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ABSTRACT

Discrete wavelet transforms (DW'Ts) are of special interest in signal and im-
age processing due to their capability of signal decomposition, denoising, and event
detection. This thesis proposes a novel algebraic integer (AI) based multi-encoding
of Daubechies-4 and -6 2-D wavelet filters having error-free integer-based computa-
tion. Digital VLSI architectures employing parallel channels are proposed, physically
realized and tested. The multi-encoded Al framework allows a multiplication-free
and computationally accurate architecture. It also guarantees a noise-free compu-
tation throughput the multi-level multi-rate 2-D filtering operation. A single final
reconstruction step (FRS) furnishes filtered and down-sampled image outputs in
fixed-point, resulting in low levels of quantization noise.

Significant SNR and PSNR improvements were observed in favour of Al-
based systems, when compared to 8-bit fixed-point schemes (six fractional bits). The
designs are physically implemented for a 4-level 2-D decomposition using Daubechies-
4 and -6 4-level VLSI architectures on a Xilinx Virtex-6 vex240t-1ff1156 FPGA device
and verified on an FPGA chip using an ML605 platform. A 45 nm CMOS synthesis

shows improved clock frequencies for a supply voltage of 1.1 V.
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CHAPTER I

INTRODUCTION

The field of discrete wavelet transforms (DWT) has been attracting substan-
tial interest in part due to the wavelet analysis being capable of decomposing a signal
into a particular set of basis functions equipped with good spectral properties [1-4].
Wavelet analysis has been used to detect system non-linearities by making use of its
localization feature [5]. DWT-based multi-resolution analysis leads to both time and
frequency localization [4,6-11].

Indeed, wavelet filter banks establish a strong support for many signal pro-
cessing systems [12-16]. Wavelets are employed in numerical analysis [17, 18], real-
time processing [17], image compression and reconstruction [3,15,19-23,23-28], pat-
tern recognition [17], biomedicine [18,20], approximation theory, computer graph-
ics [29, 30] and image, video coding standards (H.265) [4, 22, 31-35]. Follow-
ing the adoption of the bi-orthogonal 2.2 wavelet filters in the JPEG2000 stan-
dard [3,6, 19, 28], much research effort has been employed on reducing compu-
tational and circuit complexities of DW'T hardware architectures in VLSI sys-
tems [2,17,19,36-42].

A particular class of DWT are the Daubechies wavelets [43]. They are well-

suited and commonly used in image compression applications [3,12,24-26,37]. Herein



we refer to the Daubechies wavelets generated from 4- and 6-tap filter banks as
Daub-4 and -6 wavelets, respectively. In particular, whereas the Daub-4 wavelets are
often employed in applications where the signals are smooth and slowly varying, the
Daub-6 wavelets are used for signals bearing abrupt changes, spikes, and having high
undesired noise levels [17]. Daub-4 wavelets can be highly localized to smooth [2,26]
and Daub-6 wavelets have found applications in medical imaging, such as wireless
capsule endoscopy where images of fine details are regarded important [17,43,44].

Since wavelets can be associated to specific filter banks, practical wavelet
analysis is achieved by means of sub-band coding [13,34,43,45]. Sub-band coding is
a basic filtering principle which splits a given signal in several frequency bands for
subsequent encoding [8,14]. In particular, 2-D multi-resolution analysis is obtained
via sub-band coding [43,45,46].

Daubechies-4 and -6 tap filter coefficients are irrational numbers and cannot
be represented exactly in standard finite precision number systems such as the two’s
complement fixed-point format. Therefore, fixed-point representations incur errors
when employed in arithmetic processors. These errors, due to quantization, overflow,
and underflow, propagate through the entire process of wavelet decomposition. Hence
the results of the wavelet analysis possess a reduced signal-to-noise ratio.

Conventional 2-D Daubechies-4 and -6 filter banks employ 1-D filters as
their building block. The 1-D Daubechies-4 filters are repeatedly applied to row-
and column-wise operations to yield 2-D filtering [45]. This aggravates the above

mentioned noise issue.



1.1 Research Publications
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1.2 Contributions from External Collaborators

This research work has significant technical contributions from Dr.
Madanayake’s collaborators Dr. Renato J. Cintra from Universidade Federal de
Pernambuco, Brazil and Dr. Vassil S. Dimitrov from University of Calgary, AB,
Canada.

To emphasize collaborator’s contributions in this work, the following shows

a list of exhaustive numerical search results used in this work.

1. In Chapter 3, Section 3.3 discusses the final reconstruction step (FRS) using

canonical signed digit (CSD) encoding and expansion factor methods (EFM)for



Daubechies 4-tap and 6-tap wavelet filter banks. Tables 3.3, 3.4 and 3.5

provide the data from the contributions.

. In Chapter 5, Section 5.3 provides numerical search results for filter

parametrization and optimization in Table 5.1.

. In Chapter 5, Section 5.4 describes the FRS using CSD for optimized 1-D/
2-D Daubechies 6-tap wavelet filter bank leading to low adder count designs.

Table 5.3 offers the CSD encoding for 8-bit approximations of algebraic integer

(AI) bases.



1.3 Thesis Outline

The rest of this research work is organized as follows:
Chapter 2 reviews fundamental algorithm behind wavelet decomposition known as
subband coding and details significant research efforts on Al based DWTs. Also,
it presents our proposed encoding scheme that addresses the computational noise
injection issue of the wavelet decomposition.

Chapter 3 provides exhaustive analysis of Al based multi-encoded
Daubechies 4-tap and 6-tap wavelet filter banks, final reconstruction step methods
and FPGA implementation and results.

In chapter 4 we optimized the filter parameters to reduce arithmetic com-
plexity and thereby yielding a low adder count architecture for 2-D Daubechies 4-tap
filter bank. Exhaustive numerical search methods are used to optimize the filter
parametrization and optimization.

Chapter 5 extends the optimized encoding to 1-D/ 2-D Daubechies 6-tap
filter bank with FPGA implementation and results. The chosen filter optimization
resulted in significant savings in adder counts as detailed in this chapter.

This thesis work has its conclusive remarks in Chapter 6 with feasible scope
for future work to improve and stir innovative ideas in Al based wavelet filter imple-

mentation.



CHAPTER II

REVIEW OF SUBBAND CODING

2.1 Review of Sub-band Coding

Wavelet decomposition of input image data can be accomplished by sub-
band coding. A 2-D finite impulse response (FIR) filter bank processes the input
data resulting in an approximation and detail sub-images.

The input image A,,_; is of resolution N x N pixels; and it is input to a pair
of low-pass (approximation) and high-pass (detail) filters h and g, respectively. The
filters operate column-wise on the image followed by dyadic down-sampling, i.e., only
one of every two columns are retained. Then the same process is applied row-wise.
The outputs are four sub-images A,,, Dv,,, Dh,,, and Dd,,, which represent the 2-D
wavelet coefficients for the coarse approximation, vertical details, horizontal details,
and diagonal details, respectively. This process is shown in Fig. 2.1 for one-level
wavelet analysis via filter banks. Symbols 2] 1 and 12 are used to denote the
column-wise and row-wise down-sampling. respectively [47, pp. 6-26]. The resultant
sub-images are all of size N/2 x N/2, because of dyadic down-sampling.

These operations can be performed recursively [43,45]. The resulting approx-

imation A, can be re-submitted to the signal flow architecture shown in Fig. 2.1.



column-wise

row-wise

Figure 2.1: Diagram of a single application of the 2-D wavelet filter bank.
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Figure 2.2: Recursive application of the 2-D wavelet filter bank.

As a result, after each iteration a coarser approximation can be achieved. Let the
original image to be analyzed be denoted by Ay. Fig. 2.2 shows the recursive di-
agram of the multi-level wavelet analysis. After each set of filter banks, a coarser
approximation A,, n = 1,2,3,4, is furnished. Each level also produces the detail
information.

In this work, we focus on the computation of the coarser approximations A,,,
n > 1. The topmost branch of the signal flow shown in Fig. 2.1 computes the
approximation data. Detail data Dv,,, Dh,, and Dd, are normally discarded or
thresholded in data compression applications [43].

The 2-D FIR filter bank based on the Daub-4 and -6 filter bank is of par-

ticular relevance [2,45]. Let the low-pass filter associate to these filter banks be



denoted as h(P*1) and h(Pau-6) respectively. These particular filters possess irra-

tional quantities as shown below [2,3,6,43,48]:

T

aub- 1
WP = 5 114 V3 343 3-v3 1-V3|

14+ V10 + /5 + 2v/10 ]
5+ /10 + 35+ 2V/10
h(Daub-G):L 10—2m+2m
16v/2 10— 2T — 205 T3V :
54 V10— 35 + 2V10
1 VI = V54 2VT0

where the superscript " denotes transposition.

2.2  The Problem of Fixed-Point Errors

Filter banks associated to Daubechies wavelets have irrational coefficients
whose representation in fixed-point requires truncation or rounding off [2,6,16]. Such
approximations introduce representation errors which propagate through a given fil-
ter bank. Moreover, the longer the required filter bank is, the greater the computa-
tional error may become. This process effects a lower obtained signal-to-noise of the

resulting data.



2.3 Prior Art on Al based DWT

One way of addressing the computational noise injection is to employ a
number representation based on algebraic integers (AlI) [6]. Pioneered by Cozzens
and Finkelstein [3,49-51], algebraic integer (Al) quantization has been employed in
several signal processing schemes, including wavelet and discrete cosine transform
analysis [1,17,19,29, 52-54].

In the AI representation, irrational numbers involved in the DWT process
are encoded into integers associated to a given Al basis. The computing architecture
is replaced with a parallel channel model [52]. After computation, resulting encoded
numbers are mapped back into fixed-point representation in the final reconstruction
step (FRS). The FRS is the only possible source of computational error in a given
Al-based framework.

AT encoding can address the computational noise injection in wavelet analysis
systems [6]. A significant advantage of the Al encoding is its capability of mapping
the required irrational wavelet coefficients into vectors or arrays of integers. There-
fore, wavelet decomposition can be performed without errors in a vectorial framework
consisting exclusively of integer operations. Thus, the irrational coefficients of the
Daubechies filters can be represented into integers, according to a selected Al ba-
sis [3,6,55].

The design of digital architectures for the 1-D Daub-4 and -6 filters were

10



pioneered by Wahid and Dimitrov in the recent past. Importantly, the 2-D archi-
tectures proposed by Wahid et al. [1-3, 6, 19] require intermediate reconstruction
steps that map the AI encoded transform coefficients back into fixed-point format.
These are 1-D DW'T architectures that compute the 2-D DW'T by repeated use of a
1-D Al-encoded architecture. Some Al-based 2-D Daubechies-4 implementations are
archived in literature. In [2,31], such architecture was realized on FPGA and VLSI
technology for low-complexity low-power applications.

However, in all published Al-based architectures for the DWT, a reconstruc-
tion step is present between row-wise and column-wise computations. Such interme-
diate decoding-encoding operations lead to quantization noise being injected to the
corresponding output 2-D image signal. In a sense, this defeats the purpose of Al
encoding.

In order to address the above-mentioned noise injection problem, we pro-
pose a novel 2-D Al architecture for the computation of 2-D Daubechies-4 wavelet
filters based on a new multi-encoding method for the subband coding of images. In
the proposed architecture, all computations are entirely performed over the integers
without any FRS in intermediate calculations. A single FRS decodes the resulting
computations into fixed-point representation.

This approach could lead to arbitrarily low levels of uncorrelated and un-
coupled quantization noise in the final output 2-D image. This intermediate recon-
struction step is located after the first application of the transform (say, along rows)
before submitting the resulting data to the next (say, column-wise) stage. In other

11



words, it is at the transposition stage between the application of the two series of
1-D transform. Such intermediate reconstruction step injects quantization noise and
introduces transfer-function response errors. When multi-level decompositions are
attempted, the problem is compounded because of repeated applications of the inter-
mediate reconstruction stages at each level of filtering [3,6,19,31]. Errors incurred in
the intermediate reconstructions mitigate the benefits of using Al encoding for 2-D
multi-level DWTs.

This is an outstanding problem in the current literature which we identify

and correct in the present contribution.

2.4 Proposed Encoding Scheme

We correct above described issue by proposing a multi-encoding method that
possesses error-free computation across the 2-D decomposition levels. In our method,
the reconstruction step appears only once, at the final level of decomposition and
filtering [56]. Unlike the schemes described in [2,3,6,31], our scheme operates entirely
over the Al representation—up to a single and final reconstruction block—without
any intermediate reconstruction steps. Thus, the FRS is the only possible source of
computational errors.

In view of the above, we propose a new Al-based architecture for sub-band
coding of images using 2-D Daub-4 and -6 wavelet filters. The AI quantization

approach leads to an architecture possessing a parallel channel structure [52]. Input

12



data is successively wavelet decomposed over several levels according to application
requirements.

The single FRS employs constant coefficient multipliers based on canonical
signed digit (CSD) representation, offering low circuit complexity. This architecture
facilitates very low levels of uncorrelated and uncoupled quantization noise in the

final decomposed image data.

13



CHAPTER III

AT BASED 4-TAP AND 6-TAP 2-D DAUBECHIES WAVELET FILTER BANKS

3.1 Introduction

In this chapter, we propose a new multi-encoding technique that achieves
exact computation of multi-level 2-D Daubechies wavelet transforms using algebraic
integer (Al) encoding. Compared to existing Al designs in literature [1-3,6,17,19,31],
the proposed design can compute wavelet image approximations entirely over integer
fields and with a single FRS in a purely Al based 2-D architecture. The design avoids
the need of intermediate reconstruction steps.

Moreover, the proposed architecture is sought to be multiplier-free. Such
design facilitate accuracy, speed, relatively smaller area on chip as well as cost of
design. The new design is multi-encoded and multi-rate, operating over Al with no
intermediate reconstruction steps. In this framework, error-free computations can
be performed until the final FRS. Our architecture emphasizes on quality of output
image and speed by trading complexity and power consumption for accuracy.

This chapter unfolds as follows. Section 3.2 translates the the mathematical
formalism of Al encoding into the 2-D sub-band coding context. Wavelet sub-band

coding using multi-encoding with Al bases are provided for multi-level decompo-

14



sition, considering both Daub-4 and -6 filter banks. The final reconstruction step
(FRS) procedure for the proposed analyses are described in Section 3.3. Based on the
expansion factor method [57, p. 274], alternative FRS schemes were also sought for
the Daub-6 case. Field programmable gate array (FPGA) implementation results,
hardware resource consumption, and power consumptions are provided in Section 3.4
for both 4- and 6-tap filters.

We also compare published 1-D and 2-D DW'T architectures with the pro-
posed architectures. Maximum operating frequency, signal-to-noise ratio (SNR) and
peak-signal-to-noise ratio (PSNR) figures are sought using the proposed designs op-

erating in fixed-point. Concluding remarks are given in Section 3.5.

3.2 Al-based Daubechies-4 and -6 Scaling Filters

3.2.1 Mathematical Background

An algebraic integer is a real or complex number that is a root of a monic
polynomial with integer coefficients [51,54,58]. Algebraic integers can be employed to
define encoding mappings which can precisely represent particular irrational numbers
by means of usual integers. Considering the roots of the monic polynomials 2% — 3,

2? — 10, and 2* — 102? — 15 = 0 we can extend the set of integers Z by including

the algebraic integer ¢ = v/3, (¢ = V10 and & = V5 + 2v/10. Doing so, a given
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quantity y can possibly be represented as

y:a'_l_b'Ca

y:C+d'C1+€'C2—|—f'C1C2.

where a, b, ¢, d, e, and f are integers. Sets {1,(} and {1, (1, (s, (12} constitute two
bases for Al encoding. Notice that these two bases are adequate for representing the
4- and 6-tap Daubechies filter coefficients. Thus, taking apart quantities 1/8, = 4v/2

and 1/8, = 16v/2 as scaling factors, the Daub-4 and -6 filter coefficients can be

represented as

.
WP =11 ¢ 34¢ 3-¢ 1-¢|
- L+ G+ G -
5+ ¢+ 3G
oy _ | 10726+ 26
10 = 2¢ — 2¢2
5+ ¢ — 3G
I 14+ G — ¢ |

Therefore, these unnormalized low-pass FIR filters of 4-tap/6-tap can be
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split into separate filters given by:

h®P*P4) — by + ¢ he, (3.1)

h®Pab6) — b/ 4 ¢ he, + G - he,, (3.2)

where

- T
h1=1331],
- T
h<=11—1—1},
.
h1’=15101051],

.
h<1=11—2—211},

- T
he,=11 3 2 -2 -3 —1]-

Therefore, the Daub-4 and -6 filter bank analysis can be separated into
two/three structures. This facilitates a two/four integer channel structure, where
the integer coefficient filters hy and h¢; and hy’, he, and he, are considered. All

implied computations are necessarily over an integer field.
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Notice that a usual integer m can be effortlessly represented in either basis:

m=m+0-(,

m:m+0§1+0C2+0§1§2

This is relevant for encoding image pixel values, which are integers. In practical
terms, this means that no circuitry for encoding integer input data is necessary. Al
based Daub-4 and -6 filter structures are shown in Fig. 3.2 and Fig. 3.3. These filters

possess zero initial condition.

3.2.2  2-D Filtering

We now provide the mathematical framework to describe the operation of the
proposed Al-based multi-level encoding design. The following notation is adopted
in this work. Let C be an N x N matrix with columns ¢;, 7 = 0,1,..., N — 1,
C=lcy ¢, ¢y - CN_J and v be an N-point column vector. The operation @

is defined according to:

v O C £(21) {v*co V*Cy V*Cy - V*CN—I]

:|:V>{<C0 V*xCy - V*CN_2:|7

where * is the convolution operation. Analogously, operation © is given by:

veC4 (V@CT)T.
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In other words, © and O are the filtering operations along the rows and

columns of a given image, respectively, followed by a dyadic down-sampling stage.

Al-based Daub-4 DWT Decomposition

For the Daub-4 one-level decomposition, we have:

512 i Al — h(Daub—4) o h(Daub—4) D AOa (33)

where Ay is the input image of integer pixel values. Substituting (3.1) into (3.3), we

obtain:

8% Ay =(hy+¢-he) 6 (hy + ¢ -he) O Ag
=h; ©h; DA+ (-h;oh; © Ay

+¢-hy ©h, O Ag+¢?-h; She D A,.

Notice that ¢? = 3. Thus, we obtain:

B2 Ay =AM+ ¢- Al(o, (3.4)

where Al(l) and Al(o are given in Table 4.3.
The operations described above are illustrated in Fig. 3.1(a). The combi-

national block A is exploited to compute A" and A;© from the AI filter bank.
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Figure 3.1: (a) Single Al filter bank decomposition, (b) multi-level Al filter bank
with final reconstruction step, and (c¢) combinational block B.

The resulting filtered images decomposition A,V and A;©) necessitate only inte-
ger arithmetic to be rendered. Multi-level analysis follows the same algorithm, i.e.,
multiplications by the Al base ( are never explicitly performed.

Further decompositions are similarly computed. In particular, the 2nd level

decomposition is formulated below:

ﬁ12 . A2 :h(Daub—4) o) h(Daub—4) 0 Al-
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Daub-4 Al Filter Structure

Figure 3.2: Daub-4 Al Filter Structure

Applying (3.4) into above expression, we proceed as follows:

Byt Ay =h(Paub-d) o y(Daub-) g, ( A ¢ A1<<>)

=AM 4+ (- A

where approximations As™" and A, have their fully expanded forms given in Ta-

ble 4.3.

Indeed, the above manipulation can be similarly applied to the remaining
approximation levels. Thus the nth level approximation is furnished by:
B A=A + A =2

Y

where An(l) and An(o are shown in Table 4.3.
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Notice that the required multiplications by 3 shown in Table 4.3 can be easily
realized by a bit-shift operation and addition, i.e. 3-m = (m < 1) +m, where m is
an integer.

The above multi-level analyses for Daub-4 DWT filters are depicted in
Fig. 3.1(b). Expressions for level 2 and n shown in Table 4.3 induce the imple-
mentation of the combinational block B, as shown in Fig. 3.1(b). The architecture
of this block is detailed in Fig. 3.1(c). Fig. 3.1(b) also shows the FRS block, which

is detailed in the next section.

Al-based Daub-6 DWT Decomposition

In a similar fashion, the Daub-6 filter bank can be put into the AI formalism.

Considering Fig. 2.1, we can derive the following expression:

B22 . Al _ h(Daub—G) fa h(Daub—6) D AO;

where A is the input image of integer pixel values.
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Invoking (3.2), we obtain:

Bo? - Ay =(hy' + ¢ -hgy + G -he)
Oy +¢-hy +G-hy,) DA,
=h;"©oh;'©Ag+¢ -hy, 6hy' © A,
+ ¢ h,oh' ©Ag+hy'©¢ -he, ©Ag
+ ¢ -hey, ©¢G -hey ©A
+C2-he, ©¢ -hey ©A
+hi'6 G h,, ©Ag+ ¢ -he, ©6-he, © A

+C2'hC26C2'hC2®AO-

By grouping the relevant terms, we obtain:

By’ - Ay =AW 4 G- A 4 Co- A 4 Gz A1(<1<2)7 (3.5)

BT R N S e P B P e
e
?ﬂ

AL

e

Daub-6 AI Filter Structure

Figure 3.3: Daub-6 Al Filter Structure



Table 3.3: Daub-6 Decompositions

Level‘ Base ‘ Expression

AW [{hy' ©hy' + 10hg, © he, + 5h, ©hy} O A,
A g ©hy' + 1y’ Shy +2hg, ©he} 0 Ay
A, {h, 6hy' +hy'She} © Ay

A, G6) {h,, ©hy, +he, Ohy} O A

where Al(l), Al(ﬁ), Al(@), and Al(ﬁ@) are given in Table 3.2.

The error free integer operations described above are illustrated in
Fig. 3.4(a). The combinational block C is employed in order to furnish A, A,
and A1) from the AI filter bank. The level 2 decomposition follows similar ma-

nipulations, as detailed below:

B22 . A2 :h(Daub—ﬁ) o) h(Daub—G) 0 Al-

Calling (3.5), we derive the following expression:

Bot e Ap =AM + ¢ - A 4+ G- A £ (G - AGE),

where the approximations As", Ay A, and A, are given in Table 3.2.

The general result for the n level decomposition is shown in Table 3.2.
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Figure 3.4: (a) Single Al filter bank decomposition, (b) multi-level Al filter bank
with final reconstruction step, and (c) combinational block D.
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Fig. 3.4(b) depicts the full scheme of a four-level Daub-6 decomposition. The struc-
ture of combinatorial block D stems from the expressions shown in Table 3.2 for

level 2 and n decompositions. Fig. 3.4(c) details this stage.

3.3 Final Reconstruction Step

The proposed Al-based wavelet analyses based on Daub-4 and -6 filter banks
are computed entirely over extended integer fields. However, the resulting Al encoded
approximations A, ", A,©. A, A, and A, 9% must be converted back
to standard fixed-point representation. This is required in order to interface the
resulting approximation sub-images with conventional real time systems. Decoding
operations for both Daub-4 and -6 consist of explicitly performing the following
computations, respectively:

AW 4 ¢ A©

2n ’
1

A,

(3.6)

1
Ap = (A + G A + G AD GG ACW) (3T
2

Fortunately, the factors 1/82" and 1/32" are always a power of two, which
can be conveniently realized with bit-shift operation. The above decoding operations
are realized at the FRS blocks depicted in Fig. 3.1(b) and 3.4(b), respectively.

Therefore, the only possible source of errors in the proposed architectures
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for Daub-4 and -6 are the multiplication by Al basis elements:

¢ = V3~ 1.73205080756888 . . .,

(1 = V10 ~ 3.16227766016838 . . .,

G = \/ 5+ 210 ~ 3.36519766437824 . . .,

GG = /50 + 20v/10 ~ 10.6416893961141 . . ..

We propose two approaches for the FRS design: (i) CSD representation and

(ii) expansion factor method.

3.3.1 (CSD Approximation

The FRS can be directly implemented by approximating the required irra-
tionals in (3.6) and (3.7) into rationals. A possibility is employing CSD representa-
tion.

Table 3.3 displays CSD encodings for ¢ and Table 3.4 shows encoding for (i,
(2, and (1(y for several word lengths as well as the associate relative errors. CSD

encoding requires only bit-shifters and adders/subtracters.

3.3.2 Expansion Factor Method

Expansion factors are scaling constants usually employed in the design of
approximate discrete transforms [33,53]. In [57, p. 274], Britanak et al. survey the
topic in this context. Recently this methodology was extended and adapted to the

design of final reconstruction blocks related to Al based architectures [56].

31



Table 3.6: CSD Encoding for ¢

Word length CSD Encoding % Error
8 bit 227226 1.33
10 bit 2-272_26_979 0.021
12 bit 2-272_-926_979 0.021
14 bit 2272926 99 _9-12 0.0086

16 bit 2—272-276_9279_9-12_ 913 (0028

Table 3.7: CSD Encoding for (i, (s, and (1(

AT Word length (bits) Encoding Absolute Relative Error
8 22 — 142734276 0.0068
10 2214234264278 0.0056
G 12 22— 142342542774 2710 0.00087
14 22 1423420427412 0.00064
16 22— 14234204277 4271 0.00058
8 22 271273 _2°6 0.0017
10 22 271 973 9277 0.00059
G 12 22 971 973 27T _9-10 0.00030
14 22 — 271 973 _9°T_9-10 _9-12 0.00022
16 22— 271 973 _ 97T _9-10 _o-12 0.00011
8 25 +2+27 14234271 0.0043
10 22 4+24271 42734276 0.0001
GG 12 224242714273 4276 0.0001
14 23 4242714273 4276 4 2710 0.000008
16 23 424271 4273 4276 42710 0.000008
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An expansion factor is simply a constant that simultaneously scales a given
set of real numbers into integer values. In practical terms, only approximate integers
at a given error tolerance are sought.

In mathematical terms, we have the following structure. Let the Al elements
(1, (o, and (1(s constitute a vector { = {gl (o <1<2] T. An expansion factor is a

real number o > 1 that satisfies the following minimization problem [57, p. 274]:
af = arg mi:? |- ¢ —round(a- ), (3.8)
a>

where || - || returns the Euclidean norm and round(-) is the rounding-off function.
Resulting integer approximations are given by m; = round(a* - (1), ms = round(a* -
(2), and mg = round(a* - (1(3).

Now, we can recast (3.7) according to:

A ~AM L (m1- A 4 my - A iy - AGG)Y.
Of* n n n

Notice that the above expression in parentheses can be evaluated by means of integer
arithmetic, which requires simple additions and bit-shift operations in hardware. As
a consequence, only a single non-integer multiplication by 1/a* is required.

As posed above, (3.8) is a non-linear, unconstrained optimization problem.
Its intractability indicates the application of computational search. In this case, we

must impose a constraint to the search space.
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Table 3.8: FRS Based on the Expansion Factor Method

Expansion Factor 49.3336 78.7465 192.2623 271.0093 463.2723 734.2817
mi 156 249 608 857 1465 2322
Al Encoded Base |\ * 156 965 647 912 1550 2471
ms 525 838 2046 2834 4930 7814

Approximate Error  0.00020 0.00002 0.01182 0.00730 0.00520 0.00457

Thus, for 1 < a < 10? with a precision of 10™%, we could obtain five distinct
solutions for (3.8). These values are listed in Table 3.5. The scaling factor choice
depends on the specific application in question, resource constraints, and the accepted
error tolerance.

For example, taking o* = 49.3336, we obtain:

G 156.00654 . . . 156 my
o’ ¢ | = 1166.01731...| & [166] = |my
G162 524.99284 ... 525 ms

Above particular scaling leads to percent relative errors of 0.0042, 0.0104,
and 0.0014 in (;, (s, (1(s, respectively. We used the CSD representation for Daub-4
filters and both CSD representation and the expansion factor method for Daub-6.

The expansion factor method is expected to offer better results for larger
basis. Indeed, the Daub-4 architecture could not benefit from the expansion factor
method since its basis contains only one non-unity element: (. However, because

the AI basis related to the Daub-6 scheme has three non-unity elements ((;, (s,
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(1(2), the expansion factor method could lead to useful architectures in the FRS
following computational search algorithms for suitable integer combinations. In the

next section we provide measurement results concerning the expansion factor method.

3.4 FPGA Implementation and Results

The architectures for Daub-4 and -6 filter banks were implemented on Xil-
inx Virtex xc6vex240t-1ff1156 device using the ML605 evaluation board. The designs
were tested with six different standard images obtained from [59]. Gray 512x512 im-
ages images Woman, Cameraman, and Reflection to the Daub-4 filter banks whereas
Mandrill, Lena, and C'T head were submitted to the Daub-6 filter banks. Hardware
results were verified with MATLAB. Fig. 5.6 displays hardware results from the Xilinx
FPGA for the Daub-4 and -6 filter banks. Table 3.6 shows a performance comparison
among proposed Daub-4 and -6 architectures for single level decomposition of 8-bit
Lena image.

For comparison, we devised a version of the proposed system that operates
over fixed-point arithmetic instead of Al-based arithmetic. For such, we employed
8 bits for word size with 6 fractional bits. In this case, the required filter banks were
implemented by quantizing the exact filter coefficients into the fixed-point represen-
tation. Notice that the fixed-point scheme incurs coupled quantization noise, whereas
the Al-based architecture is immune to this source of contamination. Fig. 3.6 shows

the results for the fixed-point design.
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Figure 3.5: Approximation sub-images Ay, Ay, Az, and A, obtained from on-chip
physical verification on a Virtex-6 vex240t-1ff1156.
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Table 3.9: Comparison of Daub-4 and -6 Performances '

Aspect Daub-4 Daub-6
FPGA Xilinx Virtex-6 Xilinx Virtex-6
Target Device vex240t-1f1156 - vex240t-11£1156
Max. Freq. (MHz) 442.47 274.72
CPD (ns) 2.26 3.64
Dynamic Power (mW) 38 57
PSNR (dB) 66.82 68.12
# Adders 32 61
Registers 258 765
AT (x1079) 1.62 6.99
AT? (x1071%) 3.66 49.20
Throughput 1ip/ op 1ip/ op

T Measured for single level decomposition with 8-bit in-
put data
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Figure 3.6: Approximation sub-images A1, A, A3z, and A, obtained from FP scheme
(8-bit word length and 6 fractional bits) Daubechies 4- and 6-tap wavelet filters.
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3.4.1 Resource Consumption and Figures of Merit

Tables 3.7 and 3.8 list resource consumption for the Daub-4 and -6 filter
banks. Monitored resources include: the number of slice registers, the look-up table
(LUT) count, and the number of configurable logic blocks (CLB).

Critical path delays (CPD), the maximum operating frequency, area-time
product (AT), and AT? were selected as figures of merit, being also reported in
Tables 3.7 and 3.8.

The AT product is a standard performance metric in digital hardware de-
signs. It refers to chip-area and speed (maximum frequency) of the design. Lower AT
values indicate a higher speed of operation. In an FPGA, the area (A) is provided
by the number of slice LUTs used for logic given by the FPGA design tool called
XFLOW and the time is simply the critical path delay. Quantity AT? is useful,
when clock speed is the driving factor of design optimization, for high-throughput
realizations.

Table 3.11 shows the estimated power consumption for the Daub-4 and -6
filter banks.

Xilinx power analyzer (XPA) was employed to analyze the power consump-
tion on Xilinx FPGA Virtex-6 device. The quiescent (static) power dissipation is a
combined effect of standby and leakage power (dominant) dissipations [66]. At 40 nm
process technology static power dominates dynamic power. Dynamic power repre-
sents the fluctuating power as the design runs and is the sum of short-circuit and

capacitive (switching of logic cells) power dissipations. Leakage and standby currents
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Table 3.10: Resource Consumption for Proposed Daub-4 Architecture

Word length

Resource

8 bit 10 bit 12 bit 14 bit 16 bit
Slices 2482 2718 3020 3362 3669
LUTs 8119 9438 10495 11652 12887
CLB 3916 4486 4879 5371 5825
CPD (ns) 3.54 391 428 483 544
AT (x107°) 1.38 1.75 208 259 3.16
AT? (x10713) 490 6.85 893 12,52 17.23

Max. Freq. (MHz)282.50 255.80 233.10 207.00 183.80

Table 3.11: Resource Consumption for Proposed Daub-6 Architecture

Word length

Resource

8 bit 10 bit 12 bit 14 bit 16 bit
Slices (x103) 17.64 19.55 20.99 22.03 23.47
LUTs (x10%) 47.08 52.85 5H58.56 63.21 68.72
CLB (x10%) 21.97 24.30 26.58 28.84 30.46
CPD (ns) 7.04 744 8.02 867 8.96
Area-time (x107°) 154 18.0 21.3 250 27.2

Area-time? (x10713) 10.7 134

171 216 244

Max. Freq. (x100 MHz) 1.464 1.39

1.327 1.264 1.218
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Table 3.14: Memory Requirements

FIFO requirements
Level Daub-4 Daub-6

1 443N  9+458
n > 216+ 244 36 + LN

do exist in digital circuits and are reported for the entire FPGA. Dynamic power
consumption is associated only with the logic of the design under test. Therefore,
reported static power for FPGAs can be several Watts and has limited usefulness as
a metric. Table 4.9 lists the dynamic power consumption for the single level decom-
position. The quiescent power reported for FPGAs are for the entire chip, not just
the relevant parts of the particular design being tested.

The memory requirement expressed as 1-deep FIFO elements count for the
Daub-4 and -6 schemes are given in the Table 3.10 as a function of image size N in
pixels and number of decomposition levels n.

The SNR and peak PSNR were adopted as figures of merit. Table 3.12
provides these quantities for standard input images from [59] for the Daub-4 and -6
architectures. Both fixed-point and Al encoding schemes were considered, for 8-
bit input word length. Table 3.6 shows a comparative performance analysis for the

proposed Daub-4 and -6 designs.
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Table 3.15: Daub-4 and Daub-6 ISE XPower Results

Word length

Power (Watt)

Daub-4

Daub-6

Clock net Quiescent Dynamic Total Clock net Quiescent Dynamic Total

8 0.035 2.573 0.164 2.737 0.097 4.423 0.339 4.762
10 0.038 2.573 0.184 2.757 0.112 4.423 0.348 4.771
12 0.044 2.574 0.201 2.784 0.124 4.424 0.360 4.784
14 0.049 2.574 0.226 2.796 0.137 4.424 0.378  4.802
16 0.055 2.575 0.237 2812 0.145 4.425 0.408 4.833

3.4.2 Comparison with Existing Methods

A significant amount of work is published on 1-D and 2-D DWT VLSI ar-
chitectures [1-3,6,19,31,63,67-69]. In particular, the designs proposed [3,6] address
the Daub-4 and -6 wavelet analysis. Also detailed data is reported in [3,6] allowing
us to derive meaningful comparisons.

Considering 8-bit input word length, the obtained SNR and PSNR values
for proposed architectures, were roughly 30-40% higher than the 1-D and 2-D DWT
architectures described in [3,6].

Among the FRS approaches we have mentioned, we used canonical signed
digit (CSD) approximation for comparison. Moreover, we compared the proposed
architectures with several prominent VLSI 2-D DWT designs archived in literature.
In particular, we separated the following works: [35,60-65]. Table 3.9 shows the
comparison results.

The proposed architectures are also compared with recently published Al

based DW'T architectures. Table 4.9 shows the comparison results. Notice that
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the Daub-6 FRS design based on the expansion factor method could offer a 7%
improvement in the clock frequency when compared to the design based on CSD
representation.

To compare with other architectures, PSNR values presented in Table 4.9, for
proposed Daub-4 and -6 architectures, were obtained by employing reconstructions
between column and row transforms, whereas the PSNR values in Table 3.12 are
entirely 2-D based with single final reconstruction step. All values mentioned in
Table 4.9 are for the CSD representation considering 8-bit equivalent word size,
unless it is specifically mentioned that we employed the expansion factor method.
The comparison is provided in Table 4.9.

The proposed architectures are entirely multiplier free with no coupled quan-
tization noise; possess low levels of both uncorrelated and uncoupled quantization
noise; and offer the maximum frequency of operation among others. Since the design
is speed optimized using fine-grain pipelining and parallel architectures, it is not
anticipated to yield advantages in terms of power and area. In a sense, we traded

the speed (maximum frequency) for power and resources.

3.5 Conclusion

We proposed a multi-encoded Al-based 2-D wavelet filter bank architecture
capable of arbitrarily high numerical accuracy. The introduced design employs Al-
based arithmetic which is (i) error-free, (ii) defined over integers, and (iii) free of

multiplications.
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By employing Al encoding, resulting wavelet decomposed images had SNR
and PSNR figures improved by approximately 25-30% when compared to a counter-
part fixed-point system with 8-bit word length and 6 fractional bits.

Comparing the paper [1], our proposed Daub-4 and -6 architectures The SNR
and PSNR values for the Al-based Daub-6 architecture were approximately 6-10%
higher than the figures obtained from the Daub-4 architecture. The better mathe-
matical properties of the Daub-6 wavelets, such as more vanishing moments, explains
this difference. Due to its inherent simplicity of coefficients and smaller number of Al
numbers, the Daub-4 Al-based architecture had consumed approximately 50% lower
power than the Daub-6 systems. Moreover, its maximum frequency of operation is
approximately 90% higher under the same conditions.

A single FRS is the only source of computational error. Noise injection from
intermediate fixed-point errors is non-existent. We proposed several designs for the
FRS based on CSD representation and expansion factor scaling. These two methods
allowed various configurations of accuracy and tolerable circuit complexities. Appli-
cations exist in sub-band coding of high dynamic range image sequences. Standard
images were analyzed. FPGA based four-level prototypes for Daubechies 4- and
6-tap wavelet filters are operational at a compilation target frequency of 100 MHz
on the Xilinx ML605 board. Place-and-route timing analysis furnished 282.50 MHz
and 146.42 MHz for the Daub-4 and -6 architectures, respectively. Daub-4 and -6
single level decomposition architectures were also FPGA prototyped with the Xilinx
Virtex-6 device at 442.47 and 274.72 MHz, respectively. CMOS sensor arrays for
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imaging are being continuously improved with increasing resolutions. The dynamic
range of typical imaging applications are also increasing and more emphasis is being
made for picture quality. In the presence of higher resolution, increased dynamic
range, and increased frame rate, there is no option but to increase the throughput
of the digital filtering architectures.

Finally, it is important to notice that—in principle—the discussed Al based
scheme can be applied to any type of DWT as long as the scaling and wavelet
coefficients of the corresponding filters could be given and exact representation. For
instance, this is the case for the Haar, Daubechies-4/-6, and Bior-5/3 wavelets. On
the other hand, wavelets such as gaussian, mexican hat do not have a compatible

DWT version.
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CHAPTER IV
AI BASED LOW ADDER COUNT ARCHITECTURE FOR THE 2-D

DAUBECHIES 4-TAP WAVELET FILTER BANK

4.1 Introduction

This chapter provides a novel representation of the Daubechies 4-tap wavelet
filters that aims at minimizing the filter bank arithmetic complexity and, therefore,
leading to less demanding hardware requirements. In particular, we focus on the min-
imization of the number of canonical signed-digit (CSD) terms. Such minimization
seeks to obtain a minimum number of adders for the associated hardware realization
while maintaining all other features of the earlier design described in [70].

The proposed optimal architecture is consistent with the method advanced
in [67] which used integer linear programming for minimizing the number of adders
required for the hardware realization of the 1-D Daubechies 6-tap filter banks. The
paper unfolds as follows. Section 4.2 describes the mathematical framework of 2-D
multi level Al architectures for Daubechies-4 wavelets as detailed in [71]. Section 4.3
furnishes the numerical optimization that leads to a fast algorithm having reduced
number of 2-input adder circuits. Section 5.6.4 provides extensive digital design

details for practical implementations using reconfigurable logic devices as well as
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CMOS technology. The paper is concluded in Section 5.7.

4.2 Al Encoding of Daubechies 4-tap Filter Bank

In this section, we review the previously proposed Al encoding approach for

the implementation of Daubechies 4-tap filters.

4.2.1 Daubechies 4-tap filter

The filter bank structure based on the Daubechies 4-tap filter possesses a
low-pass filter whose impulse response is furnished by:

1 T
h=T/31+V3 3+v3 3-V3 1-V3] (4.1)

where the superscript " denotes the transpose operation. The presence of irrational
quantities, in particular v/3, poses difficulties when considering fixed-point represen-
tation. Conventional implementations often resort to truncation and/or rounding-off
operations as a means to approximate /3 to a representable quantity in fixed-point
arithmetic. However such procedure inevitably introduces computational errors.

In [70,71], it was shown that (5.1) can be split in two integer coefficient

filters. For such, consider the algebraic integer ¢ = v/3. Therefore, we obtain:

1
h :4—\/5(111 +¢-he), (4.2)
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T T
where h; = [1 3 3 1} and he = [1 1 —1 _1} . This approach allows inte-

ger computation by not explicitly evaluating ¢ until the final stage of computation.
As a consequence, error propagation is prevented and final results can be appropri-

ately handled.

4.2.2 Mathematical Notation

Let C be an N x N matrix with columns c;, j = 0,1,...,N -1, C =
Co C Cy - CN_J and v be an N-point column vector. The operation O is

defined according to:

v D C=(2)1) {v*co V*C, V*Cy --- V*CN_1:|

:|:V>{<C0 V*xCy - V*CN_2:|7

where * is the convolution operation. Similarly, operation © is given by: vo C £
(V D CT)T. In other words, operators © and O are the convolution operation along
the rows and columns of a given matrix, respectively, followed by a dyadic down-
sampling. Symbols 2] 1 and 1]2 are used to denote the column-wise and row-wise

down-sampling. respectively [47, pp. 6-26].

4.2.3 Daubechies 4-tap filter bank

Let Ap be an N x N pixels input image and A; be the resulting N/2 x N/2
image approximation after the first level wavelet decomposition. For the one-level
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Figure 4.1: Single Al filter bank decomposition.

decomposition, these images are related according to:

2. A;=hohoA,.

As shown in [70, 71], the approximation image A; consists of two integer
enconded parts A1V and A;©). Superscripts @ and © denote image parts associated
to Al basis elements 1 and (, respectively. These quantities satisfy the following

relation [70,71]:

B Ay :A1(1) +¢- Al(ov

where 1/ = 44/2. The constituents parts of A; are obtained according to the filter
bank structure shown in Fig. 4.1.
This process can be iterated to furnish subsequent coarser approximations.
Thus the nth approximation A, is furnished by " - A, =hoh o A,_; [70,71].
Moreover, it was established that 82"- A, = An(l) +(- An(o. Fig. 4.2 shows
multi-level Al filter bank for 4-level decomposition with final reconstruction step
(FRS). Combinational Block A is detailed in Fig. 4.1, whereas Combination Block B
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Figure 4.2: Multi-level Al filter bank with final reconstruction step (FRS)

is discussed in Section 4.3.

4.3 Optimized Al Encoding

4.3.1 Number of Additions

The AI encoding discussed in previous section implies integer coefficient fil-
ter hy; and h,. Whereas the coefficients of h; can be trivially implemented without
requiring multiplication or bit-shifting operations, the same is not true for the coef-
ficients of hy. In hy, the required multiplications by 3 imply extra additions. This
is due to the fact that the constant 3 can be implemented by means of one addition
and one bit-shift operation (3 =24+1=4—1).

In general terms, depending on the binary representation of the filter co-
efficients, they may contribute with extra additions. Let us adopt the canonical-
signed-digit representation for binary encoding the integer coefficients. Additionally,
let Scgp(n) return the number of additions/subtractions of powers of two required
to represent a given integer n. For example, we have: Scsp(2) = 0, Scsp(3) = 1,
Scsp(11) =2 (11 = 16 — 4 — 1). Clearly, if all elements of a given filter are pow-
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ers of two, then no extra addition is required. In this case, an additive complexity

minimum is achieved.

4.3.2 Filter Parametrization and Optimization

Our goal is to rewrite (5.2) is such way that the coefficients of the resulting
filters can be represented in CSD form with minimum number of additions. For such

let us introduce an integer parameter m in (5.2) as follows:

T T
hz[l 33 1] —m-{l 1 -1 —1]

.
+(<+m)-[1 1 -1 —1}

.

:{1—771 3—m 3+ m l—l—m}

+(<+m)-[1 1 -1 —1]T-

Above expression implies two integer filters:

-
hllz{l—m 3—m 3+m 1+m} )

.
hclzhcz[l 1 -1 —1} :

As a consequence, the required Al element must be replaced for ¢’ = ( +m. Notice
that for m = 0 we obtain (5.2).

The elements of h,’ pose no arithmetic complexity. We focus our attention
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on h;" aiming at finding a suitable value of m such that the resulting coefficients are
efficiently represented in CSD representation.

Let Ri[k] and he[k], k = 0,1,2,3, be the coefficients of hy" and he, respec-
tively. In view of the above discussion, the optimal value of m, denoted m*, is the

solution of the following minimization problem:

3
m’ = arg min kz_o Scsp (R [k])

—arg glé%{ Scsp(1 —m) + Sesp(3 —m) (43)

+ SCSD(I + m) + SCSD(3 + m)}

Direct optimization tools are not applicable due to the difficulty in analyti-
cally manipulate (5.3). Therefore, we resort to numerical search methods as a means
to solve (5.3). Such computational search requires that we limit the search space.
Let {m € Z : |m| < 1024} be the considered search space. Under these conditions,

we could obtain m* = +1, which results in the following filters:

T T
h1’={2 4 2 0] or hl’z{o 9 4 2] ,

for m* = —1 and m* = 1, respectively. The implied algebraic integers are v/3 £ 1,
respectively. Notice that m* = 1 not only minimizes (5.3), but it is also a zero of
the objective function. This can be directly verified since all coefficients of resulting

filters hy’ are powers of two. Thus the CSD representation of theses coefficients
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Table 4.1: Filter Parametrization and Optimization

# of CSD
additions

-5 1 [68 -2 —4LT V35

h,’ ('=C+m

-3 1 4 6 0 =2 V3-3
-1 0 2 4 20 V3-1
0 2 1331 V3
10 02 42" V3+1
3 1 [-2 0 6 4" V3+3
5 1 [-4 -2 8 6]' V345

****************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Al Based Daub-4 High—pass Structure

Figure 4.3: Proposed Al based Daubechies 4-tap high-pass filter.

require no extra additions.

Suboptimal solutions occur at m = £3 and m = +5. In both cases, the
resulting filters are improvements over the original filter hy, requiring only one extra
addition. Table 4.1 displays the obtained optimal and suboptimal results. Con-
sidering the adopted search space, all values of m—except for the values listed in
Table 4.1—resulted in filters whose arithmetical complexity is greater than or equal

to the the complexity of the original filter hy.
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4.3.3 High-pass Filter Implementation

The signal analysis provided by the high-pass filter banks can be imple-
mented in a similar fashion as described for the low-pass filter banks. In fact, the

impulse response of an analysis high-pass filter is given by:

gzﬁ[uﬂ/ﬁ ~3-v3 3-3 1+\/§} : (4.4)

Therefore, the filter g can be Al encoded according to the following formalism:

1 T
g=m[2+c —4—( 2= 2+c’] - (4.5)

Thus, we maintain the expression below:

1 /
g :m(gl +¢ - ge), (4.6)

T T
where g; = [2 —4 92 2} and g¢ = [1 1 -1 1] . Notice that (4.6) forms

the baseline for the multi-level decomposition required to compute the detail sub-
images Dv,,, Dh,,, and Dd,, as shown in Fig. 2.1. Fig. 4.3 shows Daubechies 4-tap
high-pass filter realization.

In fact, our architecture is an efficient framework for computing the standard
Daubechies 4-tap filter bank. Because of it exactness, the proposed architecture does

not inflict any change in the mathematical properties of the original Daubechies filter
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bank. All good analytic features of the Daubechies filter bank are preserved, such as
vanishing moments and zero dc leakage. Therefore, since all the multi-encoded Al
bases in our work maintain exact computation up to the single final reconstruction
step, the problem of energy leakage cannot arise in this type of implementation.
Additionally, at the FRS the accuracy of Al bases can be independently
adjusted according to the required precision. This distinct feature not only allows
arbitrarily high levels of precision for each of the coefficients, but also enables the
coefficient errors in the final FRS to be completely decoupled from each other. There-
fore, the problem of spectral leakage is not present, being irrelevant for this method
of AI computation. The details of Al decoding operation of Al bases is discussed in

the following section.

4.3.4 Final Reconstruction Step

The proposed multi-level analysis is computed entirely over the Al represen-
tation. However, the resulting Al encoded approximations (An(l), An(cl)) must be
converted to usual fixed-point arithmetic in order to be further processed by standard

systems. The decoding operation consists of performing the following calculation:

1 /

The factor 3%" is always a power of two, which can be conveniently implemented

with bit-shift operations. This decoding operation is realized at the FRS block
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Table 4.2: CSD Representation for ¢

Word-length  CSD Encoding % Rel. Error

8 bit 1—272 0.0246
10 bit 1—22_9°6 0.0032
12 bit 1—272_9°6 0.0032

14bit 1-272-276-2790.00040
16 bit 1-272-276-279 0.00040

(Fig. 4.2). Therefore, the only possible source of errors in the proposed architecture
is the multiplication by ¢’. The two optimal values of m* = +1 furnish ¢’ = v/3 £ 1.
Thus, since v/3 — 1 & 0.73205 has a simpler CSD representation, we select m* = —1
as the final design choice. Table 4.2 displays the CSD encoding of ¢/ = /3 — 1 for
several word-lengths as well as the associate relative errors. Of course, the selected

approximation depends on the application and its error tolerance.

4.3.5 Proposed Structures and Savings in Adders

Fig. 4.4 (a) displays the proposed filter structure to implement h;. This filter
requires only 5 adders. In comparison, the previous design detailed in [71] requires
seven additions. This represents a decrease of 28% in additive complexity. Each
AT block, as shown in Fig. 4.1, contains three instantiations of h; which implies a
saving of six additions per Al block. Fig. 4.2 shows that an n-level decomposition,
n > 1, requires 2n — 1 Al blocks. Thus in terms of Al blocks, we have a saving of
6-(2n—1)=12-n — 6 additions.

The associated Combinational Block B is shown in Fig. 4.4. This block
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Figure 4.4: (a) Proposed Al based Daubechies 4-tap filter; (b) Combinational Block
B.

requires 10 additions, whereas the previously proposed design requires 8 additions.
We need n — 1 realizations of Combinational Block B (cf. Fig. 4.2) for an > 1
decomposition. Thus, we have an increase of 2 - (n — 1) additions, when compared
to previous design [71]. In both previous and proposed designs, the Combination
Block A requires three additions; therefore it accounts for no complexity change.

At the FRS, the CSD representation of the new Al integer choice (' = ( —1
requires one less addition when compared to (, which was employed in previous
design [71]. Thus, one extra addition is saved.

Above discussion is summarized in the following net savings in numbers of

two input adder circuits:

Total savings in adders =(12-n —6) — (2-n—2) +1

=10-n—3, n>1.
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4.4 FPGA and ASIC Implementation and Results

The architectures for Daubechies 4-tap filter bank were physically imple-
mented and hardware co-simulated the Xilinx Virtex xc6vex240t-1f1156 FPGA de-
vice using the ML605 evaluation board. The proposed designs were also imple-
mented with CMOS 45 nm ASIC technology upto synthesis level at supply voltage
Vbp = 1.1 V. The designs were tested with three different standard images obtained
from [59]. Gray 512x512 images Lena, Mandrill, and Cameraman were submit-
ted, block-by-block, in row-parallel format, to the proposed architecture. Hardware
results were verified with MATLAB. Fig. 5.6 displays hardware results of on-chip
physical verification on a Virtex-6 vex240t-1ff1156 for the proposed Daubechies 4-
tap filter bank. The implementation results for the Xilinx Virtex-6 vcx240t-1ff1156
FPGA device and the CMOS 45 nm ASIC technology are described in the following
subsections.

The SNR and peak PSNR were adopted as image quality measures. Ta-
ble 5.14 provides these quantities for above mentioned images for both the standard
fixed-point implementation and the proposed Al-based design. By employing Al en-
coding, resulting wavelet decomposed images had SNR and PSNR figures improved
by approximately 30-35% when compared to a counterpart fixed-point system with
8-bit word length and 6 fractional bits. In both schemes, the considered word length

was & bit.
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() Az (k) As (1) Ay

Figure 4.5: Approximation sub-images A, Ay, A3z, and A, obtained from on-chip
physical verification on a Virtex-6 vex240t-1ff1156.

69



80°6¢ 121 08°ch 12°9% URUIRIOUIR))

GL'SE PS 1V 6L°Ch 0GP Chcl | (dp) UNSd

18°8¢ 69°0F 8¢'TH €0'9p [[pUe

€0°ze 86°GE 179'8¢ 81°0% URUIRIOUIR]) yod-poxty p-que(
z8°¢e 79°GE c1's¢ LTV RUO (dP) UNS

90°T¢€ 90°¢e g¢qe €T Th [[LpUe

(g x 28) "V (79 x 79) ¢V (82T X 8¢I) ¢V (96% X 9¢g) 'V

odewr-qng ojewrxoxddy

(TT1G X TT19) 1oadsy posn IO

oSeW[ [RUISLI() POINSEI[\  SWLYDS  J9[OARAA

Surpoour] Ty pue jutod-poxL] uo peseq yueg] 103[L] dej-f serypaqne( 10§ YNSd PUB HNS ¥ O[qHL

70



LE°GG 866G €0'19 91°¢9 URUIRIDUIR))
L¥9G 796 1229 8L¥9 R (gp) UNSd
16°GS L1°8G 8€°29 0z°G9 [[HpUely
1728 1SS L0°8G 619 URUIRIDUIR)) SWpPoOUT IV F-qneq
98°¢G 8¥°G¢ 628G 91°19 RUO] (dp) UNS
€8°0G ST¥H¢ LT8G 9z°09 [[HpUey
(ce x 2€) "'V (79 X 79) ¥V (82T x 8¢1) °V (9¢¢ X 96¢7) 'V (21g X gIg)  9dsy pasn) Y1

ofeut-qng ojewrxoxddy

oSewI[ [RUISLI() POINSEI[N  OWOYDS  JO[OARAA

(ponujuop) Surpoouy Ty pue jurod-poxLf uo pasee] sure 103]1,] dej-j sorpoqne( 10§ YNSA PUe HNS 9 O[qRL

71



4.4.1 Resource Consumption and Figures of Merit
Xilinx Virtex-6 Implementation

Table 4.5 lists resource consumption for the number of slice registers, look-up
table (LUT) count, and configurable logic blocks (CLB). Critical path delays (CPD)
and the maximum operating frequency are also reported. We considered the following
word length sizes: 8, 10, 12, 14, and 16 bits.

We adopt the area-time (AT) and area-time? (AT?) as figures of merit. The
area-time product is a standard performance metric in digital hardware designs. It
refers to chip-area and speed (maximum frequency) of the design. Lower area-time
values indicate a higher speed of operation. In an FPGA implementation, the area
is provided by the number of slice LUTs employed for logic given by the FPGA
design tool called XFLOW and the time is simply the critical path delay. Quantity
area-time? is useful, when clock speed is the driving factor of design optimization,
for high-throughput realizations.

Table 4.6 shows the estimated power consumption obtained from Xilinx
power analyzer (XPA) in Xilinx-ISE. Clock net, quiescent, and dynamic powers are
reported for the considered input word lengths.

The FPGA implementation employs an oscillator frequency Fioox
100 MHz. Thus the final throughput is F.,q/N? image frames per second. Thus,

for 512 x 512 input images, a frame rate of ~ 381 Hz was obtained.
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Table 4.7: Hardware Resource Consumption for Xilinx Virtex-6 vex240t-1f1156 Im-
plementation

Word length

Resource 8 bit 10 bit 12 bit 14 bit 16 bit
Registers 9194 2,410 2,828 3,252 3,643
LUTs 8106 9,382 10,258 11,196 12,346
CLB 3,102 3,280 3,761 4,286 4815
CPD (ns) 381 394 426 467 514

Area-time (x10°) 1.18 129 1.60 200 247
Area-time? (x10° %) 450 5.10 6.82 9.34 12.72
Max. Freq. (MHz) 263.15252.25239.96 220.05 204.18

Table 4.8: ISE XPower Results

Word-length

Power (Watt) o900t 12 bit 14 bit 16 bit
Clock net 0,048 0.053 0.057 0.062 0.068
Quiescent  2.562 2.563 2.563 2.565 2.505
Dynamic  0.226 0.248 0.27 0.291 0.318
Total 2,788 2.811 2.833 2.856 2.883

CMOS 45 nm ASIC Synthesis

Table 4.7 and 5.12 show resource consumption and estimated power con-
sumption with regard to the ASIC 45 nm implementation generated by Encounter®)
RTL compiler [72]. We refer to leakage power, dynamic power, and total power as
L,, D,, and T, respectively. The ASIC implementation of the proposed architec-
ture yielded a maximum frequency of 523.56 MHz for 8-bit input data as shown in

Table 4.7. The considered supply voltage was Vpp = 1.1 V.

4.4.2 Comparison with Existing Methods
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Table 4.9: Hardware Resource Consumption for CMOS 45 nm ASIC Synthesis (Sup-
ply Voltage Vpp = 1.1 V)

Word length 8 bit 10 bit 12 bit 14 bit 16 bit
ASIC Gate Count 360566 402817 443094 494190 528258
Area (mm?) 1.59 1.78 1.96 221 2.33
CPD (time in ns) 1.912 1.931 1.958 1.976 1.997
Area-time 3.04 341 384 438 4.65
Area-time? 5.74 6.64 7.514 841 9.29
Fhax (MHz)  523.56 516.62 511.51 505.23 500.75

Table 4.10: Power Consumption for CMOS 45 nm ASIC Synthesis (Supply Voltage
Viop = 1.1 V)

Word length 8 bit 10 bit 12 bit 14 bit 16 bit
L, (mW) 1323 14.64 16.23 17.78 19.22
D, (mW) 1774.511950.262172. 802299.702580.73
T, (mW) 1787.731964.38 2189.01 2317.482599.95
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The proposed architecture is compared with published AI based DWT ar-
chitectures [1,3,6,17,19,67,70,71]. Results are presented in Table 4.9. To compare
with other architectures, PSNR values presented in Table 4.9, for proposed archi-
tecture, were obtained by employing reconstructions between column and row trans-
forms, whereas the PSNR values in Table 5.14 are entirely 2-D based with single
final reconstruction step. The proposed architecture provides advantage in hardware
complexity (# adders) when compared to remaining considered architectures.

The proposed architecture is entirely multiplier-free with no coupled quanti-
zation noise. It also possesses low levels of both uncorrelated and uncoupled quanti-
zation noise and outperforms other architectures in terms of the maximum frequency

of operation.

4.5 Conclusion

We proposed an optimized multi-rate wavelet filter bank architecture which
is Al-based, and multi-encoded. Additionally, the introduced design is capable of
furnishing arbitrarily high numerical accuracy using error-free integer arithmetic. In
fact, the proposed architecture preserves all features of our earlier architectures such
as (i) error-free computation, (ii) defined over integers, and (iii) free of multiplica-
tions. It also reduces hardware complexity (number of adders) leading to considerable
reduction in cost for the hardware realization of multi-level DW'Ts of Daubechies 4-

tap filter banks. We showed that approximately 10 adders per decomposition levels
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are saved when compared to the previous design [71]. In particular, for the 4-level
decomposition, the total savings in number of adders is 37.

The single FRS is the only source of computational error. Noise injection
from intermediate fixed-point errors is fully eliminated. Applications exist in subband
coding of high dynamic range image sequences. Standard images have been analyzed
with Mandrill, Lena, Cameraman examples shown. An FPGA based 4-level prototype
is operational at 100 MHz. Place-and-route timing analysis furnished 263.15 MHz
for the Daubechies 4-tap architecture. In addition, the proposed architecture was

also realized in 45 nm ASIC technology at 523.56 MHz for 8-bit input data.
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CHAPTER V
AT BASED LOW ADDER COUNT ARCHITECTURE FOR THE 1-D/ 2-D

DAUBECHIES 6-TAP WAVELET FILTER BANKS

5.1 Introduction

In our recent work [70,71] we addressed the issue of computational noise
injection, introduced due to the fixed-point representation of Daub-4 and -6 filter
coefficients using an algebraic integer (Al) based representation. An algebraic integer
(AI) encoding of Daubechies filter coefficients. Algebraic integers are roots of monic
polynomials [58]. Such representation could effectively control error propagation and
precision levels.

In the present chapter, we propose a novel representation of the Daub-6
wavelet filters that results minimizing the filter bank arithmetic complexity of the
filter banks and, therefore, leading to low adder count requirements, i.e., minimizing
canonical signed-digit (CSD) terms. The proposed optimal architecture is consistent
with the method advanced in [67], which employed integer linear programming for
minimizing the number of adders required for the hardware realization of the 1-D
Daub-6 filter banks.

The chapter unfolds as follows. Section 2.1 reviews the principles of sub-band
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coding by means of Daub -6 filter. Section 5.2 provides Daub-6 scaling coefficients
and prior art on its Al encoding. Section 4.3 furnishes the numerical optimization
that leads to a fast algorithm having reduced number of 2-input adder circuits. The
final reconstruction step (FRS) procedure for the proposed analyses are described
in Section 3.3. Section 5.6.4 provides extensive digital design details for practical
implementations using reconfigurable logic devices as well as CMOS technology. The

paper is concluded in Section 5.7.

5.2 Daubechies 6-tap Filter Coefficients and Al basis

5.2.1 Mathematical Background

An algebraic integer is a real or complex number that is a root of a monic
polynomial with integer coefficients [51,54,58]. Algebraic integers can be employed to
define encoding mappings which can precisely represent particular irrational numbers
by means of usual integers. Considering the roots of the monic polynomial 22 — 10
and z* — 1022 — 15 = 0 we can extend the set of integers Z by including the algebraic
integer ¢; = v/10 and ¢, = \/m Doing so, a given quantity y can possibly
be represented as y =c+d- ¢ +e- (o + f - (1(, where a, b, ¢, d, e, and f are usual

integers.

5.2.2 Daub-6 Filter Impulse Response

The 2-D FIR filter bank based on the Daub-6 filter bank is of particular

relevance [2,45]. Let the low-pass filter associate to these filter banks be denoted
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as h . This particular filter possesses irrational quantities with an impulse response

furnished by [2,3,6,20,43,48|:

L+ v+ V572V
5+ /10 + 3v/5 + 24/10

1 |10=2v10+2v/5+ 210
- 16v2 10 — 2¢/10 — 2¢/5 + 24/10
5+ /10 — 3v/5 + 21/10
1410 — /5 + 2v/10

where the superscript | denotes transposition. The presence of irrational quantities,
in particular v/10 and \/m, poses difficulties when considering fixed-point
representation. Conventional implementations always resort to truncation and/or
rounding-off operations as a means to approximate /10 and m to a rep-
resentable quantity in fixed-point arithmetic. However such procedure inevitably
introduces computational errors.

In [71], it was demonstrated that (5.1) can be split in three integer coefficient
filters. For such, consider the algebraic integer ¢(; = v/10 and ¢ = /5 + 2V/10.

Therefore, we obtain:

h =5 (b + G + G- ). (5.2
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T T
Whereﬁ=16\/§,h1=l1 5 10 10 5 1] ,h<1=[1 1 -2 -2 1 1| and

-
he, = {1 32 2 3 1] . This scheme grants integer computation by not explic-
itly evaluating ¢; and ¢, until the final stage of computation. The set {1, (1, (o, (1(2}
forms a base for Al encoding. As a consequence, error propagation is deterred and

final results can be appropriately obtained.

5.2.3 Multi-level Decomposition

The proposed Al-based wavelet analyses based on Daub-6 filter bank is com-
puted entirely over extended integer fields. Therefore, for a given input data, a single
level decomposition of the discussed Al based wavelet analysis results in an output
data consisting of four parts, where each part is associated to a basis element. These
four parts are required to be combined from a level to the next up to the final re-
construction step. Two types of combinational blocks are required, being their inner
structures detailed later in the current work.

In Fig. 5.1(a) and (b), we show the overall scheme for a four-level decompo-
sition for both the 1-D and the 2-D cases, respectively. We refer to the combination
steps as Combinational Block A, By, and Bs.

The following notation is employed. For the 1-D decomposition (Fig. 5.1(a)),
vo is an N-point input vector and v{", v, v{) and v{“%) are resulting AI encoded
data according to the basis elements {1, (1, (2, (1(2}, respectively. These vectors are

combined in the final reconstruct step and converted back to standard fixed-point

representation. This is required in order to interface the resulting approximation sub-
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Figure 5.1: Multi-level wavelet decomposition with Daubechies 6-tap filter.

images with conventional real time systems. The result is a N/16-point vector vy.

Similarly, for the 2-D case (Fig. 5.1(b)), the input image is Ay and the resulting Al

encoded data are A;M, A, A, and A,61¢2), respectively.

5.3 Optimized Al Encoding

5.3.1 Number of Additions

The Al encoding discussed in previous section implies integer coefficient

filters hy, h¢,, and h¢,. In hy, the required multiplications by 5 and 10 imply extra

additions. This is because multiplying a number x by constant 5 or 10 require one

addition and one bit-shift operation (5-x = & < 2 + z) or one addition and two

bit-shift operations (10 -z =z < 3 4+ = < 1), respectively.
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In general terms, depending on the binary representation of the filter coef-
ficients, they may contribute with extra additions. We adopt the canonical-signed-
digit representation for binary encoding the integer coefficients to avoid multiplica-
tive complexity by use of adders and bit shifters. Additionally, let Scsp(n) re-
turn the number of additions/subtractions of powers of two required to represent
a given integer n. For example, we have: Scsp(2) = 0, Scsp(3) = 1, Scsp(11) = 2
(11 =16 —4 — 1). Clearly, if all elements of a given filter are dyadic, then no extra

addition is demanded. In this scenario, a minimal additive complexity is attained.

5.3.2 Filter Parametrization and Optimization

Our goal is to rearrange (5.2) in such a way that the coefficients of the

resulting filters can be represented in CSD form with minimum number of additions.
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For such let us introduce two integer parameter m and n in (5.2) as follows:

1 1 1 1 1

) 1 1 3 3

10 -2 -2 2 2

fh=| |-m| |+(G+m)| |-n| |+(G+n)

10 —2 —2 -2 —2

) 1 1 -3 -3

1 1 1 -1 —1
l—m-—n 1 1
5—m—3n 1 3

10 +2m — 2n -2 2

= + (G +m) + (G2 +n)

10+ 2m + 2n —2 -2
d—m+3n 1 -3
1—m+n 1 -1

Above expression implies three integer filters:

l1—-m-—n 1 1

5—m —3n 1 3

) 10 +2m — 2n ) —2 / 2
h; = 7hC1 = 7hC2 =

10+ 2m + 2n —2 -2

5—m+3n 1 -3

l—-m+n 1 —1
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Notice that hy,” = he, and hg,' = he,. Moreover, the required Al elements must
be replaced for ', = ¢(; + m and ¢’y = (3 + n. Notice that, for m = n = 0, we
obtain (5.2).

Since the elements of hy,” and h¢,” pose very low arithmetic complexity, we
focus our attention on hy’ aiming at finding a suitable value of m and n such that
the resulting coefficients are efficiently represented with minimum CSD additions.

Let Rhi[k], k = 0,1,...,5, be the coefficients of hy". In view of the above
discussion, the optimal value of m and n, denoted m* and n*, are the solutions of

the following minimization problem:

5
(m*n*) = arg ngggzkz_%SCSD(hl[k])

=arg min { Scsp(l —m —n) + Scgp(5 —m — 3n)

m,ne

(5.3)

+ SCSD(lO +2m — 271) + SCSD(IO —2m 4+ 2n)

+ Scsp(5 —m +3n) + Sesp(1 — m+n)}.

Usual optimization tools are not applicable due to the difficulty in analyti-
cally manipulate (5.3). Therefore, we resort to numerical search methods as a means
to solve (5.3). Such computational search requires that we limit the search space. Let
{m,n € Z: |m| <1024, |n| < 1024} be the considered search space. Under these con-
ditions, we could obtain four distinct solutions: {(—3,0), (-5, —2),(—5,2),(3,0)}.
Each optimum pair leads to different filter structures; and, consequently, to differ-

ent architectures. We refer to each of these possible implementations as Method 1,
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Table 5.1: Filter Parametrization and Optimization

— , CSD
Method (m*,n*) hy additions
1 (=300 [48 4 48 4] 0
2 (=5,-2) [8 16 4 —4 4 4] 0
3 (=52 [44 —4 4 16 8] 0
4 (300 [-2 216162 -2 0

Method 2, Method 3, and Method 4, respectively.

The resulting filters h;" associated to each optimum solution possess zero
multiplicative complexity. This can be directly verified since all coefficients of hy’
are powers of two. Thus the CSD representation of theses coefficients require no extra

additions. Table 4.1 summarizes the obtained results and employed terminology.

5.4 Final Reconstruction Step

Decoding operations for Daub-6 1-D and 2-D consist of explicitly performing

the following computations, respectively [71]:
B vo = (va® ¢ v 4 G val® 4 (G v, (5.4)

B2 A, = ( AW 4 AL AL 4l An(cicé)) ' (5.5)

Fortunately, the factor 3%" is always a power of two, which can be conve-

niently realized with bit-shift operations. The above decoding operation is realized at

87



the FRS blocks depicted in Fig. 5.1(a) and 5.1(b), for the 1-D and 2-D structures, re-
spectively. Therefore, the only possible source of errors in the proposed architectures

are the multiplication by Al basis elements.

5.4.1 CSD Approximation

The FRS can be directly implemented by approximating the required ir-
rationals in (5.5) into rationals. A possibility is employing CSD representation.
Table 3.4 shows encoding for ¢; and ¢}, and (j¢) for several word lengths as
well as the associate relative errors. CSD encoding requires only bit-shifters and

adders/subtracters.

5.5 1-D Designs and Results

In this section, we detail and analyse the proposed 1-D Daub-6 designs.
The particular choice of elements for the AI Daub-6 filter have a central role in
generating optimized architecture. Some of the fundamental blocks employed in the
1-D designs are implicitly present in the 2-D design shown in [71]. Being the blocks
in [71] structurally different—although functionally equivalent— we could refer to

them for comparison with the new introduced designs.

5.5.1 Proposed Structures and Additive Complexity

Combinational Blocks
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11 15 11 15 11
6 2 10 2 10 2
4 4
Cobinational Block A- Method-1 Cobinational Block A- Method-2 Cobinational Block A- Method-3
(a) Method 1 (b) Method 2 (¢) Method 3
6 2

Cobinational Block A- Method-4

(d) Method 4

Figure 5.2: Combinational Block A for 1-D/ 2-D Daub-6 filter.

Figs. 5.2 and 5.3 show the inner details of Combinational Blocks A and B;
(cf. Fig. 5.1), respectively, when Methods 1, 2, 3, and 4 are considered. Table 5.7
shows the CSD realizations of the constants required for above two blocks. In [71],
Combinational Block A was given a design that requires eight adders, which has
lower complexity compared to the present design. However, we show that the overall
complexity of the proposed schemes is decreased on account of savings in other parts

of the architectures.
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Figure 5.3: Combinational Block B; for 1-D Daub-6 filter.
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Core Structure

Fig. 5.4 displays the proposed structures for filter h for each of the considered
methods. These filters require only 13 adders for a single Daub-6 filter realization.
In comparison, the previous design detailed in [71] requires fifteen additions. This
represents a decrease of approximately 13% in additive complexity. Each Al block
contains four instantiations of h, which implies a saving of eight additions per Al

block.

Final Reconstruction Step

The FRS based on the direct CSD approach was considered according to the
data given Table 3.4. The number of required adders at the FRS for each design
is shown in Table 5.4. Notice that Method 3 is less efficient requiring 10 adders,

whereas all remaining approaches require 8 adders.

5.5.2 Overall Adder Count

For an n-level decomposition, n > 2, Fig. 5.1 (a) suggests the following
number of required blocks: one Combinational Block A, 4(n — 1) AI blocks, n — 2

Combinational Blocks B;, and one FRS block. Table 5.4 shows the adder count

complexity for all 1-D designs. Thus, for instance, the 4-level decomposition shown
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Daub-6 Al Filter Structure- Method 1 Daub-6 Al Filter Structure- Method 2

(a) Method 1 (b) Method 2

Daub-6 Al Filter Structure- Method 3 Daub-6 Al Filter Structure- Method 4

(c) Method 3 (d) Method 4

Figure 5.4: Proposed optimal realization of the Daub-6 filter.
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Table 5.5: Number of Adders Required for all Proposed 1-D Designs using Proposed
CSD in Table 3.4

Method AI Block A Block B; FRS

1 13 10 16 8
2 13 12 22 8
3 13 12 22 10
4 13 10 16 8

in Fig. 5.1 (a), has the following total adder count: 206, 220, 222, and 206, for

Methods 1, 2, 3, and 4, respectively.

5.5.3 Resource Consumption and Figures of Merit
Xilinx Virtex-6 Implementation

Proposed 1-D multi-level Daub-6 filters based on Methods 1, 2, 3, and 4 were
implemented on the Xilinx Virtex-6 vex240t-1ff1156 FPGA device. Table 5.5 lists
the resource consumption for the number of slice registers and look-up table (LUT)
count for the 1-D designs. Critical path delays (CPD) and the maximum operating
frequency (MF) are also reported. We considered word length of 8 bits. As figures of
merit, we also adopted the area-time (AT) and area-time? (AT?) products. Metric AT
provides insight into circuit performance considering chip area, while metric AT? is
used for circuits where speed requirements are of higher importance. Table 5.6 shows
the estimated power consumption obtained from Xilinx-ISE for 1-D designs. Clock
net, quiescent and dynamic powers are reported for the considered input word length.

The total power reported in Table 5.6 is the sum of quiescent and dynamic powers.

96



Table 5.6: Hardware resource consumption with Xilinx Virtex-6 vex240t-1£f1156 for
1-D Daub-6 implementation

Resource Method 1 Method 2 Method 3 Method 4
Registers (x10%)  2.89 2.78 3.10 3.20
LUTs (x10?) 5.47 7.18 8.11 8.70
CPD (ns) 2.86 3.13 3.27 3.41
MF (x100 MHz) 3.44 3.29 3.11 3.12
AT (x1079) 1.56 2.60 2.61 3.41
AT? (x1071%) 4.46 8.13 8.53 10.09

Table 5.7: Xilinx ISE XPower estimation results for 1-D Daub-6 filter

Power (Watt) Method 1~ Method 2 Method 3  Method 4

Clock net 0.034 0.041 0.048 0.037
Quiescent 1.538 1.562 1.710 1.662
Dynamic 0.204 0.216 0.244 0.235
Total 1.742 1.778 1.954 1.898
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Discussion

As shown in Tables 5.5 and 5.6, resource and power consumptions; perfor-
mance measures AT and AT?; and maximum frequency reveal that proposed Meth-
ods 1 and 2 could outperform the other two methods in all aforementioned perfor-
mance aspects. Table 5.6 At the CSD based FRS, both Methods 1 and 2 possess the
same additive complexity, requiring eight adders as listed in Table 3.4.

As a result of the above discussion, we could separate Methods 1 and 2 as
the best ones; and we regard Methods 3 and 4 as inferior, not considering them as

design options hereafter.

5.6 2-D Designs and Results

In this section, we advance 2-D designs for the Daub-6 filters. In terms of
architecture complexity, the resource consumption of 2-D designs is expected to be
much higher than that of 1-D designs. Therefore the selection of filters for the 2-D
design is of essential relevance. As consequence, based on the results of the 1-D
designs, we consider only Method 1 and 2 as potentially efficient frameworks for the

2-D designs.

5.6.1 Proposed Structures and Adder Count

Combinational Blocks
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Figure 5.5: Combinational block By for 2-D Daub-6 filter.

The 2-D design requires the Combinational Block A, which was already de-
tailed in the 1-D architecture. Combinational Block B, is also necessary for both
Methods 1 and 2. Table 5.7 displays the CSD realizations for the numeric coefficients
employed in this block.

Fig. 5.1(b) shows that we need n — 1 realizations of Combinational Block Bs

Table 5.8: CSD realization of the constants required in Combinational blocks A, By,
and By

Coefficient CSD  Coefficient CSD

3 21 +1 15 21 -1
6 22 42! 30 202!
9 2541 40 25 4 23
10 23 4 21 60 20 — 22

11 242841 135 27423
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for n > 1 levels of decomposition. Combinational Block By requires 21 or 37 when
implemented by Method 1 or 2, respectively. The previously proposed design in [71]
requires 24 additions. Thus we save three adders or demand 13 extra adders, for

Method 1 or 2, respectively, compared to [71].

AIC Block

We refer to the joint extended AI (EAI) and Combinational Block A struc-
tures as the AIC Block (cf. Fig. 5.1(b)), which is reused several times in the overall
architecture. Fig. 5.1 allows us to conclude that an n-level decomposition, n > 1,
requires 4 - n — 3 AIC blocks. Each AIC block contains four Al blocks. Then a total
of 16 - n — 12 Al blocks are needed. As previously discussed, the proposed Al block
requires 13 adders; two less adders when compared to [71]. Therefore in terms of Al
blocks, we have a saving of 2 x (16 - n — 12) = 32 - n — 24 additions.

Moreover, each AIC block require one Combinational Block A, which requires
10 or 12 additions, depending on Method 1 or 2, respectively. Thus, a total of
10-(4n—3)=40-n—30o0r 12 (4-n —3) = 48 - n — 36 adders are required due to

instantiations of Combinational Block A , for Method 1 and 2, respectively.

5.6.2 Complexity Assessment

Considering (i) the required number of blocks for an n-level Daubechies-4
architecture and (ii) the adder count for each block as shown in Table 5.8, we could

derive the expressions for the overall adder count of the proposed architectures.
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Table 5.9: Number of Adders Required and Error Intro-
duced

Block
Method AT A AIC B, FRS TAE!
Madishetty ef ol [71] 158 68 24 13 0.0733
Method 1 13 10 62 21 8§ 0.022%
Method 2 13 12 64 37 8 0.0439

tTotal Absolute Error (TAE) incurred at 8-bit FRS

Methods 1 and 2 require 269 - n — 199 and 293 - n — 221 adders, respectively. The
total absolute error (TAE) is also listed in Table 5.8. This quantity provides the
error incurred in the discussed methods as well as in the earlier scheme described
in [71].

For n = 4 (Fig. 5.1(b)), we have that the total adder count is 877 and 951,
for Method 1 and 2, respectively. The method described in Madishetty et al. [71]
requires 967 adders. Thus, proposed Method 1 and 2 offer an improvement of 9.3%

and 1.6%, respectively.

5.6.3 Overall Savings

Above adder count discussion is summarized in Table 5.8. We obtained the
following net savings in adder circuits at n-level decomposition: 27 - n — 16 and
3-n+ 6, for Method 1 and 2, respectively. For n = 4, the number of adder savings
are 92 and 18, respectively.

Above results on complexity assessment and adder savings show that

Method 1 is significantly superior in comparison with Method 2. Therefore, we
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elect Method 1 as the most adequate approach for the discussed Al-based wavelet

scheme. Hereafter, only Method 1 is considered in our analyses and implementations.

5.6.4 FPGA and ASIC Implementation

The architecture for 2-D Daubechies 6-tap filter bank based on Method 1
was physically implemented and hardware co-simulated on Xilinx Virtex xc6vex240t-
1ff1156 FPGA device using the ML605 evaluation board. Additionally, Method 1
was also synthesized with CMOS 45 nm ASIC technology up to synthesis level at
supply voltage Vpp = 1.1 V. Details of both designs are described in the following

subsections.

Xilinx Virtex-6 Implementation

A rapid prototype is realized using a Xilinx Virtex-6 FPGA device, hosted
on a ML605 rapid prototyping system. The example designs are targeted to the
Xilinx xc6vex240t-1ff1156 FPGA chip with connectivity to a host PC via a JTAG
interface. We considered the following word length sizes: 8, 10, 12, 14, and 16 bits.
Table 5.9 lists resource consumption for slice and LUT count for the 2-D designs.

Test vectors consisting of sequential samples of data from a standard Lena
image [59] were systematically routed, block-by block, to the FPGA using the hard-
ware co-simulation. The FPGA realization used the JTAG connection to obtain

input data, which is filtered using Daub-6 wavelet filters on chip, and results are
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Table 5.10: Hardware Resource Consumption with Xilinx Virtex-6 vex240t-1f1156
for 2-D Daub-6 Implementation

Word length (bits)

8 10 12 14 16

Slices (x10%)  14.16 16.22 18.39 20.03 22.74
LUTs (x10%)  38.53 43.81 49.16 54.22 57.16
CPD (ns) 6.22 6.63 T7.15 7.59 8.17
AT (x107°) 10.67 13.10 16.18 19.12 23.41
AT? (x10713)  6.64 8.68 11.56 14.51 19.68
MF(x100 MHz) 1.68 1.59 152 1.44 1.38

Resource

Table 5.11: Xilinx ISE XPower Estimation Results for 2-D Daub-6 Filter

Word-length (bits)
8 10 12 14 16
Clock net 0.091 0.104 0.112 0.128 0.142
Quiescent 4.271 4.271 4.272 4.272 4.273
Dynamic 0.304 0.319 0.337 0.354 0.371
Total 4.575 4.59 4.609 4.626 4.644

Power (Watt)

routed back to the PC. Fig. 5.6 shows measured results following on-chip physical
implementation as obtain from the FPGA implementation.

Table 5.10 shows the estimated power consumption obtained from Xilinx-ISE
for Method-1 2-D design. Clock net, quiescent, and dynamic powers are reported
for the considered input word lengths. The total power reported in Table 5.10 is the

sum of quiescent and dynamic powers.
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Table 5.12: Hardware Resource Consumption for CMOS 45 nm ASIC Synthesis
(Supply Voltage Vpp = 1.1 V)

Word length (bits)
8 10 12 14 16

AGC (x10°) 8.60 933 10.23 10.98 11.74
Area (mm?) 6.04 6.62 7.34 801 8.82
CPD (ns) 343 378 411 458 4.92
Area-time  2.07 250  3.02  3.67 4.34
Areatime? 7.10 945 1241 16.81 21.35
Foax (MHz) 306.44 283.26 261.17 239.84 212.52

Resource

CMOS 45 nm ASIC Synthesis

Using the free PDK from [72], the digital design for 8-bit images based on
Al-based Method 1 was mapped to the 45 nm CMOS standard cell technology up
to synthesis level using Cadence Encounter. Power consumptions and timing was
estimated and reported. Table 5.11 shows the resource consumption for the ASIC
45 nm synthesis of the 2-D architecture, generated by Encounter® RTL compiler.
We included the ASIC gate count (AGC), chip area, as well as the already discussed
figures of merits. The ASIC synthesis yielded a maximum frequency of 306 MHz when
8-bit input data is considered. Table 5.12 displays the estimated power consumption.
We refer to leakage power, dynamic power, and total power as L,, D,, and T,
respectively. Table 5.13 provides a quantitative and comprehensive comparative

study of published AI based DWT architectures.

5.6.5 Image Quality Assessment
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Table 5.13: Power Consumption for CMOS 45 nm ASIC Synthesis (Supply Voltage
Vop = 1.1 V)

Word length (bits)
Power 8 10 12 14 16
L, (mW) 32.8634.11 36.50 38.42 40.74
D, (W) 4.12 4.63 5.18 5.62 6.02
T, (W) 4.15 4.66 5.21 5.66 6.06

For comparison purposes, we devised a version of the proposed system that
operates over fixed-point arithmetic instead of Al based arithmetic. For such, we
employed 8-bit words with 6 fractional bits. In this case, the required filter banks
were implemented by quantizing the exact filter coefficients into the fixed-point rep-
resentation.

As image quality measures, we adopted the signal to noise ratio (SNR) and
peak SNR (PSNR). Table 5.14 provides the obtained measures for both the fixed-
point implementation as well as the proposed Al based design. We noticed an ap-
proximate 5% increase in SNR/PSNR figures in favour of the proposed design when

compared to [71].

5.7 Conclusion

We proposed an optimized multi-rate Daub-6 filter bank architecture which
is Al-based, and multi-encoded. Additionally, the introduced design is capable of

furnishing arbitrarily high numerical accuracy using error-free integer arithmetic.
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Figure 5.6: (a)-(d) Approximation sub-images A, A,, A3z, and A, obtained from
on-chip physical verification on a Virtex-6 vex240t-1f1156 considering Method 1.

In fact, the proposed architecture preserves all features of our earlier architectures
such as (i) error-free computation, (i) defined over integers, and (iii) free of mul-
tiplications. It also reduces hardware complexity (number of adders) leading to
considerable reduction in cost for the hardware realization of multi-level DWTs of
Daubechies 6-tap filter banks. The single FRS is the only source of computational
error. Noise injection from intermediate fixed-point errors is fully eliminated. An
FPGA based 4-level prototype is operational at 100 MHz. Place-and-route timing

analysis furnished 344 MHz for the Daubechies 6-tap architecture.
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Table 5.16: SNR and PSNR for Lena Image Approximation for 2-D Daub-6

Scheme  Measured Approximation
Used Aspect  Aj (256 x 256) A, (128 x 128) A3 (64 x 64) Ay (32 x 32)
SNR (dB) 41.23 35.38 33.06 31.06
Fixed-point PSNR (dB) 45.05 42.79 41.84 38.75
SNR (dB) 68.27 65.41 62.48 60.37
Method 1 PSNR (dB) 71.54 67.12 65.05 63.86
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CHAPTER VI

CONCLUSIONS & FUTURE WORK

We proposed an optimized multi-rate 1-D/2-D Daub-4 and Daub-6 filter
bank architectures which are purely Al-based, and multi-encoded. Additionally, the
introduced designs are capable of furnishing arbitrarily high numerical accuracy us-
ing error-free integer arithmetic. In fact, the proposed architectures preserve all
features of our earlier architectures such as (i) error-free computation, (ii) defined
over integers, and (iii) free of multiplications. It also reduces hardware complexity
(number of adders) leading to considerable reduction in cost for the hardware real-
ization of multi-level 2-D DWTs of Daubechies 4-tap/ 6-tap filter banks. The single
FRS is the only source of computational error.

By employing Al encoding, resulting wavelet decomposed images had SNR
and PSNR figures improved by approximately 30-35% when compared to a counter-
part fixed-point system with 8-bit word length and 6 fractional bits.

Standard images have been analyzed with Mandrill, Lena, Cameraman,
Woman, CT head/brain, Reflection examples shown. Noise injection from interme-
diate fixed-point errors is fully eliminated. An FPGA based 4-level prototypes are op-
erational at 100 MHz. Place-and-route timing analysis furnished 344 MHz/146 MHz

for the multi-level Daubechies 4-tap/6-tap architectures. In addition, the proposed
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architectures were also synthesized in 45 nm ASIC technology at 523.56 MHz/
306 MHz for 8-bit input data.

CMOS sensor arrays for imaging are being continuously improved with in-
creasing resolutions. The dynamic range of typical imaging applications are also
increasing and more emphasis is being made for picture quality. In the presence of
higher resolution, increased dynamic range, and increased frame rate, there is no
option but to increase the throughput of the digital filtering architectures.

Finally, it is important to notice that—in principle—the discussed Al based
scheme can be applied to any type of DWT as long as the scaling and wavelet
coefficients of the corresponding filters could be given and exact representation. For
instance, this is the case for the Haar, Daubechies-4/-6, and Bior-5/3 wavelets. On
the other hand, wavelets such as Gaussian and Mexican hat do not have a compatible
DWT version.

This work has feasible scope for extending to Daubechies 8-tap and 10-tap
wavelet filters provided we can encode the scaling filter coefficients with optimal
number of Al bases. Wei Chang et al., [73] can provide more insight and can be used

as primary source of reference for this research effort.
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