FPGA and VLSI

technology for low-complexity low-power applications.

However, in all published AI-based architectures for the DWT, a reconstruc-

tion step is present between row-wise and column-wise computations. Such interme-

diate decoding-encoding operations lead to quantization noise being injected to the

corresponding output 2-D image signal. In a sense, this defeats the purpose of AI

encoding.

In order to address the above-mentioned noise injection problem, we pro-

pose a novel 2-D AI architecture for the computation of 2-D Daubechies-4 wavelet

filters based on a new multi-encoding method for the subband coding of images. In

the proposed architecture, all computations are entirely performed over the integers

without any FRS in intermediate calculations. A single FRS decodes the resulting

computations into fixed-point representation.

This approach could lead to arbitrarily low levels of uncorrelated and un-

coupled quantization noise in the final output 2-D image. This intermediate recon-

struction step is located after the first application of the transform (say, along rows)

before submitting the resulting data to the next (say, column-wise) stage. In other

11

words, it is at the transposition stage between the application of the two series of

1-D transform. Such intermediate reconstruction step injects quantization noise and

introduces transfer-function response errors. When multi-level decompositions are

attempted, the problem is compounded because of repeated applications of the inter-

mediate reconstruction stages at each level of filtering [3,6,19,31]. Errors incurred in

the intermediate reconstructions mitigate the benefits of using AI encoding for 2-D

multi-level DWTs.

This is an outstanding problem in the current literature which we identify

and correct in the present contribution.

2.4 Proposed Encoding Scheme

We correct above described issue by proposing a multi-encoding method that

possesses error-free computation across the 2-D decomposition levels. In our method,

the reconstruction step appears only once, at the final level of decomposition and

filtering [56]. Unlike the schemes described in [2,3,6,31], our scheme operates entirely

over the AI representation—up to a single and final reconstruction block—without

any intermediate reconstruction steps. Thus, the FRS is the only possible source of

computational errors.

In view of the above, we propose a new AI-based architecture for sub-band

coding of images using 2-D Daub-4 and -6 wavelet filters. The AI quantization

approach leads to an architecture possessing a parallel channel structure [52]. Input

12

data is successively wavelet decomposed over several levels according to application

requirements.

The single FRS employs constant coefficient multipliers based on canonical

signed digit (CSD) representation, offering low circuit complexity. This architecture

facilitates very low levels of uncorrelated and uncoupled quantization noise in the

final decomposed image data.

13

CHAPTER III

AI BASED 4-TAP AND 6-TAP 2-D DAUBECHIES WAVELET FILTER BANKS

3.1 Introduction

In this chapter, we propose a new multi-encoding technique that achieves

exact computation of multi-level 2-D Daubechies wavelet transforms using algebraic

integer (AI) encoding. Compared to existing AI designs in literature [1–3,6,17,19,31],

the proposed design can compute wavelet image approximations entirely over integer

fields and with a single FRS in a purely AI based 2-D architecture. The design avoids

the need of intermediate reconstruction steps.

Moreover, the proposed architecture is sought to be multiplier-free. Such

design facilitate accuracy, speed, relatively smaller area on chip as well as cost of

design. The new design is multi-encoded and multi-rate, operating over AI with no

intermediate reconstruction steps. In this framework, error-free computations can

be performed until the final FRS. Our architecture emphasizes on quality of output

image and speed by trading complexity and power consumption for accuracy.

This chapter unfolds as follows. Section 3.2 translates the the mathematical

formalism of AI encoding into the 2-D sub-band coding context. Wavelet sub-band

coding using multi-encoding with AI bases are provided for multi-level decompo-

14

sition, considering both Daub-4 and -6 filter banks. The final reconstruction step

(FRS) procedure for the proposed analyses are described in Section 3.3. Based on the

expansion factor method [57, p. 274], alternative FRS schemes were also sought for

the Daub-6 case. Field programmable gate array (FPGA) implementation results,

hardware resource consumption, and power consumptions are provided in Section 3.4

for both 4- and 6-tap filters.

We also compare published 1-D and 2-D DWT architectures with the pro-

posed architectures. Maximum operating frequency, signal-to-noise ratio (SNR) and

peak-signal-to-noise ratio (PSNR) figures are sought using the proposed designs op-

erating in fixed-point. Concluding remarks are given in Section 3.5.

3.2 AI-based Daubechies-4 and -6 Scaling Filters

3.2.1 Mathematical Background

An algebraic integer is a real or complex number that is a root of a monic

polynomial with integer coefficients [51,54,58]. Algebraic integers can be employed to

define encoding mappings which can precisely represent particular irrational numbers

by means of usual integers. Considering the roots of the monic polynomials x2 − 3,

x2 − 10, and x4 − 10x2 − 15 = 0 we can extend the set of integers Z by including

the algebraic integer ζ =
√
3, ζ1 =

√
10 and ζ2 =

√

5 + 2
√
10. Doing so, a given

15

quantity y can possibly be represented as

y = a+ b · ζ,

y = c+ d · ζ1 + e · ζ2 + f · ζ1ζ2.

where a, b, c, d, e, and f are integers. Sets {1, ζ} and {1, ζ1, ζ2, ζ1ζ2} constitute two

bases for AI encoding. Notice that these two bases are adequate for representing the

4- and 6-tap Daubechies filter coefficients. Thus, taking apart quantities 1/β1 = 4
√
2

and 1/β2 = 16
√
2 as scaling factors, the Daub-4 and -6 filter coefficients can be

represented as

h(Daub-4) =

[

1 + ζ 3 + ζ 3− ζ 1− ζ

]⊤

,

h(Daub-6) =

1 + ζ1 + ζ2

5 + ζ1 + 3ζ2

10− 2ζ1 + 2ζ2

10− 2ζ1 − 2ζ2

5 + ζ1 − 3ζ2

1 + ζ1 − ζ2

.

Therefore, these unnormalized low-pass FIR filters of 4-tap/6-tap can be

16

split into separate filters given by:

h(Daub-4) = h1 + ζ · hζ , (3.1)

h(Daub-6) = h1
′ + ζ1 · hζ1 + ζ2 · hζ2 , (3.2)

where

h1 =

[

1 3 3 1

]⊤

,

hζ =

[

1 1 −1 −1

]⊤

,

h1
′ =

[

1 5 10 10 5 1

]⊤

,

hζ1 =

[

1 1 −2 −2 1 1

]⊤

,

hζ2 =

[

1 3 2 −2 −3 −1

]⊤

.

Therefore, the Daub-4 and -6 filter bank analysis can be separated into

two/three structures. This facilitates a two/four integer channel structure, where

the integer coefficient filters h1 and hζ ; and h1
′, hζ1 and hζ2 are considered. All

implied computations are necessarily over an integer field.

17

Notice that a usual integer m can be effortlessly represented in either basis:

m =m+ 0 · ζ,

m =m+ 0 · ζ1 + 0 · ζ2 + 0 · ζ1ζ2.

This is relevant for encoding image pixel values, which are integers. In practical

terms, this means that no circuitry for encoding integer input data is necessary. AI

based Daub-4 and -6 filter structures are shown in Fig. 3.2 and Fig. 3.3. These filters

possess zero initial condition.

3.2.2 2-D Filtering

We now provide the mathematical framework to describe the operation of the

proposed AI-based multi-level encoding design. The following notation is adopted

in this work. Let C be an N × N matrix with columns cj, j = 0, 1, . . . , N − 1,

C =

[

c0 c1 c2 · · · cN−1

]

and v be an N -point column vector. The operation ȅ

is defined according to:

v ȅ C ,(2↓1)
[

v ∗ c0 v ∗ c1 v ∗ c2 · · · v ∗ cN−1

]

=

[

v ∗ c0 v ∗ c2 · · · v ∗ cN−2

]

,

where ∗ is the convolution operation. Analogously, operation ⊖ is given by:

v⊖C ,
(

v ȅ C⊤
)⊤

.

18

In other words, ⊖ and ȅ are the filtering operations along the rows and

columns of a given image, respectively, followed by a dyadic down-sampling stage.

AI-based Daub-4 DWT Decomposition

For the Daub-4 one-level decomposition, we have:

β1
2 ·A1 = h(Daub-4) ⊖ h(Daub-4)

ȅ A0, (3.3)

where A0 is the input image of integer pixel values. Substituting (3.1) into (3.3), we

obtain:

β1
2 ·A1 =(h1 + ζ · hζ)⊖ (h1 + ζ · hζ) ȅ A0

=h1 ⊖ h1 ȅ A0 + ζ · hζ ⊖ h1 ȅ A0

+ ζ · h1 ⊖ hζ ȅ A0 + ζ2 · hζ ⊖ hζ ȅ A0.

Notice that ζ2 = 3. Thus, we obtain:

β1
2 ·A1 =A1

(1) + ζ ·A1
(ζ), (3.4)

where A1
(1) and A1

(ζ) are given in Table 4.3.

The operations described above are illustrated in Fig. 3.1(a). The combi-

national block A is exploited to compute A1
(1) and A1

(ζ) from the AI filter bank.

19

T
ab

le
3.
1:

D
au

b
-4

D
ec
om

p
os
it
io
n
s

L
ev
el

B
as
e

E
x
p
re
ss
io
n

A
1
(1
)

h
1
⊖
h
1

ȅ
A

0
+
3
·h

ζ
⊖

h
ζ
ȅ

A
0

1

A
1
(ζ
)

h
ζ
⊖
h
1

ȅ
A

0
+
h
1
⊖
h
ζ
ȅ
A

0

A
2
(1
)
h
1
⊖
h
1

ȅ
A

1
(ζ
)
+
3
·h

ζ
⊖

h
ζ
ȅ
A

1
(ζ
)
+
h
ζ
⊖

h
1

ȅ
A

1
(1
)
+
h
1
⊖
h
ζ
ȅ

A
1
(1
)

2

A
2
(ζ
)
h
1
⊖
h
1

ȅ
A

1
(ζ
)
+
3
·h

ζ
⊖

h
ζ
ȅ
A

1
(ζ
)
+
h
ζ
⊖

h
1

ȅ
A

1
(1
)
+
h
1
⊖
h
ζ
ȅ

A
1
(1
)

20

T
ab

le
3.
2:

D
au

b
-4

D
ec
om

p
os
it
io
n
s
(C

on
ti
n
u
ed
)

L
ev
el

B
as
e

E
x
p
re
ss
io
n

A
n
(1
)
h
1
⊖

h
1

ȅ
A

n
−
1
(1
)
+
3
·h

ζ
⊖

h
ζ
ȅ
A

n
−
1
(1
)
+
3
·h

ζ
⊖
h
1

ȅ
A

n
−
1
(ζ
)
+
3
·h

1
⊖
h
ζ
ȅ

A
n
−
1
(ζ
)

n

A
n
(ζ
)

h
1
⊖

h
1

ȅ
A

n
−
1
(ζ
)
+
3
·h

ζ
⊖

h
ζ
ȅ
A

n
−
1
(ζ
)
+
h
ζ
⊖

h
1

ȅ
A

n
−
1
(1
)
+
h
1
⊖

h
ζ
ȅ
A

n
−
1
(1
)

21

row−wise

column−wise

Combinational
Block AAI Filter Bank

1 ↓ 2hζ

hζ

hζ

h1

1 ↓ 2h1

A1
(1)

A1
(ζ)

2 ↓ 1

2 ↓ 1

2 ↓ 1

2 ↓ 1

A0
3

h1

(a)

C
om

b.
 A

AI

AI

C
om

b.
 B

C
om

b.
 B

C
om

b.
 B

AI

AI

AI

AI

AI

FRS
A0

A3
(ζ)A1

(ζ) A2
(ζ) A4

(ζ)

A4
(1)A3

(1)A2
(1)A1

(1)

A4

(b)

3

3

(c)

Figure 3.1: (a) Single AI filter bank decomposition, (b) multi-level AI filter bank
with final reconstruction step, and (c) combinational block B.

The resulting filtered images decomposition A1
(1) and A1

(ζ) necessitate only inte-

ger arithmetic to be rendered. Multi-level analysis follows the same algorithm, i.e.,

multiplications by the AI base ζ are never explicitly performed.

Further decompositions are similarly computed. In particular, the 2nd level

decomposition is formulated below:

β1
2 ·A2 =h(Daub-4) ⊖ h(Daub-4)

ȅ A1.

22

3

Daub-4 AI Filter Structure

z−1z−1z−1

Figure 3.2: Daub-4 AI Filter Structure

Applying (3.4) into above expression, we proceed as follows:

β1
4 ·A2 =h(Daub-4) ⊖ h(Daub-4)

ȅ

(

A1
(1) + ζ ·A1

(ζ)
)

=A2
(1) + ζ ·A2

(ζ)

where approximations A2
(1) and A2

(ζ) have their fully expanded forms given in Ta-

ble 4.3.

Indeed, the above manipulation can be similarly applied to the remaining

approximation levels. Thus the nth level approximation is furnished by:

β1
2n ·An =An

(1) + ζ ·An
(ζ), n ≥ 2,

where An
(1) and An

(ζ) are shown in Table 4.3.

23

Notice that the required multiplications by 3 shown in Table 4.3 can be easily

realized by a bit-shift operation and addition, i.e. 3 ·m = (m ≪ 1) +m, where m is

an integer.

The above multi-level analyses for Daub-4 DWT filters are depicted in

Fig. 3.1(b). Expressions for level 2 and n shown in Table 4.3 induce the imple-

mentation of the combinational block B, as shown in Fig. 3.1(b). The architecture

of this block is detailed in Fig. 3.1(c). Fig. 3.1(b) also shows the FRS block, which

is detailed in the next section.

AI-based Daub-6 DWT Decomposition

In a similar fashion, the Daub-6 filter bank can be put into the AI formalism.

Considering Fig. 2.1, we can derive the following expression:

β2
2 ·A1 = h(Daub-6) ⊖ h(Daub-6)

ȅ A0,

where A0 is the input image of integer pixel values.

24

Invoking (3.2), we obtain:

β2
2 ·A1 =(h1

′ + ζ1 · hζ1 + ζ2 · hζ2)

⊖ (h1
′ + ζ1 · hζ1 + ζ2 · hζ2) ȅ A0

=h1
′ ⊖ h1

′
ȅ A0 + ζ1 · hζ1 ⊖ h1

′
ȅ A0

+ ζ2 · hζ2 ⊖ h1
′
ȅ A0 + h1

′ ⊖ ζ1 · hζ1 ȅ A0

+ ζ1 · hζ1 ⊖ ζ1 · hζ1 ȅ A0

+ ζ2 · hζ2 ⊖ ζ1 · hζ1 ȅ A0

+ h1
′ ⊖ ζ2 · hζ2 ȅ A0 + ζ1 · hζ1 ⊖ ζ2 · hζ2 ȅ A0

+ ζ2 · hζ2 ⊖ ζ2 · hζ2 ȅ A0.

By grouping the relevant terms, we obtain:

β2
2 ·A1 =A1

(1) + ζ1 ·A1
(ζ1) + ζ2 ·A1

(ζ2) + ζ1ζ2 ·A1
(ζ1ζ2), (3.5)

5

2

Daub-6 AI Filter Structure

10

3
2

z−1 z−1 z−1 z−1 z−1

Figure 3.3: Daub-6 AI Filter Structure

25

Table 3.3: Daub-6 Decompositions

Level Base Expression

A1
(1) {h1

′ ⊖ h1
′ + 10hζ1 ⊖ hζ1 + 5hζ2 ⊖ hζ2} ȅ A0.

A1
(ζ1) {hζ1 ⊖ h1

′ + h1
′ ⊖ hζ1 + 2hζ2 ⊖ hζ2} ȅ A0

1

A1
(ζ2) {hζ2 ⊖ h1

′ + h1
′ ⊖ hζ2} ȅ A0

A1
(ζ1ζ2) {hζ1 ⊖ hζ2 + hζ2 ⊖ hζ1} ȅ A0

where A1
(1), A1

(ζ1), A1
(ζ2), and A1

(ζ1ζ2) are given in Table 3.2.

The error free integer operations described above are illustrated in

Fig. 3.4(a). The combinational block C is employed in order to furnish A1
(ζ1), A1

(ζ2),

and A1
(ζ1ζ2) from the AI filter bank. The level 2 decomposition follows similar ma-

nipulations, as detailed below:

β2
2 ·A2 =h(Daub-6) ⊖ h(Daub-6)

ȅ A1.

Calling (3.5), we derive the following expression:

β2
4 ·A2 =A2

(1) + ζ1 ·A2
(ζ1) + ζ2 ·A2

(ζ2) + ζ1ζ2 ·A2
(ζ1ζ2),

where the approximations A2
(1), A2

(ζ1), A2
(ζ2), and A2

(ζ1ζ2) are given in Table 3.2.

The general result for the n level decomposition is shown in Table 3.2.

26

T
ab

le
3.
4:

D
au

b
-6

d
ec
om

p
os
it
io
n
s
(C

on
ti
n
u
ed
)

L
ev
el

B
as
e

E
x
p
re
ss
io
n

A
2
(1
)

{h
1
′
⊖

h
1
′
+
10

·h
ζ
1
⊖

h
ζ
1
+
5
·h

ζ
2
⊖

h
ζ
2
}ȅ

A
1
(1
)
+
10

·{
h
ζ
1
⊖
h
1
′
+
h
1
′
⊖

h
ζ
1
+
2
·h

ζ
2
⊖

h
ζ
2
}ȅ

A
1
(ζ

1
)
+
5·

A
1
(ζ

2
)
ȅ
{h

ζ
2
⊖

h
1
′
+
h
1
′
⊖

h
ζ
2
+
4
·h

ζ
1
⊖
h
ζ
2
+
4
·h

ζ
2
⊖
h
ζ
1
}+

{4
·h

ζ
2
⊖

h
1
′
+
10

·h
ζ
2
⊖

h
ζ
1
}5

·ȅ
A

1
(ζ

1
ζ
2
)

A
2
(ζ

1
)

{h
ζ
1
⊖

h
1
′
+
h
1
′
⊖

h
ζ
1
+
2
·h

ζ
2
⊖
h
ζ
2
}ȅ

A
1
(1
)
+
{h

1
′
⊖

h
1
′
+
10

·h
ζ
1
⊖

h
ζ
1
+
5
·h

ζ
2
⊖

h
ζ
2
}ȅ

A
1
(ζ

1
) +

{2
·h

ζ
2
⊖

h
1
′
+
2
·h

1
′
⊖
h
ζ
2
+
5
·h

ζ
1
⊖
h
ζ
2
+
5
·h

ζ
2
⊖

h
ζ
1
}ȅ

A
1
(ζ

2
)
+
{h

ζ
1
⊖
h
ζ
2
+
h
ζ
2
⊖

h
ζ
1
}ȅ

A
1
(ζ

1
ζ
2
)

2
A

2
(ζ

2
)

{h
1
′
⊖

h
ζ
2
+
h
ζ
2
⊖
h
1
′ }

ȅ
A

1
(1
)
+
{h

ζ
1
⊖
h
ζ
2
+
h
ζ
2
⊖

h
ζ
1
}ȅ

A
1
(ζ

1
)

+
A

1
(ζ

2
)
ȅ

{h
1
′
⊖

h
1
′
+
10

·h
ζ
1
⊖

h
ζ
1
+
5
·h

ζ
2
⊖

h
ζ
2
}+

{h
ζ
1
⊖
h
1
′
+
h
1
′
⊖

h
ζ
1
+
2
·h

ζ
2
⊖

h
ζ
2
}ȅ

10
·A

1
(ζ

1
ζ
2
)

A
2
(ζ

1
ζ
2
)

{h
ζ
2
⊖

h
ζ
1
+
h
ζ
1
⊖

h
ζ
2
}ȅ

A
1
(1
)
+
{h

ζ
2
⊖

h
1
′
+
h
1
′
⊖

h
ζ
2
}ȅ

A
1
(ζ

1
) +

A
1
(ζ

2
)
ȅ

{h
ζ
1
⊖
h
1
′
+
h
1
′
⊖

h
ζ
1
+
2
·h

ζ
2
⊖

h
ζ
2
}+

{h
1
′
⊖

h
1
′
+
10

·h
ζ
1
⊖

h
ζ
1
+
5
·h

ζ
2
⊖

h
ζ
2
}ȅ

A
1
(ζ

1
ζ
2
)

27

T
ab

le
3.
5:

D
au

b
-6

d
ec
om

p
os
it
io
n
s
(C

on
ti
n
u
ed
)

L
ev
el

B
as
e

E
x
p
re
ss
io
n

A
n
(1
)

h
1
′
⊖

h
1
′
+
10

·h
ζ
1
⊖

h
ζ
1
+
5
·h

ζ
2
⊖

h
ζ
2
}ȅ

A
n
−
1
(1
)
+
{4
0
·h

ζ
2
⊖

h
1
′
+
10
0
·h

ζ
1
⊖

h
ζ
2
}ȅ

A
n
−
1
(ζ

1
ζ
2
)

+
5
·A

n
−
1
(ζ

2
)
ȅ
{h

ζ
2
⊖

h
1
′
+
h
1
′
⊖

h
ζ
2
+
4
·h

ζ
1
⊖

h
ζ
2
+
4
·h

ζ
2
⊖

h
ζ
1
}

+
{h

ζ
1
⊖
h
1
′
+
h
1
′
⊖

h
ζ
1
+
2
·h

ζ
2
⊖

h
ζ
2
}1
0
·ȅ

A
n
−
1
(ζ

1
)

A
n
(ζ

1
)
{h

ζ
1
⊖

h
1
′
+
h
1
′
⊖
h
ζ
1
+
2
·h

ζ
2
⊖
h
ζ
2
}ȅ

A
n
−
1
(1
)
+
{h

1
′
⊖
h
1
′
+
10

·h
ζ
1
⊖
h
ζ
1
+
5
·h

ζ
2
⊖

h
ζ
2
}ȅ

A
n
−
1
(ζ

1
) +

n
{2

·h
ζ
2
⊖

h
1
′
+
2
·h

1
′
⊖

h
ζ
2
+
5
·h

ζ
1
⊖

h
ζ
2
+
5
·h

ζ
2
⊖

h
ζ
1
}ȅ

A
1
(ζ

2
)
+
{h

ζ
1
⊖

h
ζ
2
+
h
ζ
2
⊖
h
ζ
1
}ȅ

A
n
−
1
(ζ

1
ζ
2
)

A
n
(ζ

2
)

{h
ζ
1
⊖

h
ζ
2
+
h
ζ
2
⊖

h
ζ
1
}ȅ

A
n
−
1
(1
)
+
{h

ζ
1
⊖

h
ζ
2
+
h
ζ
2
⊖

h
ζ
1
}ȅ

A
n
−
1
(ζ

1
)
+
A

n
−
1
(ζ

2
) ȅ

{h
1
′
⊖

h
1
′
+
10

·h
ζ
1
⊖

h
ζ
1
+
5
·h

ζ
2
⊖

h
ζ
2
}+

{h
ζ
1
⊖

h
1
′
+
h
1
′
⊖
h
ζ
1
+
2
·h

ζ
2
⊖
h
ζ
2
}ȅ

A
n
−
1
(ζ

1
ζ
2
)

A
n
(ζ

1
ζ
2
)

{h
ζ
2
⊖

h
1
′
+
h
1
′
⊖
h
ζ
2
}ȅ

A
n
−
1
(1
)
+
{h

ζ
1
⊖

h
ζ
2
+
h
ζ
2
⊖

h
ζ
1
}ȅ

A
n
−
1
(ζ

1
)
+
A

n
−
1
(ζ

2
) ȅ

{h
1
′
⊖
h
1
′
+
10

·h
ζ
1
⊖
h
ζ
1
+
5
·h

ζ
2
⊖
h
ζ
2
}+

{h
ζ
1
⊖

h
1
′
+
h
1
′
⊖

h
ζ
1
+
2
·h

ζ
2
⊖

h
ζ
2
}1
0
·ȅ

A
n
−
1
(ζ

1
ζ
2
)

28

1 2

1 2

2 1

2 1

2 1

2 1

2 1

2 1

2 1

+

+

+

+

10

2

5

2

2 1

 Comb. C

1

AI DAUB−6
 Structure

1

2

A0

A(1)

A(ζ1)

A(ζ2)

A(ζ1ζ2)

h1

h1

h1

hζ1

hζ1

hζ1

hζ1

hζ2

hζ2

hζ2

h1

hζ2

(a)

{

A
O
M
B

CQ

I

AIC

AIC

AIC

AIC

O

D

B
M

C AIC

AIC

AIC

AIC

C

D

B
M
O

AIC

AIC

AIC

AIC

C
O
M
B

D

AIC

F

R

S

C

A4A0

(b)

20 20 50510

2 5 20

10

Combinational Block D

(c)

Figure 3.4: (a) Single AI filter bank decomposition, (b) multi-level AI filter bank
with final reconstruction step, and (c) combinational block D.

29

Fig. 3.4(b) depicts the full scheme of a four-level Daub-6 decomposition. The struc-

ture of combinatorial block D stems from the expressions shown in Table 3.2 for

level 2 and n decompositions. Fig. 3.4(c) details this stage.

3.3 Final Reconstruction Step

The proposed AI-based wavelet analyses based on Daub-4 and -6 filter banks

are computed entirely over extended integer fields. However, the resulting AI encoded

approximations An
(1), An

(ζ), An
(ζ1), An

(ζ2), and An
(ζ1ζ2) must be converted back

to standard fixed-point representation. This is required in order to interface the

resulting approximation sub-images with conventional real time systems. Decoding

operations for both Daub-4 and -6 consist of explicitly performing the following

computations, respectively:

An =
An

(1) + ζ ·An
(ζ)

β2n
1

, (3.6)

An =
1

β2n
2

(

An
(1) + ζ1 ·An

(ζ1) + ζ2 ·An
(ζ2) +ζ1 · ζ2 ·An

(ζ1·ζ2)
)

. (3.7)

Fortunately, the factors 1/β2n
1 and 1/β2n

2 are always a power of two, which

can be conveniently realized with bit-shift operation. The above decoding operations

are realized at the FRS blocks depicted in Fig. 3.1(b) and 3.4(b), respectively.

Therefore, the only possible source of errors in the proposed architectures

30

for Daub-4 and -6 are the multiplication by AI basis elements:

ζ =
√
3 ≈ 1.73205080756888 . . . ,

ζ1 =
√
10 ≈ 3.16227766016838 . . . ,

ζ2 =

√

5 + 2
√
10 ≈ 3.36519766437824 . . . ,

ζ1ζ2 =

√

50 + 20
√
10 ≈ 10.6416893961141

We propose two approaches for the FRS design: (i) CSD representation and

(ii) expansion factor method.

3.3.1 CSD Approximation

The FRS can be directly implemented by approximating the required irra-

tionals in (3.6) and (3.7) into rationals. A possibility is employing CSD representa-

tion.

Table 3.3 displays CSD encodings for ζ and Table 3.4 shows encoding for ζ1,

ζ2, and ζ1ζ2 for several word lengths as well as the associate relative errors. CSD

encoding requires only bit-shifters and adders/subtracters.

3.3.2 Expansion Factor Method

Expansion factors are scaling constants usually employed in the design of

approximate discrete transforms [33, 53]. In [57, p. 274], Britanak et al. survey the

topic in this context. Recently this methodology was extended and adapted to the

design of final reconstruction blocks related to AI based architectures [56].

31

Table 3.6: CSD Encoding for ζ

Word length CSD Encoding % Error

8 bit 2− 2−2 − 2−6 1.33

10 bit 2− 2−2 − 2−6 − 2−9 0.021

12 bit 2− 2−2 − 2−6 − 2−9 0.021

14 bit 2− 2−2 − 2−6 − 2−9 − 2−12 0.0086

16 bit 2− 2−2 − 2−6 − 2−9 − 2−12 − 2−13 0.0028

Table 3.7: CSD Encoding for ζ1, ζ2, and ζ1ζ2

AI Word length (bits) Encoding Absolute Relative Error

8 22 − 1 + 2−3 + 2−6 0.0068

10 22 − 1 + 2−3 + 2−6 + 2−8 0.0056

ζ1 12 22 − 1 + 2−3 + 2−5 + 2−7 + 2−10 0.00087

14 22 − 1 + 2−3 + 2−5 + 2−7 + 2−12 0.00064

16 22 − 1 + 2−3 + 2−5 + 2−7 + 2−14 0.00058
8 22 − 2−1 − 2−3 − 2−6 0.0017

10 22 − 2−1 − 2−3 − 2−7 0.00059

ζ2 12 22 − 2−1 − 2−3 − 2−7 − 2−10 0.00030

14 22 − 2−1 − 2−3 − 2−7 − 2−10 − 2−12 0.00022

16 22 − 2−1 − 2−3 − 2−7 − 2−10 − 2−12 0.00011
8 23 + 2 + 2−1 + 2−3 + 2−4 0.0043

10 23 + 2 + 2−1 + 2−3 + 2−6 0.0001

ζ1ζ2 12 23 + 2 + 2−1 + 2−3 + 2−6 0.0001

14 23 + 2 + 2−1 + 2−3 + 2−6 + 2−10 0.000008

16 23 + 2 + 2−1 + 2−3 + 2−6 + 2−10 0.000008

32

An expansion factor is simply a constant that simultaneously scales a given

set of real numbers into integer values. In practical terms, only approximate integers

at a given error tolerance are sought.

In mathematical terms, we have the following structure. Let the AI elements

ζ1, ζ2, and ζ1ζ2 constitute a vector ζ =

[

ζ1 ζ2 ζ1ζ2

]⊤

. An expansion factor is a

real number α∗ > 1 that satisfies the following minimization problem [57, p. 274]:

α∗ = argmin
α>1

‖α · ζ − round(α · ζ)‖ , (3.8)

where ‖ · ‖ returns the Euclidean norm and round(·) is the rounding-off function.

Resulting integer approximations are given by m1 = round(α∗ · ζ1), m2 = round(α∗ ·

ζ2), and m3 = round(α∗ · ζ1ζ2).

Now, we can recast (3.7) according to:

An ≈An
(1) +

1

α∗

(

m1 ·A(ζ1)
n +m2 ·A(ζ2)

n +m3 ·A(ζ1·ζ2)
n

)

.

Notice that the above expression in parentheses can be evaluated by means of integer

arithmetic, which requires simple additions and bit-shift operations in hardware. As

a consequence, only a single non-integer multiplication by 1/α∗ is required.

As posed above, (3.8) is a non-linear, unconstrained optimization problem.

Its intractability indicates the application of computational search. In this case, we

must impose a constraint to the search space.

33

Table 3.8: FRS Based on the Expansion Factor Method

Expansion Factor 49.3336 78.7465 192.2623 271.0093 463.2723 734.2817

AI Encoded Base
m1 156 249 608 857 1465 2322

m2 166 265 647 912 1559 2471

m3 525 838 2046 2884 4930 7814

Approximate Error 0.00020 0.00002 0.01182 0.00730 0.00520 0.00457

Thus, for 1 < α ≤ 103 with a precision of 10−4, we could obtain five distinct

solutions for (3.8). These values are listed in Table 3.5. The scaling factor choice

depends on the specific application in question, resource constraints, and the accepted

error tolerance.

For example, taking α∗ = 49.3336, we obtain:

α∗ ·

ζ1

ζ2

ζ1ζ2

=

156.00654 . . .

166.01731 . . .

524.99284 . . .

≈

156

166

525

=

m1

m2

m3

.

Above particular scaling leads to percent relative errors of 0.0042, 0.0104,

and 0.0014 in ζ1, ζ2, ζ1ζ2, respectively. We used the CSD representation for Daub-4

filters and both CSD representation and the expansion factor method for Daub-6.

The expansion factor method is expected to offer better results for larger

basis. Indeed, the Daub-4 architecture could not benefit from the expansion factor

method since its basis contains only one non-unity element: ζ . However, because

the AI basis related to the Daub-6 scheme has three non-unity elements (ζ1, ζ2,

34

ζ1ζ2), the expansion factor method could lead to useful architectures in the FRS

following computational search algorithms for suitable integer combinations. In the

next section we provide measurement results concerning the expansion factor method.

3.4 FPGA Implementation and Results

The architectures for Daub-4 and -6 filter banks were implemented on Xil-

inx Virtex xc6vcx240t-1ff1156 device using the ML605 evaluation board. The designs

were tested with six different standard images obtained from [59]. Gray 512×512 im-

ages images Woman, Cameraman, and Reflection to the Daub-4 filter banks whereas

Mandrill, Lena, and CT head were submitted to the Daub-6 filter banks. Hardware

results were verified withMatlab. Fig. 5.6 displays hardware results from the Xilinx

FPGA for the Daub-4 and -6 filter banks. Table 3.6 shows a performance comparison

among proposed Daub-4 and -6 architectures for single level decomposition of 8-bit

Lena image.

For comparison, we devised a version of the proposed system that operates

over fixed-point arithmetic instead of AI-based arithmetic. For such, we employed

8 bits for word size with 6 fractional bits. In this case, the required filter banks were

implemented by quantizing the exact filter coefficients into the fixed-point represen-

tation. Notice that the fixed-point scheme incurs coupled quantization noise, whereas

the AI-based architecture is immune to this source of contamination. Fig. 3.6 shows

the results for the fixed-point design.

35

(a) A1 (b) A2 (c) A3 (d) A4

(e) A1 (f) A2 (g) A3 (h) A4

(i) A1 (j) A2 (k) A3 (l) A4

(m) A1 (n) A2 (o) A3 (p) A4

(q) A1 (r) A2 (s) A3 (t) A4

(u) A1 (v) A2 (w) A3 (x) A4

Figure 3.5: Approximation sub-images A1, A2, A3, and A4 obtained from on-chip
physical verification on a Virtex-6 vcx240t-1ff1156.

36

Table 3.9: Comparison of Daub-4 and -6 Performances †

Aspect Daub-4 Daub-6

FPGA Xilinx Virtex-6 Xilinx Virtex-6

Target Device vcx240t-1ff1156 vcx240t-1ff1156

Max. Freq. (MHz) 442.47 274.72

CPD (ns) 2.26 3.64

Dynamic Power (mW) 38 57

PSNR (dB) 66.82 68.12

Adders 32 61

Registers 258 765

AT (×10−6) 1.62 6.99

AT2 (×10−15) 3.66 49.20

Throughput 1 ip/ op 1 ip/ op

† Measured for single level decomposition with 8-bit in-
put data

37

(a) A1 (b) A2 (c) A3 (d) A4

(e) A1 (f) A2 (g) A3 (h) A4

(i) A1 (j) A2 (k) A3 (l) A4

(m) A1 (n) A2 (o) A3 (p) A4

(q) A1 (r) A2 (s) A3 (t) A4

(u) A1 (v) A2 (w) A3 (x) A4

Figure 3.6: Approximation sub-imagesA1, A2, A3, andA4 obtained from FP scheme
(8-bit word length and 6 fractional bits) Daubechies 4- and 6-tap wavelet filters.

38

3.4.1 Resource Consumption and Figures of Merit

Tables 3.7 and 3.8 list resource consumption for the Daub-4 and -6 filter

banks. Monitored resources include: the number of slice registers, the look-up table

(LUT) count, and the number of configurable logic blocks (CLB).

Critical path delays (CPD), the maximum operating frequency, area-time

product (AT), and AT2 were selected as figures of merit, being also reported in

Tables 3.7 and 3.8.

The AT product is a standard performance metric in digital hardware de-

signs. It refers to chip-area and speed (maximum frequency) of the design. Lower AT

values indicate a higher speed of operation. In an FPGA, the area (A) is provided

by the number of slice LUTs used for logic given by the FPGA design tool called

XFLOW and the time is simply the critical path delay. Quantity AT2 is useful,

when clock speed is the driving factor of design optimization, for high-throughput

realizations.

Table 3.11 shows the estimated power consumption for the Daub-4 and -6

filter banks.

Xilinx power analyzer (XPA) was employed to analyze the power consump-

tion on Xilinx FPGA Virtex-6 device. The quiescent (static) power dissipation is a

combined effect of standby and leakage power (dominant) dissipations [66]. At 40 nm

process technology static power dominates dynamic power. Dynamic power repre-

sents the fluctuating power as the design runs and is the sum of short-circuit and

capacitive (switching of logic cells) power dissipations. Leakage and standby currents

39

Table 3.10: Resource Consumption for Proposed Daub-4 Architecture

Resource
Word length

8 bit 10 bit 12 bit 14 bit 16 bit

Slices 2482 2718 3020 3362 3669

LUTs 8119 9438 10495 11652 12887

CLB 3916 4486 4879 5371 5825

CPD (ns) 3.54 3.91 4.28 4.83 5.44

AT (×10−5) 1.38 1.75 2.08 2.59 3.16

AT2 (×10−13) 4.90 6.85 8.93 12.52 17.23

Max. Freq. (MHz) 282.50 255.80 233.10 207.00 183.80

Table 3.11: Resource Consumption for Proposed Daub-6 Architecture

Resource
Word length

8 bit 10 bit 12 bit 14 bit 16 bit

Slices (×103) 17.64 19.55 20.99 22.03 23.47

LUTs (×103) 47.08 52.85 58.56 63.21 68.72

CLB (×103) 21.97 24.30 26.58 28.84 30.46

CPD (ns) 7.04 7.44 8.02 8.67 8.96

Area-time (×10−5) 15.4 18.0 21.3 25.0 27.2

Area-time2 (×10−13) 10.7 13.4 17.1 21.6 24.4

Max. Freq. (×100 MHz) 1.464 1.39 1.327 1.264 1.218

40

T
ab

le
3.
12
:
C
om

p
ar
is
on

of
P
ro
p
os
ed

A
rc
h
it
ec
tu
re
s
w
it
h
E
x
is
ti
n
g
2-
D

D
W

T
A
rc
h
it
ec
tu
re
s

T
ze
-Y
u
n

M
ar
in
o

P
o-
C
h
ih

B
in
g-
F
ei

H
on

gy
u

K
is
h
or
e

Z
h
an

g
P
ro
p
os
ed

P
ro
p
os
ed

et
a
l.
[6
0]
et

a
l.
[6
1]
et

a
l.
[6
2]
et

a
l.
[3
5]
et

a
l.
[6
3]
et

a
l.
[6
4]
et

a
l.
[6
5]

D
au

b
-4

D
au

b
-6

L
R

1
N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

W
av
el
et

D
au

b
-4

N
/A

9/
7

5/
3,
9/
7

9/
7

5/
3,
9/
7

9/
7

D
au

b
-4

D
au

b
-6

S
tr
u
ct
u
re

R
P
A

2
M
R
P
A

3
R
P
A

R
P
A

R
P
A

L
if
ti
n
g

L
if
ti
n
g

S
ee

F
ig
.
3.
1
S
ee

F
ig
.
3.
4

C
Q

4
N
oi
se

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

N
o

M
u
lt
ip
li
er
le
ss

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

H
.
U
.5

10
0%

N
/A

N
/A

10
0%

50
–7
0%

N
/A

N
/A

∼
10
0%

∼
10
0%

1
L
o
ca
ll
y
R
ep
ro
d
u
ce
d

2
R
ec
u
rs
iv
e
P
y
ra
m
id

A
lg
or
it
h
m

(R
P
A
)

3
M
o
d
ifi
ed

R
ec
u
rs
iv
e
P
y
ra
m
id

A
lg
or
it
h
m

(M
R
P
A
)

4
C
ou

p
le
d
Q
u
an

ti
za
ti
on

(C
Q
)

5
H
ar
d
w
ar
e
U
ti
li
za
ti
on

(H
U
)

41

T
ab

le
3.
13
:
C
om

p
ar
is
on

of
p
ro
p
os
ed

ar
ch
it
ec
tu
re
s
w
it
h
ex
is
ti
n
g
2-
D

D
W

T
ar
ch
it
ec
tu
re
s
(C

on
ti
n
u
ed
)

D
W

T
/
ID

W
T

D
W

T
/
ID

W
T

D
W

T
D
W

T
D
W

T
D
W

T
D
W

T
D
W

T
D
W

T
D
W

T

S
N
R
/
P
S
N
R

6
N
/A

N
/A

N
/A

N
/A

69
.1
4/

74
.8
5

7
N
/A

39
8

65
.3
6/

66
.8
2

9 6
4.
18
/6
8.
12

9

L
og
ic

ce
ll
s

N
/A

N
/A

N
/A

N
/A

87
9

N
/A

98
6

42
6

10
40

T
h
ro
u
gh

p
u
t

N
/A

1
ip
/
op

2
ip
/
op

1
ip
/
op

2
ip
/
op

1
ip
/o
p
1
ip
/
op

1
ip
/
op

1
ip
/
op

T
ec
h
n
ol
og
y

X
il
in
x

N
/A

N
/A

C
M
O
S

V
ir
te
x
-I
I

C
M
O
S

X
il
in
x

X
il
in
x

X
il
in
x

X
C
2V

40
00

0.
25
u
m

X
C
2V

25
0

0.
18
u
m

x
c2
v
50
0

x
c6
vc
x
24
0t

x
c6
vc
x
24
0t

M
ax

.
F
re
q
.
(M

H
z)

N
/A

N
/A

N
/A

20
0

50
20
0

98
28
2.
50

14
6.
42

A
I
en
co
d
in
g

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

6
F
or

8-
b
it
L
en
a
Im

ag
e

7
U
si
n
g
16
-b
it
m
u
lt
ip
li
er
s

8
P
S
N
R

(S
N
R

is
N
/A

)
9
8-
b
it
F
R
S

42

Table 3.14: Memory Requirements

FIFO requirements

Level Daub-4 Daub-6

1 4 + 3N 9 + 45N
2

n ≥ 2 16 + 24 N
2n

36 + 90N
2n

do exist in digital circuits and are reported for the entire FPGA. Dynamic power

consumption is associated only with the logic of the design under test. Therefore,

reported static power for FPGAs can be several Watts and has limited usefulness as

a metric. Table 4.9 lists the dynamic power consumption for the single level decom-

position. The quiescent power reported for FPGAs are for the entire chip, not just

the relevant parts of the particular design being tested.

The memory requirement expressed as 1-deep FIFO elements count for the

Daub-4 and -6 schemes are given in the Table 3.10 as a function of image size N in

pixels and number of decomposition levels n.

The SNR and peak PSNR were adopted as figures of merit. Table 3.12

provides these quantities for standard input images from [59] for the Daub-4 and -6

architectures. Both fixed-point and AI encoding schemes were considered, for 8-

bit input word length. Table 3.6 shows a comparative performance analysis for the

proposed Daub-4 and -6 designs.

43

Table 3.15: Daub-4 and Daub-6 ISE XPower Results

Word length
Power (Watt)

Daub-4 Daub-6

Clock net Quiescent Dynamic Total Clock net Quiescent Dynamic Total

8 0.035 2.573 0.164 2.737 0.097 4.423 0.339 4.762
10 0.038 2.573 0.184 2.757 0.112 4.423 0.348 4.771
12 0.044 2.574 0.201 2.784 0.124 4.424 0.360 4.784
14 0.049 2.574 0.226 2.796 0.137 4.424 0.378 4.802
16 0.055 2.575 0.237 2.812 0.145 4.425 0.408 4.833

3.4.2 Comparison with Existing Methods

A significant amount of work is published on 1-D and 2-D DWT VLSI ar-

chitectures [1–3,6,19,31,63,67–69]. In particular, the designs proposed [3,6] address

the Daub-4 and -6 wavelet analysis. Also detailed data is reported in [3, 6] allowing

us to derive meaningful comparisons.

Considering 8-bit input word length, the obtained SNR and PSNR values

for proposed architectures, were roughly 30–40% higher than the 1-D and 2-D DWT

architectures described in [3, 6].

Among the FRS approaches we have mentioned, we used canonical signed

digit (CSD) approximation for comparison. Moreover, we compared the proposed

architectures with several prominent VLSI 2-D DWT designs archived in literature.

In particular, we separated the following works: [35, 60–65]. Table 3.9 shows the

comparison results.

The proposed architectures are also compared with recently published AI

based DWT architectures. Table 4.9 shows the comparison results. Notice that

44

T
ab

le
3.
16
:
S
N
R

an
d
P
S
N
R

fo
r
D
au

b
-4

an
d
D
au

b
-6

F
il
te
r
B
an

k
s
B
as
ed

on
F
ix
ed
-p
oi
n
t
an

d
A
I
E
n
co
d
in
g

W
av
el
et

S
ch
em

e
M
ea
su
re
d

O
ri
gi
n
al

Im
ag
e

A
p
p
ro
x
im

at
e
S
u
b
-i
m
ag
e

F
il
te
r

U
se
d

A
sp
ec
t

(5
12

×
51
2)

A
1
(2
56

×
25
6)

A
2
(1
28

×
12
8)

A
3
(6
4
×

64
)
A

4
(3
2
×

32
)

D
au

b
-4

F
ix
ed
-p
oi
n
t

C
am

er
am

an
40
.0
3

33
.3
5

31
.7
2

31
.9
0

S
N
R

(d
B
)

W
om

an
42
.2
8

36
.7
9

38
.8
4

34
.5
2

R
efl
ec
ti
on

38
.1
8

34
.6
4

26
.9
8

25
.0
3

C
am

er
am

an
43
.0
3

39
.3
8

34
.6
9

34
.5
4

P
S
N
R

(d
B
)

W
om

an
44
.0
5

38
.7
9

39
.8
4

36
.7
5

R
efl
ec
ti
on

42
.2
1

39
.8
0

30
.2
1

32
.0
8

45

T
ab

le
3.
17
:
S
N
R

an
d
P
S
N
R

fo
r
D
au

b
-4

an
d
D
au

b
-6

F
il
te
r
B
an

k
s
B
as
ed

on
F
ix
ed
-p
oi
n
t
an

d
A
I
E
n
co
d
in
g
(C

on
ti
n
u
ed
)

W
av
el
et

S
ch
em

e
M
ea
su
re
d

O
ri
gi
n
al

Im
ag
e

A
p
p
ro
x
im

at
e
S
u
b
-i
m
ag
e

F
il
te
r

U
se
d

A
sp
ec
t

(5
12

×
51
2)

A
1
(2
56

×
25
6)

A
2
(1
28

×
12
8)

A
3
(6
4
×

64
)
A

4
(3
2
×

32
)

D
au

b
-4

A
I
E
n
co
d
in
g

C
am

er
am

an
63
.2
6

61
.2
7

57
.1
8

52
.8
3

S
N
R

(d
B
)

W
om

an
64
.1
6

60
.5
3

51
.3
7

59
.8
6

R
efl
ec
ti
on

66
.5
3

61
.2
9

43
.7
2

52
.7
1

C
am

er
am

an
72
.2
0

64
.3
3

60
.8
2

56
.2
1

P
S
N
R

(d
B
)

W
om

an
71
.1
2

66
.2
7

67
.6
4

64
.4
7

R
efl
ec
ti
on

68
.3
8

66
.7
1

56
.1
8

54
.6
1

46

T
ab

le
3.
18
:
S
N
R

an
d
P
S
N
R

fo
r
D
au

b
-4

an
d
D
au

b
-6

F
il
te
r
B
an

k
s
B
as
ed

on
F
ix
ed
-p
oi
n
t
an

d
A
I
E
n
co
d
in
g
(C

on
ti
n
u
ed
)

W
av
el
et

S
ch
em

e
M
ea
su
re
d

O
ri
gi
n
al

Im
ag
e

A
p
p
ro
x
im

at
e
S
u
b
-i
m
ag
e

F
il
te
r

U
se
d

A
sp
ec
t

(5
12

×
51
2)

A
1
(2
56

×
25
6)

A
2
(1
28

×
12
8)

A
3
(6
4
×

64
)
A

4
(3
2
×

32
)

D
au

b
-6

F
ix
ed
-p
oi
n
t

M
an

d
ri
ll

37
.7
8

33
.7
2

33
.2
0

32
.2
1

S
N
R

(d
B
)

L
en
a

38
.7
5

33
.1
9

31
.2
3

29
.8
0

C
T

h
ea
d

38
.1
8

34
.6
4

26
.9
8

25
.0
3

M
an

d
ri
ll

39
.3
6

35
.5
7

35
.2
7

33
.3
2

P
S
N
R

(d
B
)

L
en
a

41
.1
3

35
.4
6

35
.6
9

32
.2
1

C
T

h
ea
d

43
.4
4

39
.3
5

33
.5
4

37
.2
8

47

T
ab

le
3.
19
:
S
N
R

an
d
P
S
N
R

fo
r
D
au

b
-4

an
d
D
au

b
-6

F
il
te
r
B
an

k
s
B
as
ed

on
F
ix
ed
-p
oi
n
t
an

d
A
I
E
n
co
d
in
g
(C

on
ti
n
u
ed
)

W
av
el
et

S
ch
em

e
M
ea
su
re
d

O
ri
gi
n
al

Im
ag
e

A
p
p
ro
x
im

at
e
S
u
b
-i
m
ag
e

F
il
te
r

U
se
d

A
sp
ec
t

(5
12

×
51
2)

A
1
(2
56

×
25
6)

A
2
(1
28

×
12
8)

A
3
(6
4
×

64
)
A

4
(3
2
×

32
)

D
au

b
-6

A
I
E
n
co
d
in
g

M
an

d
ri
ll

61
.4
5

59
.8
1

56
.6
3

53
.7
6

S
N
R

(d
B
)

L
en
a

64
.1
8

59
.1
2

58
.1
4

55
.7
6

C
T

h
ea
d

62
.5
3

58
.7
1

53
.8
2

52
.1
4

M
an

d
ri
ll

64
.2
8

62
.8
6

60
.2
8

58
.0
3

P
S
N
R

(d
B
)

L
en
a

68
.1
2

64
.2
3

63
.6
8

61
.2
8

C
T

h
ea
d

66
.4
5

62
.1
2

55
.1
7

58
.7
4

48

the Daub-6 FRS design based on the expansion factor method could offer a 7%

improvement in the clock frequency when compared to the design based on CSD

representation.

To compare with other architectures, PSNR values presented in Table 4.9, for

proposed Daub-4 and -6 architectures, were obtained by employing reconstructions

between column and row transforms, whereas the PSNR values in Table 3.12 are

entirely 2-D based with single final reconstruction step. All values mentioned in

Table 4.9 are for the CSD representation considering 8-bit equivalent word size,

unless it is specifically mentioned that we employed the expansion factor method.

The comparison is provided in Table 4.9.

The proposed architectures are entirely multiplier free with no coupled quan-

tization noise; possess low levels of both uncorrelated and uncoupled quantization

noise; and offer the maximum frequency of operation among others. Since the design

is speed optimized using fine-grain pipelining and parallel architectures, it is not

anticipated to yield advantages in terms of power and area. In a sense, we traded

the speed (maximum frequency) for power and resources.

3.5 Conclusion

We proposed a multi-encoded AI-based 2-D wavelet filter bank architecture

capable of arbitrarily high numerical accuracy. The introduced design employs AI-

based arithmetic which is (i) error-free, (ii) defined over integers, and (iii) free of

multiplications.

49

T
ab

le
3.
20
:
C
om

p
ar
is
on

of
P
ro
p
os
ed

A
rc
h
it
ec
tu
re
s
w
it
h
E
x
is
ti
n
g
A
I
B
as
ed

D
W

T
A
rc
h
it
ec
tu
re
s

W
ah

id
W
ah

id
W
ah

id
W
ah

id
W
ah

id
W
ah

id
G
u
st
af
ss
on

P
ro
p
os
ed

P
ro
p
os
ed

et
a
l.
[1
]
et

a
l.
[6
]
et

a
l.
[1
9]

et
a
l.
[3
]
et

a
l.
[3
1]
et

a
l.
[1
7]

et
a
l.
[6
7]

D
au

b
-4

D
au

b
-6

L
R

1
N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

2
Y
es

2

W
av
el
et

D
au

b
-4
/6

D
au

b
-4
/6

D
au

b
-6

D
au

b
-4
/6

D
au

b
-8

D
au

b
-4
/6

D
au

b
-6

D
au

b
-4

D
au

b
-6

A
rc
h
it
ec
tu
re

1-
D
/
2-
D

1-
D

1-
D

1-
D

1-
D

1-
D

1-
D

2-
D

2-
D

IR
S
3

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
/A

N
o

N
o

H
C

4
10
/
18

10
/
25

25
N
/A

N
/A

9/
18

18
10

21

1
L
o
ca
ll
y
R
ep
ro
d
u
ce
d
(L
R
)

2
M
ea
su
re
d

3
In
te
rm

ed
ia
te

R
ec
on

st
ru
ct
io
n
S
te
p
(I
R
S
)

4
H
ar
d
w
ar
e
C
om

p
le
x
it
y
(H

C
)
(#

ad
d
er
s)

⋆
E
m
p
lo
y
in
g
re
co
n
st
ru
ct
io
n
b
et
w
ee
n
ro
w

an
d
co
lu
m
n
.

†
T
ak
en

fr
om

P
S
N
R

p
lo
ts

in
[1
,
p
.
12
64
]

‡
A
t
50

M
H
z
[1
7]

§
A
t
44
2.
47

M
H
z

∗
A
t
27
4.
72

M
H
z

50

T
ab

le
3.
21
:
C
om

p
ar
is
on

of
p
ro
p
os
ed

ar
ch
it
ec
tu
re
s
w
it
h
ex
is
ti
n
g
A
I
b
as
ed

D
W

T
ar
ch
it
ec
tu
re
s
(C

on
ti
n
u
ed
)

R
eg
is
te
rs

5
20
0/

49
4

N
/A

N
/A

N
/A

18
6

11
5/
19
6

N
/A

25
8

76
5

L
og
ic

ce
ll
s5

24
8/
68
0

N
/A

N
/A

N
/A

51
8

10
6/
25
4

N
/A

42
6

10
40

P
S
N
R

(d
B
)6
38

†
(D

au
b
-4
)
50
.4
9
(D

au
b
-4
)
N
/A

22
.2
6

90
N
/A

N
/A

54
.6
4⋆

57
.1
2⋆

39
†
(D

au
b
-6
)
49
.8
7
(D

au
b
-6
)

F
R
S
7

C
S
D

C
S
D

B
o
ot
h
B
o
ot
h

B
o
ot
h

C
S
D

C
S
D

C
S
D

C
S
D
/E

F
M

8

T
h
ro
u
gh

p
u
t

1
ip
/
op

1
ip
/
op

N
/A

N
/A

N
/A

2
ip
/o
p
1
ip
/
op

1
ip
/
op

1
ip
/
op

D
P
9 (
m
W

)5
15
.9
4/

22
.2
9

N
/A

N
/A

N
/A

4.
8

4.
51

‡
N
/A

38
§

57
∗

T
ec
h
n
ol
og
y

X
il
in
x

N
/A

N
/A

N
/A

X
il
in
x

C
M
O
S

N
/A

X
il
in
x

X
il
in
x

V
ir
te
x
E

V
ir
te
x
E

0.
18
u
m

x
c6
vc
x
24
0t

x
c6
vc
x
24
0t

M
F

1
0 (M

H
z)

14
8.
21
/1
19
.5
7

N
/A

N
/A

N
/A

71
10
0

N
/A

28
2.
50

14
6.
42
/
15
7.
16

6

5
F
or

si
n
gl
e
le
ve
l
d
ec
om

p
os
it
io
n

6
F
or

8-
b
it
L
en
a
Im

ag
e

7
F
in
al

R
ec
on

st
ru
ct
io
n
S
te
p
(F

R
S
)

8
E
x
p
an

si
on

F
ac
to
r
M
et
h
o
d
(E

F
M
)

9
D
y
n
am

ic
P
ow

er
(D

P
)

1
0
M
ax

im
u
m

F
re
q
u
en
cy

(M
F
)

⋆
E
m
p
lo
y
in
g
re
co
n
st
ru
ct
io
n
b
et
w
ee
n
ro
w

an
d
co
lu
m
n
.

†
T
ak
en

fr
om

P
S
N
R

p
lo
ts

in
[1
,
p
.
12
64
]

‡
A
t
50

M
H
z
[1
7]

§
A
t
44
2.
47

M
H
z

∗
A
t
27
4.
72

M
H
z

51

By employing AI encoding, resulting wavelet decomposed images had SNR

and PSNR figures improved by approximately 25–30% when compared to a counter-

part fixed-point system with 8-bit word length and 6 fractional bits.

Comparing the paper [1], our proposed Daub-4 and -6 architectures The SNR

and PSNR values for the AI-based Daub-6 architecture were approximately 6–10%

higher than the figures obtained from the Daub-4 architecture. The better mathe-

matical properties of the Daub-6 wavelets, such as more vanishing moments, explains

this difference. Due to its inherent simplicity of coefficients and smaller number of AI

numbers, the Daub-4 AI-based architecture had consumed approximately 50% lower

power than the Daub-6 systems. Moreover, its maximum frequency of operation is

approximately 90% higher under the same conditions.

A single FRS is the only source of computational error. Noise injection from

intermediate fixed-point errors is non-existent. We proposed several designs for the

FRS based on CSD representation and expansion factor scaling. These two methods

allowed various configurations of accuracy and tolerable circuit complexities. Appli-

cations exist in sub-band coding of high dynamic range image sequences. Standard

images were analyzed. FPGA based four-level prototypes for Daubechies 4- and

6-tap wavelet filters are operational at a compilation target frequency of 100 MHz

on the Xilinx ML605 board. Place-and-route timing analysis furnished 282.50 MHz

and 146.42 MHz for the Daub-4 and -6 architectures, respectively. Daub-4 and -6

single level decomposition architectures were also FPGA prototyped with the Xilinx

Virtex-6 device at 442.47 and 274.72 MHz, respectively. CMOS sensor arrays for

52

imaging are being continuously improved with increasing resolutions. The dynamic

range of typical imaging applications are also increasing and more emphasis is being

made for picture quality. In the presence of higher resolution, increased dynamic

range, and increased frame rate, there is no option but to increase the throughput

of the digital filtering architectures.

Finally, it is important to notice that—in principle—the discussed AI based

scheme can be applied to any type of DWT as long as the scaling and wavelet

coefficients of the corresponding filters could be given and exact representation. For

instance, this is the case for the Haar, Daubechies-4/-6, and Bior-5/3 wavelets. On

the other hand, wavelets such as gaussian, mexican hat do not have a compatible

DWT version.

53

CHAPTER IV

AI BASED LOW ADDER COUNT ARCHITECTURE FOR THE 2-D

DAUBECHIES 4-TAP WAVELET FILTER BANK

4.1 Introduction

This chapter provides a novel representation of the Daubechies 4-tap wavelet

filters that aims at minimizing the filter bank arithmetic complexity and, therefore,

leading to less demanding hardware requirements. In particular, we focus on the min-

imization of the number of canonical signed-digit (CSD) terms. Such minimization

seeks to obtain a minimum number of adders for the associated hardware realization

while maintaining all other features of the earlier design described in [70].

The proposed optimal architecture is consistent with the method advanced

in [67] which used integer linear programming for minimizing the number of adders

required for the hardware realization of the 1-D Daubechies 6-tap filter banks. The

paper unfolds as follows. Section 4.2 describes the mathematical framework of 2-D

multi level AI architectures for Daubechies-4 wavelets as detailed in [71]. Section 4.3

furnishes the numerical optimization that leads to a fast algorithm having reduced

number of 2-input adder circuits. Section 5.6.4 provides extensive digital design

details for practical implementations using reconfigurable logic devices as well as

54

CMOS technology. The paper is concluded in Section 5.7.

4.2 AI Encoding of Daubechies 4-tap Filter Bank

In this section, we review the previously proposed AI encoding approach for

the implementation of Daubechies 4-tap filters.

4.2.1 Daubechies 4-tap filter

The filter bank structure based on the Daubechies 4-tap filter possesses a

low-pass filter whose impulse response is furnished by:

h =
1

4
√
2

[

1 +
√
3 3 +

√
3 3−

√
3 1−

√
3

]⊤

, (4.1)

where the superscript ⊤ denotes the transpose operation. The presence of irrational

quantities, in particular
√
3, poses difficulties when considering fixed-point represen-

tation. Conventional implementations often resort to truncation and/or rounding-off

operations as a means to approximate
√
3 to a representable quantity in fixed-point

arithmetic. However such procedure inevitably introduces computational errors.

In [70, 71], it was shown that (5.1) can be split in two integer coefficient

filters. For such, consider the algebraic integer ζ =
√
3. Therefore, we obtain:

h =
1

4
√
2
(h1 + ζ · hζ), (4.2)

55

where h1 =

[

1 3 3 1

]⊤

and hζ =

[

1 1 −1 −1

]⊤

. This approach allows inte-

ger computation by not explicitly evaluating ζ until the final stage of computation.

As a consequence, error propagation is prevented and final results can be appropri-

ately handled.

4.2.2 Mathematical Notation

Let C be an N × N matrix with columns cj, j = 0, 1, . . . , N − 1, C =
[

c0 c1 c2 · · · cN−1

]

and v be an N -point column vector. The operation ȅ is

defined according to:

v ȅ C ,(2↓1)
[

v ∗ c0 v ∗ c1 v ∗ c2 · · · v ∗ cN−1

]

=

[

v ∗ c0 v ∗ c2 · · · v ∗ cN−2

]

,

where ∗ is the convolution operation. Similarly, operation ⊖ is given by: v ⊖ C ,

(

v ȅ C⊤
)⊤

. In other words, operators ⊖ and ȅ are the convolution operation along

the rows and columns of a given matrix, respectively, followed by a dyadic down-

sampling. Symbols 2↓1 and 1↓2 are used to denote the column-wise and row-wise

down-sampling. respectively [47, pp. 6-26].

4.2.3 Daubechies 4-tap filter bank

Let A0 be an N ×N pixels input image and A1 be the resulting N/2×N/2

image approximation after the first level wavelet decomposition. For the one-level

56

row−wise

column−wise

Combinational
Block AAI Filter Bank

1 ↓ 2hζ

hζ

hζ

h1

1 ↓ 2h1

A1
(1)

A1
(ζ)

2 ↓ 1

2 ↓ 1

2 ↓ 1

2 ↓ 1

A0
3

h1

Figure 4.1: Single AI filter bank decomposition.

decomposition, these images are related according to:

β2 ·A1 = h⊖ h ȅ A0.

As shown in [70, 71], the approximation image A1 consists of two integer

enconded partsA1
(1) andA1

(ζ). Superscripts (1) and (ζ) denote image parts associated

to AI basis elements 1 and ζ , respectively. These quantities satisfy the following

relation [70, 71]:

β2 ·A1 =A1
(1) + ζ ·A1

(ζ),

where 1/β = 4
√
2. The constituents parts of A1 are obtained according to the filter

bank structure shown in Fig. 4.1.

This process can be iterated to furnish subsequent coarser approximations.

Thus the nth approximation An is furnished by βn ·An = h⊖ h ȅ An−1 [70, 71].

Moreover, it was established that β2n ·An = An
(1)+ ζ ·An

(ζ). Fig. 4.2 shows

multi-level AI filter bank for 4-level decomposition with final reconstruction step

(FRS). Combinational Block A is detailed in Fig. 4.1, whereas Combination Block B

57

C
om

b.
 A

AI

AI

C
om

b.
 B

C
om

b.
 B

C
om

b.
 B

AI

AI

AI

AI

AI

FRS
A0

A3
(ζ)A1

(ζ) A2
(ζ) A4

(ζ)

A4
(1)A3

(1)A2
(1)A1

(1)

A4

Figure 4.2: Multi-level AI filter bank with final reconstruction step (FRS)

is discussed in Section 4.3.

4.3 Optimized AI Encoding

4.3.1 Number of Additions

The AI encoding discussed in previous section implies integer coefficient fil-

ter h1 and hζ . Whereas the coefficients of hζ can be trivially implemented without

requiring multiplication or bit-shifting operations, the same is not true for the coef-

ficients of h1. In h1, the required multiplications by 3 imply extra additions. This

is due to the fact that the constant 3 can be implemented by means of one addition

and one bit-shift operation (3 = 2 + 1 = 4− 1).

In general terms, depending on the binary representation of the filter co-

efficients, they may contribute with extra additions. Let us adopt the canonical-

signed-digit representation for binary encoding the integer coefficients. Additionally,

let SCSD(n) return the number of additions/subtractions of powers of two required

to represent a given integer n. For example, we have: SCSD(2) = 0, SCSD(3) = 1,

SCSD(11) = 2 (11 = 16 − 4 − 1). Clearly, if all elements of a given filter are pow-

58

ers of two, then no extra addition is required. In this case, an additive complexity

minimum is achieved.

4.3.2 Filter Parametrization and Optimization

Our goal is to rewrite (5.2) is such way that the coefficients of the resulting

filters can be represented in CSD form with minimum number of additions. For such

let us introduce an integer parameter m in (5.2) as follows:

h =

[

1 3 3 1

]⊤

−m ·
[

1 1 −1 −1

]⊤

+ (ζ +m) ·
[

1 1 −1 −1

]⊤

=

[

1−m 3−m 3 +m 1 +m

]⊤

+ (ζ +m) ·
[

1 1 −1 −1

]⊤

.

Above expression implies two integer filters:

h1
′ =

[

1−m 3−m 3 +m 1 +m

]⊤

,

hζ
′ = hζ =

[

1 1 −1 −1

]⊤

.

As a consequence, the required AI element must be replaced for ζ ′ = ζ +m. Notice

that for m = 0 we obtain (5.2).

The elements of hζ
′ pose no arithmetic complexity. We focus our attention

59

on h1
′ aiming at finding a suitable value of m such that the resulting coefficients are

efficiently represented in CSD representation.

Let h′
1[k] and hζ [k], k = 0, 1, 2, 3, be the coefficients of h1

′ and hζ , respec-

tively. In view of the above discussion, the optimal value of m, denoted m∗, is the

solution of the following minimization problem:

m∗ = argmin
m∈Z

3
∑

k=0

SCSD(h
′
1[k])

= argmin
m∈Z

{

SCSD(1−m) + SCSD(3−m)

+ SCSD(1 +m) + SCSD(3 +m)
}

.

(4.3)

Direct optimization tools are not applicable due to the difficulty in analyti-

cally manipulate (5.3). Therefore, we resort to numerical search methods as a means

to solve (5.3). Such computational search requires that we limit the search space.

Let {m ∈ Z : |m| ≤ 1024} be the considered search space. Under these conditions,

we could obtain m∗ = ±1, which results in the following filters:

h1
′ =

[

2 4 2 0

]⊤

or h1
′ =

[

0 2 4 2

]⊤

,

for m∗ = −1 and m∗ = 1, respectively. The implied algebraic integers are
√
3 ± 1,

respectively. Notice that m∗ = ±1 not only minimizes (5.3), but it is also a zero of

the objective function. This can be directly verified since all coefficients of resulting

filters h1
′ are powers of two. Thus the CSD representation of theses coefficients

60

Table 4.1: Filter Parametrization and Optimization

m
of CSD
additions

h1
′ ζ ′ = ζ +m

−5 1
[

6 8 −2 −4
]⊤ √

3− 5

−3 1
[

4 6 0 −2
]⊤ √

3− 3

−1 0
[

2 4 2 0
]⊤ √

3− 1

0 2
[

1 3 3 1
]⊤ √

3

1 0
[

0 2 4 2
]⊤ √

3 + 1

3 1
[

−2 0 6 4
]⊤ √

3 + 3

5 1
[

−4 −2 8 6
]⊤ √

3 + 5

x

AI Based Daub−4 High−pass Structure

2
2

z−1 z−1 z−1

y(1)

y(ζ)

Figure 4.3: Proposed AI based Daubechies 4-tap high-pass filter.

require no extra additions.

Suboptimal solutions occur at m = ±3 and m = ±5. In both cases, the

resulting filters are improvements over the original filter h1, requiring only one extra

addition. Table 4.1 displays the obtained optimal and suboptimal results. Con-

sidering the adopted search space, all values of m—except for the values listed in

Table 4.1—resulted in filters whose arithmetical complexity is greater than or equal

to the the complexity of the original filter h1.

61

4.3.3 High-pass Filter Implementation

The signal analysis provided by the high-pass filter banks can be imple-

mented in a similar fashion as described for the low-pass filter banks. In fact, the

impulse response of an analysis high-pass filter is given by:

g =
1

4
√
2

[

1 +
√
3 −3−

√
3 3−

√
3 1 +

√
3

]⊤

. (4.4)

Therefore, the filter g can be AI encoded according to the following formalism:

g =
1

4
√
2

[

2 + ζ ′ −4 − ζ ′ 2− ζ ′ 2 + ζ ′

]⊤

. (4.5)

Thus, we maintain the expression below:

g =
1

4
√
2
(g1 + ζ ′ · gζ′), (4.6)

where g1 =

[

2 −4 2 2

]⊤

and gζ′ =

[

1 −1 −1 1

]⊤

. Notice that (4.6) forms

the baseline for the multi-level decomposition required to compute the detail sub-

images Dvn, Dhn, and Ddn as shown in Fig. 2.1. Fig. 4.3 shows Daubechies 4-tap

high-pass filter realization.

In fact, our architecture is an efficient framework for computing the standard

Daubechies 4-tap filter bank. Because of it exactness, the proposed architecture does

not inflict any change in the mathematical properties of the original Daubechies filter

62

bank. All good analytic features of the Daubechies filter bank are preserved, such as

vanishing moments and zero dc leakage. Therefore, since all the multi-encoded AI

bases in our work maintain exact computation up to the single final reconstruction

step, the problem of energy leakage cannot arise in this type of implementation.

Additionally, at the FRS the accuracy of AI bases can be independently

adjusted according to the required precision. This distinct feature not only allows

arbitrarily high levels of precision for each of the coefficients, but also enables the

coefficient errors in the final FRS to be completely decoupled from each other. There-

fore, the problem of spectral leakage is not present, being irrelevant for this method

of AI computation. The details of AI decoding operation of AI bases is discussed in

the following section.

4.3.4 Final Reconstruction Step

The proposed multi-level analysis is computed entirely over the AI represen-

tation. However, the resulting AI encoded approximations (An
(1), An

(ζ′)) must be

converted to usual fixed-point arithmetic in order to be further processed by standard

systems. The decoding operation consists of performing the following calculation:

An =
1

β2n

(

An
(1) + ζ ′ ·An

(ζ′)
)

.

The factor β2n is always a power of two, which can be conveniently implemented

with bit-shift operations. This decoding operation is realized at the FRS block

63

Table 4.2: CSD Representation for ζ

Word-length CSD Encoding % Rel. Error

8 bit 1− 2−2 0.0246

10 bit 1− 2−2 − 2−6 0.0032

12 bit 1− 2−2 − 2−6 0.0032

14 bit 1− 2−2 − 2−6 − 2−9 0.00040

16 bit 1− 2−2 − 2−6 − 2−9 0.00040

(Fig. 4.2). Therefore, the only possible source of errors in the proposed architecture

is the multiplication by ζ ′. The two optimal values of m∗ = ±1 furnish ζ ′ =
√
3± 1.

Thus, since
√
3− 1 ≈ 0.73205 has a simpler CSD representation, we select m∗ = −1

as the final design choice. Table 4.2 displays the CSD encoding of ζ ′ =
√
3 − 1 for

several word-lengths as well as the associate relative errors. Of course, the selected

approximation depends on the application and its error tolerance.

4.3.5 Proposed Structures and Savings in Adders

Fig. 4.4 (a) displays the proposed filter structure to implement h1. This filter

requires only 5 adders. In comparison, the previous design detailed in [71] requires

seven additions. This represents a decrease of 28% in additive complexity. Each

AI block, as shown in Fig. 4.1, contains three instantiations of h1 which implies a

saving of six additions per AI block. Fig. 4.2 shows that an n-level decomposition,

n > 1, requires 2n − 1 AI blocks. Thus in terms of AI blocks, we have a saving of

6 · (2n− 1) = 12 · n− 6 additions.

The associated Combinational Block B is shown in Fig. 4.4. This block

64

AI Based Daub−4 Structure

x

2
4

y(1)

z−1 z−1 z−1

y(ζ)

(a)

2

Combinational Block B

2

2

4

(b)

Figure 4.4: (a) Proposed AI based Daubechies 4-tap filter; (b) Combinational Block
B.

requires 10 additions, whereas the previously proposed design requires 8 additions.

We need n − 1 realizations of Combinational Block B (cf. Fig. 4.2) for a n > 1

decomposition. Thus, we have an increase of 2 · (n − 1) additions, when compared

to previous design [71]. In both previous and proposed designs, the Combination

Block A requires three additions; therefore it accounts for no complexity change.

At the FRS, the CSD representation of the new AI integer choice ζ ′ = ζ − 1

requires one less addition when compared to ζ , which was employed in previous

design [71]. Thus, one extra addition is saved.

Above discussion is summarized in the following net savings in numbers of

two input adder circuits:

Total savings in adders =(12 · n− 6)− (2 · n− 2) + 1

=10 · n− 3, n > 1.

65

T
ab

le
4.
3:

D
au

b
-4

D
ec
om

p
os
it
io
n
A
p
p
ro
x
im

at
io
n
s

L
ev
el

B
as
e

E
x
p
re
ss
io
n

A
1
(1
)

h
1
′
⊖

h
1
′
ȅ

A
0
+
2
·h

ζ
⊖
h
ζ
ȅ
A

0

1

A
1
(ζ
)

h
ζ
⊖

h
1
′
ȅ

A
0
+
h
1
′
⊖
h
ζ
ȅ
A

0
−

2
·h

ζ
⊖

h
ζ
ȅ
A

0
.

A
2
(1
)
h
1
′
⊖

h
1
′
ȅ

A
1
(1
)
−

4
·h

ζ
⊖
h
ζ
ȅ

A
1
(ζ
)
+

2
·(

h
ζ
⊖

h
ζ
ȅ
A

1
(1
)
+
(h

ζ
⊖

h
1
′
+
h
1
′
⊖
h
ζ
)
ȅ

A
1
(ζ
))

2

A
2
(ζ
)

h
1
′
⊖
h
1
′
ȅ
A

1
(ζ
)
+
6
·h

ζ
⊖

h
ζ
ȅ

A
1
(ζ
) +

h
ζ
⊖
h
1
′
ȅ

A
1
(1
)
+
h
1
′
⊖
h
ζ
ȅ

A
1
(1
)

−
2
·(

h
ζ
⊖
h
ζ
ȅ
A

1
(1
)
−
(h

1
′
⊖
h
ζ
+
h
ζ
⊖
h
1
′)

ȅ
A

1
(ζ
))

66

T
ab

le
4.
4:

D
au

b
-4

D
ec
om

p
os
it
io
n
A
p
p
ro
x
im

at
io
n
s
(C

on
ti
n
u
ed
)

L
ev
el

B
as
e

E
x
p
re
ss
io
n

A
n
(1
)
h
1
′
⊖

h
1
′
ȅ
A

n
−
1
(1
)
−

4
·h

ζ
⊖

h
ζ
ȅ
A

n
−
1
(ζ
) +

2
·(

h
ζ
⊖

h
ζ
ȅ

A
n
−
1
(1
)
+
(h

ζ
⊖

h
1
′
+
h
1
′
⊖
h
ζ
)
ȅ
A

n
−
1
(ζ
))

n

A
n
(ζ
)

h
1
′
⊖

h
1
′
ȅ

A
n
−
1
(ζ
)
+
6
·h

ζ
⊖

h
ζ
ȅ

A
n
−
1
(ζ
) +

h
ζ
⊖

h
1
′
ȅ
A

n
−
1
(1
)
+
h
1
′
⊖

h
ζ
ȅ
A

n
−
1
(1
)

−
2
·(

h
ζ
⊖

h
ζ
ȅ
A

n
−
1
(1
)
−
(h

1
⊖
h
ζ
+
h
ζ
⊖

h
1
)
ȅ

A
n
−
1
(ζ
))

67

4.4 FPGA and ASIC Implementation and Results

The architectures for Daubechies 4-tap filter bank were physically imple-

mented and hardware co-simulated the Xilinx Virtex xc6vcx240t-1ff1156 FPGA de-

vice using the ML605 evaluation board. The proposed designs were also imple-

mented with CMOS 45 nm ASIC technology upto synthesis level at supply voltage

VDD = 1.1 V. The designs were tested with three different standard images obtained

from [59]. Gray 512×512 images Lena, Mandrill, and Cameraman were submit-

ted, block-by-block, in row-parallel format, to the proposed architecture. Hardware

results were verified with Matlab. Fig. 5.6 displays hardware results of on-chip

physical verification on a Virtex-6 vcx240t-1ff1156 for the proposed Daubechies 4-

tap filter bank. The implementation results for the Xilinx Virtex-6 vcx240t-1ff1156

FPGA device and the CMOS 45 nm ASIC technology are described in the following

subsections.

The SNR and peak PSNR were adopted as image quality measures. Ta-

ble 5.14 provides these quantities for above mentioned images for both the standard

fixed-point implementation and the proposed AI-based design. By employing AI en-

coding, resulting wavelet decomposed images had SNR and PSNR figures improved

by approximately 30–35% when compared to a counterpart fixed-point system with

8-bit word length and 6 fractional bits. In both schemes, the considered word length

was 8 bit.

68

(a) A1 (b) A2 (c) A3 (d) A4

(e) A1 (f) A2 (g) A3 (h) A4

(i) A1 (j) A2 (k) A3 (l) A4

Figure 4.5: Approximation sub-images A1, A2, A3, and A4 obtained from on-chip
physical verification on a Virtex-6 vcx240t-1ff1156.

69

T
ab

le
4.
5:

S
N
R

an
d
P
S
N
R

fo
r
D
au

b
ec
h
ie
s
4-
ta
p
F
il
te
r
B
an

k
B
as
ed

on
F
ix
ed
-p
oi
n
t
an

d
A
I
E
n
co
d
in
g

W
av
el
et

S
ch
em

e
M
ea
su
re
d

O
ri
gi
n
al

Im
ag
e

A
p
p
ro
x
im

at
e
S
u
b
-i
m
ag
e

F
il
te
r

U
se
d

A
sp
ec
t

(5
12

×
51
2)

A
1
(2
56

×
25
6)

A
2
(1
28

×
12
8)

A
3
(6
4
×

64
)
A

4
(3
2
×

32
)

D
au

b
-4

F
ix
ed
-p
oi
n
t

M
an

d
ri
ll

41
.2
3

35
.3
8

33
.0
6

31
.0
6

S
N
R

(d
B
)

L
en
a

41
.7
1

38
.1
2

35
.6
4

33
.8
2

C
am

er
am

an
40
.1
8

38
.6
4

35
.9
8

32
.0
3

M
an

d
ri
ll

46
.0
3

42
.3
8

40
.6
9

38
.8
1

P
S
N
R

(d
B
)

L
en
a

45
.0
5

42
.7
9

41
.8
4

38
.7
5

C
am

er
am

an
46
.2
1

43
.8
0

41
.2
1

39
.0
8

70

T
ab

le
4.
6:

S
N
R

an
d
P
S
N
R

fo
r
D
au

b
ec
h
ie
s
4-
ta
p
F
il
te
r
B
an

k
B
as
ed

on
F
ix
ed
-p
oi
n
t
an

d
A
I
E
n
co
d
in
g
(C

on
ti
n
u
ed
)

W
av
el
et

S
ch
em

e
M
ea
su
re
d

O
ri
gi
n
al

Im
ag
e

A
p
p
ro
x
im

at
e
S
u
b
-i
m
ag
e

F
il
te
r

U
se
d

A
sp
ec
t

(5
12

×
51
2)

A
1
(2
56

×
25
6)

A
2
(1
28

×
12
8)

A
3
(6
4
×

64
)
A

4
(3
2
×

32
)

D
au

b
-4

A
I
E
n
co
d
in
g

M
an

d
ri
ll

60
.2
6

58
.2
7

54
.1
8

50
.8
3

S
N
R

(d
B
)

L
en
a

61
.1
6

58
.2
9

55
.4
8

53
.8
6

C
am

er
am

an
61
.3
5

58
.0
7

55
.1
2

52
.7
1

M
an

d
ri
ll

65
.2
0

62
.3
8

58
.1
7

55
.9
1

P
S
N
R

(d
B
)

L
en
a

64
.7
8

62
.2
7

59
.6
4

56
.4
7

C
am

er
am

an
65
.1
6

61
.0
3

59
.8
2

55
.3
7

71

4.4.1 Resource Consumption and Figures of Merit

Xilinx Virtex-6 Implementation

Table 4.5 lists resource consumption for the number of slice registers, look-up

table (LUT) count, and configurable logic blocks (CLB). Critical path delays (CPD)

and the maximum operating frequency are also reported. We considered the following

word length sizes: 8, 10, 12, 14, and 16 bits.

We adopt the area-time (AT) and area-time2 (AT2) as figures of merit. The

area-time product is a standard performance metric in digital hardware designs. It

refers to chip-area and speed (maximum frequency) of the design. Lower area-time

values indicate a higher speed of operation. In an FPGA implementation, the area

is provided by the number of slice LUTs employed for logic given by the FPGA

design tool called XFLOW and the time is simply the critical path delay. Quantity

area-time2 is useful, when clock speed is the driving factor of design optimization,

for high-throughput realizations.

Table 4.6 shows the estimated power consumption obtained from Xilinx

power analyzer (XPA) in Xilinx-ISE. Clock net, quiescent, and dynamic powers are

reported for the considered input word lengths.

The FPGA implementation employs an oscillator frequency Fclock =

100 MHz. Thus the final throughput is Fclock/N
2 image frames per second. Thus,

for 512× 512 input images, a frame rate of ≈ 381 Hz was obtained.

72

Table 4.7: Hardware Resource Consumption for Xilinx Virtex-6 vcx240t-1ff1156 Im-
plementation

Resource
Word length

8 bit 10 bit 12 bit 14 bit 16 bit
Registers 2,194 2,410 2,828 3,252 3,648
LUTs 8,106 9,382 10,258 11,196 12,346
CLB 3,102 3,289 3,761 4,286 4,815
CPD (ns) 3.81 3.94 4.26 4.67 5.14
Area-time (×10−5) 1.18 1.29 1.60 2.00 2.47
Area-time2 (×10−14) 4.50 5.10 6.82 9.34 12.72
Max. Freq. (MHz) 263.15 252.25 239.96 220.05 204.18

Table 4.8: ISE XPower Results

Power (Watt)
Word-length

8 bit 10 bit 12 bit 14 bit 16 bit
Clock net 0.048 0.053 0.057 0.062 0.068
Quiescent 2.562 2.563 2.563 2.565 2.565
Dynamic 0.226 0.248 0.27 0.291 0.318
Total 2.788 2.811 2.833 2.856 2.883

CMOS 45 nm ASIC Synthesis

Table 4.7 and 5.12 show resource consumption and estimated power con-

sumption with regard to the ASIC 45 nm implementation generated by Encounter R©

RTL compiler [72]. We refer to leakage power, dynamic power, and total power as

Lp, Dp, and Tp, respectively. The ASIC implementation of the proposed architec-

ture yielded a maximum frequency of 523.56 MHz for 8-bit input data as shown in

Table 4.7. The considered supply voltage was VDD = 1.1 V.

4.4.2 Comparison with Existing Methods

73

Table 4.9: Hardware Resource Consumption for CMOS 45 nm ASIC Synthesis (Sup-
ply Voltage VDD = 1.1 V)

Word length 8 bit 10 bit 12 bit 14 bit 16 bit

ASIC Gate Count 360566 402817 443094 494190 528258

Area (mm2) 1.59 1.78 1.96 2.21 2.33

CPD (time in ns) 1.912 1.931 1.958 1.976 1.997

Area-time 3.04 3.41 3.84 4.38 4.65

Area-time2 5.74 6.64 7.514 8.41 9.29

Fmax (MHz) 523.56 516.62 511.51 505.23 500.75

Table 4.10: Power Consumption for CMOS 45 nm ASIC Synthesis (Supply Voltage
VDD = 1.1 V)

Word length 8 bit 10 bit 12 bit 14 bit 16 bit

Lp (mW) 13.23 14.64 16.23 17.78 19.22

Dp (mW) 1774.51 1950.26 2172. 80 2299.70 2580.73

Tp (mW) 1787.73 1964.38 2189.01 2317.48 2599.95

74

The proposed architecture is compared with published AI based DWT ar-

chitectures [1, 3, 6, 17, 19, 67, 70, 71]. Results are presented in Table 4.9. To compare

with other architectures, PSNR values presented in Table 4.9, for proposed archi-

tecture, were obtained by employing reconstructions between column and row trans-

forms, whereas the PSNR values in Table 5.14 are entirely 2-D based with single

final reconstruction step. The proposed architecture provides advantage in hardware

complexity (# adders) when compared to remaining considered architectures.

The proposed architecture is entirely multiplier-free with no coupled quanti-

zation noise. It also possesses low levels of both uncorrelated and uncoupled quanti-

zation noise and outperforms other architectures in terms of the maximum frequency

of operation.

4.5 Conclusion

We proposed an optimized multi-rate wavelet filter bank architecture which

is AI-based, and multi-encoded. Additionally, the introduced design is capable of

furnishing arbitrarily high numerical accuracy using error-free integer arithmetic. In

fact, the proposed architecture preserves all features of our earlier architectures such

as (i) error-free computation, (ii) defined over integers, and (iii) free of multiplica-

tions. It also reduces hardware complexity (number of adders) leading to considerable

reduction in cost for the hardware realization of multi-level DWTs of Daubechies 4-

tap filter banks. We showed that approximately 10 adders per decomposition levels

75

T
ab

le
4.
11
:
C
om

p
ar
is
on

of
P
ro
p
os
ed

A
rc
h
it
ec
tu
re
s
w
it
h
E
x
is
ti
n
g
A
I
B
as
ed

D
W

T
A
rc
h
i-

te
ct
u
re
s

W
ah

id
W
ah

id
W
ah

id
W
ah

id
M
ad

is
h
et
ty

W
ah

id
W
ah

id
et

al
,

et
al
,

et
al
,

et
al
,

et
al
,

et
al
,

et
al
,
P
ro
p
os
ed

[1
]

[6
]

[1
9]

[3
]

[7
1]

[1
7]

[2
0]

D
au

b
-4

L
R

1
N
o

N
o

N
o

N
o

Y
es

2
N
o

N
o

Y
es

2

W
av
el
et

D
au

b
-4
/6

D
au

b
-4
/6

D
au

b
-6
D
au

b
-4
/6

D
au

b
-4
/6

D
au

b
-4
/6

D
au

b
-4

D
au

b
-4

A
rc
h
it
ec
tu
re

1-
D
/
2-
D

1-
D

1-
D

1-
D

2-
D

1-
D

1-
D

2-
D

IR
S
3

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

N
o

H
C

4
10
/
18

10
/
25

25
N
/A

10
/2
1

9/
18

9
7

R
eg
is
te
rs

5
20
0/

49
4

N
/A

N
/A

N
/A

25
8/
76
5

11
5/
19
6

20
0

23
6

L
og
ic

ce
ll
s5

24
8/
68
0

N
/A

N
/A

N
/A

42
6/
10
40

10
6/
25
4

N
/A

48
3

1
L
o
ca
ll
y
R
ep
ro
d
u
ce
d
(L
R
)

2
M
ea
su
re
d

3
In
te
rm

ed
ia
te

R
ec
on

st
ru
ct
io
n
S
te
p
(I
R
S
)

4
H
ar
d
w
ar
e
C
om

p
le
x
it
y
(H

C
)
(#

ad
d
er
s)

5
F
or

si
n
gl
e
le
ve
l
d
ec
om

p
os
it
io
n

76

T
ab

le
4.
12
:
C
om

p
ar
is
on

of
P
ro
p
os
ed

A
rc
h
it
ec
tu
re
s
w
it
h
E
x
is
ti
n
g
A
I
B
as
ed

D
W

T
A
rc
h
it
ec
tu
re
s
(C

on
ti
n
u
ed
)

P
S
N
R

(d
B
)6

38
†
(D

au
b
-4
)
50
.4
9
(D

au
b
-4
)
N
/A

22
.2
6
54
.6
4
(D

au
b
-4
)

N
/A

44
.9
0

64
.7
8

39
†
(D

au
b
-6
)
49
.8
7
(D

au
b
-6
)

57
.1
2
(D

au
b
-6
)

F
R
S
7

C
S
D

C
S
D

B
o
ot
h
B
o
ot
h

C
S
D
/E

F
M

8
C
S
D

C
S
D

C
S
D

T
h
ro
u
gh

p
u
t

1
ip
/
op

1
ip
/
op

N
/A

N
/A

1
ip
/o
p

2
ip
/o
p
1
ip
/
op

1
ip
/
op

D
P
9
(m

W
)5

15
.9
4/

22
.2
9

N
/A

N
/A

N
/A

38
/5
7

4.
51

‡
N
/A

46
§

T
ec
h
n
ol
og
y

X
il
in
x

N
/A

N
/A

N
/A

X
il
in
x

C
M
O
S

X
il
in
x

X
il
in
x

V
ir
te
x
E

x
c6
vc
x
24
0t

0.
18
u
m

V
ir
te
x
E
x
c6
vc
x
24
0t

M
F
1
0
(M

H
z)
14
8.
21
/1
19
.5
7

N
/A

N
/A

N
/A

28
2.
50
/1
46
.4
2

10
0

14
8

26
3.
15

1
L
o
ca
ll
y
R
ep
ro
d
u
ce
d
(L
R
)

2
M
ea
su
re
d

3
In
te
rm

ed
ia
te

R
ec
on

st
ru
ct
io
n
S
te
p
(I
R
S
)

4
H
ar
d
w
ar
e
C
om

p
le
x
it
y
(H

C
)
(#

ad
d
er
s)

5
F
or

si
n
gl
e
le
ve
l
d
ec
om

p
os
it
io
n

6
F
or

8-
b
it
L
en
a
Im

ag
e

7
F
in
al

R
ec
on

st
ru
ct
io
n
S
te
p
(F

R
S
)

8
E
x
p
an

si
on

F
ac
to
r
M
et
h
o
d
(E

F
M
)

9
D
y
n
am

ic
P
ow

er
(D

P
)

1
0
M
ax

im
u
m

F
re
q
u
en
cy

(M
F
)

†
T
ak
en

fr
om

P
S
N
R

p
lo
ts

in
[1
,
p
.
12
64
]

‡
A
t
50

M
H
z
[1
7]

§
A
t
36
2.
18

M
H
z

∗
A
t
23
8.
74

M
H
z

77

are saved when compared to the previous design [71]. In particular, for the 4-level

decomposition, the total savings in number of adders is 37.

The single FRS is the only source of computational error. Noise injection

from intermediate fixed-point errors is fully eliminated. Applications exist in subband

coding of high dynamic range image sequences. Standard images have been analyzed

with Mandrill, Lena, Cameraman examples shown. An FPGA based 4-level prototype

is operational at 100 MHz. Place-and-route timing analysis furnished 263.15 MHz

for the Daubechies 4-tap architecture. In addition, the proposed architecture was

also realized in 45 nm ASIC technology at 523.56 MHz for 8-bit input data.

78

CHAPTER V

AI BASED LOW ADDER COUNT ARCHITECTURE FOR THE 1-D/ 2-D

DAUBECHIES 6-TAP WAVELET FILTER BANKS

5.1 Introduction

In our recent work [70, 71] we addressed the issue of computational noise

injection, introduced due to the fixed-point representation of Daub-4 and -6 filter

coefficients using an algebraic integer (AI) based representation. An algebraic integer

(AI) encoding of Daubechies filter coefficients. Algebraic integers are roots of monic

polynomials [58]. Such representation could effectively control error propagation and

precision levels.

In the present chapter, we propose a novel representation of the Daub-6

wavelet filters that results minimizing the filter bank arithmetic complexity of the

filter banks and, therefore, leading to low adder count requirements, i.e., minimizing

canonical signed-digit (CSD) terms. The proposed optimal architecture is consistent

with the method advanced in [67], which employed integer linear programming for

minimizing the number of adders required for the hardware realization of the 1-D

Daub-6 filter banks.

The chapter unfolds as follows. Section 2.1 reviews the principles of sub-band

79

coding by means of Daub -6 filter. Section 5.2 provides Daub-6 scaling coefficients

and prior art on its AI encoding. Section 4.3 furnishes the numerical optimization

that leads to a fast algorithm having reduced number of 2-input adder circuits. The

final reconstruction step (FRS) procedure for the proposed analyses are described

in Section 3.3. Section 5.6.4 provides extensive digital design details for practical

implementations using reconfigurable logic devices as well as CMOS technology. The

paper is concluded in Section 5.7.

5.2 Daubechies 6-tap Filter Coefficients and AI basis

5.2.1 Mathematical Background

An algebraic integer is a real or complex number that is a root of a monic

polynomial with integer coefficients [51,54,58]. Algebraic integers can be employed to

define encoding mappings which can precisely represent particular irrational numbers

by means of usual integers. Considering the roots of the monic polynomial x2 − 10

and x4−10x2−15 = 0 we can extend the set of integers Z by including the algebraic

integer ζ1 =
√
10 and ζ2 =

√

5 + 2
√
10. Doing so, a given quantity y can possibly

be represented as y = c+ d · ζ1 + e · ζ2 + f · ζ1ζ2, where a, b, c, d, e, and f are usual

integers.

5.2.2 Daub-6 Filter Impulse Response

The 2-D FIR filter bank based on the Daub-6 filter bank is of particular

relevance [2, 45]. Let the low-pass filter associate to these filter banks be denoted

80

as h . This particular filter possesses irrational quantities with an impulse response

furnished by [2, 3, 6, 20, 43, 48]:

h =
1

16
√
2

1 +
√
10 +

√

5 + 2
√
10

5 +
√
10 + 3

√

5 + 2
√
10

10− 2
√
10 + 2

√

5 + 2
√
10

10− 2
√
10− 2

√

5 + 2
√
10

5 +
√
10− 3

√

5 + 2
√
10

1 +
√
10−

√

5 + 2
√
10

, (5.1)

where the superscript ⊤ denotes transposition. The presence of irrational quantities,

in particular
√
10 and

√

5 + 2
√
10, poses difficulties when considering fixed-point

representation. Conventional implementations always resort to truncation and/or

rounding-off operations as a means to approximate
√
10 and

√

5 + 2
√
10 to a rep-

resentable quantity in fixed-point arithmetic. However such procedure inevitably

introduces computational errors.

In [71], it was demonstrated that (5.1) can be split in three integer coefficient

filters. For such, consider the algebraic integer ζ1 =
√
10 and ζ2 =

√

5 + 2
√
10.

Therefore, we obtain:

h =
1

β
(h1 + ζ1 · hζ1 + ζ2 · hζ2), (5.2)

81

where β = 16
√
2, h1 =

[

1 5 10 10 5 1

]⊤

, hζ1 =

[

1 1 −2 −2 1 1

]⊤

and

hζ2 =

[

1 3 2 2 3 1

]⊤

. This scheme grants integer computation by not explic-

itly evaluating ζ1 and ζ2 until the final stage of computation. The set {1, ζ1, ζ2, ζ1ζ2}

forms a base for AI encoding. As a consequence, error propagation is deterred and

final results can be appropriately obtained.

5.2.3 Multi-level Decomposition

The proposed AI-based wavelet analyses based on Daub-6 filter bank is com-

puted entirely over extended integer fields. Therefore, for a given input data, a single

level decomposition of the discussed AI based wavelet analysis results in an output

data consisting of four parts, where each part is associated to a basis element. These

four parts are required to be combined from a level to the next up to the final re-

construction step. Two types of combinational blocks are required, being their inner

structures detailed later in the current work.

In Fig. 5.1(a) and (b), we show the overall scheme for a four-level decompo-

sition for both the 1-D and the 2-D cases, respectively. We refer to the combination

steps as Combinational Block A, B1, and B2.

The following notation is employed. For the 1-D decomposition (Fig. 5.1(a)),

v0 is an N -point input vector and v
(1)
4 , v

(ζ1)
4 , v

(ζ2)
4 and v

(ζ1ζ2)
4 are resulting AI encoded

data according to the basis elements {1, ζ1, ζ2, ζ1ζ2}, respectively. These vectors are

combined in the final reconstruct step and converted back to standard fixed-point

representation. This is required in order to interface the resulting approximation sub-

82

C

O

M

B

A

C

O

M

B

C

O

M

B

F

R

S

 Extended AI (EAI)

AI

AI

AI

AI

AI

AI

AI AI

AI

AI

AI

AI

B1 B1

v4
v0

(a) 1-D

C
O
M

 B

AIC

AIC

AIC

AIC

AIC

AIC

AIC

AIC

AIC

AIC

AIC

AIC

C
F

R

AIC

{

S
A

CC

M

O

B

M
O

B B

M
O

EAI

A4

B2 B2 B2

A0

(b) 2-D

Figure 5.1: Multi-level wavelet decomposition with Daubechies 6-tap filter.

images with conventional real time systems. The result is a N/16-point vector v4.

Similarly, for the 2-D case (Fig. 5.1(b)), the input image is A0 and the resulting AI

encoded data are A4
(1), A4

(ζ1), A4
(ζ2), and A4

(ζ1ζ2), respectively.

5.3 Optimized AI Encoding

5.3.1 Number of Additions

The AI encoding discussed in previous section implies integer coefficient

filters h1, hζ1 , and hζ2 . In h1, the required multiplications by 5 and 10 imply extra

additions. This is because multiplying a number x by constant 5 or 10 require one

addition and one bit-shift operation (5 · x = x ≪ 2 + x) or one addition and two

bit-shift operations (10 · x = x ≪ 3 + x ≪ 1), respectively.

83

In general terms, depending on the binary representation of the filter coef-

ficients, they may contribute with extra additions. We adopt the canonical-signed-

digit representation for binary encoding the integer coefficients to avoid multiplica-

tive complexity by use of adders and bit shifters. Additionally, let SCSD(n) re-

turn the number of additions/subtractions of powers of two required to represent

a given integer n. For example, we have: SCSD(2) = 0, SCSD(3) = 1, SCSD(11) = 2

(11 = 16− 4 − 1). Clearly, if all elements of a given filter are dyadic, then no extra

addition is demanded. In this scenario, a minimal additive complexity is attained.

5.3.2 Filter Parametrization and Optimization

Our goal is to rearrange (5.2) in such a way that the coefficients of the

resulting filters can be represented in CSD form with minimum number of additions.

84

For such let us introduce two integer parameter m and n in (5.2) as follows:

βh =

1

5

10

10

5

1

−m

1

1

−2

−2

1

1

+(ζ1 +m)

1

1

−2

−2

1

1

−n

1

3

2

−2

−3

−1

+(ζ2 + n)

1

3

2

−2

−3

−1

=

1−m− n

5−m− 3n

10 + 2m− 2n

10 + 2m+ 2n

5−m+ 3n

1−m+ n

+ (ζ1 +m)

1

1

−2

−2

1

1

+ (ζ2 + n)

1

3

2

−2

−3

−1

.

Above expression implies three integer filters:

h1
′ =

1−m− n

5−m− 3n

10 + 2m− 2n

10 + 2m+ 2n

5−m+ 3n

1−m+ n

,hζ1
′ =

1

1

−2

−2

1

1

,hζ2
′ =

1

3

2

−2

−3

−1

.

85

Notice that hζ1
′ = hζ1 and hζ2

′ = hζ2 . Moreover, the required AI elements must

be replaced for ζ ′1 = ζ1 + m and ζ ′2 = ζ2 + n. Notice that, for m = n = 0, we

obtain (5.2).

Since the elements of hζ1
′ and hζ2

′ pose very low arithmetic complexity, we

focus our attention on h1
′ aiming at finding a suitable value of m and n such that

the resulting coefficients are efficiently represented with minimum CSD additions.

Let h′
1[k], k = 0, 1, . . . , 5, be the coefficients of h1

′. In view of the above

discussion, the optimal value of m and n, denoted m∗ and n∗, are the solutions of

the following minimization problem:

(m∗,n∗) = arg min
m,n∈Z

5
∑

k=0

SCSD(h
′
1[k])

= arg min
m,n∈Z

{

SCSD(1−m− n) + SCSD(5−m− 3n)

+ SCSD(10 + 2m− 2n) + SCSD(10− 2m+ 2n)

+ SCSD(5−m+ 3n) + SCSD(1−m+ n)
}

.

(5.3)

Usual optimization tools are not applicable due to the difficulty in analyti-

cally manipulate (5.3). Therefore, we resort to numerical search methods as a means

to solve (5.3). Such computational search requires that we limit the search space. Let

{m,n ∈ Z : |m| ≤ 1024, |n| ≤ 1024} be the considered search space. Under these con-

ditions, we could obtain four distinct solutions: {(−3, 0), (−5,−2), (−5, 2), (3, 0)}.

Each optimum pair leads to different filter structures; and, consequently, to differ-

ent architectures. We refer to each of these possible implementations as Method 1,

86

Table 5.1: Filter Parametrization and Optimization

Method (m∗, n∗) h1
′ CSD

additions

1 (−3, 0)
[

4 8 4 4 8 4
]⊤

0

2 (−5,−2)
[

8 16 4 −4 4 4
]⊤

0

3 (−5, 2)
[

4 4 −4 4 16 8
]⊤

0

4 (3, 0)
[

−2 2 16 16 2 −2
]⊤

0

Method 2, Method 3, and Method 4, respectively.

The resulting filters h1
′ associated to each optimum solution possess zero

multiplicative complexity. This can be directly verified since all coefficients of h1
′

are powers of two. Thus the CSD representation of theses coefficients require no extra

additions. Table 4.1 summarizes the obtained results and employed terminology.

5.4 Final Reconstruction Step

Decoding operations for Daub-6 1-D and 2-D consist of explicitly performing

the following computations, respectively [71]:

βn · vn =
(

vn
(1) + ζ ′1 · vn

(ζ′1) + ζ ′2 · vn
(ζ′2) + ζ ′1ζ

′
2 · vn

(ζ′1ζ
′

2)
)

, (5.4)

β2n ·An =
(

An
(1) + ζ ′1 ·An

(ζ′1) + ζ ′2 ·An
(ζ′2) + ζ ′1ζ

′
2 ·An

(ζ′1ζ
′

2)
)

. (5.5)

Fortunately, the factor β2n is always a power of two, which can be conve-

niently realized with bit-shift operations. The above decoding operation is realized at

87

the FRS blocks depicted in Fig. 5.1(a) and 5.1(b), for the 1-D and 2-D structures, re-

spectively. Therefore, the only possible source of errors in the proposed architectures

are the multiplication by AI basis elements.

5.4.1 CSD Approximation

The FRS can be directly implemented by approximating the required ir-

rationals in (5.5) into rationals. A possibility is employing CSD representation.

Table 3.4 shows encoding for ζ ′1 and ζ ′2, and ζ ′1ζ
′
2 for several word lengths as

well as the associate relative errors. CSD encoding requires only bit-shifters and

adders/subtracters.

5.5 1-D Designs and Results

In this section, we detail and analyse the proposed 1-D Daub-6 designs.

The particular choice of elements for the AI Daub-6 filter have a central role in

generating optimized architecture. Some of the fundamental blocks employed in the

1-D designs are implicitly present in the 2-D design shown in [71]. Being the blocks

in [71] structurally different—although functionally equivalent— we could refer to

them for comparison with the new introduced designs.

5.5.1 Proposed Structures and Additive Complexity

Combinational Blocks

88

T
ab

le
5.
2:

C
S
D

E
n
co
d
in
g
fo
r
ζ
′ 1
,
ζ
′ 2
an

d
ζ
′ 1
ζ
′ 2
fo
r
M
et
h
o
d
s
1
th
ro
u
gh

4

M
et
h
o
d
1

M
et
h
o
d
2

M
et
h
o
d
3

M
et
h
o
d
4

A
I
W

†
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡

8
0.
00
10
1

0.
03
71

1̄0
.0
10
1̄

0.
01
37

1̄0
.0
10
1̄

0.
01
37

1̄0
1̄.
00
1

0.
00
60

10
0.
00
10
10
01

0.
01
31

1̄0
.0
10
1̄0
1̄

0.
00
52

1̄0
.0
10
1̄0
1̄

0.
00
52

10
1̄.
00
10
11

0.
00
16

ζ
′ 1
12

0.
00
10
10
01
01

0.
00
71

1̄0
.0
10
1̄0
1̄1̄
00
1̄

0.
00
04
3

1̄0
.0
10
1̄0
1̄1̄
00
1̄

0.
00
04
3

10
1̄.
00
10
10
11̄

0.
00
03
4

14
0.
00
10
10
01
01
00
1
0.
00
63

1̄0
.0
10
1̄0
1̄1̄
00
1̄0
1̄
0.
00
03
0
1̄0
.0
10
1̄0
1̄1̄
00
1̄0
1̄
0.
00
03
0

10
1̄.
00
10
10
10
1̄

0.
00
00
27

16
0.
00
10
10
01
01
00
1
0.
00
06
6
1̄0
.0
10
1̄0
1̄1̄
00
1̄0
1̄
0.
00
03
0
1̄0
.0
10
1̄0
1̄1̄
00
1̄0
1̄
0.
00
03
0
10
1̄.
00
10
10
10
1̄0
01

0.
00
00
12

†
W
or
d
L
en
gt
h
(W

)
in

b
it
s

‡
A
b
so
lu
te

R
el
at
iv
e
E
rr
or

(A
R
E
)

89

T
ab

le
5.
3:

C
S
D

E
n
co
d
in
g
fo
r
ζ
′ 1
,
ζ
′ 2
an

d
ζ
′ 1
ζ
′ 2
fo
r
M
et
h
o
d
s
1
th
ro
u
gh

4
(C

on
ti
n
u
ed
)

M
et
h
o
d
1

M
et
h
o
d
2

M
et
h
o
d
3

M
et
h
o
d
4

A
I
W

†
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡

8
10
.1̄
01̄

0.
00
29

0.
10
10
1̄

0.
00
72

11
.1
01̄

0.
00
72

10
.1̄
01̄

0.
00
29

10
10
.1̄
01̄
00
01̄

0.
00
05
9

0.
10
1̄0
01̄
1̄

0.
00
15

11
.1
01̄
00
1̄1̄

0.
00
15

10
.1̄
01̄
00
01̄

0.
00
05
9

ζ
′ 2
12

10
.1̄
01̄
00
01̄
00
1̄

0.
00
03
0
0.
10
1̄0
01̄
1̄0
1̄
0.
00
00
26

11
.1
01̄
00
1̄1̄
01̄

0.
00
00
26

10
.1̄
01̄
00
01̄
00
1̄

0.
00
03
0

14
10
.1̄
01̄
00
01̄
00
1̄0
1̄
0.
00
01
1
0.
10
1̄0
01̄
1̄0
1̄
0.
00
00
26

11
.1
01̄
00
1̄1̄
01̄

0.
00
00
26

10
.1̄
01̄
00
01̄
00
1̄0
1̄
0.
00
01
1

16
10
.1̄
01̄
00
01̄
00
1̄0
1̄
0.
00
01
1
0.
10
1̄0
01̄
1̄0
1̄
0.
00
00
26

11
.1
01̄
00
1̄1̄
01̄

0.
00
00
26

10
.1̄
01̄
00
01̄
00
1̄0
1̄
0.
00
01
1

†
W
or
d
L
en
gt
h
(W

)
in

b
it
s

‡
A
b
so
lu
te

R
el
at
iv
e
E
rr
or

(A
R
E
)

90

T
ab

le
5.
4:

C
S
D

E
n
co
d
in
g
fo
r
ζ
′ 1
,
ζ
′ 2
an

d
ζ
′ 1
ζ
′ 2
fo
r
M
et
h
o
d
s
1
th
ro
u
gh

4
(C

on
ti
n
u
ed
)

M
et
h
o
d
1

M
et
h
o
d
2

M
et
h
o
d
3

M
et
h
o
d
4

A
I
W

†
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡
C
S
D

A
R
E

‡

8
0.
10
00
10
1

0.
01
29

1̄0
.1̄

0.
00
35

1̄0
1̄.
00
1

0.
00
15

10
00
.0
1̄

0.
00
06
1

10
0.
10
00
11
00
1

0.
00
50

1̄0
.1̄
00
00
01̄

0.
00
04
1

1̄0
1̄.
00
10
01̄

0.
00
00
37

10
00
.0
1̄

0.
00
06
1

ζ
′ 1
ζ
′ 2
12

0.
10
00
11
00
1

0.
00
32

1̄0
.1̄
00
00
01̄
00
1̄

0.
00
00
26

1̄0
1̄.
00
10
01̄
00
00
01

0.
00
00
12

10
00
.0
1̄0
00
1̄1

0.
00
02
3

14
0.
10
00
11
00
00
01
01

0.
00
19

1̄0
.1̄
00
00
01̄
00
1̄0
00
1̄
0.
00
00
01
6
1̄0
1̄.
00
10
01̄
00
00
01
01

0.
00
00
02
3
10
00
.0
1̄0
00
1̄0
01

0.
00
00
46

16
0.
10
00
11
00
00
01
01

0.
00
19

1̄0
.1̄
00
00
01̄
00
1̄0
00
1̄
0.
00
00
01
6
1̄0
1̄.
00
10
01̄
00
00
01
01

0.
00
00
02
3
10
00
.0
1̄0
00
1̄0
01
1
0.
00
00
01
0

†
W
or
d
L
en
gt
h
(W

)
in

b
it
s

‡
A
b
so
lu
te

R
el
at
iv
e
E
rr
or

(A
R
E
)

91

Cobinational Block A− Method−1

6

11

2

(a) Method 1

Cobinational Block A− Method−2

15

10

11

2

4

(b) Method 2

Cobinational Block A− Method−3

15

10

11

2

4

(c) Method 3

Cobinational Block A− Method−4

6 2

(d) Method 4

Figure 5.2: Combinational Block A for 1-D/ 2-D Daub-6 filter.

Figs. 5.2 and 5.3 show the inner details of Combinational Blocks A and B1

(cf. Fig. 5.1), respectively, when Methods 1, 2, 3, and 4 are considered. Table 5.7

shows the CSD realizations of the constants required for above two blocks. In [71],

Combinational Block A was given a design that requires eight adders, which has

lower complexity compared to the present design. However, we show that the overall

complexity of the proposed schemes is decreased on account of savings in other parts

of the architectures.

92

Cobinational Block B− Method−1

11

6 2

2

6

(a) Method 1

Cobinational Block B− Method−2

15 11 30

10
2 9

4

10 4

15

(b) Method 2

Cobinational Block B− Method−3

15 11 30

2
10 9

10 4

154

(c) Method 3

Cobinational Block B− Method−4

6 2

2

11

6

(d) Method 4

Figure 5.3: Combinational Block B1 for 1-D Daub-6 filter.

93

Core Structure

Fig. 5.4 displays the proposed structures for filter h for each of the considered

methods. These filters require only 13 adders for a single Daub-6 filter realization.

In comparison, the previous design detailed in [71] requires fifteen additions. This

represents a decrease of approximately 13% in additive complexity. Each AI block

contains four instantiations of h, which implies a saving of eight additions per AI

block.

Final Reconstruction Step

The FRS based on the direct CSD approach was considered according to the

data given Table 3.4. The number of required adders at the FRS for each design

is shown in Table 5.4. Notice that Method 3 is less efficient requiring 10 adders,

whereas all remaining approaches require 8 adders.

5.5.2 Overall Adder Count

For an n-level decomposition, n > 2, Fig. 5.1 (a) suggests the following

number of required blocks: one Combinational Block A, 4(n − 1) AI blocks, n − 2

Combinational Blocks B1, and one FRS block. Table 5.4 shows the adder count

complexity for all 1-D designs. Thus, for instance, the 4-level decomposition shown

94

2

3
2

z−1 z−1 z−1 z−1 z−1

Daub-6 AI Filter Structure- Method 1

2
4

(a) Method 1

2
4

2

2

4

3
2

z−1 z−1 z−1 z−1 z−1

Daub-6 AI Filter Structure- Method 2

2

(b) Method 2

2

4

4

2

2

3
2

z−1 z−1 z−1 z−1 z−1

Daub-6 AI Filter Structure- Method 3

2

(c) Method 3

2
8

2 2

3
2

z−1 z−1 z−1 z−1 z−1

Daub-6 AI Filter Structure- Method 4

2

(d) Method 4

Figure 5.4: Proposed optimal realization of the Daub-6 filter.

95

Table 5.5: Number of Adders Required for all Proposed 1-D Designs using Proposed
CSD in Table 3.4

Method AI Block A Block B1 FRS

1 13 10 16 8

2 13 12 22 8

3 13 12 22 10

4 13 10 16 8

in Fig. 5.1 (a), has the following total adder count: 206, 220, 222, and 206, for

Methods 1, 2, 3, and 4, respectively.

5.5.3 Resource Consumption and Figures of Merit

Xilinx Virtex-6 Implementation

Proposed 1-D multi-level Daub-6 filters based on Methods 1, 2, 3, and 4 were

implemented on the Xilinx Virtex-6 vcx240t-1ff1156 FPGA device. Table 5.5 lists

the resource consumption for the number of slice registers and look-up table (LUT)

count for the 1-D designs. Critical path delays (CPD) and the maximum operating

frequency (MF) are also reported. We considered word length of 8 bits. As figures of

merit, we also adopted the area-time (AT) and area-time2 (AT2) products. Metric AT

provides insight into circuit performance considering chip area, while metric AT2 is

used for circuits where speed requirements are of higher importance. Table 5.6 shows

the estimated power consumption obtained from Xilinx-ISE for 1-D designs. Clock

net, quiescent and dynamic powers are reported for the considered input word length.

The total power reported in Table 5.6 is the sum of quiescent and dynamic powers.

96

Table 5.6: Hardware resource consumption with Xilinx Virtex-6 vcx240t-1ff1156 for
1-D Daub-6 implementation

Resource Method 1 Method 2 Method 3 Method 4

Registers (×103) 2.89 2.78 3.10 3.20

LUTs (×103) 5.47 7.18 8.11 8.70

CPD (ns) 2.86 3.13 3.27 3.41

MF (×100 MHz) 3.44 3.29 3.11 3.12

AT (×10−5) 1.56 2.60 2.61 3.41

AT2 (×10−14) 4.46 8.13 8.53 10.09

Table 5.7: Xilinx ISE XPower estimation results for 1-D Daub-6 filter

Power (Watt)Method 1 Method 2 Method 3 Method 4

Clock net 0.034 0.041 0.048 0.037

Quiescent 1.538 1.562 1.710 1.662

Dynamic 0.204 0.216 0.244 0.235

Total 1.742 1.778 1.954 1.898

97

Discussion

As shown in Tables 5.5 and 5.6, resource and power consumptions; perfor-

mance measures AT and AT2; and maximum frequency reveal that proposed Meth-

ods 1 and 2 could outperform the other two methods in all aforementioned perfor-

mance aspects. Table 5.6 At the CSD based FRS, both Methods 1 and 2 possess the

same additive complexity, requiring eight adders as listed in Table 3.4.

As a result of the above discussion, we could separate Methods 1 and 2 as

the best ones; and we regard Methods 3 and 4 as inferior, not considering them as

design options hereafter.

5.6 2-D Designs and Results

In this section, we advance 2-D designs for the Daub-6 filters. In terms of

architecture complexity, the resource consumption of 2-D designs is expected to be

much higher than that of 1-D designs. Therefore the selection of filters for the 2-D

design is of essential relevance. As consequence, based on the results of the 1-D

designs, we consider only Method 1 and 2 as potentially efficient frameworks for the

2-D designs.

5.6.1 Proposed Structures and Adder Count

Combinational Blocks

98

11

2 8

6

6

2

(a) Method 1

1115 30 135

92
10

2
5

3
4

4

5

2

3

4
60 40

(b) Method 2

Figure 5.5: Combinational block B2 for 2-D Daub-6 filter.

The 2-D design requires the Combinational Block A, which was already de-

tailed in the 1-D architecture. Combinational Block B2 is also necessary for both

Methods 1 and 2. Table 5.7 displays the CSD realizations for the numeric coefficients

employed in this block.

Fig. 5.1(b) shows that we need n−1 realizations of Combinational Block B2

Table 5.8: CSD realization of the constants required in Combinational blocks A, B1,
and B2

Coefficient CSD Coefficient CSD

3 21 + 1 15 24 − 1

6 22 + 21 30 25 − 21

9 23 + 1 40 25 + 23

10 23 + 21 60 26 − 22

11 23 + 21 + 1 135 27 + 23

99

for n > 1 levels of decomposition. Combinational Block B2 requires 21 or 37 when

implemented by Method 1 or 2, respectively. The previously proposed design in [71]

requires 24 additions. Thus we save three adders or demand 13 extra adders, for

Method 1 or 2, respectively, compared to [71].

AIC Block

We refer to the joint extended AI (EAI) and Combinational Block A struc-

tures as the AIC Block (cf. Fig. 5.1(b)), which is reused several times in the overall

architecture. Fig. 5.1 allows us to conclude that an n-level decomposition, n > 1,

requires 4 · n− 3 AIC blocks. Each AIC block contains four AI blocks. Then a total

of 16 · n− 12 AI blocks are needed. As previously discussed, the proposed AI block

requires 13 adders; two less adders when compared to [71]. Therefore in terms of AI

blocks, we have a saving of 2× (16 · n− 12) = 32 · n− 24 additions.

Moreover, each AIC block require one Combinational Block A, which requires

10 or 12 additions, depending on Method 1 or 2, respectively. Thus, a total of

10 · (4n− 3) = 40 · n− 30 or 12 · (4 · n− 3) = 48 · n− 36 adders are required due to

instantiations of Combinational Block A , for Method 1 and 2, respectively.

5.6.2 Complexity Assessment

Considering (i) the required number of blocks for an n-level Daubechies-4

architecture and (ii) the adder count for each block as shown in Table 5.8, we could

derive the expressions for the overall adder count of the proposed architectures.

100

Table 5.9: Number of Adders Required and Error Intro-
duced

Method
Block

AI A AIC B2 FRS TAE‡

Madishetty et al. [71] 15 8 68 24 13 0.0733
Method 1 13 10 62 21 8 0.0228
Method 2 13 12 64 37 8 0.0439

‡Total Absolute Error (TAE) incurred at 8-bit FRS

Methods 1 and 2 require 269 · n − 199 and 293 · n − 221 adders, respectively. The

total absolute error (TAE) is also listed in Table 5.8. This quantity provides the

error incurred in the discussed methods as well as in the earlier scheme described

in [71].

For n = 4 (Fig. 5.1(b)), we have that the total adder count is 877 and 951,

for Method 1 and 2, respectively. The method described in Madishetty et al. [71]

requires 967 adders. Thus, proposed Method 1 and 2 offer an improvement of 9.3%

and 1.6%, respectively.

5.6.3 Overall Savings

Above adder count discussion is summarized in Table 5.8. We obtained the

following net savings in adder circuits at n-level decomposition: 27 · n − 16 and

3 · n + 6, for Method 1 and 2, respectively. For n = 4, the number of adder savings

are 92 and 18, respectively.

Above results on complexity assessment and adder savings show that

Method 1 is significantly superior in comparison with Method 2. Therefore, we

101

elect Method 1 as the most adequate approach for the discussed AI-based wavelet

scheme. Hereafter, only Method 1 is considered in our analyses and implementations.

5.6.4 FPGA and ASIC Implementation

The architecture for 2-D Daubechies 6-tap filter bank based on Method 1

was physically implemented and hardware co-simulated on Xilinx Virtex xc6vcx240t-

1ff1156 FPGA device using the ML605 evaluation board. Additionally, Method 1

was also synthesized with CMOS 45 nm ASIC technology up to synthesis level at

supply voltage VDD = 1.1 V. Details of both designs are described in the following

subsections.

Xilinx Virtex-6 Implementation

A rapid prototype is realized using a Xilinx Virtex-6 FPGA device, hosted

on a ML605 rapid prototyping system. The example designs are targeted to the

Xilinx xc6vcx240t-1ff1156 FPGA chip with connectivity to a host PC via a JTAG

interface. We considered the following word length sizes: 8, 10, 12, 14, and 16 bits.

Table 5.9 lists resource consumption for slice and LUT count for the 2-D designs.

Test vectors consisting of sequential samples of data from a standard Lena

image [59] were systematically routed, block-by block, to the FPGA using the hard-

ware co-simulation. The FPGA realization used the JTAG connection to obtain

input data, which is filtered using Daub-6 wavelet filters on chip, and results are

102

Table 5.10: Hardware Resource Consumption with Xilinx Virtex-6 vcx240t-1ff1156
for 2-D Daub-6 Implementation

Resource
Word length (bits)

8 10 12 14 16

Slices (×103) 14.16 16.22 18.39 20.03 22.74

LUTs (×103) 38.53 43.81 49.16 54.22 57.16

CPD (ns) 6.22 6.63 7.15 7.59 8.17

AT (×10−5) 10.67 13.10 16.18 19.12 23.41

AT2 (×10−13) 6.64 8.68 11.56 14.51 19.68

MF(×100 MHz) 1.68 1.59 1.52 1.44 1.38

Table 5.11: Xilinx ISE XPower Estimation Results for 2-D Daub-6 Filter

Power (Watt)
Word-length (bits)

8 10 12 14 16

Clock net 0.091 0.104 0.112 0.128 0.142

Quiescent 4.271 4.271 4.272 4.272 4.273

Dynamic 0.304 0.319 0.337 0.354 0.371

Total 4.575 4.59 4.609 4.626 4.644

routed back to the PC. Fig. 5.6 shows measured results following on-chip physical

implementation as obtain from the FPGA implementation.

Table 5.10 shows the estimated power consumption obtained from Xilinx-ISE

for Method-1 2-D design. Clock net, quiescent, and dynamic powers are reported

for the considered input word lengths. The total power reported in Table 5.10 is the

sum of quiescent and dynamic powers.

103

Table 5.12: Hardware Resource Consumption for CMOS 45 nm ASIC Synthesis
(Supply Voltage VDD = 1.1 V)

Resource
Word length (bits)

8 10 12 14 16

AGC (×105) 8.60 9.33 10.23 10.98 11.74
Area (mm2) 6.04 6.62 7.34 8.01 8.82
CPD (ns) 3.43 3.78 4.11 4.58 4.92
Area-time 2.07 2.50 3.02 3.67 4.34
Area-time2 7.10 9.45 12.41 16.81 21.35
Fmax (MHz) 306.44 283.26 261.17 239.84 212.52

CMOS 45 nm ASIC Synthesis

Using the free PDK from [72], the digital design for 8-bit images based on

AI-based Method 1 was mapped to the 45 nm CMOS standard cell technology up

to synthesis level using Cadence Encounter. Power consumptions and timing was

estimated and reported. Table 5.11 shows the resource consumption for the ASIC

45 nm synthesis of the 2-D architecture, generated by Encounter R© RTL compiler.

We included the ASIC gate count (AGC), chip area, as well as the already discussed

figures of merits. The ASIC synthesis yielded a maximum frequency of 306 MHz when

8-bit input data is considered. Table 5.12 displays the estimated power consumption.

We refer to leakage power, dynamic power, and total power as Lp, Dp, and Tp,

respectively. Table 5.13 provides a quantitative and comprehensive comparative

study of published AI based DWT architectures.

5.6.5 Image Quality Assessment

104

Table 5.13: Power Consumption for CMOS 45 nm ASIC Synthesis (Supply Voltage
VDD = 1.1 V)

Word length (bits)

Power 8 10 12 14 16

Lp (mW) 32.86 34.11 36.50 38.42 40.74

Dp (W) 4.12 4.63 5.18 5.62 6.02

Tp (W) 4.15 4.66 5.21 5.66 6.06

For comparison purposes, we devised a version of the proposed system that

operates over fixed-point arithmetic instead of AI based arithmetic. For such, we

employed 8-bit words with 6 fractional bits. In this case, the required filter banks

were implemented by quantizing the exact filter coefficients into the fixed-point rep-

resentation.

As image quality measures, we adopted the signal to noise ratio (SNR) and

peak SNR (PSNR). Table 5.14 provides the obtained measures for both the fixed-

point implementation as well as the proposed AI based design. We noticed an ap-

proximate 5% increase in SNR/PSNR figures in favour of the proposed design when

compared to [71].

5.7 Conclusion

We proposed an optimized multi-rate Daub-6 filter bank architecture which

is AI-based, and multi-encoded. Additionally, the introduced design is capable of

furnishing arbitrarily high numerical accuracy using error-free integer arithmetic.

105

T
ab

le
5.
14
:
C
om

p
ar
is
on

of
P
ro
p
os
ed

A
rc
h
it
ec
tu
re
s
w
it
h
E
x
is
ti
n
g
A
I
B
as
ed

D
W

T
A
rc
h
it
ec
tu
re
s
in

L
it
er
at
u
re

W
ah

id
W
ah

id
W
ah

id
W
ah

id
W
ah

id
G
u
st
af
ss
on

W
ah

id
M
ad

is
h
et
ty

P
ro
p
os
ed

et
a
l.
[1
]

et
a
l.
[6
]
et

a
l.
[1
9]

et
a
l.
[3
]
et

a
l.
[1
7]

et
a
l.
[6
7]

et
a
l.
[2
0
]
et

a
l.
[7
1]

M
et
h
o
d
-1

L
R

1
N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

2
Y
es

2

W
av
el
et

D
au

b
-4
/6

D
au

b
-4
/6

D
au

b
-6

D
au

b
-4
/6

D
au

b
-4
/6

D
au

b
-6

D
au

b
-6

D
au

b
-4
/6

D
au

b
-6

A
rc
h
it
ec
tu
re

1-
D

/
2-
D

1-
D

1-
D

1-
D

1-
D

1-
D

1-
D

2-
D

1-
D

/
2-
D

IR
S
3

Y
es

Y
es

Y
es

Y
es

Y
es

N
/A

Y
es

N
o

N
o

H
C

4
10
/
18

10
/
25

25
N
/A

9/
18

18
18

10
/2
1

17
⋆
/
18

⋆
⋆

R
eg
is
te
rs

5
20
0/

49
4

N
/A

N
/A

N
/A

11
5/
19
6

N
/A

49
4

25
8/
76
5

17
7

⋄
/
59
3⋄

⋄

L
og
ic

ce
ll
s5

24
8/
68
0

N
/A

N
/A

N
/A

10
6/
25
4

N
/A

34
0

42
6/

10
40

24
8

⋄
/
86
7

⋄
⋄

1
L
o
ca
ll
y
R
ep
ro
d
u
ce
d
(L
R
)

2
M
ea
su
re
d

3
In
te
rm

ed
ia
te

R
ec
on

st
ru
ct
io
n
S
te
p
(I
R
S
)

4
H
ar
d
w
ar
e
C
om

p
le
x
it
y
(H

C
)
(#

ad
d
er
s)

fo
r
an

A
I
D
au

b
-6

fi
lt
er

5
F
or

si
n
gl
e
le
ve
l
d
ec
om

p
os
it
io
n

†
T
ak
en

fr
om

P
S
N
R

p
lo
ts

in
[1
,
p
.
12
64
]

‡
A
t
50

M
H
z
[1
7]

†
†
A
t
37
4.
25

M
H
z

‡
‡
A
t
34
6.
58

M
H
z

⋄
F
or

1-
D

D
es
ig
n

⋄
⋄
F
or

2-
D

D
es
ig
n

106

T
ab

le
5.
15
:
C
om

p
ar
is
on

of
P
ro
p
os
ed

A
rc
h
it
ec
tu
re
s
w
it
h
E
x
is
ti
n
g
A
I
B
as
ed

D
W

T
A
rc
h
it
ec
tu
re
s
in

L
it
er
at
u
re

(C
on

ti
n
u
ed
)

P
S
N
R

(d
B
)6
38

†
(D

au
b
-4
)
50
.4
9
(D

au
b
-4
)
N
/A

22
.2
6

N
/A

N
/A

66
.8
2
(D

au
b
-4
)

39
†
(D

au
b
-6
)
49
.8
7
(D

au
b
-6
)

43
.2
0

68
.1
2
(D

au
b
-6
)

71
.5
4

F
R
S
7

C
S
D

C
S
D

B
o
ot
h
B
o
ot
h

C
S
D

C
S
D

C
S
D

C
S
D
/E

F
M

8
C
S
D

T
h
ro
u
gh

p
u
t

1
ip
/
op

1
ip
/
op

N
/A

N
/A

2
ip
/o
p
1
ip
/
op

1
ip
/
op

1
ip
/
op

1
ip
/
op

D
P
9 (
m
W

)5
15
.9
4/

22
.2
9

N
/A

N
/A

N
/A

4.
51

‡
N
/A

N
/A

38
§
/
57

∗
61

†
†

T
ec
h
n
ol
og
y

X
il
in
x

N
/A

N
/A

N
/A

C
M
O
S

N
/A

X
il
in
x

X
il
in
x
V
ir
te
x
-6

X
il
in
x
V
ir
te
x
-6
/

V
ir
te
x
E

0.
18
u
m

V
ir
te
x
E

vc
x
24
0t

C
M
O
S
45

n
m

M
F
1
0
(M

H
z)

14
8.
21

⋄
N
/A

N
/A

N
/A

10
0

N
/A

28
2.
50

⋄
⋄
(D

au
b
-4
)

16
8.
83

A

11
9.
57

⋄
⋄

12
0
(D

au
b
-6
)
14
6.
42

⋄
⋄
(D

au
b
-6
)

30
6.
15

B

6
F
or

8-
b
it

L
en
a
Im

ag
e

7
F
in
al

R
ec
on

st
ru
ct
io
n
S
te
p
(F

R
S
)

8
E
x
p
an

si
on

F
ac
to
r
M
et
h
o
d
(E

F
M
)

9
D
y
n
am

ic
P
ow

er
(D

P
)

1
0
M
ax

im
u
m

F
re
q
u
en
cy

(M
F
)

†
T
ak
en

fr
om

P
S
N
R

p
lo
ts

in
[1
,
p
.
12
64
]

‡
A
t
50

M
H
z
[1
7]

§
A
t
44
2.
47

M
H
z

A
U
si
n
g
a
X
il
in
x
V
ir
te
x
-6

x
c6
vc
x
24
0t
-1
ff
11
56

F
P
G
A

d
ev
ic
e

B
U
si
n
g
C
M
O
S
45

n
m

im
p
le
m
en
ta
ti
on

ge
n
er
at
ed

b
y
E
n
co
u
n
te
r
R ©

R
T
L
co
m
p
il
er

∗
A
t
27
4.
72

M
H
z

†
†
A
t
37
4.
25

M
H
z

‡
‡
A
t
34
6.
58

M
H
z

⋄
F
or

1-
D

D
es
ig
n

⋄
⋄
F
or

2-
D

D
es
ig
n

107

(a) A1 (b) A2

(c) A3 (d) A4

Figure 5.6: (a)–(d) Approximation sub-images A1, A2, A3, and A4 obtained from
on-chip physical verification on a Virtex-6 vcx240t-1ff1156 considering Method 1.

In fact, the proposed architecture preserves all features of our earlier architectures

such as (i) error-free computation, (ii) defined over integers, and (iii) free of mul-

tiplications. It also reduces hardware complexity (number of adders) leading to

considerable reduction in cost for the hardware realization of multi-level DWTs of

Daubechies 6-tap filter banks. The single FRS is the only source of computational

error. Noise injection from intermediate fixed-point errors is fully eliminated. An

FPGA based 4-level prototype is operational at 100 MHz. Place-and-route timing

analysis furnished 344 MHz for the Daubechies 6-tap architecture.

108

Table 5.16: SNR and PSNR for Lena Image Approximation for 2-D Daub-6

Scheme Measured Approximation

Used Aspect A1 (256 × 256) A2 (128 × 128) A3 (64 × 64) A4 (32 × 32)

SNR (dB) 41.23 35.38 33.06 31.06

Fixed-point PSNR (dB) 45.05 42.79 41.84 38.75

SNR (dB) 68.27 65.41 62.48 60.37

Method 1 PSNR (dB) 71.54 67.12 65.05 63.86

109

CHAPTER VI

CONCLUSIONS & FUTURE WORK

We proposed an optimized multi-rate 1-D/2-D Daub-4 and Daub-6 filter

bank architectures which are purely AI-based, and multi-encoded. Additionally, the

introduced designs are capable of furnishing arbitrarily high numerical accuracy us-

ing error-free integer arithmetic. In fact, the proposed architectures preserve all

features of our earlier architectures such as (i) error-free computation, (ii) defined

over integers, and (iii) free of multiplications. It also reduces hardware complexity

(number of adders) leading to considerable reduction in cost for the hardware real-

ization of multi-level 2-D DWTs of Daubechies 4-tap/ 6-tap filter banks. The single

FRS is the only source of computational error.

By employing AI encoding, resulting wavelet decomposed images had SNR

and PSNR figures improved by approximately 30–35% when compared to a counter-

part fixed-point system with 8-bit word length and 6 fractional bits.

Standard images have been analyzed with Mandrill, Lena, Cameraman,

Woman, CT head/brain, Reflection examples shown. Noise injection from interme-

diate fixed-point errors is fully eliminated. An FPGA based 4-level prototypes are op-

erational at 100 MHz. Place-and-route timing analysis furnished 344 MHz/146 MHz

for the multi-level Daubechies 4-tap/6-tap architectures. In addition, the proposed

110

architectures were also synthesized in 45 nm ASIC technology at 523.56 MHz/

306 MHz for 8-bit input data.

CMOS sensor arrays for imaging are being continuously improved with in-

creasing resolutions. The dynamic range of typical imaging applications are also

increasing and more emphasis is being made for picture quality. In the presence of

higher resolution, increased dynamic range, and increased frame rate, there is no

option but to increase the throughput of the digital filtering architectures.

Finally, it is important to notice that—in principle—the discussed AI based

scheme can be applied to any type of DWT as long as the scaling and wavelet

coefficients of the corresponding filters could be given and exact representation. For

instance, this is the case for the Haar, Daubechies-4/-6, and Bior-5/3 wavelets. On

the other hand, wavelets such as Gaussian and Mexican hat do not have a compatible

DWT version.

This work has feasible scope for extending to Daubechies 8-tap and 10-tap

wavelet filters provided we can encode the scaling filter coefficients with optimal

number of AI bases. Wei Chang et al., [73] can provide more insight and can be used

as primary source of reference for this research effort.

111

BIBLIOGRAPHY

[1] K. Wahid, V. Dimitrov, and G. Jullien. VLSI architectures of Daubechies
wavelets for algebraic integers. Journal of Circuits, Systems, and Computers,
13(6):1251–1270, 2004.

[2] K. A. Wahid, V. S. Dimitrov, G. A. Jullien, and W. Badawy. An algebraic
integer based encoding scheme for implementing Daubechies discrete wavelet
transforms. In Asilomar Conf. Signals, Syst. Comp., volume 1, pages 967–971,
2002.

[3] K. A. Wahid, V. S. Dimitrov, G. A. Jullien, and W. Badawy. An analysis
of Daubechies discrete wavelet transform based on algebraic integer encoding
scheme. In Proc. Third Int. Workshop Digital and Computational Video DCV
2002, pages 27–34, 2002.

[4] Guiwei Xing, Jin Li, Shipeng Li, and Ya-Qin Zhang. Arbitrarily shaped video-
object coding by wavelet. 11(10):1135–1139, 2001.

[5] Yan Wu, R. J. Veillette, D. H. Mugler, and T. T. Hartley. Stability analysis
of wavelet-based controller design. In Proc. American Control Conf the 2001,
volume 6, pages 4826–4827, 2001.

[6] K. A. Wahid, V. S. Dimitrov, and G. A. Jullien. Error-free arithmetic for
discrete wavelet transforms using algebraic integers. In Proc. 16th IEEE Symp.
Computer Arithmetic, pages 238–244, 2003.

[7] S.-C. B. Lo, Huai Li, and M. T. Freedman. Optimization of wavelet decompo-
sition for image compression and feature preservation. 22(9):1141–1151, 2003.

[8] M. Martone. Multiresolution sequence detection in rapidly fading channels based
on focused wavelet decompositions. 49(8):1388–1401, 2001.

[9] P. P. Vaidyanathan. Multirate Systems and Filter Banks. PTR Prentice Hall,
Englewoodcliffs, New Jersey 07632, 1992.

112

[10] B.K. Mohanty and P.K. Meher. Merged-cascaded systolic array for vlsi im-
plementation of discrete wavelet transform. In Circuits and Systems, 2006.
APCCAS 2006. IEEE Asia Pacific Conference on, pages 462–465, 2006.

[11] P.-Q. Vaidyanathan, P. P. , Hoang. Lattice structures for optimal design and
robust implementation of two-channel perfect-reconstruction QMF banks. IEEE
Transactions on Circuits and Systems, 36(1):81–94, 1988.

[12] D. B. H. Tay. Balanced spatial and frequency localised 2-D nonseparable wavelet
filters. In Proc. IEEE Int. Symp. Circuits and Systems ISCAS 2001, volume 2,
pages 489–492, 2001.

[13] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, Burlington,
MA, 2008.

[14] D. B. H. Tay and N. G. Kingsbury. Design of nonseparable 3-D filter banks/wavelet
bases using transformations of variables. IEEE Proceedings on Visual Image Sig-
nal processing, 143:51–61, 1996.

[15] Abdelhamid Meraghni Mountassar Maamoun , Mehdi Neggazi and Daoud
Berkani. VLSI design of 2-D disceret wavelet transform for area efficient and
high-speed image computing. World Academy of Science, Engineering and Tech-
nology, 45:538–543, 2008.

[16] Selvaraju Murugesan and D. B. H Tay. New techniques for rationalizing orthog-
onal and biorthogonal wavelet filter coefficients. IEEE Transactions on Circuits
and Systems, 59(3):628–637, March 2011.

[17] Md. Ashraful Islam and K. A. Wahid. Area- and power-efficient design of
Daubechies wavelet transforms using folded AIQmapping. 57(9):716–720, Septem-
ber 2010.

[18] F. Marino, D. Guevorkian, and J. T. Astola. Highly efficient high-speed/low-
power architectures for the 1-D discrete wavelet transform. 47(12):1492–1502,
2000.

[19] K. A. Wahid, V. S. Dimitrov, G. A. Jullien, and W. Badawy. Error-free compu-
tation of Daubechies wavelets for image compression applications. Electronics
Letters, 39(5):428–429, 2003.

[20] Khan A. Wahid. Low Complexity Implementation of Daubechies Wavelets for
Medical Imaging Applications. InTech, 2011.

113

[21] T. Acharya and Po-Yueh Chen. VLSI implementation of a DWT architecture.
In Proc. IEEE Int. Symp. Circuits and Systems ISCAS ’98, volume 2, pages
272–275, 1998.

[22] S. Gnavi, B. Penna, M. Grangetto, E. Magli, and G. Olmo. DSP performance
comparison between lifting and filter banks for image coding. In Proc. IEEE
Int. Acoustics, Speech, and Signal Processing (ICASSP) Conf., volume 3, 2002.

[23] I. Urriza, J. I. Artigas, J. I. Garcia, L. A. Barragan, and D. Navarro. VLSI
architecture for lossless compression of medical images using the discrete wavelet
transform. In Proc. Design, Automation and Test in Europe, pages 196–201,
1998.

[24] B. K. Mohanty, A. Mahajan, and P. K . Meher. Area and power efficient
architecture for high-throughput implementation of lifting 2-D DWT. IEEE
Trans. Circuits. Syst. II, Exp. Briefs., 59(7):434–438, July 2012.

[25] B. K. Mohanty and P. K. Meher. Memory-efficient high-speed convolution-based
generic structure for multilevel 2-D DWT. IEEE Transactions on Circuits and
Systems for Video Technology, 23:353–363, 2013.

[26] J. P. Andrew, P. O. Ogunbona, and F. J. Paoloni. Comparison of “wavelet”
filters and subband analysis structures for still image compression. In Proc.
IEEE Int Acoustics, Speech, and Signal Processing ICASSP, 1994.

[27] H. Kaida and M. Okuda. Image compression suitable for high dynamic range
image rendering. In Proc. Int. Conf. Advanced Information Networking and
Applications - Workshops, pages 1029–1033, 2008.

[28] Subhasis Saha. Image compression— from DCT to wavelets— A review, 2000.

[29] R. Baghaie and V. Dimitrov. Computing Haar transform using algebraic inte-
gers. In Proc. Conf Signals, Systems and Computers Record of the Thirty-Fourth
Asilomar Conf, volume 1, pages 438–442, 2000.

[30] D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, 3rd
edition, 1981.

[31] Khan A. Wahid, Md. Ashraful Islam, and Seok-Bum Ko. Lossless implemen-
tation of Daubechies 8-tap wavelet transform. In Proc. IEEE Int. Symp. Circ.
Syst., pages 2157–2160, Rio de Janeiro, Brazil, May 2011.

114

[32] J. H. Park, K. O. Kim, and Y. K. Yang. Image fusion using multiresolution anal-
ysis. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, volume 2, pages 864–866, Sydney, Australia, 2001.

[33] G. Plonka. A global method for invertible integer DCT and integer wavelet al-
gorithms. Applied and Computational Harmonic Analysis, 16(2):79–110, March
2004.

[34] G. Dimitroulakos, M. D. Galanis, A. Milidonis, and C. E. Goutis. A high-
throughput and memory efficient 2D discrete wavelet transform hardware archi-
tecture for JPEG2000 standard. In Proc. IEEE Int. Symp. Circuits and Systems
ISCAS 2005, pages 472–475, 2005.

[35] Bing-Fei Wu and Chung-Fu Lin. A high-performance and memory-efficient
pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000
codec. 15(12):1615–1628, 2005.

[36] K. A. Wahid, V. S. Dimitrov, and G. A. Jullien. On the error-free realization
of a scaled DCT algorithm and its VLSI implementation. 54(8):700–704, 2007.

[37] D. B. H. Tay. Integer wavelet transform for medical image compression. In
Proc. Intelligent Information Systems Conf. The Seventh Australian and New
Zealand 2001, pages 357–360, 2001.

[38] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG 2000 still image
compression standard. 18:36–58, 2001.

[39] Q. Dai, X. Chen, and C. Lin. A novel VLSI architecture for multidimensional
discrete wavelet transform. 14(8):1105–1110, August 2004.

[40] C. Huang, P. Tseng, and L. Chen. Flipping structure: an efficient VLSI architec-
ture for lifting based discrete wavelet transform. IEEE Trans. Signal. Process.,
52(4):1080–1089, April 2004.

[41] G. Shi, W. Liu, and F. Li. An efficient folded architecture for lifting-based dis-
crete wavelet transform. IEEE Trans. Circuits. Syst. II , Exp. Briefs, 56(4):290–
294, April 2009.

[42] M. Martina and G. Masera. Multiplierless, folded 9/7-5/3 wavelet VLSI archi-
tecture. IEEE Trans. Circuits. Syst. II , Exp. Briefs, 54(9):770–774, September
2007.

115

[43] J. Walker. A Primer on Wavelets and their Scientific Applications. Chapman
& Hall/ CRC Press, Boca Raton, FL, 1999.

[44] K. Wahid, Seok-Bum Ko, and D. Teng. Efficient hardware implementation of an
image compressor for wireless capsule endoscopy applications. In Proc. (IEEE
World Congress Computational Intelligence). IEEE Int. Joint Conf. Neural Net-
works IJCNN 2008, pages 2761–2765, 2008.

[45] Martin Vetterli and Jelena Kovačević. Wavelets and Subband coding. Prentice
Hall PTR, Englewood Cliffs, NJ, 1995.

[46] S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet
representation. 11(7):674–693, 1989.

[47] M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi. Wavelet Toolbox User’s
Guide. Mathworks, Inc, 2011.

[48] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes in C. Cambridge University Press, 2 edition, 1999.

[49] J. Cozzens and L. Finkelstein. Computing the discrete Fourier transform using
residue number systems in a ring of algebraic integers. 31(5):580–588, 1985.

[50] Richard Dedekind. Theory of Algebraic integers. September 1996.

[51] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, London, 4 edition, 1975.

[52] K. Wahid, V. Dimitrov, and G. Jullien. Error-free computation of 8×8 2D DCT
and IDCT using two-dimensional algebraic integer quantization. In Proc. 17th
IEEE Symp. Comp. Arith., pages 214–221, 2005.

[53] R. J. Cintra. An integer approximation method for discrete sinusoidal trans-
forms. Journal of Circuits, Systems, and Signal Processing, 30(6):1481–1501,
2011.

[54] R. Baghaie and V. Dimitrov. Systolic implementation of real-valued discrete
transforms via algebraic integer quantization. Computers and Mathematics with
Applications, 41:1403–1416, 2001.

116

[55] V. S. Dimitrov, G. A Jullien, and W. C. Miller. A new DCT algorithm based
on encoding algebraic integers. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing, volume 3, pages 1377–1380,
Seattle, WA, 1998.

[56] A. Madanayake, R. J. Cintra, D. Onen, V. S. Dimitrov, N. T. Rajapaksha,
L. T. Bruton, and A. Edirisuriya. A row-parallel 8×8 2-D DCT architecture
using algebraic integer based exact computation. IEEE Trans. Circuits. Syst.
Video Technol.,, 22(6):915–929, June 2011.

[57] V. Britanak, P. Yip, and K. R. Rao. Discrete Cosine and Sine Transforms.
Academic Press, 2007.

[58] Richard A. Games, Sean D. O’Neil, and Joseph J. Rushanan. Algebraic integer
quantization and conversion. Technical report, Rome Air Development Center,
Griffiss Air Force Base, NY 13441-5700, July 1988.

[59] ImageProcessingPlace.com. Image databases. http://www.imageprocessingplace.
com/root_files_V3/image_databases.htm, March 2012.

[60] Tze-Yun Sung, Hsi-Chin Hsin, Yaw-Shih Shieh, and Chun-Wang Yu. Low-power
multiplierless 2-D DWT and IDWT architectures using 4-tap daubechies filters.
In Proc. Seventh Int. Conf. Parallel and Distributed Computing, Applications
and Technologies PDCAT ’06, pages 185–190, 2006.

[61] F. Marino. Two fast architectures for the direct 2-D discrete wavelet transform.
49(6):1248–1259, 2001.

[62] Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen. Generic RAM-based
architectures for two-dimensional discrete wavelet transform with line-based
method. 15(7):910–920, 2005.

[63] Hongyu Liao, M. Kr. Mandal, and B. F. Cockburn. Efficient architectures for
1-D and 2-D lifting-based wavelet transforms. 52(5):1315–1326, 2004.

[64] K. Andra, C. Chakrabarti, and T. Acharya. A VLSI architecture for lifting-
based forward and inverse wavelet transform. 50(4):966–977, 2002.

[65] Chunhui Zhang, Yun Long, Seong Yong Oum, and F. Kurdahi. ‘software-
pipelined’ 2-D discrete wavelet transform with VLSI hierarchical implementa-
tion. In Proc. IEEE Int Robotics, Intelligent Systems and Signal Processing
Conf, volume 1, pages 148–153, 2003.

117

[66] Keshab. K. Parhi. VLSI Digital Signal Processing Systems Design & Imple-
mentation. John Wiley & Sons, Inc., 2007.

[67] S. Athar and O. Gustafsson. Optimization of AIQ representations for low com-
plexity wavelet transforms. In Proc. 20th European Conf. Circuit Theory and
Design (ECCTD), pages 314–317, 2011.

[68] Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen. Efficient VLSI archi-
tectures of lifting-based discrete wavelet transform by systematic design method.
In Proc. IEEE Int. Symp. Circuits and Systems ISCAS 2002, volume 5, 2002.

[69] Bing-Fei Wu and Chung-Fu Lin. A rescheduling and fast pipeline VLSI archi-
tecture for lifting-based discrete wavelet transform. In Proc. Int. Symp. Circuits
and Systems ISCAS ’03, volume 2, 2003.

[70] Shiva Madishetty, Arjuna Madanayake, Renato J. Cintra, Dale Mugler, and
Vassil Dimitrov. Error-free VLSI architecture for Daubechies 4-tap filter using
algebraic integers. In ISCAS, pages 1484–1487, May 2012.

[71] Shiva Madishetty, Arjuna Madanayake, Renato J. Cintra, Vassil Dimitrov, and
Dale Mugler. VLSI architecture for Daubechies 4-tap and 6-tap wavelet filters
using algebraic integers. IEEE Trans. Circuits. Syst. I (Accepted, In Press),
2012.

[72] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.
Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. FreePDK: An
open-source variation-aware design kit. In IEEE International Conference on
Microelectronic Systems Education, 2007, pages 173–174, June 2007.

[73] Wei Chang Shann and Chien Chang Yen. Exact solutions for daubechies or-
thonormal scaling coefficients. Technical Report 9704, Department of Mathe-
matics, National Central University, September 1997.

118

