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Abstract—This work studies the impact on power system dy-
namics of wind energy conversion systems based on permanent
magnet synchronous generators when they perform ancillary
services. The ability of modern variable-speed wind turbines to
rapidly modify its active and reactive power is exploited in order
to provide additional support to the power grid and enhance the
overall stability of the system. A set of control loops are incorpo-
rated to the wind farm in order to achieve three supporting tasks:
short-term frequency regulation, oscillation damping and voltage
regulation. The analysis contemplates the effects of different
loading conditions, measurement/communication time delays
and control loop gains. Bifurcation diagrams, eigenvalue analysis
and nonlinear time-domain simulations are used to assess the
power system dynamics. The main contribution of this work is
the assessment of wind farm ancillary services on the bifurcation
structure of the power system.

Index Terms—Bifurcation analysis, oscillation damping, per-
manent magnet synchronous generators, power system dynamics,
short-term frequency regulation, wind energy conversion systems.

I. INTRODUCTION

T HE increasing penetration level of wind energy on the ex-
isting power networks, imposes new challenges to grid

designers and operators. The behavior of these new genera-
tion centers is different from the classical ones, composed by
large synchronous generators. The current wind energy conver-
sion systems (WECSs) technologies use variable-speed turbines
based on full-converter topologies, or doubly-fed induction gen-
erators [1]. The power electronic devices on these turbines, not
only allow them to operate optimally for a wide range of wind
speeds, but they can independently control their injected active
and reactive powers. The later is useful for improving the overall
system performance [2], [3].
A problem associated with high levels of wind energy pen-

etration is the decrease in the frequency regulation capacity of
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the system. If all the WECSs act as independent active power
sources they do not contribute to the total inertia of the system
[4], and the network becomes less robust to perturbations, such
as load variations and generation tripping. To overcome this
problem, and to improve the stability margin of the system, ded-
icated control strategies for the WECS power converters can be
designed. Several techniques consider the addition of a control
action emulating the frequency droop of conventional genera-
tors [5]–[11]. These controllers exploit a fundamental property
of the variable-speed wind farms: due to their power electronic
devices, they can resort to the kinetic energy stored in their ro-
tational masses faster than conventional generators. This stored
energy is used to transiently support the system frequency. Once
the transient event finishes, the wind farm ceases its partici-
pation and the power unbalance is compensated by the con-
ventional synchronous generators. Then, to extract the max-
imum power available in the wind, the maximum power point
tracker (MPPT) algorithm adjust the turbine speed according
to the current wind velocity. The high controllability of the
variable-speed wind turbines can improve other features of the
power system, such as oscillations damping and voltage regula-
tion. In this regard, [12], [13] investigate the damping of critical
eigenvalues for different penetration levels, and theWECS con-
tribution to diminish electromechanical oscillations.
The nonlinear nature of power systems, combined with the

special features of WECS, drives the attention to investigate the
dynamics from the nonlinear perspective. In this regard, bifur-
cation analysis provides a powerful tool to study the behavior
of the power system under variations of parameters such as the
load consumption level, generation dispatch, controllers gains,
etc. The analysis of power system dynamics using bifurcation
theory was explored in many articles over the last two decades
[14]–[24], and it is currently used to investigate the dynamics
of several power system components such as three-phase
voltage source converters (VSC), dc-dc and flyback converters
[25]–[29], photovoltaic systems [30] and permanent magnet
synchronous motors [31].
In this work, bifurcation theory is used to investigate the

dynamics of a power system including wind farms based on
permanent magnet synchronous generators (PMSGs) when
they perform ancillary control tasks such as short-term fre-
quency regulation, inter-area oscillations damping, and voltage
regulation. A two-area network model is considered, and
three complementary controllers are included in the wind
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farm. The methodology consists in a combination of nonlinear
time-domain simulations, eigenvalue analysis and numerical
continuations of the equilibria varying distinctive parameters,
such as the loading factor, controller gains and time delays. The
main objective is to analyze the effect on the dynamics after
including ancillary services on the wind farm. The original
bifurcation structure (without ancillary services) is compared
with the one including the new capabilities on the WECS. The
analysis helps in determining new stability/operational regions,
revealing organizing centers of the dynamics and assessing the
dynamical scenario for non-nominal operating conditions.

II. POWER SYSTEM MODEL

The power grid considered is the two-area system shown in
the single-line diagram of Fig. 1. The system proposed in [32]
for inter-area oscillation studies, is modified to include a 500
MVA wind farm in area #1. The parameter values of the grid
and generators are obtained from [32, Example 12.6]. To use
the standard numerical continuation package MatCont [33], the
power system is modeled as a set of ordinary differential equa-
tions (ODE). Although restricting to ODE models is a limita-
tion of the methodology, the package performs robust continu-
ations with optimized algorithms, and brings valuable informa-
tion about the bifurcations, such as the normal form coefficients
that are used to classify the type of bifurcation and its unfolding.
To obtain an ODE model for the entire power system, ODE rep-
resentations of its components are derived. The synchronous
generators are described by a fourth-order two-axis transient
model, which accounts for the rotor mechanical and electrical
dynamics. Automatic voltage regulators (AVR) and governors
(GOV) are considered for all the machines. Power system sta-
bilizers (PSS) are included in generators #1 and #3. The loads
are composed by a ZIP model, i.e., a combination of constant
impedance, current and power terms. The transmission lines are
represented with -models. Then, the entire model is assembled
considering the dynamic equations of the bus voltages and the
sum of the currents at the corresponding node. The variables
of the transmission system are referred to a synchronous
reference frame, while the variables of the synchronous gener-
ators are expressed in their own reference frames. Therefore, a
rotation matrix must be used to express the generator variables
in the synchronous reference frame, and vice versa. This
transformation enables the connection between the differential
equations of all synchronous generators and the electrical net-
work. The procedure is explained in detail in [16], [34] and [35,
Ch. 4]. The resulting ODE model has 64 state variables.

A. Wind Farm Model

The wind farm is connected to bus 7 on area #1 (see Fig. 1). It
is represented by an aggregated model, describing a wind farm
with several identical variable-speed PMSGs. The equivalent
turbine is connected to the grid using a full converter topology,
with two VSCs in back-to-back configuration. TheWECSmod-
eling and control strategies can be obtained from [1], [10]. In
order to inject the maximum power available from the wind,
the active power reference ( in Fig. 2) is given by the MPPT
strategy, based on the rotor speedmeasurement and the optimum
power-speed cubic characteristic of the wind turbine [36], [37].

Fig. 1. Single-line representation of the two-area multimachine power system.

Fig. 2. Supplementary controllers of WECS. Active power reference, in-
cluding short-term frequency and oscillation damping compensators.

B. Ancillary Wind Farm Controllers

To include ancillary services into the wind farm, the active
power reference has two additional terms: a short-term
frequency regulation ( ), and an inter-area oscillation damping
( ), as shown in Fig. 2. On the other hand, the WECS can also
perform voltage support by means of reactive power injection
through the voltage control loop.
1) Short-Term Frequency Regulation: The capability of

modern wind farms to provide short-term frequency regula-
tion is studied in [5]–[10]. In this paper the error signal is
the frequency deviation on the point of common coupling
(PCC), denoted as . A time delay ( ), accounting for
the local measure and internal control process, is included. A
washout filter ensures that the wind farm only acts transiently
on frequency regulation, allowing it to operate at the MPP on
steady-state. The controller gain is defined as ,
where the constant accounts for the rated power of the wind
farm and the base value of the per unit system (here ),
and represents the short-term droop gain.
2) Inter-Area Oscillation Damping: The error signal is com-

puted as the difference of representative measures of the fre-
quency in each area, and . A communication
time delay ( ) is considered. The effect of the remote time
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Fig. 3. - characteristic implemented by the voltage controller of the WECS.

delay become relevant due to the distance between the areas and
the wind farm. Both, the local ( ) and remote ( ) time delay
blocks are modeled using a second-order Padé approximation
[38], [39]. A washout filter is included to prevent the compen-
sation in steady-state, and a phase compensator is added to im-
prove the performance. Similar strategies are analyzed in [13],
[40], [41] for different power systems and wind farm configu-
rations.
3) Voltage Regulation: this controller monitors the voltage at

PCC ( ) and modifies the reactive current reference ( )
of the grid-side converter according to the voltage-current char-
acteristic in Fig. 3 [42]. The gain is tuned according to

, where was defined previously and rep-
resents the voltage droop gain. Voltage regulation schemes are
described in [10], [43].

III. ANALYSIS OF THE DYNAMICS WITHOUT ADDITIONAL
CONTROLLERS ON THE WECS

In this section, the WECS is considered as an independent
power source, i.e., it injects the optimal active power without
performing additional services on the power system. The dy-
namical behavior of the system with a constant wind velocity
condition in the WECS is studied in terms of the loading sce-
nario. Towards this end, variations of the loading factor of load
B (at bus 9), denoted as , are considered. The bifurcation
diagram, obtained with the numerical continuation software
package MatCont [33], is shown in Fig. 4(a). Parameter
is indicated on the abscissa, and the ordinate corresponds to
the module of the voltage at bus 9 ( ). Solid lines represent
the stable equilibria, and dashed lines are the unstable ones.
According to this diagram, the equilibrium point is stable for
the nominal consumption . When the loading factor
is increased, the voltage on bus 9 decays until the equilib-
rium point becomes unstable due to a Hopf bifurcation
for . At this point a pair of complex conjugate
eigenvalues of the linearization matrix crosses the imaginary
axis. Then, the unstable equilibrium (dashed line) collapses
in a saddle-node bifurcation, namely , for . In
this condition, the linearization of the system presents a real
eigenvalue at the origin. For larger values of neither stable
nor unstable equilibria exist. The lower equilibrium branch, is
always unstable and suffers a Hopf bifurcation at .

A. Hopf Bifurcations and Limit Cycle Connections

The Hopf bifurcation is subcritical and, provided that
some non-degeneracy conditions are satisfied [44], an unstable
limit cycle emerges towards the left [as is depicted by the empty
circles in Fig. 4(a)]. The stability of the cycle is determined by

Fig. 4. Dynamics without additional controllers on the WECS. (a) Bifurcation
diagram varying the loading factor ; (b) Loci of the relevant eigenvalues.

computing the coefficient of the normal form, known as cur-
vature index or Lyapunov index1. For , the system
does not have any stable attractor (at least locally) resulting in
voltage collapse. Therefore, the operation of the system is not
possible beyond . As is denoted by the superscript,
the index of is positive. If the curvature index were nega-
tive, the Hopf bifurcation would be supercritical, and a stable
limit cycle would grow toward the right. Notice that in this case,
even though the equilibrium point would be unstable, the stable
limit cycle would introduce a sustained oscillation. The sign of
the curvature index was also studied for different levels of load
A, wind speeds and values of the PSS gains. The first two cases
modify the power transmitted from area #1 to area #2. As a gen-
eral result, the inter-area mode becomes less damped when the
power flow is increased. This phenomenon occurred either de-
creasing the load A or increasing the power injected by the wind
farm. On the other hand, increasing the PSS gains moves the
Hopf curve towards the saddle-node (stabilizing effect). In all
the cases, the coefficient is positive leading to a subcritical Hopf

1The calculation of the curvature index requires the left and right eigenvec-
tors and the derivatives of the vector field up to third order. The mathematical
expression can be found in [44] and it is implemented in MatCont [33].
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bifurcation . Nevertheless, the coefficient has a small value
(this explains that the unstable limit cycle grows abruptly near
the bifurcation point) and it could become negative (supercrit-
ical) if other parameters were modified.
The unstable limit cycle born at , grows towards the left

until it undergoes a cyclic fold bifurcation ( ) for
. At this point, it collapses with the unstable cycle arising

at the subcritical Hopf bifurcation . For , i.e.,
before , the basin of attraction of the stable equilibria (solid
line) is restricted only by themanifolds of the unstable equilibria
(dashed line). Therefore, a sufficiently large perturbation is re-
quired to drive the system out of its basin of attraction [45], [46].
The unstable cycle existing for , i.e., be-
tween and , shrink further more the basin of attraction,
therefore the stability may be lost for smaller perturbations.

B. Eigenvalue Analysis

The information about the local stability of the equilibria pro-
vided by the bifurcation diagram of Fig. 4(a), is in direct relation
with the loci of the eigenvalues when is varied. The loci of
the critical eigenvalues is depicted in Fig. 4(b). They correspond
to the so-called inter-area mode, representing the coupling be-
tween areas #1 and #2; the intra-area modes associated to the
local oscillation modes of each area; and a real eigenvalue de-
scribing voltage collapse. The square markers in Fig. 4(b) in-
dicate the eigenvalues location for (nominal operating
point); the rhombi denote their position for , i.e.,
when the Hopf bifurcation occurs (a pair of eigenvalues
are on the imaginary axis); the triangles indicate the case for

, i.e., at the saddle-node bifurcation (one real
eigenvalue is at the origin); and the crosses for
corresponding to the Hopf bifurcation .
An important fact to be noticed in the loci is that the damping

of the inter-area mode decreases when the loading factor is in-
creased. The Hopf bifurcations and correspond to the
crossing of this mode over the imaginary axis, while the saddle-
node bifurcation is produced by the crossing of the real
eigenvalue through the origin.

IV. ANALYSIS OF THE DYNAMICS INCLUDING SHORT-TERM
FREQUENCY REGULATION

In this section, the dynamics is analyzed when the active
power reference of theWECS includes the short-term frequency
compensator. In this analysis the inter-area oscillation damping
controller as well as the voltage regulator are not activated.
The effect of the short-term frequency regulator on the system
dynamics, is studied performing a two-parameter continuation
varying simultaneously the gain and the load level .
Starting from the singular points found for , i.e., ,

and in Fig. 4(a), the diagram of Fig. 5 is obtained. This
two-parameter diagram represents the locus of the mentioned
bifurcations and, for simplicity, the curves inherit the names
from those in the one-parameter diagram.
The bifurcation diagram shows that when is increased,

the Hopf curves approach each other until they disappear
for as depicted in the blow-up of Fig. 6(a).
This figure shows that both Hopf bifurcations ( ) and the
saddle-node bifurcation ( ) curves are organized by the

Fig. 5. Bifurcation diagram varying and simultaneously.

zero-Hopf bifurcation . At this codimension-two singu-
larity, the Hopf branches become tangent to the saddle-node
curve, and the system linearization has, simultaneously, a pair
of purely imaginary eigenvalues plus one real eigenvalue at
the origin. This bifurcation (rigorously studied in [44], [47]),
does not introduce new bifurcations on the equilibrium points
but generates additional bifurcation curves of limit cycles.
The normal form coefficients are: , and

(obtained with MatCont and following the notation
in [44]). According to these values, in addition to the Hopf
and saddle-node bifurcation curves, the unfolding of the corre-
sponding normal form describes the birth and annihilation of
a quasiperiodic orbit by means of a Neimark-Sacker and ho-
moclinic bifurcation curves. Details on the emerging dynamics
can be consulted in [22] where a singularity with the same
normal form has been described on a nine bus power system.
The numerical continuation of the Neimark-Sacker is a very
difficult task considering the large dimension of the system.
Therefore, only the corresponding bifurcation point (labeled

) for is depicted.
Near to the zero-Hopf singularity, the Hopf bifurcation curve
undergoes a generalized Hopf (or Bautin) bifurcation, de-

noted as in Fig. 6(a). At this point the stability index of the
Hopf branch changes from a positive value [subcritical Hopf

, solid line in Fig. 6(a)] to a negative one (supercritical
Hopf , dashed line). At the bifurcation point, a curve
of saddle-node bifurcation of limit cycles emerges. The curve
is not shown in the figure, for the same reason that restricts the
continuation of the curve.
To show the ensemble of limit cycles organized around

and bifurcations, two horizontal slices (one-parameter bi-
furcation diagrams) for and are shown in
Fig. 6(b) and (c), respectively. For , is subcritical,
the corresponding cycle is unstable and emerges to the left. The
cycle exhibits a Neimark-Sacker bifurcation for ,
as predicted by the normal form of the zero-Hopf bifurcation.
At this point a torus or quasiperiodic oscillation arises. The
cycle becomes stable and undergoes a cyclic-fold bifurcation

(emerged at ) for , where it collapses
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Fig. 6. (a) Blow-up of the two-parameter bifurcation diagram (rectangle in
Fig. 5); (b) One-parameter bifurcation slice for ; (c) One-param-
eter bifurcation slice for .

with the unstable cycle born at . The dynamical scenario
changes for due to the zero-Hopf bifurcation. In this
case, is supercritical, the cycle emerges to the left, but it is
stable. Then it collapses with the one born at in the cyclic
fold bifurcation .
Notice that the escenario for , is similar to the one

obtained with [compare Figs. 6(b) and 4(a)]. The only
difference is that for the bifurcation is not present,
and the cycle is always unstable. This bifurcation probably col-
lapses at a strong 1:1 resonance2 for , and does
not appear in the bifurcation diagram for . Therefore,
the equilibrium point is stable on the gray area in Figs. 5 and
6(a), but it will be less robust to perturbations in the vicinity of
the bifurcation curves.

A. Main Effect of the Controller on the Dynamics

Let us begin by describing the main effect of the controller
on the bifurcation structure. To clarify the description, two ad-
ditional one-parameter bifurcation diagrams for
and are performed. The results are shown in
Fig. 7(a) and (c), respectively. In the bifurcation diagram for

[Fig. 7(a)], the locus of the equilibria does not
change from the open loop case (compare the solid and dashed

2The unfolding of the normal form of the 1:1 strong resonance can be con-
sulted in [44]

lines with the ones in Fig. 4 for ), since the transient
frequency loop does not act on steady-state due to the washout
filter. Thus, the saddle-node bifurcation remains without
change, but the (dynamic) Hopf bifurcation is displaced
towards the right, very close to . The case
[Fig. 7(c)] removes both Hopf bifurcations, thus the equilib-
rium point remains stable until it collapses in the bifurcation
. In both cases, the intra-area modes move towards the right

half plane as is increased, but they remain well damped, as
can be appreciated in the locus of Fig. 7(b) and (d). Neverthe-
less, the inter-area mode approaches the imaginary axis when

is increased. Notice that for this mode does
not cross the imaginary axis, since the Hopf bifurcation was
removed, but it is poorly damped for values of close to the
saddle-node bifurcation.
A clear example of the stabilizing effect of the short-term fre-

quency controller is depicted in Fig. 8, where a step variation of
from 1.25 to 1.31 is applied. Suppose that the system is op-

erating in steady-state with without short-term fre-
quency regulation (before in Fig. 4). Then, a step in the load
B is performed and the loading factor changes to ,
i.e., after . At this point the system cannot find any stable
equilibrium, resulting in an oscillatory transient that concludes
in a voltage collapse event, as shown by the dashed curve in
Fig. 8. When the short-term frequency controller is active the
system supports the loading step and after an oscillatory tran-
sient converges to a new stable equilibrium. The cases with

and are represented by the solid
gray and solid black curves shown in Fig. 8, respectively.

B. Effect on the Frequency Regulation

The effect of this controller on the frequency regulation is
illustrated by means of time-domain simulations for a 20% step
change on load B (at bus 9 in Fig. 1) from the nominal operation
point, i.e., . The results are shown in Fig. 9, where dotted
lines correspond to (open loop), gray solid curves to

(6% short-term frequency droop) and black solid
curves to (3% droop).
In Fig. 9(a), the frequencies of the areas are represented by the

average of the frequencies of its generators, i.e., generators on
buses 1 and 2 for area #1, and buses 3 and 4 for area #2. The
comparison among the curves shows that this simple control
strategy not only improves the frequency regulation, decreasing
the maximum frequency deviation (by 13% when using

or 24% for ), but also provides additional
damping to the inter-area oscillation. A practical range of local
control time delay (varying from 10 to 200 ms) was analyzed
and it was found that this parameter has no significative effect
on the response of the controller.
The active power injected by the wind farm at the PCC ( )

and the corresponding wind turbine speed ( ), are shown in
Fig. 9(b) and (c), respectively. In the open loop case ( ),
both the active power and the turbine speed are not affected by
the load step. They remain constant at their optimal values, and
the wind farm behaves as an independent active power source.
On the other hand, when the transient frequency regulation is
active ( ) and the load step is applied, the frequency de-
viation at the PCC is sensed and the wind farm starts to inject



REVEL et al.: DYNAMICS AND STABILITY ANALYSIS OF A POWER SYSTEM WITH A PMSG-BASED WIND FARM 2187

Fig. 7. Bifurcation diagrams with short-term frequency regulation. (a) Equilibria curve varying , with . (b) Eigenvalues varying load B, with
. (c) Equilibria curve with . (d) Eigenvalues corresponding to Fig. 7(c).

Fig. 8. Stabilizing effect of the short-term frequency controller. Response due
to a step variation from to , with (dashed
curve), (solid gray) and (solid black).

additional power in order to transiently compensate the gener-
ation/load unbalance. The additional energy is resorted to the
kinetic energy stored in the rotating masses; hence, initially,
the turbine speed decreases [as shown in Fig. 9(c)]. Then, the
MPPT algorithm will slowly bring the turbine speed to its op-
timal value, and the energy extracted from the rotating masses is
recovered. Similar results are obtained if the step is applied on
the load of area #1 (load A on Fig. 1). The oscillatory response

seen in Fig. 9 corresponds to the poorly damped inter-area mode
with frequency around 0.6 Hz. This is an important feature of
the two-area system of Fig. 1, and its effects on the dynamics
will be analyzed in the following.

V. ANALYSIS OF THE DYNAMICS INCLUDING THE INTER-AREA
OSCILLATIONS COMPENSATOR

As shown in the previous section, the short-term frequency
controller has a stabilizing effect on the inter-area mode. This
mode can be further damped if a dedicated compensator is in-
cluded in the wind farm. The strategy consists in measuring the
frequencies of both areas, denoted as and , and
using them to modify the active power reference of the WECS
(see Fig. 2). Since the areas can be distant from the wind farm, a
communication time delay will be considered in themeasure-
ment of frequencies. The effect of on the inter-area mode
will be analyzed for different values of the time delay and
the loading factor . The short-term frequency droop gain will
be fixed at [avoiding the Hopf bifurcations, see
Figs. 5 and 7(c)].
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Fig. 9. Short-term frequency regulation for different gain values:
(dotted curves), (solid gray), (solid black). (a)
Frequency variation due to a 20% step change in load B. (b) Active power in-
jected by the WECS ( ). (c) Wind turbine speed ( ).

TABLE I
PHASE COMPENSATOR PARAMETERS.

The analysis is carried out by performing numerical continu-
ations varying for different fixed values of . The value of
the gain is selected in order to have a damping of 20% (approx-
imately) on the inter-area mode for . This methodology
is repeated for two measurement time delays: and

; and two sets of measured signals: using the fre-
quency average of the generators in each area,

and , and using the frequency of
a single generator per area and .
The phase compensator was designed using the residue method
described in [48], resulting in the parameter values shown in
Table I.
The results for are shown in Fig. 10(a)–(c).

The bifurcation diagram [Fig. 10(a)] remains without change
from that shown in Fig. 7(c), due to the wash-out filter action.

This controller introduces a stabilizing effect that can be appre-
ciated in the eigenvalue loci shown in Fig. 10(b)-(c) for
(without compensation) and (a suitable choice, as
explained below). In these figures the locations of eigenvalues
for loading factors , 1.25, 1.33 and 1.34 (the extreme
value corresponding to the saddle-node bifurcation ), are in-
dicated. For both sets of measured signals, the main effect of
is on the the real part of the inter-area mode. For the
damping of the inter-area mode for all practical loading cases
( to 1.33) is around 5%, but for , it pro-
vides a damping of 15%–20%. As will be shown in simulations,
this value produces a response without inter-area oscillations.
Increasing produces an additional control effort from the
WECS but does not represent a substantial improvement in the
overall response.
For larger time delays, the bifurcation diagram does not

change [Fig. 10(d)], but the performance of the compensator
is slightly deteriorated as is depicted in Fig. 10(e)-(f) for

. With , a good damping factor between
10% and 20% can be obtained with both measured signals.

A. Main Effect of the Controller on the Dynamics

There is a couple of distinctive features of the inter-area
damping controller. It neither modifies the equilibria nor
introduces additional singularities, hence all the bifurcation
diagrams are essentially the same [Fig. 10(a) and (d)]. In
addition, this controller does not affect the intra-area modes
when the measured signals are the frequency average of each
area [Fig. 10(b) and (e)]. In this case the intra-area modes are
“filtered” by the averaging procedure. This is not the case when
a single frequency per area is used [Fig. 10(c) and (f)]. The
effect can be seen in the variation on the intra-area mode in
the area where the wind farm is connected. Nevertheless, this
mode remains with an admissible damping and there are no
other adverse phenomena on the remaining eigenvalues.

B. Effect on Inter-Area Oscillations

As in the case of the short-term frequency regulation, the per-
formance of the inter-area mode compensator is tested for a
20% load step in load B. Fig. 11 shows the effect of the con-
troller with , (gray) and
, (black). In both cases, the measured sig-

nals are the average values of the frequencies of each area, i.e.,
and . As shown

in Fig. 11(a), the inter-area oscillation is practically eliminated,
even when (compare with the dotted curve for

). The new compensator has a little effect on the
short-term frequency regulation [compare Figs. 9(a) and 11(a)],
since the controller only tries to reduce the differences between
the frequencies of the areas and not the deviation from the nom-
inal value. The active power generated by theWECS is shown in
Fig. 11(b). The power available for the transient frequency reg-
ulation and the inter-area compensator is limited to of the
WECS. The addition of the inter-area compensator does not rep-
resent a significative impact (besides an initial transient) on the
wind turbine speed [compare Fig. 9(c) with Fig. 11(c)], since
the speed deviation is mainly due to the short-term frequency
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Fig. 10. Effect of the inter-area compensator varying for and different time delays and measured signals. (a) Bifurcation diagram varying
with and . (b) Eigenvalues loci associated to Fig. 10(a), using the average frequencies as measurement inputs (gray: , black:

). (c) Eigenvalues using a single frequency per area (gray: , black: ). (d) Bifurcation diagram varying with and
. (e) Eigenvalues considering the average frequencies (gray: , black: ). (f) Eigenvalues using a single frequency per area (gray:

, black: ).

controller. Time domain simulations were also performed using
a single frequency per area, i.e., and
. The results are practically identical to the ones shown in

Fig. 11.

VI. ANALYSIS OF THE DYNAMICS INCLUDING THE VOLTAGE
REGULATOR

The third additional controller of the WECS provides voltage
support at the PCC. This compensator monitors the voltage
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Fig. 11. Effect of the inter-area oscillation damping controller with both
, (solid gray) and , (solid black).

(a) Frequency variation due to a 20% step change in load B. (b) Active power
injected by the WECS ( ). (c) Wind turbine speed ( ).

error and modifies the reactive current reference (and there-
fore the reactive power) of the grid-side converter, according
to the characteristic shown in Fig. 3. Unlike the previous
controllers, the voltage compensator modifies the location of
the saddle-node bifurcation. This is shown in the bifurcation
diagram of Fig. 12(a), where the continuation for is
compared with the one for (5% voltage droop).
In both cases the gains of the transient frequency regulator
and the inter-area compensator are fixed at and

, respectively.
The movement of the relevant eigenvalues is depicted in

Fig. 12(b) for (black dots) and compared with
the ones with (gray dots). It is important to notice that
the voltage compensator provides a small additional damping
to the inter-area mode and does not introduce an adverse affect
on the other electromechanical modes of the system.

A. Main Effect of the Voltage Controller on the Dynamics

The voltage compensator moves the saddle-node bifurcation
from ( ) to ( )
and does not add new dynamical phenomena. This is confirmed

Fig. 12. One-parameter bifurcation diagrams with voltage regulation (with
and ). (a) Bifurcation diagrams varying with
(black) and (gray). (b) Loci of eigenvalues of

Fig. 12(a).

Fig. 13. Saddle-node bifurcation curve varying and simultaneously.

by the two-parameter continuation in the parameter plane
shown in Fig. 13. The gray area shows how the stability

region is extended by the controller. A further increase of
does not produce a significative change in the location of the
saddle-node, since the curve becomes tangent to .
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Fig. 14. Effect of the voltage compensator due to a 20% load step. (a) Voltage
regulation at bus 12 (PCC). (b) Reactive power injected by the wind farm.

B. Effect on Voltage Regulation

The performance of the controller is also investigated for a
20% step change in load B3. The response is shown in Fig. 14
(solid lines). For the sake of comparison, the responses corre-
sponding to the open loop case ( ) and
the one with the frequency regulation and inter-area compen-
sators active ( , , ) are included.
In the open loop case (dashed lines) the inter-area oscillation
affects the voltage profile [Fig. 14(a)]. This effect is removed
when the frequency regulation and inter-area compensators are
activated (gray lines). Nevertheless, in both cases, there is no
voltage regulation since the wind farm does not inject reac-
tive power to the node [Fig. 14(b)]. When the corresponding
controller is activated, voltage regulation is achieved as can be
appreciated in Fig. 14(a) (solid black lines) for a 5% voltage
droop ( ) and the two other compensators active
( and ). In this case, the wind farm
starts the injection of reactive current in order to compensate
the voltage difference, resulting in a better voltage profile after
the load step.

VII. CONCLUSIONS

The impact on the power system dynamics of a PMSG-based
wind farm when performing ancillary services was investigated.
A detailed bifurcation analysis was carried out in order to as-
sess the effect of a set of control loops added to the WECS for:
short-term frequency and voltage regulation, and inter-area os-
cillation damping. The preliminary analysis (without additional
loops) revealed the presence of a Hopf bifurcation due to an

3A strategy that prioritizes the voltage support (reactive power injection) was
implemented for the reference currents of the WECS converter. This scheme
checks the maximum apparent current allowed, and reduces the active current
reference if the limit is reached [10].

inter-area mode and a saddle-node bifurcation. The bifurcation
diagram varying the loading factor and the gain of the short-term
frequency regulator shows that both singularities are unfolded
by a zero-Hopf bifurcation (acting as organizing center). The
short-term frequency regulator extends the stability regionmod-
ifying the location of the Hopf curve, and for a suitable gain
choice the Hopf bifurcation can be removed. On the other hand,
the voltage regulator modifies the location of the saddle-node bi-
furcation, extending the stability region. Moreover, it improves
the voltage profile without introducing adverse effects on the
electromechanical modes. The analysis of the inter-area oscilla-
tion compensator shows that this mode can be practically elim-
inated from the response. The effects of the loading condition,
the measured signals and the communication time delay were
considered in the analysis. It was also shown that the use of
the average value of the frequencies or a single one per area as
control inputs produces similar effects on the inter-area mode,
but the later strategy requires less measuring devices. Neverthe-
less, the single frequency approach may decrease the damping
of the intra-area mode in the area where the wind farm is con-
nected. In this analysis, an aggregated model of the wind farm
was considered. This is a common approach for stability studies,
but more realistic power systems are composed by several small
wind farms. If they are connected to the same bus that the aggre-
gated model, their power converters can control the individual
power outputs in order to meet the desired target for the total
output of the ensemble. Considering the proportional charac-
teristic (droop control) of the short-term frequency and voltage
regulators, the distributed topology of the wind farm should not
have a significant impact on the bifurcation analysis. For the os-
cillation damping controller the situation is more complex, but
the analysis can be extended following [41], where a decentral-
ized compensator tuned for a modular WECS (e.g., one for each
small wind power plant) is used, and concludes that practically
the same results than a park-level compensator for the entire
wind farm are obtained.
Real power systems have multiple areas with many genera-

tion and load centers and the interaction of the wind farm with
the rest of the system is not straightforward. Nevertheless, the
inclusion of additional controllers on variable-speed WECS ex-
pands the available options for controlling power system dy-
namics. These controllers will have a positive effect, provided
that they are adequately tuned for the problem under considera-
tion. The inter-area oscillation damping controller deserves par-
ticular attention since it introduces dynamics through a lead-lag
compensation and a time delay from the remote measure. In ad-
dition, the mode controllability depends on the location of the
wind farm. Generally, a modal analysis should be performed to
determine which wind farms have more influence in the partic-
ular oscillatory mode of interest.
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