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I. INTRODUCTION

T HE combination of injection locking with conven-
tional methods for frequency synthesis, such as the

phase-locked loop (PLL), is a promising solution for the design 
of high-performance clock multipliers and frequency synthe-
sizers [1]–[4]. In fact, the superior suppression of the oscillator 
phase noise provided by the injection-locking mechanism com-
pared to that provided by the PLL allows one to get frequency 
synthesizers with lower phase noise at lower power.
Injection-locked oscillators to be used in such a context 

need to be locked to a sub-harmonic of their own oscillation 
frequency and for this reason, they are typically implemented 
as pulse injection-locking oscillators (PILOs).1 A PILO  is an  
oscillatory circuit which is injected with a stream of narrow 
pulses generated from the reference signal. If the free-running 
frequency of the oscillator is sufficiently close to the th 
harmonic of the reference, with being the multiplication 
factor, the oscillator will lock to that harmonic according to a 
nonlinear dynamic phenomenon and its average frequency will 
become times the reference frequency. Injection locking 
forces the oscillator to follow the reference frequency thus 
attenuating phase-noise effects. Of course, the achievable 
phase-noise reduction depends on numerous factors and design 
parameters such as the shape, the power and the frequency
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1Other ways to achieve frequency multiplication exist in the literature, e.g 
array of coupled oscillators [5], [6], but they will not be considered in this paper.

of the injected pulses as well as the desired multiplication
factor . Predicting phase noise of PILO circuits by means of
transistor-level simulations requires to run, for each parameter
setting, several periodic steady state and periodic noise analyses
with commercial simulation tools. As a result, the exploration
of several potential parameter settings becomes prohibitively
time consuming for large multiplication factor values and as
the circuit complexity increases.
A much more efficient approach consists in the adoption of

oscillator macromodels [7]–[10]. Nevertheless, widely adopted
phase-domain macromodels based on oscillator linearization
around its stable orbit, e.g., those based on Perturbation Pro-
jection Vector (PPV) [8] or Impulse Sensitivity Function (ISF)
[9], are valid only under weak injected signals and are not
suitable to describe the injection locking mechanism in a PILO
[11]–[15]. This is because injected pulses are large-amplitude
perturbations that cause large deviations from the free-running
orbit.
For these reasons, in this paper we employ an extended

macromodeling methodology which is able to deal with
the case of large-amplitude pulse injection. The concept of
large-signal phase-response has been first introduced in mod-
eling spiking biological oscillators in neuroscience [14] and
only very recently it has been applied to the analysis of elec-
tronic oscillators [15]. In this paper, for the first time we use
this novel paradigm to quantify phase noise in sub-harmonic
PILOs.
Our Contribution. The novel contributions of our paper over

existing literature can be summarized as follows:
1) We use the above described concept of large-signal phase-
response to derive a noise-aware model of PILO. This
model is given by a stochastic nonlinear equation that de-
scribes the time evolution of the excess phase at discrete-
time points.

2) By exploiting the fact that the phase fluctuations around
the locked value due to PILO internal noise sources are
small, we provide an original closed-form expression of
phase noise.

3) We describe an efficient computational procedure which
allows us to quantify PILO phase noise as a function of the
main design parameters.

Paper Organization. Section II formalizes the concept of
large-signal phase-response and introduces the PILO model. In
Section III, we outline the noise-aware PILO model while in
Section IV we derive the closed-form expression for the PILO
output phase noise. Section V illustrates the application of the
novel methodology to the analysis of a PILO topology.

II. PULSE INJECTION LOCKING

Fig. 1-(Left) shows the circuit of a PILO based on an LC tank
oscillator. The injected voltage pulse train can be represented
mathematically by the following expression

(1)



Fig. 1. (Left) LC-type PILO circuit. (Right) A qualitative example of PDR
: the curve gives the amount of PILO phase variation induced by a single

pulse over one reference period as a function of the initial phase value (compared
to that of the reference). Sub-harmonic injection locking occurs at where the
curve intersects the value with a negative slope.

where is a -periodic function of its instantaneous phase
, while and are the injection

(angular) frequency and period respectively and is an ini-
tial constant phase. The injected voltage controls the gate of the
transistor , which is off for most of the time and on at each
pulse of . In practice, a resistance of low value shorts pe-
riodically the voltage across the LC resonator. The frequency

of the shorting pulse train, which is the same as the refer-
ence frequency, is set to a sub-multiple of the desired output
frequency, while the width of the pulses is commonly set to be
much less than the oscillation period.
The voltage across the resonator of the unperturbed oscillator

can be written as , where is the free-
running oscillation frequency and is a -periodic function
of instantaneous phase . Injection locking can occur only if
the injection frequency is close to or alternatively
if the relationship holds, where

is a sufficiently small frequency detuning and
is the frequency of the locked oscillator.
Let us consider one reference period starting at and

ending at . The phase variation of the injected signal
(1) over one period is clearly zero (a multiple of is equivalent
to zero due to the periodicity of ). Indeed, the phase variation
of the free-running response over a reference period is

(2)

We thus conclude that, in the absence of injection, during one
reference period the phase of the free-running oscillator would
be shifted by the value with respect to that of the
injected signal.
In a PILO circuit, the application of pulses of large amplitude

and short duration (compared to ) produces both amplitude
and phase variations in the response with respect to the free-run-
ning one. Due to the intrinsic amplitude limiting mechanism, the
amplitude variation produced by a single pulse is rapidly atten-
uated by the PILO dynamics and it can be considered damped
to zero before the application of the next pulse (which occurs
after a long time interval ). By contrast, due to the
neutral stability of the phase response, the phase variations in-

duced by the injected pulses are accumulated in time with no
attenuation. As a consequence, to the aim of studying injection
locking mechanism, PILO response can be properly described
by the following phase-domain model

(3)

where represents the phase deviation from the desired
locked value .
The application of each single pulse over one reference period

will produce, as a response, a variation of the phase variable
the amount of which will depend, in turn, on the value of
compared to the phase of the reference signal. This behavior can
be formalized mathematically as follows

(4)

where denotes the periodic function that describes the time-
varying sensitivity of the phase response. Fig. 1-(Right) shows
the qualitative shape of the function.
This function has been introduced in different contexts with

different names: in [14] it was referred to as Phase Response
Curve (PRC), while in [15] it was denoted as Phase Domain Re-
sponse (PDR). The numerical computation of which is de-
scribed in Appendix A entails simulating the transient responses
(over one injection period) of the oscillator after the injection of
a single pulse. The application time of the pulse is gradually
shifted over the oscillation period and the transient analysis is
repeated.
We treat now each period of the injected signal as a discrete

time event and we denote as the phase variable of the
PILO circuit, measured at the beginning of the th injection.
Considering both the phase delay (2) accumulated by the PILO
when running freely and the phase shift (4) induced by one-
pulse injection, we write

(5)

The nonlinear model (5) governs the evolution of the phase vari-
able at the discrete time points . Injection locking will
occur when the phase deviation reaches the equilibrium value

such that . By imposing the
above equilibrium condition into (5), we get

(6)

Condition (6) along with the shape of the function shown
in Fig. 1-(Right) tell a lot about the synchronizability of a PILO.
In fact, for a given value of the frequency detuning , injec-
tion lockingwill occur in correspondence to the phase difference
value where intersects .
Moreover, this locking condition will be stable only if the slope
of the curve at the intersection point is negative. This can be
seen with the help of (5): if the curve slope is negative, a posi-
tive initial perturbation of (with respect to the lock value
) results in a reduction of the term on the right-hand-side

of (5) and thus compensates the initial perturbation. Vice versa,
if the curve slope is positive, a positive perturbation of
induces an increase of and makes run away from
the locked state. Using the portion of the function where
its slope is negative, it is possible to invert the function so as
to express the locked phase variable as a function of
frequency detuning, i.e.,

(7)



Finally, the upper and lower limits and , respec-
tively, of the curve determine the locking range:

(8)

III. PHASE-NOISE MODEL

In this section, we model the phase noise of the PILO circuit.
To do this, we first review the phase-noise model of the free-run-
ning oscillator. To include phase in the model of the free-run-
ning oscillator, the expression of the output response is modified
into , where represents the excess
phase induced by the internal noise sources of the oscillator. A
compact modeling strategy can be used by exploiting the result
derived in [16]: The total phase-noise contribution of all the os-
cillator internal noise sources of one type (i.e., characterized by
its spectral characteristics) can be represented, in an equivalent
way, by a single macro noise source of the same type as the
input to an ideal integrator. Thus, the global effect that all the
white and the flicker noise sources have on the oscillator phase
variable can be modelled through the following average
stochastic equation [16]–[18]

(9)

In (9), is the macro noise source with a constant Power
Spectral Density (PSD) which reproduces the ef-
fect of intrinsic white sources, while , with PSD

, is the macro noise source that reproduces the global ef-
fect of intrinsic flicker noise sources. Hence, by transforming
(9) in the frequency domain, we find that the PSD of the excess
phase variable for the free-running oscillator has the expression

(10)

and exhibits two components shaped as and . The pa-
rameters and of the macro noise sources are extracted
from the phase-noise spectrum of the free-running oscillator
[19].
When the oscillator is injection locked, the internal noise

sources produce an excess-phase fluctuation of the variable
around its noiseless locking value, i.e., .

Plugging the latter into the discrete-time model (5) and therein
adding the phase variations induced by stochastic fluctuations
(9) over one reference period, we obtain

(11)

The nonlinear stochastic discrete-time (11) can be simulated in
time to calculate the evolution of the excess phase variable
at time points induced by PILO internal noise sources.

IV. SMALL-SIGNAL PHASE-NOISE ANALYSIS

In this section, instead, we will proceed analytically to find
closed-form expressions of PILO phase noise. To this aim, the
nonlinear stochastic difference (11) is simplified by exploiting
the evidence that noise sources in a PILO generate small-ampli-
tude signals and thus the excess-phase fluctuations around

should remain small as well. The validity of this ansatz will
be verified at the end of Section V.
Under this hypothesis, the function can

be linearized around the locking phase value so that
the difference (11) is transformed to

(12)

where denotes the first derivative of the PDR curve
with respect to its argument.
Next, using the equilibrium condition (6), (12) is rewritten as

(13)

where the (positive) parameter

(14)

is themodule of the slope of evaluated at locking phase con-
dition. This parameter measures the responsivity of the PILO to
perturbations of the locking phase. In view of (7), this param-
eter depends on the value of the frequency detuning. However,
for notation simplicity, in what follows the dependence of on

will be omitted.
A continuous-time model can then be obtained by writing

the difference (13) over the infinite series of sample points
with , i.e.

(15)

Adding the above equations together and assuming
and , we get

(16)

or, equivalently, in compact form

(17)

In the expression above, “ ” stands for “ ,” symbol
denotes the Dirac delta distribution, while is the

phase noise of the free-running PILO circuit. The integral in
(17) can be rewritten as a convolution integral, i.e.

(18)

where is the unit step function delayed by
any such that . Such a delay is in fact needed to
correctly implement (16) where the summation of excess phase
samples stops at . Since is arbitrarily distributed in the



Fig. 2. Variational time-domain model of the PILO.

interval , in solving (18) we will fix it to its mean value
.

To solve (18) it is convenient to represent it graphically as the
block diagram shown in Fig. 2. In this representation, the con-
volution integral is performed by the linear block with impulse
response and transfer function

(19)

This linear block reads in input the variable

(20)

and supplies the output where “ ” denotes
convolution operation.
From the graphical representation in Fig. 2 and the definition

of , we therefore derive an alternative expression of (18),
which is given by the two following equations

(21)

(22)

The latter can be rewritten as

(23)
The first term in (23) can be further expanded by exploiting the
fact that the result does not change if the order of application of
convolution “ ” and multiplication “ ” operators on the train of
pulses is inverted. Inverting this order, we find

(24)
By Fourier transforming both sides of (24) and remembering

(19), we find

(25)

where and are the Fourier transforms of and
, respectively. Solving (25) in the unknown gives

(26)

having the following expression

(27)

The sum of the series at the denominator of (27) has an analyt-
ical closed-form expression which is derived in the Appendix B.
Relying on that result, can be simplified as follows

(28)

By Fourier transforming both sides of (21), we get the rela-
tionship between the output spectrum of the PILO circuit and

(29)

where is the Fourier transform of . Thus, replacing
(26) into (29) and reordering the terms, we get

(30)
From the above expression, the excess phase PSD of

the PILO circuit is found to be composed of the two contribu-
tions

(31)

The first one

(32)

describes how the phase noise of the free-running oscil-
lator is directly transferred to the output of the PILO. The second
contribution

(33)

is due to the folded power spectrum. This spectrum folding
arises from the sub-sampling of noise operated by pulse injec-
tion.
The nature of the above spectral components can be better

understood by approximating (28) at low and high frequencies.
At frequencies approaching zero, or in practice at frequencies
much lower than the injection frequency , from
(28) we can approximate the two components of the noise spec-
trum as

(34)

When flicker is negligible (i.e., for frequency offsets above
flicker corner), from (34) we infer that the in-band total noise is
flat and approaches the power spectral density value given by

(35)



Fig. 3. The shape of the injected voltage pulse.

Expression (35) highlights the parameters of the macromodel
that mainly affect the level of in-band noise (at offset fre-
quencies lower than ). These parameters are: the intensity
of internal noise sources defined in (10), the PILO pa-
rameter defined in (14) and the multiplication factor .
At frequencies much greater than , the two noise transfer
functions in (32) and (33) approach the following limit values

and . Thus,
the direct contribution to the output spectrum tends to
that of the free-running oscillation . This is consistent
with the fact that the locking process is ineffective at large
offset frequencies. Notwithstanding, our model predicts the
existence of the additional contribution , due to power
spectrum folding and defined in (33), that yields a ripple in the
noise spectrum at frequencies close to multiples of . The
amount of this high-frequency extra noise contribution will be
evaluated in Section V.

V. NUMERICAL RESULTS

In this section, the proposed phase-noise analysis method-
ology is applied to the circuit in Fig. 1-(Left). The device param-
eters are: , , , ,

, , and .
The steps of the analysis are described in what follows.
First, the free-running oscillator is simulated with Cadence

SpectreRF [21]. The waveform of its output voltage re-
sulting from periodic steady state (pss) analysis is an oscillation
with peak-to-peak amplitude of about 1.9 V, angular frequency

and period .
Using the periodic noise analysis (pnoise) of SpectreRF, the
phase-noise spectrum of the free-running oscillator is
extracted. By fitting this noise spectrum with (10), we extract
the equivalent noise parameters and

. Next, we apply the injected voltage
signal , whose shape is schematically shown in Fig. 3.
The peak value of the injected signal is fixed to the voltage
supply value , whereas the strength of the injection is mod-
ulated by varying the width of the injecting transistor .
The corresponding curves, extracted with the method de-
scribed in the AppendixA, are shown in Fig. 4. According to (8),
the upper and lower limits of these curves, for several values of
parameter , determine the synchronization region plotted in
Fig. 5 (commonly referred to as Arnold tongue [20]). The slope
of the curves (evaluated at the intersection with the locking
condition ) gives the value of the parameter
defined in (14) and plotted in Fig. 6 as a function of and for

.
The values of are then substituted in (28) to get the

expression of the transfer function and the phase noise
is evaluated through the closed-form expressions from (31)
to (33). Fig. 7 shows the direct and folded
spectral components, respectively, for , and

Fig. 4. Computed PDR functions for three values of the parameter
(measured in ).

Fig. 5. Synchronization region.

Fig. 6. Slope as a function of the frequency detuning for three values of
the parameter (measured in ).

. The direct noise contribution dominates
the output power spectrum at low frequencies while the folded
noise defined in (33) adds a non-negligible ripple component at
high frequencies. The total phase-noise spectrum given
by the sum of the two previous contributions is also shown in
the same figure (solid line). For the same set of parameters,
the PILO circuit is simulated with SpectreRF. A pss analysis
based on the flexible balance algorithm is performed with
beat frequency equal to and with 256



Fig. 7. Phase noise of the PILO circuit for and :
(dashed line) direct component from (32), (dot-dashed line) folded com-
ponent from (33), (solid line) total noise from theory, (square markers)
simulated noise from SpectreRF.

Fig. 8. Phase noise of the PILO circuit for and the three values 80,
160, and 320 (from top to down) of the parameter: (solid lines) noise
from theory (markers) simulated noise from SpectreRF.

harmonics. The high number of harmonics is needed because
of the high factor between the beat frequency and the oscil-
lation frequency of the PILO circuit. Then, a pnoise analysis is
run accounting for 128 harmonics. The phase noise obtained
is shown as square markers in Fig. 7. Simulations and theory
match very well.
To validate further the proposed analysis, we repeat the same

comparison at different values of the circuit parameters. First,
we change the width of the injection transistor . Fig. 8 plots
the phase noise obtained for and the three values 80,
160, and 320 of parameter. Of course, a lower re-
sults in a narrower noise-filtering bandwidth and, in turn, in a
higher level of in-band noise. Even for these sets of parame-
ters, the simulated points from SpectreRF, also shown in Fig. 8,
match the theoretical prediction.
Fig. 9 plots the phase noise for and several

values of the multiplication factor from 10 to 160. The values
of the other parameters are kept constant. So, as increases, the
frequency of the injected pulse train is scaled down, while the
output frequency is constant. The analytical results from (31)

Fig. 9. Phase noise of the PILO oscillator for and for the five
values 10, 20, 40, 80, 160 (from bottom to up) of the multiplication factor:
(solid lines) noise from theory, (markers) simulated noise from SpectreRF, (dot-
dashed line) noise of free-running oscillator.

are shown as solid lines in the plot. As expected from theory,
the noise-filtering bandwidth narrows as the injection frequency
is reduced and the ripples in the high-frequency region of the
spectrum get closer to each other. Even in this case, the results
from SpectreRF (shown as markers in Fig. 9) are in excellent
accordance with theory. In this case, the number of harmonics
needed in the pss and in the pnoise analyses must be increased
as . As a result, the simulation time increases significantly at
large values. For instance, for , we need to use
4096 harmonics for the pss and 1024 harmonics for the pnoise,
and the total simulation time to get the phase noise spectrum
is of about 12 hours on a quad-core workstation. By contrast,
the closed-form expression (31) allows predicting the shapes of
the output noise for increasing values of in a few seconds.
The phase noise of the free-running oscillator is also
plotted for comparison in Fig. 9. Interestingly, as anticipated at
the end of Section IV. the noise spectrum of the PILO exhibits an
almost 3 dB increase over free-running phase noise at .
This result, which is confirmed by recently presented works [1],
contrasts with the common belief that the phase noise of the
injection-locked oscillator is identical to that of the free-running
oscillator at high-frequency and it is justified by the effect of
spectrum folding described in (33).
We conclude this section by verifying the validity of the

ansatz exploited in Section IV to transform the nonlinear model
(11) into the linearized one (12). To this aim, we simulate in
time the nonlinear (11) over a large number of reference cycles
and derive the samples of the excess phase caused by
PILO internal noise sources. Simulated phase values
result to be Gaussian distributed with a standard deviation of
about . For these very tiny fluctuations of
around the locking value (as it can be
seen in Fig. 4) the curve is accurately approximated by a
straight line thus validating the overall procedure.

VI. CONCLUSION

Transistor-level phase-noise simulation of sub-harmonic
pulse injection-locked oscillators, and in general of frequency
multipliers based on injection locking mechanism, becomes



prohibitively time-consuming as the frequency ratio and the
circuit complexity increase. In this paper, we have provided
an alternative efficient computational flow to predict phase
noise in pulse injection-locked oscillators. The flow relies on
calculating the PDR which is able to include in the model the
amplitude modulation effects induced by large pulse injection.
Starting from the PDR paradigm, we have provided for the first
time the nonlinear noise-aware model (11) of the PILO. Since
internal noise sources in a PILO are commonly small-amplitude
signals, we have shown that this nonlinear model can be lin-
earized around the locking phase condition and that phase-noise
can be evaluated with closed-form expressions. The accuracy
of the analytical predictions have been verified against detailed
SpectreRF simulations in a few significant cases. Finally, an
interesting result has been provided that shows how at high
frequency the PILO noise spectrum exceeds of almost 3 dB
that of the free-running oscillator.

APPENDIX A

PDR FUNCTION COMPUTATION

In this appendix, we show how to compute the large-signal
phase domain response. We start from the -periodic steady-
state response of the free-running oscillator.
Then, we select arbitrarily a time point over the period and we
consider it as the initial time point for further analysis.
Taking as the initial state of the oscillator the state variables
evaluated at this time point, we perform the following numer-
ical experiment. A single pulse (whose duration is much shorter
than the oscillation period) is applied to the circuit at a time
point with over the first oscillation cycle.
The transient response after the application of this pulse is sim-
ulated over a time interval . Fig. 10-(Left) shows, as an
example, the response of the PILO circuit over the
first oscillation cycle to a voltage pulse applied at time

. In this example, the pulse shape is that described in
Fig. 3 and the injecting-transistor width is . Com-
paring to the free-running response , we see that
on the first cycle, i.e., where pulse injection occurs, both phase
and amplitude variations from the free-running response are sig-
nificant. Fig. 10-(Right), instead, shows, the two responses over
the th cycle (in this example ), i.e., at the end of refer-
ence period: in this case PILO response is simply a time-shifted
version of the free-running one, i.e., for

(36)

The time shift value is decided by the difference between the
zero crossing times (with positive slope) of the two responses.
In the example shown in Fig. 10-(right), where
the negative sign refers to the fact that PILO response is de-
layed compared to free-running one. The pulse application time
corresponds to a phase difference value

in Fig. 4 while the time shift evaluates the PDR function

Fig. 10. Output responses: (Left) over the first oscillation cycle, (Right) over
the th oscillation cycle. (Solid line) PILO response , (Dashed line)
free-running response .

in that point. The samples of the are
thus obtained by repeating the above described transient simula-
tion for a sufficiently large number of values. The numerical
simulations needed to extract one such PDR (over 64 samples)
shown in Fig. 4 were carried out in a few seconds.

APPENDIX B

SERIES EXPANSION

In this Appendix, we prove that (27) can be simplified into
(28). First, we first rewrite (27) in a compact way as

(37)

with

(38)

Observing that and in view of the fol-
lowing closed-form series expansion (where )

(39)

we get a simple expression for

(40)

Then, plugging (40) into (37), we find

(41)

(28) is obtained from (41) through elementary steps.
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