This is the Pre-Published Version.

A 2.0 Gb/s Throughput Decoder for QC-LDPC
Convolutional Codes

Chiu-Wing ShamMember, IEEEXu Chen, Francis C.M. LauSenior Member, IEEEYue Zhao,
and Wai M. Tam

Abstract—This paper propose a decoder architecture for low- error performance and the encoder/decoder complexity may
density parity-check convolutional code (LDPCCC). Specifically, have to be taken into consideration. High data rate optical
the LDPCCC is derived from a quasi-cyclic (QC) LDPC block oo mmynications require powerful error correction codes with

code. By making use of the quasi-cyclic structure, the proposed . - .
LDPCCC decoder adopts a dynamic message storage in the mem_Iow redundancies to achieve an error floor lower than a bit

ory and uses a simple address controller. The decoder efficiently €rror rate (BER) ofl0~'?, preferablyl0~'° [5], [6]. Motivated
combines the memories in the pipelining processors into a large by such applications, the goal of this work is to design and
memory block so as to take advantage of the data-width of the jmplement an efficient decoder architecture such that codes can

embedded memory in a modern field-programmable gate array ; : ; ; Fohi
(FPGA). A rate-5/6 QC-LDPCCC has been implemented on an ﬁ)c\:,clg\r/g?%g;?rothputhlgh coding gainhigh code rateand

Altera Stratix FPGA. It achieves up to 2.0 Gb/s throughput with o))
a clock frequency of 100 MHz. Moreover, the decoder displays ~ Designing high-throughput decoder architectures for LDPC
an excellent error performance of lower than 107! at a bit- block codes has been extensively studied. In [7], a high-
energy-to-noise-power-spectral-density ratio £, /No) of 3.55 dB. throughput memory-efficient decoder architecture that jointly

optimizes the code design, the decoding algorithm and the

Index Terms—Decoder architecture, FPGA implementation, architecture level has been proposed. A practical coding

LDPC convolutional code, QC-LDPC convolutional code system design approach has been presented in [8] Whereby
the LDPC codes are constructed subject to decoder hardware
I. INTRODUCTION constraints. Simulation results have shown that the codes

. . . constructed suffer from only minor performance loss compared
Low-density parity-check (LDPC) codes, first invented b% y P s

ith trained . In [9], i-cyclic LDPC (QC-
Gallager in 1960’s [1], have been found to be capable {E unconstrained ones. In [9], a quasi-cyclic @

.)) PC) decod hitecture that achi th hput»f
approaching the channel capacity. Later, LDPC convolutio) decoder architecture that achieves a throughp

ps has been studied. The high throughput is achieved by
codes (LDPCCCs) have been shown to outperform LDF ducing the critical path through modifying the decoding al-

block codes in terms of error performance (e.g., lower err brithm as well as the check-node and variable-node processor

floor_s and higher coding gains) under a similar decoding co rchitectures. In [10], the throughput of a QC-LDPC decoder
plexity [2]. The comparisons between LDPCCCs and I‘DP| further improved by parallelizing the processing of all layers

block codes from the perspectives of hardware complexim yered decoding. Subsequently, the decoder can achieve a

delay requirements, memory requirements have been disc:usi,?]%1 imum throughput o.2 Gbps with an operating frequency

in [3] and [4]. . oo X
. . . . of 950 MHz and 10 min-sum decoding iterations. In [11],
LDPCCC has inherited the basic structure of convolutiong|, +hors have proposed a high-speed flexible shift-LDPC

code and enaples a continuous encoding and decoding of toder that can adapt to different code lengths and code
Sages O.f varying Igngt_hs. Such a pr_operty has made LDPC ates. The decoder employs the Benes network to handle the

né;bmplicated interconnections for various code parameters. It

an LDPCCC for an application, furthermore, many factor&dopts the single-minimum min-sum decoding and achieves a

such as code rate, sub-block length, coding gain, through%"oughput 0f3.6 Gbps with an operating frequency 860

Manuscript received June 16, 2012; revised October 8, 2012. This paMHZ')
was recommended by Associate Editor Jun Ma. Although LDPCCC decoders may “borrow” some design

The work described in this paper was supported by a grant from the RQ@chniques used in the LDPC block decoder architectures,

of the Hong Kong SAR, China (Project No. PolyU 519011). .
Chiu-Wing Sham, Francis C.M. Lau (corresponding author) and Wai wpverall they are very different from the block code counterparts

Tam are with the Department of Electronic and Information Engineedue to the distinct code construction mechanism and unique
ing, The Hong Kong Polytechnic University, Hong Kong (email: [encwgharacteristics of LDPCCCs. High-throughput LDPCCC de-

sham,encmlau]@polyu.edu.hk,tamwm@encserver.en.polyu.edu.hk). . o .
XU Chen ar]]d@%ug Zhao were With@the Departmgntyof E|ectr)0nic argoder architectures based on parallelization have been studied

Information Engineering, The Hong Kong Polytechnic University, Hongn [12], [13]. Such architectures can achieve a throughput

Kong (email: chenxugz@gmail.com,zhaoyuemagic@gmail.com). Xu Chend$ qyer 1 Gbps with a clock frequency af50 MHz. They,
working towards the Ph.D. degree at Northwestern University, USA and Ylﬁe fined . . . LDPCCC d
Zhao is working at the Qualcomm research center, Beijing, China. owever, are confined to ime-invariant S and cannot

The first author and the second author have equal contributions to the pap&. easily applied to time-varying ones, which usually produce
Digital Object Identifier Xxxxxxxxx. a better error performance. In [14], a register-based decoder

Copyright (c) 2012 IEEE. Personal use of this material is permitted. . L.
However, permission to use this material for any other purposes must %ECh'tecmre attaining up t&75 Mbps throughput has been

obtained from the IEEE by sending an email to pubs-permissions@ieee.ofoposed. This architecture has successfully implemented a

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

pipeline decoder withl0 processing units. Nonetheless, itdhe implementation complexity of the decoder architecture
register-intensive architecture has limited its powercgdficy. The FPGA simulation results are also presented in this@ecti
In [15], [16], a low-cost low-power memory-based decoddfinally, Section V concludes the paper.

architecture that uses a single decoding processor has been

proposed. On one hand, theerial node operation uses a Il. REVIEW OF LDPC CONVOLUTIONAL CODES

small portion of the field-programmable gate array (FPGAQ. Structures of LDPCCC and QC-LDPCCC

resources. On the other hand, such a design has posed a sigy,, parity-check matrix of an unterminated time-varying
nificant limitation on the achievable throughput. Subsedjye periodic LDPCCC is shown in (1) where, is termed as

tbhe memory—b%sed :jjersllgns Ivvc|1j>I'c1traIIeI nogetoptgr?tl_ons havethe memory of the parity-check matrix; ar,(t), i —
€en proposed and have fed 10 a substantial Improvem - ,mg, are(c —b) x ¢ sub-matrices with full rank. An

in throughput [17]-[19]. The high throughput accomplishe?’ o

: . : DPCCC is periodic with period” if H;(t) = H;(t + T)
under these designs, however, is achieved at the cost of &, . _ 0.1, .my. If T =1, the code is time-invariant:
complicated switch network.

To the best of the authors' knowledge, the previouletherWise’ it is time-varying. The code rate of the LDPCCC
. . ¥ given by R = b/c. Moreover, a coded sequeneg, .| =
proposed LDPCCC decoder architectures mainly handle r D’B Vi, o] With vi = [01, 009, ore] (= 0,1,2,..)
dom time-varying LDPCCCs. In this paper, we propose}hﬂ’sﬁés ’ The o Tk T
decoder architecture for LDPCCCs with regular structulres.
particular, the proposed decoder caters for a class of LOFXCC
that have a quasi-cyclic structure and can be derived fromGiven a quasi-cyclic LDPC (QC-LDPC) block code with a
a QC-LDPC block code [20]. The motivation of considerindpase matrix of size.. x n,, and an expansion factor ef[23],
codes with regular structures is twofold. First, LDPCCCthwi we can construct a QC-LDPCC@s follows.
regular structures have recently attracted much interet b 1) Expand the parity-check matrix of the QC-LDPC block
theoretically and empirically [21], [22]. Second, follavg the code into azn. x zn, matrix HO.
insights from LDPC block codes, regular codes can make the2) Represent then. x zn, parity-check matrixH® as a
decoder structure much simpler and at the same time achieve)/ x M matrix, whereM is the greatest common divisor
good error performance. Therefore, developing an efficient of . andn,, i.e., M = ged(ne,ny). Then we have
architecture for regular codes is of high importance in ficac

H[07OO]V[7(;700] = O

The contributions in our paper are distinct from previous Hi, - HILM
works in many aspects including complexity, throughpuiare H’ = : : , (2)
bility and scalability. Firstly, we eliminate all switch tveorks, HS, , - H .,
which are included in most of the previous implementations " "
and are very complex for a high-rate LDPCCC. Instead, we ~ WhereH? ; is aZf= x 2 matrix, fori, j = 1,2,--- , M.

propose the use of dedicated block processing units, with3) SplitH? into H} andH?, which correspond to the lower

which we can provide higher throughput with similar decoder ~ triangular part and the strictly upper triangular part of
complexity. Second, the quantized sum-product algorithm H°, respectively. H} and H!, are therefore denoted,

(QSPA) applied in our LDPCCC decoder is more reliable respectively, by

compared with the min-sum-based LDPCCC decoder, i.e., H?
QSPA outperforms the min-sum-based decoder in terms of
error performance. Furthermore, our proposed QSPA imple-

1,1

b b
b H2,1 H2,2
1 . .

mentation has a complexity only linearly proportional t@ th Hb' Hb. H?

. o . M1 M,2 MM 1 prxmr
check-node degree. Third, it is known that more decoding and
iterations can enhance the error performance of the dedoder 0 HY, ... Hli v

our decoder design, each decoding iteration is accomplishe Hg3 HS ,,
by one processor and the processors are serially connected. HY .
Our decoder architecture also enables us to change the numbe :
of processors easily without re-designing the whole decode Hllj\l—l.,M

Thus, our decoder is scalable in terms of the number of 0 Mx M
processors. We have implemented our decoder architecture f 4) Unwrap the parity-check matrix of the block code to
a rate5/6 LDPCCC in an Altera Stratix FPGA. The decoder ~ Obtain the parity-check matrix of a QC-LDPCCC in the

has produced a throughput 0 Gbps with a clock running form of (1), i.e.,

at 100 MHz. Moreover, the LDPCCC has an excellent error HY

performance, achieving an error of lower theim '3 at a bit- H! H!
energy-to-noise-power-spectral-density rati, (Ny) of 3.55 f(ioo] = “ H' H!) 3)
dB.

The rest of the paper is organized as follows. Section Il
reviews the construction of QC-LDPCCCs and the decoding, _ -
We define a QC-LDPCCC as an LDPCCC in which all the elemERy&.)

process fOI’. such codes. -Sec.tion Il describes the propc&ed iq the parity-check matriH are composed of identity matrices, cyclic-right-
coder architecture and pipeline schedule. Section IV jpiteseshifted identity matrices or zero matrices.

H(1 Hy(1)
H,, (m.) Hp,_i(m.) - H (m,)

H,, (ms+1) H, _i(ms+1) - Ho(ms +1) 1)

H, () H. () - H)

The above construction process is illustrated in Fig. 1. B¥1(n)\m is the setM(n) excluding check node.. Finally,
comparing (1) and (3), it can be observed that the period thie a posteriori probabilities(APPs) for thec variable nodes
the QC-LDPCCC isT' = M and the memorymn, satisfies v;_(;_1)(m,4+1)-m. l€aving the last processor are computed
M = m4+1. It can also be observed that the relative positionssing
between the variable nodes and the check nodes do not change. Bn = An + Z Qm/n, (6)
Hence the girth of the QC-LDPCCC is no less than that of m'eM(n)

the original QC-LDPC block code [24]. Therefore, we cal . . o .
construct a large-girth QC-LDPCCC by first designing thesuEiZiﬂsoge\;ver;lrﬁ?nge binary value of each individual variable

matrices to obtain a large-girth QC-LDPC block code and thenThus, eactdecoding stemonsists of inputting new channel

performing the unwrapping operation. messages to the decoder, shifting messages, updating-check
to-variable messages, updating variable-to-check messag

B. Decoding Algorithm for LDPCCC computing APPs and decoding the output bits. As a result,

fter an initial delay of(ms + 1)I decoding steps, there is a

LDPCCC has an inherent pipeline decoding process [ntinuous output of the decoded bits

The pipeline decoder consists é#fprocessors, separated by
¢(ms + 1) code symbols, withl being the maximum number

of decoding iterations. Throughout the decoding process, w I1l. DECODER ARCHITECTURE
assume that messages in log-likelihood-ratio (LLR) form ar
being used. In the hardware design of an LDPCCC decoder, the pro-

At the start of each decoding step (say at tim the Cce€ssor complexity, memory requirement, throughput anorerr
incoming channel messages associated with: thew variable performance are closely related. It is worthwhile to study
nodesvy, = [Usy.1,Vi0.2, - »Vty.c] €NtEr the first processor. their tradeoffs so as to design a decoder meeting the appli-
Moreover, the corresponding variable-to-check messages ¢ation requirements. Following the notations presentetthén
these variable nodes have the same values as the inconfigstruction of a QC-LDPCCC, we can roughly characterize
channel messages. At the same time, the messages associbgedactors affecting the decoder as follows. Suppose the
with the variable nodes;, ;.1 are shifted from the-th decoding process is divided int& stages. A smaller
processor to théi+1)-th processor, where=1,2,--- , 1—1. provides a higher level of parallelism that the decoder can

Then, each processor updates the- b) check nodes corre- achieve. The error performance of an LDPCCC improves as
sponding to thét, — (i — 1)(m, + 1))-th block row of Hy, ., increases and/af increases and/ak decreases. Furthermore,

in (1) using the information throughput is proportional teR/G while
the memory usage is proportional tan?(1 — R). Also,
1 Bmn the processor complexity in terms of combinational logics
Qmn = 2tanh [I tanh()) 4 s proportional tozIn?(1 — R)/G. More details about the

/€N (m)\n complexity of memory usage are shown in Section IlI-B.

wherea,,,, is the check-to-variable message from check nodelt can be seen that the error performance of an LDPCCC
m to variable node:; 3,,, is the variable-to-check messagean generally be improved at the cost of a higher processor
from variable noden to check noden; N (m) is the set of complexity, more memory usage or a lower throughput. For
variable nodes connected to check nedeand N (m)\n is instance, with the sub-matrix size x z fixed, as the code

the set\/(m) excluding variable node. Next, the processorsrate R decreases, the error performance becomes better at the

perform variable-node updating fot, _;_1)(m,+1)-m.,» ¢ = cost of a lower information throughput. Furthermore, bdté t
1,2,...,1, using processor complexity and the memory requirement become
B = Ayt Z o (5) higher due to an increase in the nur_nber of check node_s.
mmn " v mn With the code rate and the throughput fixed, as the sub-matrix

size increases, the error performance improves with theesam
where)\, is the channel message for variable negeM (n) processor complexity but more memory usage. The experiment
is the set of check nodes connected to variable ngdand results presented in Section IV will provide a rough guideli

-I:’ﬂ -
b 7
AL | mt
s D b . —
HE, Hy, | HY
H =]| = I_I Hu .= Hi = I__IH;J H H:ulDHEI
. & u
|- g L mta,
IH;;—U Hia- %‘-Mi IH_.I I::;._ —_— .—H 2]
b b , — e e— =
-lI_I—Ml ————— —Hm- I_iIHL H: :jlﬁlyz
1 | g
L T = 1,,:,‘_
Ce 2

Fig. 1. lllustration of constructing a QC-LDPCCC from a QO{RC block code.

on how to choose the parameters in order to achieve a targeted NP | emecenn one
error performance, processor complexity and memory usage.

In most of the previous works, a generic processing unit |
such as that shown in Fig. 2(a) is applied in the LDPCCC [|=nnen s [we]
decoder. For this type of design, a switch network and some (@) e Procassing Ui
corresponding control logics are required. The complexity
overhead of the switch network is not a concern in the previou
works mainly because the number of edges between the check Fied comnecton BUO | emeeee Fixed connocion -
nodes and the variable nodes is small. When the number of | |
edges between the check nodes and the variable nodes I | ===-- [J=eee- e [we J-oee- [e]-een- [we]
large, e.g., for a high-throughput and high code-rate LDECC PP Fecessne e
the routing and hardware complexity of the switch networKg. 2. Generic Processing Unit and Dedicated Block Pracgdsnit.
becomes a critical issue.

In our proposed decoder, we use dedicated Block Pro-

cessing Units (BPUs) instead of generic processing unifs. gection Ii is m. = M — 1, the variable nodes and the

Consequently, the complexity of routing and switching thgyaci nodes in each processor are separated by a maximum
messages are no longer required i.e., the complex swighy, 1 time instants. Denote the— b check nodes and the

networ_k is eliminated. As shown_ in Fig. Z(b)’ we usé ¢ variable nodes that enter a particular processomuby =
BPUs in one processor. One BPU is used during each decodr g
0

- 0 17ut02a"'7utoc—b] and Vto = [Uto 17Ut0 27"',Ut0 C]a
step of one codeword antl’ BPUs are used to facilitate theyegnectively. Then the check nodes and the variable nodes th

pipeline of M distinct codewords simultaneously. In generahre about to leave the processor are givenuby r41 =
our approach can obtain & times speed-up in throughput[N

with the pipeline of M distinct codewords. Details will be[
described in Section IlI-C.

Utg— M41,15 Utg—M+1,2> "+ s Utg—M+1,e—p] @NA Vi _prq1 =

Vtg— M+1,15Vtg—M—+1,2, " " * 5 Vtg—M-+1,¢), FESpPECctively. At each
decoding step, a BPU is responsible for processing the check
nodes that enter the processor (iwg,,) and the variable nodes

A. Architecture Design that are about to leave the processor (ivg,, 174 1).

A high-throughput decoder requires parallel processing of At the start of each decoding step;— b check nodes are
the LDPCCC. We propose a partially parallel decoder ae be processed. We divide them inf® groups and conse-
chitecture that utilizes parallelization on both the nodeel quently we divide a complete decoding step ifostages.
and the iteration level. The number of rows and the numbat the i-th stage { = 1,2,---,G), (¢ — b)/G check nodes
of columns of the sub—matriceng in (2) (corresponding [t (i—1)(c—b)/G+1> Uto,(i—1)(c—b) /G+25 " " > Utg,i(c—b)/G] @€
to H;(¢t) in (1)) arec — b = zn./M and ¢ = zn,/M, processed in parallel. The variable-to-check messages ex-
respectively. Our proposed decoder architecture is ilisti pressed in the sign-and-magnitude format are input to a
in Fig. 3. The decoder consists df processors wherd group of (¢ — b)/G check-node processors (CNPs). Among
is the maximum number of decoding iterations. Since thbe resulting check-to-variable messages, those between t
memory of a QC-LDPCCC constructed using the methatheck nodes inu,, and the variable nodesot in the set

Processor i

I BPU-1]
| CNP-1 [
| VNP-1 c2v |
| = F e F e F gy |
| C2v |
| I
| . — v2C l
‘CNP-(c-b)/G o | ° |
— —=H-EEP A %
| V€ c2v | To
From | L |
Processor | C2V + CM oM | Processor
i-1 I | i+1
| RAM t 4 a
H < A Zﬂ
| cM BPU-(M+1 |
I q |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| —
b e e e e e —
Fig. 3. Block diagram of the pipeline processors in the LDRCdzcoder.
vi,—m+1 Will be written to the local RAMs, waiting to be use d. = 24) in our design. We can observe that it is

further processed by other BPUs. On the other hand, timpractical to implement such an enormous LUT. Here, we

updated check-to-variable messages between the check nguaepose to implement the CNP with quantization (QSPA) by

in u;,, and the variable nodes ir,_/+1 are converted first pairing up the input messages and then calculating the

to the format of 2's complement before being processed bytrinsic messages excluding the input itself. More speadifj,

the variable-node processor (VNP). Since each check naigpose the variable nodes connected to check noiddisted

is connected to a total of/z variable nodes invy,_ar4+1, as[ni,ne,...,ng and the corresponding input messages are

((c=b)/G)x(¢/z) = ¢(c—b)/Gz variable nodes ivy, ;11 denoted by|[si, ss,...,s4]. The updated check-to-variable

are connected to the newly updated check nodes and hemm@ssage to variable nodg is then calculated as

¢(c—b)/Gz VNPs are needed in one BPU. Finally, the updated

variable-to-check messages are converted back to the forma Q{avmn,} = Olsi-, sit))

of sign-and-magnitude and they will be shifted to the nexghere

processor together with their associated channel messages i j

the next decoding step. 0@,j) = Q {2 tanh ™! (tanh 3 tanh 5) } (8)
In the BPUs, the CNPs update the check nodes accord-

ing to (4). However, in practical implementations we need si- = O0(0(0(s1,52),53), - 5i-1) ©)

to quantize the messages to reduce the complexity. In our siy = O(0(0(sd,54-1),8d4-2), - sit1) - (10)

‘mp'emer?ta“"”' we ado_pt a four-bit quantizgtion, Wh_ere t hus, (7) can be implemented based on a simple LUT tree,

quantization step is o_Ierlved based_ on density eVOIUt'(?'j [2%5 shown in Fig. 4. In fact, it can be easily verified that

and differential evolution [26]. Empirical results shovattits each LUT is of size2® — 256 and the total number of units

error performance _is only 0.1 dB worse than the ﬂoating'p()iﬂaquired is alway&d — 48. Thus, our proposed tree-structured
sum-product algorithm (SPA). implementation ensures that the CNP complexity remains low

We_ C(:jngigzr aPcSrwicK n(Tde With_ degrr;de Forh a I(];uclllla namely inO(d.). Moreover, the VNP is basically an adding
quantlze } Q@) 'mp ementation, there shou eoperation which can be implemented using an adder tree.
inputs, each of lengthl-bits. Consequently, the size of the

look-up table (LUT) becomeg8*?, which equal2’® (as we

Consequently, a total ofn,,/G RAMs are needed for storing
—q the edge-messages passing between the check nodes in
and their connected variable nodes to avoid the collisions
of memory access. Further, each processor hasets of
— % such check nodes, .8, U1, ..., Uyy—pr4+1- AS @ result,
zn,M/G RAMSs are allocated in one processor to store the
o, edge-messages, i.e., check-to-variable or variabléwaic
messages. In addition, the data-depth and the data-width of
the RAMs are equal ta7 and the number of quantization
! bits, respectively.

——mn 2) Storage of channel messagésr the channel messages,
the memory storage mechanism is similar. The setzof
variable nodes corresponding to every z sub-matrix are

a first divided intoG groups. Then:/G RAMs, each of which
havingG entries, are allocated to store the channel messages.
Moreover, the variable nodes in, correspond to, /n. sub-

% — |_«a, matrices and each processor contaiisvariable-node sets

L denoted byvy,,vi,—1,...,Vi,—m+1. Consequently, a total

S _ — of zn,M/n.G = zn,/G RAMs are allocated to store the

Ser | °°° j] °=c _ | —%m channel messages in one processor. The data-depth and the
Su2 i3 S Ss S data-width of the RAMs are equal t@ and the number of

guantization bits, respectively.

]

]

[]

}O(U) ' For a general case whefd is not necessarily equal to.,

E zn.n, /G RAMs are needed to store the edge-messages and
"""""""""""""" zn,M/n.G RAMSs are required to store the channel messages
in one processor. In modern FPGASs, the total number of
internal memory bits is usually sufficient for storing thesne
sages of codes with a reasonable length and with a reasonable
number of decoding iterations. However, the number of RAM
blocks is usually insufficient. Note that the operationsha t

For clarity of presentation, we first assumé& = n.. Hence pipeline processors are identical, the connections betwres
we havec — b = z andc¢ = zn,/n.. As mentioned earlier, RAMs and the BPUs are the same and the addresses of
we divide the decoding step intG' stages withz/G check accessing the RAMs are the same. By taking advantage of the
nodes being processed in parallel. We considetdtth block homogeneity of the processors, we can combine the RAMs in
row of H[C(ioo] shown in Fig. 1. This block row consists ofdifferent processors into one large RAM block. In particula
1 x (n,/n.) sub-matrices, each having a sizezof 2. Thus, for the RAMs handling edge-messages, we can combiné the
this block row corresponds te check nodes andn,/n. Sets ofzn.n,/G RAM blocks distributed in thd processors
variable nodes in the Tanner graph. We also assume that i@ one set of zn.n,/G RAM blocks. Similarly, for the
1 x (n,/n.) sub-matrices are either the identity matrix oRAMs storing the channel messagédssets of zn, M /n.G
cyclic-right-shifted identity matrices. Supposg, andv;, just RAM blocks are combined intoneset of zn, M /n.G RAM
enter a particular processor amg, ;1 andvy, 41 are blocks. The data-depth of the RAMs remains the same while
about to be shifted out of the same processor. The memdlng data-width becomestimes wider. Note that the memory
requirement is explained as follows. combination is a unique feature of LDPCCC and is not boasted
1) Storage of check-to-variable and variable-toby LDPC block codes

check messages:We denote the check nodes by Another advantage of such a memory storage mechanism
Uy, = [Ugo,1, U2, -+ Us,z]. We further divide them js that the address controller is a simple counter increimgnt
into G groups with thei-th group being denoted byby one at every cycle, thanks to the quasi-cyclic structure.
(Ut 14 (i—1)2/ G Ut 24 (i—1)2/ G - - - Utg 2 JG+(i—1)z/c] (1 = Specifically, at the start of each decoding step, the adesess
1,2,...,G). As explained previously, in processing;,, of accessing the RAMs are initialized based on the parity-
(Ut 14(i—1)2/Gs Yto, 24 (i—1)2/G - - - Ytg,2 /Gt (i—1)2/C] are check matrichg‘oo]. As the decoding process proceeds, the
processed in parallel at theth stage of a decoding step.addresses are incremented by one after every stage, until al
Therefore in order to avoid the collisions of memory accesg; stages are completed.
z /G different RAMs are needed for storing théGG messages
on the edges if each of the/G check nodes is connected
to only one variable node. From the construction of the QC-, - o _

For block codes, sophisticated memory optimization has Ipeeposed in
LDPCCC, moreover, each check node has a regular degre?z?]f. High complexity is involved and memory efficiency ishieved at the
ny, .., each check node is connectedntp variable nodes. cost of a lower throughput.

S+

Fig. 4. Implementation of a CNP using a tree of look-up tables

B. Memory storage

C. Pipeline scheduling more decoding stages, i.€5, increases, the throughput tends

, . t? (ny —ne)zf /MG bits/s with a running clock of Hz.
Conventional LDPCCC decoder architectures [13] [12] [14] A, iustrative example of the RAM storage and decoding

adopt the pipeline design shown in Fig. 5. Each processor ﬁ%cess

guentially does the following: shift the messages in, upda¢ Example: we consider a QC-LDPCCC withG = 2

check nodes, write the data to memories, input the messages , . _ 9 andn. — 4. Since M — ged(n n_) _
to VNP and update the variable nodes. This pipeline schedyle ., .1, Torocessor had/ — 2 BPUs. In each Sroces-

only utilizes pipelining on the iteration level followindhe sor, zn.n, /MG — 8 RAMs are dedicated to store edge-

standard decoding process. In this paper, we propose a "mr@ssages andn, /n.G = 4 RAMs are dedicated to store

efficient pipeline scheduling based on our dynamic MeMOogY, 2 nnel messages. Assume that the check nagdes —

storagg structurg. o) [Uig,1, Uty 2, - - -, Uty,4] JUSt €Nter a processor and the variable
We first describe the pipeline schedule for a single COdﬁ(')dESvt L = [Up_11,Vs—19 vi,_1.5] are about to
0— o—4,L» 0o—41,2 9 0o—4,

word. Instead of writing the updated messages from CNEsve The decoding step of processiBEU; (i = 1,2) is

and those from VNP in two separate stages, we combifgiged intoG = 2 stages. Figure 7 shows the dynamic storage
them with the shifting operation. The updated messages frjfype edge-messages in the RAMs at different time instances
VNP and the channel messages associated with the updatingtep 1) It shows the RAM storage at the start of processing
variable nodes are directly output to the next processoigtwh u,, andvy,_1 by BPU;. It can be seen that RAM 1 to 8
cqmpletes the writing and shifting operations at the same.ti giore the variable-to-check messages tigy which is ready
Since some of the updated messages from CNP need no{Pge processed. RAM 13 to 16 store the latest check-to-
processed by VNP, they are written to the local memories @japle messages fow, 1, which are updated in the previous
the same time. Note that the memory locations into Whl%coding step byBPU,. RAM 9 to 12 store the variable-
the messages are shifted are exactly those storing thealigiy_cneck messages that are newly updated in the previous
messages loaded by the BPU. Therefore, there would not hge.oding step and are shifted from the previous processor.
any memory collisions during the process. Step 2) It shows the RAM storage after the first stage of
It can also be inferred from this process that the types fpU,; processing. At the first stagBPU; will processuy,
messages stored in the memories are dynamically changiggg us, » and their connected variable nodesvip,_;, e.g.,
The messages associated wiily, are all variable-to-check [Ut0—1.8) Vto— 1.4, Uty —1.5, Uty —1.8). CNP reads the variable-to-
messages by the time,, first enters a processor and is read¢heck messages from the first set of entries located in RAM 1
to be processed by CNP. After each decoding step, somet®®. The newly updated check-to-variable messages between
the messages are substituted by the updated variableetech,, andv,, from CNP are input to the first set of entries in
messages from the previous processor. Wiiéndecoding RAM 1 to 4 (i.e., from where the check-to-variable messages
steps are completed, all the check-to-variable messaggs Ogre read), while the newly updated check-to-variable ngessa
inally associated witha;, will be completely substituted by petweenu,, andv,,_; are input to the VNP and the resulting
variable-to-check messages. Yet, they are now messages,ffable-to-check messages are shifted to the next process
uy,41+1 and are ready for CNP in a new round of decoding\s a result, the updated variable-to-check messages betwee
Figure 6(a) describes the pipeline for a single codewoxd ., anduy, - are written to RAM 5 to 8 and those between
assumingz = 3 and M = 4. Comparing Fig. 5 and Fig. 6(a), v, 1 anduy,;1 are written to RAM 13 to 16.
it can be observed that decoding a group of check nodesstep 3) It shows the RAMs after the second stagBBiJ;
using the proposed pipeline scheduling only takg¢s of the processing. At the second stageéPU; will process uy, 3
time cost in conventional scheduling. The homogeneity ef ttand «,, , and their connected variable nodesvip_1, e.g.,
pipeline processors also facilitates a pipeline processin v, _11,v4, 1.2, V1,—1.6,V1,—1.7]. CNP reads the variable-to-
multiple codewords. As shown in Fig. 6(a) where a singleheck messages from the second set of entries located in RAM
codeword is being decoded, the processing time of differento 8. The newly updated check-to-variable messages betwee
BPUs are separated in the sense that while one BPUugs andv;, from CNP are input to the second set of entries in
processing, the other BPUs remain idle. To further increaRaM 1 to 4 (i.e., from where the check-to-variable messages
the throughput, we can schedule other BPUs to process othgs read), while the newly updated check-to-variable nigssa
codewords. Since the total number of blocks in a processomistweenu;, andv;, ; are input to the VNP and the resulting
M, we can incorporate a maximum 6f different codewords variable-to-check messages are shifted to the next process
in one processor, i.e., allowingPU; to process Codeword- As a result, the updated variable-to-check messages betwee
fori=1,2,..., M. Depending on the number of codewords,; ., anduy, ., are written to RAM 5 to 8 and those between
incorporated, the throughput can be increased by a factorvgf ., andu,, ., are written to RAM 13 to 16.
M at the cost of additional memory storage and additional The RAM updating at the decoding step ®&PU, is
hardware complexity of the BPUs. Figure 6(b) illustrates thanalogous to Steps 2) and 3) above. After the second stage of
pipeline schedule for four codewords with= 3 andM = 4. BPU,, RAM 1 to 8 will have the variable-to-check messages
Using our proposed pipeline schedule, the throughput fady foru,, 2> and their connected variable nodesvif ;.
the decoder ign, — n.)z/M information bits for everyG + The RAM storage is similar to that in Step 1) with the time
d cycles, whered is the time delay for each pipeline stagenstances incrementing by/ = 2. A new round ofBPU,
such thatG + d cycles are used by one BPU. As there arepdating will follow according to Steps 2) and 3).

S TCNRJ CNP JCNW] VNR | VNP] VNW |
S TCNRTCNP JCNW] VNR J VNP JVNW |

Fig. 5. Conventional pipelining. S: Shift messages betwgmtessors; CNR: Input messages to CN; CNP: CN processiNgy:@utput messages from
CN; VNR: Input messages to VN; VNP: VN processing; VNW: Outmessages from VN.

I B1 I B2 | B2 B2 | B2 B3B3 B3] B3 I B4 I
CNP VNP sw] R]cne]vne swl R Jcne]vne CNP VNP
I B I B2 B2] B2 | B2 B3| B3| B3 [B3 B4 | B4] B4 [B4
CNP VNP I sw| R]cnelvne I sw| R Jcnelvne I sw] R]cne] VNP
BL] BL | BL [BL | B2 B2] B2 B2 | B3] B3] B3 | B3 | B4 | B4 | B4 | B4
swl R Jcne]vne sw| rR Jcne|vne sw| R Jcne|vne sw] rR]Jcnep]vne

(a) Single-codeword pipeline.

B1 B1 B1 B1 B2 B2 B2 B2 B3 B3 B3 B4 B4 B4 B4
sw] R Jcne] unp sw | R Jcne] vune S-W CNP VNP S-W CNP] VNP
B1 B1 B1 B1 B2 B2 B2 B2 B3 B3 B3 B4 B4 B4
sw] R Jcne] wune | swj] R Jcne]une | S-W CNP VNP | S-W CNP | VNP
B1 B1 B1 B1 B2 B2 B2 B2 B3 B3 B3 B3 4 B4
swj] R Jcne] une swj] R Jcne | une swj] R |cne | une CNP VNP
B4 B4 B4 B4 B1 B1 B1 B1 B2 B2 B2 B2 B3 B3 B3
sw] R Jcne | wnp sw]| R Jcne] vune sw] R Jcne] unp S-W cw VNP
B4 B4 B4 B4 B1 B1 Bl B1 B2 B2 B2 B2 B3 B3 B3
sw|] R Jcne] wune | sw] R Jone] une | sw] R |cnp | wNp | S-W CNP | VNP
B4 B4 B4 B4 Bl Bl Bl Bl B2 B2 B2 B2 3 B3
swj] R]cne | wne sw] R]cne | une sw] R Jcne jwnp CNP VNP
B3 B3 B3 B3 B4 B4 B4 B4 B1 B1 B1 B1 B2 B2 2
s-w] R] cNP] VNP sw] R | cNP] VNP sw] R |cne] vNp sw| R CNP NP
B3 B3 B3 B3 | B4 B4 B4 B4 | B1 B1 B1 B1 | B2 2 B2
CNP | VNP sw] R] cne | VNP swj] R |Jcne]vne S-W R NP | VNP
B3 B3 B3 B3 B4 B4 B4 B4 B1 B1 B1 B1 2 B2
SW] R] CNP] VNP swj] R Jcne | unp swj] R Jcne | une CNP VNP
B2 B2 B2 B2 B3 B3 B3 B3 B4 B4 B4 B4 B1 Bl
S-W] R] CNP] VNP SW] R] CNP] VNP swj] R]cne] unp S-W CNP
I B2 B2 I B2 I B2 I | B3 B3 B3 B3 | B4 B4 B4 B4 | Bl Bl
SW] R] CNP] VNP sw] R | CNPJ VNP swj] R Jcne]une S-W CNP v
B2 B2 B2 B2 B3 B3 B3 B3 B4 B4 B4 B4 1 Bl
SW] R] CNPJ VNP ssw] R Jcne]vNP swj] R]cne | VNP CNP VNP

(b) Multiple-codeword pipeline.

Fig. 6. Proposed Pipeline.;Bprocessing of block; S-W: Shift messages and write messages to the next proc&daoput messages to the block processing
unit; CNP: check-node processing; VNP: variable-node gssing.

Also note that once the address controller is initialized 8ER performance of the QC-LDPCCCs under different de-
the start of theG stages, the read/write address of accessiegding iteration numbers. Specifically, we have implemente

the RAMs are simply incremented by 1. LDPCCC decoders with the following parameters:{a} 422
and/ = 18; (b) z = 512 and I = 18; (c) z = 1024 and
IV. EXPERIMENTAL RESULTS I =12; (c) z = 1024 andI = 10. Recall thatz x z represents

We have implemented the QC-LDPCCC decoder on Alhe sub-matrix size of each entry in tHex 24 base matrix
tera Stratix IV. All the BER results for the QC-LDPCCCwhile I denotes the number of iterations (i.e., processors) used
decoder are hence obtained from FPGA experiments undethe LDPCCC decoders.
additive white Gaussian noise (AWGN) channels antit Table | shows the hardware complexity of the decoders
guantization. Based on a QC-LDPC block code with:a24 when combined with the noise generator. The complexities
base matrix, we construct QC-LDPCCCs of different sulfer a single-codeword implementation as well as a four-
matrix sizes. Moreover, the sub-matrices of the block codedeword pipeline implementation are shown. We observe tha
are chosen such that the girth equals’hen we simulate the the hardware complexity increases as the code length and the

) Vtofl VtO Vt 0+1
H-3 - H4
H-1 H-2 0100 1000 [1000" TOID|
e e e — 0010 o100l,0100 o001 U
Moo 0100 rggég 0001 | 0oo1 oo10;l0010 1000] t0-1
| 5020 0001||1000 0100| L1000 0001 [Qgil__O_LO_O_.r_ﬂ-l__
100010100 0010 0010 o0o001) 1000 0100
H _ Looos_1000,00100_0010, > HCC _ 0001 1000 10100 0010 U
—| o100 Todof1000 ©Doio - 1000 o0100|'0010 o001] to
b I I [0,00]
0010 010090100 0001 ! H-2 | 9100__ 0010, L0001 _ 1000,
0001 o010l 0010 1000] [0To0 1000|F1T00~ TOIT
LL1000__0001,00001 __ 0100, 0010 0100' 0100 0001 U
0001 001(1J| 0012 1200 041
H-3 H-4 LLo0o _0001,]0001 0100,
H-3 H-4
| RAM 1 RAM 2 RAM 3 RAM 4 RAM 5 RAM 6 RAM 7 RAM 8 |
) | RAMs for check nodes| Vo:2Uos | [Vor2Uos | [Ve2Ues | [Ver2Ues | [Vor2Uo: | [Vew2Uoz | [VerUos | [Vier2Uoz |
UAI IhedSli;l of F';mgesjlgg I processed by BPU 1: I Vio2Uos I I Vio.2Uioa I I Viog2Uos I I Vios2Uioa I I Vig112U03 I I Vi0-122Ui0.4 I I Vio162U03 I I Vio.1.2Ui.4 I l
an .
1o w01 Y | RAM 9 RAM 10 RAM 11 RAM 12 RAM 13 RAM 14 RAM 15 RAM 16 [
I R#:gﬁ; Losre Ehgcggﬁig_s Vor2Uor | [Vo2Uonz | [Vo2Uous | [VoUore | [Uss#Vers] [UosVere] [Usi#Verr] [UsiiVess] !
I s 4 ' I Vioa2Uons I I Vio12Uios1.4 I I Vior2Uo43 I I Viog2Uior1.4 I I U10—1.32V10—1‘3I I UlDrl‘AZV!Orl,AI I U1071,32V1071‘5I I U:07142Vu}1.sl |
_____________________ Y _____
| RAM 1 RAM 2 RAM 3 RAM 4 RAM 5 RAM 6 RAM 7 RAM 8
After the 1st stage of BPU updating I RAM s for check nodes | U10.12Vi0.1 | | Ur0.22Vi0,2 | | Ui0,12Vio 6 | | Ui022Vi0.7 | | V1o+1,32Um+21| | Vm+1,42U|o+22| | Vno‘1‘92U|o+21| | Vm+1.52U‘0¢2‘2|
* check nodes U 1,U.» | processed by BPU 1: I Vi0,32Ui0,3 I I V042U 4 I I Vi0,82Ui0,3 I I Vi052U0 4 I I Vi0-1,12U03 I I Vi0-122U0.4 I I Vio162U03 I I Vio-1,72Ui0.4 I
* incident Va”vab'e “VOdeS VioraViora | RAM 9 RAM 10 RAM 11 RAM 12 RAM 13 RAM 14 RAM 15 rRamis |
w15 Vo1 | R’ng;z“g“;g%“g_sl Vo2Uons | [VorUoaz| [Ve2Uows | [VeetUouz | [UoaVerr] [Uei@Verz] [VorVer] [VensUore] |
| P Y [Vo2Uous | [Ver2Uouna | [Vier2Uoas | [VieUous | [VieaUons] [Viea@Uoaa| [Vien2Uoas] [Uni@Viose] |
v
- 7 RAM1 _ RAM2 _ _RAM3 _ RAM4 ___RAM5 _ RAM6 RAM7 __ RAM8 |
After the 2nd stage of BPU updating | RAMS for check nodes [Uo@Ver | [[Uo2Vz | [U2Vs | [Daz2Ver | [Vou2Uoms] [Veui2Uozz] [Veaw2Uszs] [Vieerz2Uowd] |
* check nodes W, U4 processed by BPU 1: [Ups2Vios | | Una2Vios | [Uoa2Vios | | Uoa@Vios | [Voa2Uo2s] [Vion2Uoza| [VienUows| [Vien2Uowa |
*incident "a'\'/ab'e 3°des Voo Vioaz RAM 9 RAM 10 RAM 11 RAM 12 RAM 13 RAM 14 RAM 15 rRaM16 |
oretoL | R‘:c")”;;"sfezhgcggﬁ’;s [Vor2Uons | [Vor2Uone | [Ver2Uows | [VoUone]| [VouUona] [Veu2Uons] [VeurUoma] [Vew2Uoas |
| P Y " [Mo20ous | [Vo2Oone | [Vor29oas | [VorUous| [VonUous] [VeaUous] [Vou2Uows]| —[ViewUoud] |
v
- 7 RAM1 __ RAM2 _ _RAM3 _ RAM4 _ RAM5 " RAM6 _ RAM7 _ RAM8 |
After the 1st stage of BPUupdating | RAMS for check nodes [Un:2Vor | [Vie@Uoms] [VieUoma] [Uni2Var | [VeuUoas] [ViudUozs) [ViudUom) [ViesUoao] |
* check nodes U5 U | processed by BPU L [Vigo2Uous| [Uoi@Vios | [Uss?Vios | [Vioz2Unuoa] [VouUoss] [VeuUoos [VouRUoss| [VienUood |
*incident "a’\'/ab'e 3""95 Vio11Vio12 RAM 9 RAM 10 RAM 11 RAM 12 RAM 13 RAM 14 RAM 15 ram16 |
0-1,6: V10-1,7
¢ k I Rémi;‘;;zhscgg%dgs [Vioz2Uossa| [ViereUo:az] [Viee2Uoiaa] [Vioe2Uosz| [UowVioa] [UoasViez] [Uiorra2Viows] [Yon2Vious] |
| P 4 * [VoaUons | [Voi2Uoas | [VorRUous | [Ves2Uowa | [VienRUenas| [View@Uoas] [Views2Uoas] [Vios1.2U0:14] |
v
r-———77- RAM1 _ RAM2 __ RAM3 _ RAM4 __RAM5 " RAM6 _ RAM7 _ RAM8 |
After the 2nd stage of BPUupdating| RAMS for check nodes [Viez2Upiar] [Veo2Uoaz] [VoueUons] [Veu@Oos] [Mon2User] [VeadUoosl [Veu@Usa] [Vea?Uoz] |
* check nodes W Ui | processedby BPU 1: [Via2Uoias| [Veora2Uoza| | Voes2Uorzs| |Vorzs2Uoms]| LYor2Uoes] [VienRUozd| [VeaUowzs| [Vien2Uewa] |
*incident Var\'/ab'e 3°des Vio11Vioaz| RAM 9 RAM 10 RAM 11 RAM 12 RAM 13 RAM 14 RAM 15 rRAM16 |
oreren I R’j(“)"cse;‘;zhsc';g%dgs [Voo2Uoas] [Vor2Uonz] [Vor2Uous] [Vee2Uoaz] [VowVews] [Von#Venz] [Uon2Vews] [Usa2Veas] |
P Y " [Mo22Uoss] [Viez2Uoss] [Vi2Uoss| [VieeRUoss| [Uon@Vies| [Uen@Viens] [Uoi2Vious| [Vion2Vions| |

[1 ramenty
] rRAMentry newly updated

Fig. 7. Example of RAM storagez: = 4 and G = 2.

Ready for BPU, to update check nodes ., and their connected variable nodes in \.1

10

TABLE |
IMPLEMENTATION COMPLEXITY FORQC-LDPCCCOF DIFFERENT SUBMATRIX SIZES. CODE 1-S:z = 422, | = 18, SINGLE-CODEWORD. CODE 2-S:
z =512, 1 = 18, SINGLE-CODEWORD. CODE 3-S:z = 1024, I = 12, SINGLE-CODEWORD. CODE 4-S:z = 1024,] = 10, SINGLE-CODEWORD. CODE
1-P:z =422,] = 18, FOUR-CODEWORD PIPELINE CODE 2-P:z = 512, I = 18, FOUR-CODEWORD PIPELINE CODE 3-P:z = 1024, [= 12,
FOUR-CODEWORD PIPELINE CODE4-P:z = 1024, I = 10, FOUR-CODEWORD PIPELINE THE IMPLEMENTATION COMPLEXITY OF THEQC-LDPC

BLOCK DECODER IN[9] IS SHOWN FOR COMPARISON

Stage No.| Memory | Combinational| Registers| Memory Clock Throughput| RequiredEy,/No
G depth ALUTs bits frequency| (info bits) | at a BER of10~*°
Code 1-S| 422 512 106288 68609 4402268 | 100 MHz | 0.5 Gbps | 3.42 dB
Code 2-S| 512 512 104938 68634 4402268 | 100 MHz | 0.5 Gbps | 3.40 dB
Code 3-S| 1024 1024 73066 50087 5829352 | 100 MHz | 0.5 Gbps | 3.48 dB
Code 4-S| 1024 1024 62823 43745 4844140 | 100 MHz | 0.5 Gbps | 3.60 dB
Code 1-P| 422 512 175420 105427 | 17558528 | 100 MHz | 2.0 Gbps | 3.42 dB
Code 2-P| 512 512 170102 105505 | 17558528 | 100 MHz | 2.0 Gbps | 3.40 dB
Code 3-P| 1024 1024 134102 86654 23283712 | 100 MHz | 2.0 Gbps | 3.48 dB
Code 4-P| 1024 1024 120804 80342 19348480 | 100 MHz | 2.0 Gbps | 3.60 dB
Wang [9] | — — 28229 26926 5800000 | 190 MHz | 0.2 Gbps | 4.40 dB
10E+00 ! role in the error performance of the LDPCCC.
Based on the above results, the following guidelines can be
1.06-02 1 = used in designing a LDPCCC decoder.
o To increase the decoder throughput while maintaining
1.0E-04 — a similar BER performance and the same number of
\\ memory bits, we can reduce the memory de@tlat the
1.0E-06 N cost of more combinational logics.
& == \-\ To reduce the cost of combinational logics while main-
10608 o2 10 == ~ taining a similar BER performance and throughput, we
' ~ S = can increase: and use a smaller number of processors
1.08-20 1 e 2=1024;1=12 N 3 I. Under such circumstances, the total memory bits may
22422, 118 X S increase.
1.0E12 7 ety 11 &S To reduce the memory bits while maintaining a similar
‘ . ‘ . BER performance and throughput, we can use a smaller
1.0E-14 . . .
3 - 34 e 36 z and a largell at the cost of combinational logics.

In addition, we attempt to compare our implementation
results with those found from the literature. Since the ciije
of our work is to achieve high throughput and good error
performance, the code length and code rate of the codes used
in our experiments are relatively large. While we can find
quite a number of decoders in the literature, none of them
number of processors increases. Figure 8 further shows tumsider codes with length comparable to the ones we use.
BER results for the LDPCCCs. All of them assume lengths which are relatively short and

Based on Fig. 8 and Table |, we can see a tradeoff betwemmsequently they have high error floors and small coding
(i) the BER performance, (ii) the code length and (iii)) thgains. The “closest” one we can find is the QC-LDPC block
number of processors (i.e., the number of iterations). Vecoder described by Wang and Cui [9], who target a high-
compare the performance of LDPCCC with= 1024 but speed decoder and adopt a leng§tit6 QC-LDPC code in the
with different number of decoding iterations We can see experiment. In Table |, we add the implementation results of
that the LDPCCC withl = 12 is more than0.1 dB better the decoder in [9]. Although the decoder in [9] seems to be les
than that with/ = 10 at a BER of3 x 1071%. We further complex than our designs, its throughpQt2(Gbps) is only
compare the error performance of codes with similar praresd /10 of ours @ Gbps). If 10 decoders in [9] are put together
complexity. We observe from Table | that the LDPCCC usinigp order to achieve the same throughput as our decoders, the
z = 1024 and I = 12 has a similar complexity with the onestotal complexity of the decoders will become larger thansour
using (i) z = 422 andI = 18 or (i) z = 512 and I = 18. Furthermore, the decoder in [9] displays an error floor at a
Figure 8 shows that the LDPCCC using= 1024 andI = 12 BER of 10~'° while our decoder does not. In fact, at a BER
is outperformed by the ones using £i)= 422 andI = 18 or of 107'°, our decoders can achieve an extra coding gain of
(i) z =512 andI = 18, even though the latter two codes havé.8 dB to 1 dB over the decoder in [9]. Thus, our proposed
smaller sub-matrix sizes. It is therefore obvious that gdar decoder is superior in achieving high throughput, high ogdi
number of decoding iterations can help reducing the eriter rggain and low error floor.
even when a smaller sub-matrix size is used. In summary, wéle also compare the BER performance of LDPCCCs and
find that the number of decoding iterations plays an impartatteir block-code counterparts under similar processor-com

Fig. 8. Bit-error-rate (BER) results for the LDPCCCs wittifelient sizes.
The results are obtained from FPGA experiments under AWGacbls and
4-bit quantization.

11

1.00E+00 ACKNOWLEDGEMENTS

The authors would like to thank the associate editor and
the anonymous reviewers for their invaluable comments on
the earlier version of this paper.

1.00E-02 -

V. CONCLUSION

An efficient partially parallel decoder architecture for QC
LDPCCC has bheen proposed in this paper. The dedicated

1.00E-04

-3
i
o0

1.00E-06 LDPCCCs ; > Block Processing Unit is also proposed such that the com-
~zeA22; IR1E ~eeS12; 118 plexity overhead of the switch network can be removed. Rate-
Ty 5/6 LI_DPCCC decoders of different sub-m_atrix sizes have

LO0E-08 = —e=72077; =18 = ~#-z=512; =18 | \ been implemented on an Altera FPGA with our proposed
RS, e AT architecture. It is found that our decoders can achieve a

‘ throughput of2.0 Gb/s. Experimental results further show that

L0E20 » TWEE 14 a5 ‘ QC-LDPCCCs outperform their block-code counterparts unde

the same throughput and similar overall decoder complex-
ity. Moreover, the QC-LDPCCCs derived from well-designed
Fig. 9. Comparison of BER results between LDPCCCs and LDRCKbl plock codes can achieve an error floor of lower tham'3.
code counterparts under AWGN channels. The results of th®QCCs
and the LDPC block codes are represented by solid lines amstheda
lines, respectively. The results of the LDPCCCs are obthifiem FPGA REFERENCES
experiments under-bit quantization while and those of the LDPC block [1] R. Gallager, “Low-density parity-check codedRE Tans. Inf. Theory
codes are obtained from computer simulations (using C progring) based vol. 7, pp. 21-28, 1962.
on 4-bit quantized messages. [2] A. Jimenez Felstrom and K. Zigangirov, “Time-varyingrelic Con-
volutional Codes with Low-Density Parity-Check MatriX¥fiformation
Theory, IEEE Transactions orvol. 45, no. 6, pp. 2181-2191, Sept.
1999.
[3] D.J.C.Jr., A.E. Pusane, S. Bates, and K. S. Zigangir&\Cbmparison
)]) between LDPC Block and Convolutional Codes,” Btoc. Workshop
plexity and throughput. Compared with a single-procesger d Information Theory Its Applications2006. o
coder of an LDPC block code with the same iteration numbe[f‘] A. Pusane, A. Feltstrom, A. Sridharan, M. Lentmaier, kgahgirov, and

. D. Costello, “Implementation Aspects of LDPC Convolutibi@odes,”
I, the LDPCCC decoder witlh processors, the length of the communications, IEEE Transactions,aml. 56, no. 7, pp. 1060-1069,

coded bits stored in each processor being the code length of July 2008.

; ; i ; [5] T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohar&. Kametani,
t_he blogk code, incurs times more complexity, but achievés T ‘Sugihara, K. Kubo. H. Yoshida, T. Kobayashi, and T. Ichika
times higher throughput. In order for the LDPC block decoder «gyperimental Demonstration of Concatenated LDPC and R&e€dy

to attain the same throughput,times more processors are FPGAs Emulation,IEEE Photonics Technology Lettersl. 21, no. 18,

- - pp. 1302-1304, July 2009.
needed to deco_de n paraIIeI. Under such ClrcumSt.anceS’ t[%? |. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next Gemation
overall complexity of the LDPC block decoder will increase™ " rec for High-Capacity Communication in Optical Transpoettorks,”

by I times and becomes the same as the LDPCCC counterpart. Journal of Lightwave Technologyol. 27, no. 16, pp. 3518-3530, Aug.

; ; T . 2009.
Therefore, the fairness of comparing LDPCCC Wlt_h its plock{] M. Mansour and N. Shanbhag, “High-throughput LDPC degsd
coc_je counter part based on _whlch the LDPCCC is de_nved S’ |EEE Trans. Very Large Scale Integr.(VLSI) Sysal. 11, pp. 976-996,
validated from the perspective of processor complexity and Dec. 2003.
throughput [8] H. Zhong and T. Zhang, “Block-LDPC: a practical LDPC coglisystem
' design approachJEEE Trans. Circuits Syst. |, Reg. Papgwsl. 52, pp.
. 766 — 775, Apr. 2005.
E'gure 9 shows the BER performance of LDPCCCs an‘fb] Z. Wang and Z. Cui, “Low-Complexity High-Speed Decodezdign for
their block-code counterparts. The results of the LDPClbloc ~ Quasi-Cyclic LDPC CodesfEEE Trans. Very Large Scale Integr.(VLSI)
codes are obtained from computer simulations (using C pro- Syst vol. 15, no. 1, pp. 104-114, Jan. 2007.

. . . 10] K. Zhang, X. Huang, and Z. Wang, “High-throughput lag@rdecoder
grammlng) based on 4-bit quantlzed messages. It can be S%e]ﬂimplementation for quasi-cyclic LDPC codedEEE J. Select. Areas

that the BER performance of LDPCCCs are generally superior. Commun.vol. 27, pp. 985-994, Aug. 2009.
For instance, the LDPCCC with = 422 and / = 18 has [11] C. Zhang, Z. Wang, J. Sha, L. Li and J. Lin, “Flexible LOP

. _ . decoder design for multigigabit-per-second application&EE Trans.
5
a gan of 0.2 dB at a BER of2 x 10 over its block- CircuitsSyst. |, Reg. Papersol. 57, pp. 116 —124, Jan. 2010.

code counterpart. Another observation is that the adventdge] M. Tavares, E. Matus, S. Kunze, and G. Fettweis, “A Duatle

of LDPCCC over its block-code counterpart becomes obvious Programmable Decoder for LDPC Convolutional Codes,"Gincuits
th b fd di iterati . = | and Systems, 2008. ISCAS 2008. |EEE International Symposiu
as the numper or decoding Iteratons Increases. For example May 2008, pp. 532-535.

the performance of LDPCCC with = 1024 andI = 10 has [13] E. Matus, M. Tavares, M. Bimberg, and G. Fettweis, “Taiga GBit/s

a similar performance of its block-code counterpart at a BER Programmable Decoder for LDPC Convolutional CodesCircuits and
5. . . Systems, 2007. ISCAS 2007. IEEE International SymposiynMan

of 2x 107" and it outperforms its block-code counterpart by 5507 pp. 1657-1660.

0.1 dB at a BER ofx10~% when the number of decoding[14] R. Swamy, S. Bates, T. Brandon, B. Cockburn, D. Elligit, Koob,

iterations increases tt2, i.e., I = 12. As a result, when the and Z. Chen, “Design and Test of a 175-Mb/s, Rate-1/2 (18BI3w-
b fd ding i . is | LDPCCC i id Density Parity-Check Convolutional Code Encoder and Decd&olid-
number of decoding iterations is large, IS CONSWIEre giate Circuits, IEEE Journal pivol. 42, no. 10, pp. 2245-2256, Oct.

to be a better choice in terms of error performance. 2007.

[15] S. Bates, Z. Chen, L. Gunthorpe, A. Pusane, K. Zigangiand
D. Costello, “A Low-Cost Serial Decoder Architecture fordedensity
Parity-Check Convolutional CodesCircuits and Systems |: Regular
Papers, IEEE Transactions ¢rvol. 55, no. 7, pp. 1967-1976, Aug.
2008.

[16] S. Bates and G. Block, “A Memory-based Architecture FR*GA Im-
plementations of Low-Density Parity-check ConvolutioBelcoders,” in
Circuits and Systems, 2005. ISCAS 2005. IEEE InternatiSyaiposium
on, May 2005, pp. 336 — 339 \ol. 1.

[17] T. Brandon, J. Koob, L. van den Berg, Z. Chen, A. Alimolmad,
R. Swamy, J. Klaus, S. Bates, V. Gaudet, B. Cockburn, and IiotEI'A
Compact 1.1-Gb/s Encoder and a Memory-Based 600-Mb/s @edod
LDPC Convolutional Codes,Circuits and Systems |: Regular Papers,
IEEE Transactions onvol. 56, no. 5, pp. 1017 -1029, May 2009.

[18] Z. Chen, T. Brandon, D. Elliott, S. Bates, W. KrzymiemdaB. Cock-
burn, “Jointly Designed Architecture-Aware LDPC Convaual Codes
and High-Throughput Parallel Encoders/DecodeBiituits and Systems
I: Regular Papers, IEEE Transactions ,owol. 57, no. 4, pp. 836-849,
Apr. 2010.

[19] Z.Chen, S. Bates, and W. Krzymien, “High Throughputeflal Decoder
Design for LDPC Convolutional Codes,” i@ircuits and Systems for
Communications, 2008. ICCSC 2008. 4th IEEE Internationahfér-
ence on May 2008, pp. 35 -39.

[20] M. Fossorier, “Quasi-cyclic low-density parity-checodes from circu-
lant permutation matrices/[EEE Trans. Inf. Theoryvol. 50, pp. 1788—
1793, Aug. 2004.

[21] D. L. Donoho, A. Javanmard, and A. Montanari, “Informoat
theoretically optimal compressed sensing via spatial lkogipand
approximate message passin@omputing Research Repositpryol.
abs/1112.0708, 2011.

[22] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatiatbupled
ensembles universally achieve capacity under belief gagian,” CoRR
vol. abs/1201.2999, 2012.

[23] W. M. Tam, F. C. M. Lau, and C. K. Tse, “A class of QC-LDPC
codes with low encoding complexity and good error perforoeghn
Communications Letters, IEERoI. 14, no. 2, pp. 169-171, 2010.

[24] Z. Chen and S. Bates, “Construction of Low-Density Ba@heck Con-
volutional Codes through Progressive Edge-Growtbgdmmunications
Letters, IEEE vol. 9, no. 12, pp. 1058-1060, Dec. 2005.

[25] S.-Y. Chung, J. G. Forney, T. J. Richardson, and R. UtbafOn the
Design of Low-Density Parity-Check Codes within 0.0045 dBtlee
Shannon Limit,"Communications Letters, IEERKoOI. 5, no. 2, pp. 58—
60, February 2001.

[26] R. Storn and K. Price, “Differential Evolution — A Simglnd Efficient
Heuristic for global Optimization over Continuous Spate®urnal of
Global Optimization vol. 11, pp. 341-359, 1997.

[27] X. Chen, J. Kang, S. Lin, and V. Akella, “Memory System tbpza-
tion for FPGA-Based Implementation of Quasi-Cyclic LDPCdés

Decoders,"Circuits and Systems |: Regular Papers, |IEEE Transaction

on, vol. 58, no. 1, pp. 98-111, Jan. 2011.

Chiu-Wing Sham received the Bachelor degree in

12

Xu Chen received his B.E. degree from Sun Yat-

sen (Zhongshan) University, China in 2007 and his
M.S. degree from Purdue University, West Lafayette
in 2009. From 2009 to 2011, he was a research
assistant in the Hong Kong Polytechnic University,

Hong Kong. He is currently working towards the

Ph.D. degree at Northwestern University, USA. His
research interests include coding theory, optimiza-
tion and cooperative communications.

Francis C.M. Lau (M'93-SM’'03) received the
BEng (Hons) degree in electrical and electronic
engineering and the PhD degree from King'’s College
London, University of London, UK, in 1989 and
1993, respectively.

He is a Professor and Associate Head at the
Department of Electronic and Information Engineer-
ing, The Hong Kong Polytechnic University, Hong
Kong. He is also a senior member of IEEE. He
is the co-author ofChaos-Based Digital Communi-
cation Systemg¢Heidelberg: Springer-Verlag, 2003)
and Digital Communications with Chaos: Multiple Access Tegaes and
Performance Evaluatior(Oxford: Elsevier, 2007). He is also a co-holder
of three US patents and one pending US patent. He has publisher
230 papers. His main research interests include channéhg;ocboperative
networks, wireless sensor networks, chaos-based digdaimunications,
applications of complex-network theories, and wirelessitwnications.

He served as an associate editor lBEE Transactions on Circuits and
Systems lin 2004—2005 andEEE Transactions on Circuits and Systems |
in 2006-2007. He was also an associate editoDgfiamics of Continuous,
Discrete and Impulsive Systems, Serigfsoin 2004 to 2007, a co-guest editor
of Circuits, Systems and Signal Processfogthe special issue “Applications
of Chaos in Communications” in 2005, and an associate edlitolEICE
Transactions (Special Section on Recent Progress in Nelifheory and
Its Applications) in 2011. He has been a guest associaterexfitnternational
Journal and Bifurcation and Chaasnce 2010 and an associate editotEfEE
Circuits and Systems Magazisince 2012.

Yue Zhao Yue Zhao received the BE degree in infor-
mation Engineering from Shanghai Jiaotong Univer-
sity, China in 2009. He was a postgraduate student
and research assistant at the Hong Kong Polytechnic
University, Hong Kong, from 2009 to 2012, where
he was working on algorithms and implementations
for the LDPC decoding. He is currently working at
the Qualcomm research center, Beijing, China.

computer engineering, and the M.Phil. degree and
the Ph.D. degree from The Chinese University of
Hong Kong, Hong Kong, in 2000, 2002, and 2006,
respectively. He was a Research Engineer with Syn-
opsys, Shanghai, China, and an Electronic Enginee-
working on the FPGA applications of motion control
system with ASM (HK). He joined the Electronic
and Information Engineering Department of The
Hong Kong Polytechnic University, as a Lecturer in
August 2006. His research interests include desigr
automation of VLSI, design optimization of digital VLS| gges and em-
bedded systems.

Wai M. Tam received the B.Sc. degree in electron-
ics and information systems from Jinan University,
China, and the M.Phil. and Ph. D. degree in elec-
tronic and information engineering from The Hong
Kong Polytechnic University, Hong Kong.

She is currently a Research Fellow at the De-
partment of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hong Kong.
Her research interests include channel coding, mo-
bile cellular systems, complex networks and chaos-
based digital communications.

