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Abstract—This paper shows that the necessary and sufficient
condition for the local stability of gene regulatory networks with
time delay (Theorem 2) presented in the highly cited paper [L.
Chen and K. Aihara, IEEE TCAS-I, vol. 49, No. 5, pp. 602–608,
2002] is erroneous. An illustrative counterexample is presented,
and it is pointed out that there are essentially two errors in
their derivation. A corrected theorem is then derived using the
approach shown in the aforementioned paper. It turns out that
the corrected theorem provides only a sufficient condition for the
local stability. Finally, a necessary and sufficient condition that
was recently presented by the authors’ of this paper is presented.
Both the sufficient and the necessary and sufficient conditions
are demonstrated using the Repressilator, the oscillatory gene
regulatory network, which was also used for the illustration of the
Chen and Aihara’s original result.

Index Terms—Gene regulatory networks, local stability analysis,
time delay.

I. INTRODUCTION

C HEN and Aihara [2] presented a necessary and sufficient
condition for the local stability of gene regulatory net-

works with time delay. In this correspondence, we show that
Theorem 2 of [2], which is a key result that delivers most of the
results presented in [2], is erroneous. In particular, it is shown
that the approach proposed in [2] can yield only a sufficient con-
dition for the local stability after appropriate corrections to the
proof. We then present the necessary and sufficient condition
that was recently derived in the papers contributed by some of
the authors of this correspondence [4], [5].
We use the following notations: ,

and is the imaginary unit.

II. DYNAMICS OF GENE REGULATORY NETWORKS WITH TIME
DELAY

In this section, we briefly review the dynamics of gene regu-
latory networks with time delay introduced in [2].
Let denote the number of genes in the network.

We denote the concentrations of mRNAs and proteins
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by and
, respectively. The dynamics of

gene regulatory networks is then given by

(1)

where and
represent the

degradation rates of mRNAs and proteins, respectively.
The vectors and

denote the time delays
of translation and transcription process, respectively. We define

and .
The functions and

are nonlinear
functions.
The following assumption was imposed in [2] for simplifying

the analysis.
Assumption 1: Assume that the total delay time of the tran-

scription and translation processes for each gene product has
the same value, i.e.,

. Assume that all mRNAs and proteins have the same
degradation rates and , respectively, i.e.,

and .
Let denote an equilibrium of (1). Theorem 1 of [2]

implies that all roots of the equations

(2)

have negative real parts, if and only if (1) is asymptotically
stable at the equilibrium, where are the
eigenvalues of , and and are the Jacobian of

and at the equilibrium, respectively.
Theorem 2 of [2], which is the main result of the paper, was

then derived under the following assumption.
Assumption 2: Assume the degradation rates of mRNA and

proteins are the same, i.e., .
In what follows, we show that Theorem 2 of [2] is erroneous.

III. A COUNTEREXAMPLE TO THEOREM 2 IN [2]

We illustrate a counterexample by using the numerical ex-
ample shown in Section IV of [2]. We use the same notations as
those in [2] throughout this section.
The dynamics of Repressialtor [3] is expressed as

(3)

(4)
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Fig. 1. A counterexample to Theorem 2 in [2]. (a) The stability region shown
in Theorem 2 of [2] and Theorem A. (b) The solution trajectory starting in the
vicinity of the equilibrium.

where and have the following three pairs of value:
, and . Note that this

corresponds to

(5)

(6)

(7)

for ,2,3, where
Let , , and .

Then, both Assumption 1 and 2 are satisfied, and the
stability region specified in Theorem 2 of [2] can be
drawn with and as illustrated in
Fig. 1(a). The unique equilibrium is calculated as

, and it follows that , and
. We can then plot

and as shown in Fig. 1(a).
According to Theorem 2 of [2], all roots of the characteristic

polynomial (2) have negative real parts, which means that the
equilibrium is locally stable, if and only if and

lie inside the region shown in Fig. 1(a) for all
,2,3. Therefore, Fig. 1(a) implies that the equilibrium is

locally stable.
However, the trajectory starting near the unique

equilibrium exhibits oscillations as shown in
Fig. 1(b), where the initial values are set as

. In fact, the characteristic polynomial
with has a root in the open right-half
complex plane at . Moreover,

Fig. 2. Nyquist contour of the loop transfer function.

the Nyquist plot of the loop transfer function, which is defined
by

encircles . These results imply that Theorem 2 of [2] is
not the necessary and sufficient stability condition.

IV. MODIFICATION OF THEOREM 2 IN [2]

In this section, we clarify the errors of the mathematical proof
provided in [2] and modify the statement of Theorem 2 of [2].
There are essentially two errors in the proof.
1) Theorem 2.6 of [1], which is used in the proof in [2], is
incorrect.

2) Theorem 2.6 of [1] was applied in a wrong way in [2].
We use the notations in [1] throughout this section.

A. Modification of Theorem 2.6 of [1]

Theorem 2.6 of [1] claims that all roots of

(8)

have negative real parts if and only if lies inside the
bounded region specified by

for

for ,
(9)

where represents the radius and angle of the polar coordi-
nate representation in complex plane.1 However, we here show
that Theorem 2.6 in [1] is not a necessary and sufficient but a
sufficient condition.
Remark 1: When the authors of [1] illustrated the stability

region (Fig. 2 in [1]), they somehow measured the angle from
, although was originally defined as the angle from the

origin of the complex plane. Thus, the stability region illustrated
in Fig. 2 of [1] does not represent the region specified in The-
orem 2.6.
A counterexample to Theorem 2.6 of [1] is obtained as fol-

lows. We consider the roots of

(10)

1We point out minor errors in [1] to avoid confusion. (i) Equation (2.4) in [1]
should be corrected as . (ii) The definition of the Archimedean
spiral is not stated correctly in Theorem 2.6 of [1]. should be defined for

as shown in (9), which follows from (2.10) and (2.11) of [1].
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by letting and .We see that is written as
, and is not located in the stability region specified by

(9). However, no roots of the polynomial (10) lie in the right-half
complex plane, because for . This
implies Theorem 2.6 in [1] is inaccurate.
We now point out an error in the proof of Theorem 2.6 of [1].

In the proof, the complex number was expressed by the polar
coordinate as with and . Then, the
set of parameters for which all roots of have their real
parts negative was explored. More specifically, it follows from
the first paragraph of the proof of Theorem 2.6 that all roots
of (8) have negative real parts if and only if lies inside
the region

(11)

where (a) and (b) are

Note that can be viewed as a function of and
, since . We also note that (a) and (b) correspond
to (2.7a) and (2.8) of [1], respectively.
Then, the stability region was derived by specifying the re-

gion . It follows that

(12)

(13)

(14)

where denotes a complementary set. In [1], the set (14) was
characterized in the second paragraph of the proof as

(15)

The set (15) is “the interior of the triangular region with ver-
tices , and in the plane” de-
scribed in the second paragraph of Theorem 2.6, and it was con-
cluded in Theorem 2.6 that (15) is the stability region.
However, (13) was not treated as a subset but as an equiva-

lent set of (12) in [1]. In fact, the equation (2.7a) was not used
throughout the proof of Theorem 2.6 in [1]. This implies that
the conclusion that all roots of (8) have negative real parts if
and only if lies inside the region bounded by (15) is er-
roneous, because (13) is actually a subset of (12). Instead, The-
orem 2.6 of [1] is only a sufficient condition, but not a necessary
condition, for all roots of (8) to have negative real parts.

B. Modification of Theorem 2 in [2]: A Sufficient Condition

Another error in the derivation of Theorem 2 in [2] is the
mis-application of Theorem 2.6 in [1]. The region had
been defined as the radius and angle from the origin in [1], but
the authors of [2] measured the angle from .
In view of all the corrections above, Theorem 2 of [2] can be

amended as follows.
Theorem A: Suppose Assumptions 1 and 2 hold. Let the

eigenvalues of be denoted by for .
Then, all roots of (2) have negative real parts at , if

and lie inside the region
bounded by the arcs of Archimedean spirals

for
for

(16)

for all , where the tuple defines the dis-
tance and the angle of the boundary measured from the origin.
Remark 2: It should be noted that Theorem A is only a suf-

ficient condition for local stability. Corollary 1 and Theorem 3
of [2] should also be corrected as sufficient conditions accord-
ingly, since the derivation of these results are based on Theorem
2 of [2].
The stability region obtained from Theorem B is illustrated

with the dashed line in Fig. 1(a).

V. NECESSARY AND SUFFICIENT CONDITION

The necessary and sufficient condition for the local stability
of the gene regulatory networks with time delay was recently
derived in [5] based on the idea presented in [4]. We here briefly
review the condition.
Theorem B (Lemma 2 of [5]): Suppose Assumption 1 holds.

All roots of (2) have negative real parts if and only if all the
eigenvalues of lie inside the region ,
i.e., , where

(17)

and .
The region is the smallest open set that is bounded by

and includes the origin as illustrated in
Fig. 3. In particular, can be specifically
written as

It should be emphasized that Theorem B is more general than
Theorem A in that (i) it is the necessary and sufficient condition,
and (ii) it does not require Assumption 2, which is restrictive
when applied to existing biological applications.
Remark 3: The idea of Lemma 2 of [5] comes from Propo-

sition 5.1 of [4], in which the stability condition for was
presented. We note that Lemma 2 in [5] was shown for the case
where the genes interact in a cyclic way (the matrix defined
in [5] has a cyclic structure), but it can be easily generalized for
any interaction structure, since the information of the interac-
tion structure was not used in the proof of Lemma 2 of [5].
The stability region and the eigenvalues of for the nu-

merical example illustrated in Section III are plotted in Fig. 3.
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Fig. 3. Necessary and sufficient stability region shown in Theorem B.

We see that two eigenvalues are located outside the stability re-
gion , thus Theorem B implies (1) is locally unstable at the
unique equilibrium. This result is consistent with the observa-
tions presented in Figs. 1(b) and 2.
When the delays due to splicing and transport are small com-

pared to transcription and translation, one can approximately
set . Theorem B can then be re-
duced to a simpler graphical condition, and we can analytically
derive a necessary and sufficient stability condition in terms of
reaction rates [6]. The effect of each reaction rate on oscillations
was discussed in detail in [6].
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