Comments

Comments on "Self-Checking Carry-Select Adder Design Based on Two-Rail Encoding"

Muhammad Ali Akbar and Jeong-A Lee, Senior Member, IEEE

Abstract

We first show that self-checking presented in the above paper does not work for carry-select adder with input bits higher than 2. Then, we present a correct design and show that the resulting overhead almost doubles.

Introduction: Self-checking carry-select adder (CSeA) with reduced area overhead was presented by Vasudevan et al. [1]. The proposed design seemed to be promising for self-checking CSeA, and therefore, the work was referred to for comparison by Alioto et al. [2], Belgacem et al. [3] and Wang et al. [4]. However, we find that the claim for self-checking is only valid for 2 -bit CSeA, and the 6 -bit CSeA shown in the paper cannot provide self-checking.

In this paper, we argue the failure of their design model and present a correct self-checking CSeA design based on two-rail encoding. We show that the transistor overhead of the correct model is higher than the one claimed by Vasudevan et al. [1].

Design Problem: The property used by Vasudevan et al. [1] for a pair of full adders can be generalized as follows:

The relation between sum bits calculated with identical inputs is only dependent on the carry-input, and for complemented values of carry-input, we will obtain complemented sum bits (keeping other pairs of input bits identical).
For example, if the sum bits S_{i}^{1} and S_{i}^{0} are generated by using intermediate carry C_{i}^{1} and C_{i}^{0}, respectively, then according to the above-mentioned statements:

$$
\begin{aligned}
& \text { If }\left(C_{i}^{1}=\overline{C_{i}^{0}}\right) \\
& \text { Then } S_{i}^{1} \text { is equal to } \overline{S_{i}^{0}} .
\end{aligned}
$$

Where, i indicates the bit position, while 1 and 0 in the superscript represent the initial value of Cin. If we analyze the CSeA design, then the above statements are only valid for the least significant sum bit of a particular CSeA block. This is because the first full-adder in every CSeA block is the only one that will get the complemented values of the carry-input. The remaining full adders will depend on the propagated carry, which may or may not be complementary to each other. Therefore, we cannot say

[^0]

Fig. 1. Examples of 3-bit addition (a) $S_{2}^{0}=S_{2}^{1}$ (b) $S_{2}^{0}=\overline{S_{2}^{1}}$.
whether the generated sum bits, other than the first full adder, will be inverted to each other or not.

The possibility of having equal values of propagated carry by the two corresponding adders in a CSeA was neglected by Vasudevan et al. Therefore, the approach in [1] fails for CSeA with more than two bits, as shown in Fig. 2[1]. Note that the initial carries, C_{1} and C_{2}, always complementary to each other because of the design requirement of CSeA , while the intermediate carries, C_{a} and C_{b}, may or may not be complementary to each other, depending on the conditions of carry propagation. Thus, S_{a} and S_{b} will not always be complementary to each other. Therefore, comparing S_{a} and S_{b} directly using 2-pair-2-rail-checker (TTRC) will give the wrong indication of faults. Even if there is no fault, the TTRC will indicate a fault. Since the problem in their approach starts from C_{a} and C_{b}, we do not discuss the intermediate carries C_{x} and C_{y}. Let us consider the binary addition of 3-bit numbers as illustrated in Fig. 1. It can easily be seen from Fig. 1(a) and (b) that the most significant bits may or may not be complementary to each other.

Proposed Design Solution: A carry-select adder pre-computes sum bits using two parallel ripple-carry adders (RCAs), with complemented values of the initial $C_{i n}$, and the actual value of the C_{in} will be used to determine the final sum bit. Vasudevan et al. utilized both RCAs to obtain the complementary behavior of the corresponding sum bits. However, it is possible to perform a logical operation such that one of the RCA blocks should always provide inverted sum bits with respect to the opponent block for checking purposes only. This will provide a more simplified and systematic design, which can be extended easily. In this paper, we will discuss only one possible way in which the sum bits calculated at initial $\mathrm{C}_{\mathrm{in}}=0$ are altered, such that they become complementary to the sum bits calculated at an initial $\mathrm{C}_{\mathrm{in}}=1$ for comparison.

After close observation, we found that:
Except for the least significant bit, the sum bit computed when initial carry-in equals 0 will be complementary to the corresponding sum bit with an initial carry-in equal to 1 only when all the lower sum bits are equal to logic-1.

Fig. 2. Faulty design of 4-bit self-testing carry-select adder [1].

Fig. 3. Corrected design of self-testing carry-select adder with two rail encoding.

In general, we can say that:

$$
\text { If }\left(S_{1}^{0} \cdot S_{2}^{0} \cdot S_{3}^{0} \ldots \ldots S_{(i-1)}^{0}=1\right)
$$

Then S_{i}^{0} is equal to $\overline{S_{i}^{1}}$;
Else S_{i}^{0} is equal to S_{i}^{1}.
Thus, in order to apply TTRC for n-bit CSeA, we need to have S_{n}^{1} along with its complement, and S_{n}^{0} will not always equal to $\overline{S_{n}^{1}}$. If all the $(\mathrm{n}-1)^{\text {th }}$ sum bits at $\mathrm{C}_{\mathrm{in}}=0$ are equal to logic-1, then the value S_{n}^{0} is equal to the complement of S_{n}^{1}.

In other cases, if any of the $(\mathrm{n}-1)^{\text {th }}$ sum bits at $\mathrm{C}_{\text {in }}=0$ are equal to logic-0, then we take the inverse of S_{n}^{0}, so it equals to the complement of S_{n}^{1}. Therefore, in (1) we performed an XNOR operation between S_{n}^{0} and the product of all lower sum bits computed at the initial $\mathrm{C}_{\mathrm{in}}=0$, such that the resultant K will always be equal to $\overline{S_{n}^{1}}$. The design module shown in Fig. 3 will be used to implement the 4-bit self-checking CSeA.

$$
\begin{equation*}
\mathrm{K}=\overline{S_{n}^{0} \oplus\left(S_{(n-1)}^{0} \ldots \ldots S_{3}^{0} \cdot S_{2}^{0} \cdot S_{1}^{0}\right)} \tag{1}
\end{equation*}
$$

TABLE I
Comparison of CSEA With Self-Checking CSeA Before and After Correction of Vasudevan et al. [1].

| Number of
 bits | CSeA without
 self-checking | Vasudevan et al. faulty design [1] | | | Corrected self-checking CSeA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Fig. 4. Comparison with CSeA, self-checking CSeA [1] and our proposed solution.

COMPARISON: We applied the same technology and implementation used by Vasudevan et al. [1] for comparison. A standard complementary metal-oxide semiconductor-based AND gate with 6 transistors was used for area computation and the transistor count for full-adder, multiplexer (MUX), XNOR gate and TTRC was taken from Vasudevan et al. [1], as given below:

- Full adder - 28 transistors;
- MUX - 12 transistors;
- XNOR - 10 transistors;
- TTRC - 8 transistors.

For an n-bit self-checking CSeA, we required ($n-2$) number of AND gates, $(n-1)$ number of XNOR gates, $(n+1)$ number of MUX, (2 n) number of full adders and ($\mathrm{n}-1$) number of TTRC, respectively. From Table I, we can see that the difference in transistor overhead for 4- to 64-bit self-checking CSeAs varies from 22 to 682, compared to the faulty self-checking CSeA design by Vasudevan et al. [1]. Moreover, the transistor overhead of the corrected self-checking CSeA, as compared to CSeA without self-checking, was found to be 23.2% to 34.5%, whereas in the faulty approach presented by Vasudevan et al. [1], the overhead was 15.49% to 18.84%.

A graphical representation for area comparison is shown in Fig. 4. We can see that after correcting the self-checking CSeA design [1], the percent change in transistor count shows an increasing trend with the increase in number of bits in the adder.

REFERENCES

[1] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson, "Self-checking carryselect adder design based on two-rail encoding," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 12, pp. 2696-2705, Dec. 2007.
[2] M. Alioto, G. Palumbo, and M. Poli, "Optimized design of parallel carry-select adders," Integration, the VLSI J., vol. 44, no. 1, pp. 62-74, Jan. 2011.
[3] H. Belgacem, K. Chiraz, and T. Rached, "A novel differential XOR-based self-checking adder," Int. J. Electron., vol. 99, no. 9, pp. 1239-1261, Apr. 2012.
[4] Y. S. Wang, M. H. Hsieh, J. C.-M. Li, and C. C.-P. Chen, "An at-speed test technique for high-speed high-order adder by a $6.4-\mathrm{GHz} 64$-bit domino adder example," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1644-1655, Aug. 2012.

[^0]: Manuscript received July 18, 2013; revised November 10, 2013; accepted November 29, 2013. Date of publication January 24, 2014; date of current version June 24, 2014. This paper was recommended by Associate Editor M. Alioto.
 The authors are with Computer System Lab, Department of Computer Engineering, Chosun University, 501-759, South Korea, (e-mail: mali.neduet@gmail.com; jalee@chosun.ac.kr).

 Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

 Digital Object Identifier 10.1109/TCSI.2013.2295930

