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Abstract—Sufficient conditions are derived for global asymp-
totic synchronization in a system of identical nonlinear electrical
circuits coupled through linear time-invariant (LTI) elec trical
networks. In particular, the conditions we derive apply to settings
where: i) the nonlinear circuits are composed of a parallel
combination of passive LTI circuit elements and a nonlinear
voltage-dependent current source with finite gain; and ii) a
collection of these circuits are coupled through either uniform
or homogeneous LTI electrical networks. Uniform electrical net-
works have identical per-unit-length impedances. Homogeneous
electrical networks are characterized by having the same effective
impedance between any two terminals with the others open
circuited. Synchronization in these networks is guaranteed by
ensuring the stability of an equivalent coordinate-transformed
differential system that emphasizes signal differences. The ap-
plicability of the synchronization conditions to this broad class
of networks follows from leveraging recent results on structural
and spectral properties of Kron reduction—a model-reduction
procedure that isolates the interactions of the nonlinear circuits in
the network. The validity of the analytical results is demonstrated
with simulations in networks of coupled Chua’s circuits.

Index Terms—Kron reduction, Nonlinear circuits, Synchro-
nization.

I. I NTRODUCTION

SYNCHRONIZATION of nonlinear electrical circuits cou-
pled through complex networks is integral to modeling,

analysis, and control in application areas such as the ac
electrical grid, solid-state circuit oscillators, semiconductor
laser arrays, secure communications, and microwave oscillator
arrays [1], [2]. This paper focuses on the global asymptotic
synchronization of terminal voltages in a class of nonlinear
circuits coupled through passive LTI electrical networks.We
assume that the nonlinear circuits are composed of a parallel
combination of a passive LTI circuit and a nonlinear voltage-
dependent current source with finite gain. A collection of such
identical circuits are coupled through uniform or homogeneous
passive LTI electrical networks. Uniform networks have iden-
tical per-unit-length impedances and include purely resistive
and lossless networks as special cases. Homogeneous electrical
networks are characterized by identical effective impedances
between the terminals (essentially, the impedance between

S. V. Dhople is with the Department of Electrical and Computer
Engineering at the University of Minnesota, Minneapolis, MN (email:
sdhople@UMN.EDU); B. B. Johnson is with the Power Systems Engi-
neering Center at the National Renewable Energy Laboratory, Golden, CO
(email: brian.johnson@NREL.GOV); F. Dörfler is with the Department
of Electrical Engineering at the University of California at Los Angeles,
Los Angeles, CA (email:dorfler@SEAS.UCLA.EDU); A. O. Hamadeh
is with the Department of Mechanical Engineering, Massachusetts Institute
of Technology, Cambridge, MA (e-mail:ahamadeh@MIT.EDU).

any two terminals with the others open circuited). Section V
provides precise definitions of these network types.

The nonlinear-circuit models, and the uniform and ho-
mogeneous networks examined in this work offer a broad
level of generality and ensure a wide applicability of the
analytical results to many settings. For instance, a variety
of chaotic and hyperchaotic circuits as well as nonlinear
oscillators [3]–[11] can be modeled as a parallel connection of
a linear subsystem and a nonlinear voltage-dependent current
source with finite gain. Similarly, the types of networks that
our results accommodate, facilitate the analysis of varied
interconnections between the nonlinear circuits. In general,
we study interconnecting networks that aredynamic, i.e., the
network can contain capacitive or inductive storage elements.
For uniform networks, the per-unit-length line impedancescan
be complex (i.e., not exclusively resistive or reactive) and the
network topology can be arbitrary. With regard to resistive
(lossless) networks, we allow the branch resistances (respec-
tively, reactances) and the network topology to be arbitrary.
Finally, homogeneous networks are frequently encounteredin
symmetric engineered setups (e.g., power grid monitoring and
electrical impedance tomography), in large random networks
or regular lattices, as well as in idealized settings where all
terminals are electrically uniformly distributed with respect to
each other [12].

The analytical approach adopted in this paper builds on
previous work in [11], [13]–[15], whereL2 methods were
used to analyze synchronization in feedback systems thereby
offering an alternate perspective compared to a rich body of
literature that has examined synchronization problems with
Lyapunov- and passivity-based mehods [9], [10], [16]–[23]. To
investigate synchronization, the linear and nonlinear subsys-
tems in the network of coupled nonlinear electrical circuits are
compartmentalized, and a coordinate transformation is applied
to recover an equivalentdifferential systemthat emphasizes
signal differences. Once the differentialL2 gains of the linear
and nonlinear subsystems are identified, synchronization can
be guaranteed by ensuring the stability of the coordinate-
transformed differential system with a small-gain argument.

The suite of synchronization conditions presented in this
paper generalize our previous efforts in [11] (which were
limited to electrical networks with a star topology) to arbitrary
network topologies. Integral to the analysis that allows usto
investigate varied topologies is a model-reduction procedure
calledKron reduction[24]. This procedure explicitly uncovers
the interactions between the nonlinear electrical circuits, while
systematically eliminating exogenous nodes in the network. A
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major contribution of this work pertains to leveraging recent
results on structural and spectral properties of Kron reduc-
tion [12] in deriving synchronization conditions. Towardsthis
end, another significant contribution is that some key lemmas
from [12] are extended from the real-valued and symmetric to
the complex-symmetric (and not necessarily Hermitian) case,
and we also offer converse results to some statements in [12].

The remainder of this manuscript is organized as follows.
Section II establishes some mathematical preliminaries and
notation. In Section III, we describe the nonlinear electrical
circuits, and describe their network interactions by construct-
ing the electrical admittance matrix that couples them. In
Section IV, we formulate the problem statement, and derive the
differential system. Synchronization conditions for networks
with and without shunt elements are then derived in SectionsV
and VI, respectively. Simulations-based case studies are pro-
vided in Section VII to validate the approach. We conclude the
paper in Section VIII by highlighting a few pertinent directions
for future work.

II. N OTATION AND PRELIMINARIES

Given a complex-valuedN -tuple{u1, . . . , uN}, denote the
corresponding column vector asu = [u1, . . . , uN ]T, where
(·)T denotes transposition (without conjugation). Denote the
N × N identity matrix asI, and theN -dimensional vectors
of all ones and zeros as1 and 0, respectively. The Moore-
Penrose pseudo inverse of a matrixU is denoted byU †. Let
j =

√
−1 be the imaginary unit. Denote the Laplace transform

of a continuous-time functionf(t) by f . Cardinality of the set
N is denoted by|N |.

The Euclidean norm of a complex vector,u, is denoted by
‖u‖2 and is defined as

‖u‖2 :=
√
u∗u, (1)

where(·)∗ signifies the conjugate transpose. The space of all
piecewise continuous functions such that

‖u‖L2
:=

√√√√√
∞∫

0

u (t)T u (t) dt < ∞, (2)

is denoted asL2, where‖u‖L2
is referred to as theL2 norm

of u [25]. If u ∈ L2, thenu is said to bebounded.
A causal system,H, with inputu and outputy is finite-gain

L2 stableif there exist finite and non-negative constantsγ and
η such that

‖y‖L2
=: ‖H (u)‖L2

≤ γ ‖u‖L2
+ η, ∀u ∈ L2. (3)

The smallest value ofγ for which there exists anη such
that (3) is satisfied is called theL2 gain of the system. If
H is linear and can be represented by the transfer matrix
H : C → CN×N , it can be shown that theL2 gain of H
is equal to its H-infinity norm, denoted by‖H‖∞, and defined
as

γ (H) = ‖H‖∞ := sup
ω∈R

‖H (jω)u (jω)‖2
‖u (jω)‖2

, (4)

where‖u (jω)‖2 = 1, provided that all poles ofH have strictly
negative real parts [26]. For a single-input single-outputtrans-
fer functionh : C → C, γ (H) = ‖H‖∞ = sup

ω∈R

‖h (jω)‖2.

A construct we will find particularly useful in assessing
signal differences is theN × N projector matrix [14], [19],
[22], which is denoted byΠ, and defined as

Π := I − 1

N
11

T. (5)

For a vectoru, we defineũ := Πu to be the corresponding
differential vector[13]–[15], [19], [22].

Given a symmetric and nonnegative matrixA ∈ RN×N

associated with an undirected and weighted graph, we define
its Laplacian matrixL component-wise bylnm = −anm for
off-diagonal elements andlnn =

∑N

m=1 anm for diagonal
elements. The Laplacian matrix has zero row and column
sums, it is symmetric and positive semidefinite, and its zero
eigenvalue is simple if and only if the graph is connected. The
Laplacian of a complete graph with unit weights is

Γ = NI − 11
T = NΠ. (6)

A causal system with inputu and outputy is said to be
differentially finiteL2 gain stable if there exist finite, non-
negative constants,̃γ and η̃, such that

‖ỹ‖L2
≤ γ̃ ‖ũ‖L2

+ η̃, ∀ ũ ∈ L2, (7)

whereỹ = Πy. The smallest value of̃γ for which there exists
a non-negative value of̃η such that (7) is satisfied is referred
to as thedifferentialL2 gain of H . The differentialL2 gain
of a system provides a measure of the largest amplification
imparted to input signal differences.

Consider two systems that are modeled by transfer matrices
A and B. The linear fractional transformationis the trans-
fer matrix of the negative-feedback interconnection of these
systems, and it is given by [27]

F (A(s), B(s)) := (I +A(s)B(s))
−1

A(s). (8)

For an electrical network with admittance matrixY , the
effective impedanceznm between nodesn and m is the
potential difference between nodesn and m, when a unit
current is injected in noden and extracted from nodem. In
this case, the current-balance equations areen − em = Y υ,
whereen is the canonical vector of all zeros except with a 1
in thenth position, andυ is the vector of the resulting nodal
voltages. The effective impedance is then

znm = (en − em)Tυ = (en − em)TY †(en − em) . (9)

The effective impedance is an electric and graph-theoretic
distance measure, see [12] for details and further references.

III. SYSTEM OF COUPLED NONLINEAR ELECTRICAL

CIRCUITS

We begin this section with a brief description of the type
of nonlinear electrical circuits for which we derive sufficient
synchronization conditions. Next, we describe the electrical
network that couples the nonlinear electrical circuits.
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A. Nonlinear Circuit Model

An electrical schematic of the nonlinear circuits studied
in this work is depicted in Fig. 1. Each circuit has a linear
subsystem composed of an arbitrary connection of passive
circuit elements described by the impedance,zosc ∈ C, and a
nonlinear voltage-dependent current sourceig = −g(v). We
will require that the maximum slope of the functiong(·) be
bounded:

σ := sup
v∈R

∣∣∣∣
d
dv

g(v)

∣∣∣∣ < ∞. (10)

A wide class of electrical circuits can be described within
these constructs. An example is Chua’s circuit [5], [28], for
which the impedancezosc and nonlinear functiong(·) are
illustrated in Fig. 2(a). The functiong(·) is piecewise linear,
and satisfies (10). In previous work on voltage synchronization
of voltage source inverters in small-scale power systems [11],
[29], [30], we introduced a nonlinear Liénard-type dead-zone
oscillator for whichzosc andg(·) are illustrated in Fig. 2(b).
In this case, the functiong(·) is constructed with a negative
resistance and a dead-zone function with finite slope, and
thus satisfies (10). Similar dead-zone-type oscillators have also
been proposed in [9], [10] for related power-systems applica-
tions. Some families of hyperchaotic circuits and negative-
resistance oscillators can also be described with the model
above, see [4], [6]–[8] and the references therein.

A notable example of a well-known circuit thatcannotbe
described within the above framework is the Van der Pol
oscillator [26]. While the linear subsystem of the Van der Pol
oscillator is the same as the nonlinear dead-zone oscillator, the
nonlinear voltage-dependent current source,g(v) ∝ v3, which
does not satisfy the slope requirement in (10) (see Fig. 2(c)).

B. Electrical Network Model

The nonlinear circuits are coupled through a passive, con-
nected, LTI electrical network. The nodes of the electrical
network are collected in the setA, and branches of the
electrical network are represented by the set of edgesE :=
{(m,n)} ⊂ A × A. Let N := {1, . . . , N} ⊆ A collect
boundary nodesthat the nonlinear circuits are connected to,
and let I = A \ N be the set ofinterior nodes where
the current injections are zero since they are not connected
to the nonlinear electrical circuits. The series admittance
corresponding to the(m,n) ∈ E branch is given byymn ∈ C,
and the shunt admittance connected between themth node and

oscz

−

+

≡

gi

)v(g v

−

+

v

i i

Figure 1: Electrical schematic of the nonlinear circuit studied in this
work. Each circuit is composed of a linear subsystem modeledby a
passive impedance,zosc, and a nonlinear voltage-dependent current
source,g(·). Circuit symbol used to represent the nonlinear circuit is
shown on the right.

electrical ground is given byym ∈ C. We will assume that the
boundary nodes in the setN are not connected to any passive
shunt elements, which impliesym = 0 for all m ∈ N .

Denote the vectors that collect the nodal current injections
and node voltages in the network byiA andvA, respectively.
The coupling between the circuits can be described by Kirch-
hoff’s and Ohm’s laws, which read in matrix-vector form as

iA = YAvA. (11)

In (11), YA ∈ C|A|×|A| denotes the admittance matrix of the
electrical network, and it is constructed element-wise as

[YA]mn :=





ym +
∑

(m,k)∈E ymk, if m = n,

−ymn, if (m,n) ∈ E ,
0, otherwise,

(12)

whereym denotes the shunt admittance at nodem andymn =
ynm denotes the line admittance of branch(m,n). Notice that
if the electrical network has no shunt elements, that is,ym =
0 ∀m ∈ A, thenYA is a singular matrix with zero row and
column sums.

Let i= [i1, . . . , iN ]T and v= [v1, . . . , vN ]T be the vectors
collecting the current injections and terminal voltages ofthe
nonlinear circuits, and letiI andvI be the vectors collecting
the current injections and nodal voltages for the interior
nodes.1 With this notation in place, we can rewrite (11) as

[
i
iI

]
=

[
YNN YNI

Y T
NI YII

] [
v
vI

]
. (13)

Since the internal nodes are only connected to passive LTI
circuit elements, all the entries ofiI are equal to zero in (13).

In the following, we assume that the submatrixYII is
nonsingular such that the second set of equations in (13) canbe
uniquely solved for the interior voltages asvI = −Y −1

II Y T
NIv.

For RL, RC, or RLC networks without shunt elements, the
matrix YA is irreducibly block diagonally dominant (due to
connectivity of the network), andYII is always nonsingu-
lar [31, Corollary 6.2.27]. ForRLC networks with shunt
elements, it is possible to construct pathological cases where
YII is singular, and the interior voltagesvI are not uniquely
determined. In this paper, we assume that all principal sub-
matrices are nonsingular and such pathological cases do not
occur. SubstitutingvI = −Y −1

II Y T
NIv in (13), then provides

the following equations that relate the nonlinear-circuitcurrent
injections and terminal voltages:

i =
(
YNN − YNIY

−1
II Y T

NI

)
v =: Y v. (14)

This model reduction through aSchur complement[32] of
the admittance matrix is known asKron reduction[12]. We
refer to the matrixY in (14) as theKron-reduced admittance
matrix. From a control-theoretic perspective, (14) is a minimal
realization of the circuit (13). We remark that even though the
Kron-reduced admittance matrixY is well-defined, it is not
necessarily the admittance matrix of a passive circuit. Figure 3
depicts an illustrative electrical network and its Kron-reduced
counterpart for a system ofN = 3 nonlinear circuits.

1To be consistent with notation, we would have to include the subscript
N when referring to the current and voltage vectors corresponding to the
nonlinear circuits. However, we drop this subscript to easeexposition.
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Figure 2: The linear-subsystem impedance,zosc, and the nonlinear voltage-dependent current source,g(·), illustrated for (a) Chua’s circuit,
(b) the Dead-zone oscillator, and (c) the Van der Pol oscillator.

The results in this paper apply to Kron-reduced admittance
matrices that satisfy the following two properties:

(P1) The Kron-reduced admittance matrix,Y , commutes with
the projector matrix,Π, that is,ΠY = Y Π.

(P2) The Kron-reduced admittance matrix,Y , is normal, that
is, Y Y ∗ = Y ∗Y . Consequently,Y can be diagonalized
by a unitary matrix, that is, we can writeY = QΛQ∗,
whereQQ∗ = I andΛ is a diagonal matrix with diagonal
entries composed of the eigenvalues ofY .

We will find (P1) useful in Section IV-B, where we derive
a compartmentalized system description that clearly differ-
entiates the linear and nonlinear subsystems in the electrical
network. Similarly,(P2) will be leveraged in the proof of The-
orem 2 in Section V-B. We will identify classes of networks
with and without shunt elements that satisfy properties(P1)
and (P2) in Sections V and VI, respectively.

IV. PROBLEM STATEMENT AND SYSTEM

COMPARTMENTALIZATION

In this section, we first formulate the problem statement
relating to global asymptotic synchronization. Next, we sys-
tematically compartmentalize the linear and nonlinear subsys-
tems in the electrical network of coupled nonlinear electrical
circuits. The differentialL2 gains of the linear and nonlinear
electrical subsystems will be used in subsequent sections to
establish sufficient synchronization conditions.

1
4
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Kron

reduction4
z
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+

4
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−

+
2
v

1
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1
i

2i1i
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−
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1
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−

+
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−

+

2v

−

+3v

1
3

z

12z1z

2
3

z

2z

3z

Figure 3: Kron reduction illustrated for a representative system
comprising N = 3 nonlinear circuits, whereA = {1, 2, 3, 4},
N = {1, 2, 3}, andI = {4}. Original electrical network described
by the admittance matrix,YA, is shaded. In this setup Kron reduction
is equivalent to the well-known star-delta transformation.

A. Global Asymptotic Synchronization

We are interested in global asymptotic synchronization of
the terminal voltages of identical nonlinear circuits described
in Section III-A, coupled through the electrical LTI network
described in Section III-B. In particular, we will seek sufficient
conditions that ensure

lim
t→∞

vj(t)− vk(t) = 0 ∀j, k = 1, . . . , N. (15)

For ease of analysis, we will find it useful to implement a
coordinate transformation by employing the projector matrix,
Π, to obtain the correspondingdifferential systemthat clearly
highlights signal differences. To emphasize the analytical
advantages afforded by this coordinate transformation, note
that:

ṽ(t)Tṽ(t) = (Πv(t))
T
(Πv(t)) =

1

2N

N∑

j,k=1

(vj(t)− vk(t))
2
.

(16)
Hence, (15) can be equivalently reformulated as

lim
t→∞

ṽ(t) = lim
t→∞

Πv(t) = 0. (17)

The coordinate transformation with the projector matrix allows
us to cast the voltage synchronization problem as an equivalent
stability problem in the coordinates of the corresponding
differential system.

B. Compartmentalization of Linear and Nonlinear Subsystems

In order to establish synchronization conditions, we seek a
system description where the linear and nonlinear subsystems
(zosc and g(·), respectively) in the network of coupled non-
linear circuits are clearly compartmentalized. In light ofthe
importance of differential signals in facilitating the derivation
of synchronization conditions, the compartmentalizationis
carried out in the corresponding differential system.

Towards this end, recall that the vectorsi and v collect
the current injections and terminal voltages of the nonlinear
circuits. Similarly, denote byig := [ig1, . . . , igN ]T, the vector
that collects the currents sourced by the nonlinear voltage-
dependent current sources. From Fig. 1, we see that the
terminal voltage of thejth nonlinear circuit, vj , can be
expressed as

vj = zosc (igj − ij) , ∀j = 1, . . . , N. (18)

By collecting allvj ’s, we can write

v = Zosc (ig − i) = Zoscig − ZoscY v, (19)
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whereZosc := zoscI ∈ CN×N , and we substitutedi = Y v
from (14). A multiplication of both sides of (19) by the pro-
jector matrixΠ yields the differential terminal-voltage vector

ṽ = Πv = Π(Zosc (ig − Y v)) = Zosc (Πig −ΠY v)

= Zosc

(
ĩg − Y ṽ

)
, (20)

where we utilized the fact thatΠZosc = ΠzoscI = zoscIΠ =
ZoscΠ, and leveraged property(P1) which requires that the
admittance and projector matrices commute. We can now
isolateṽ in (20) as follows:

ṽ = (I + ZoscY )
−1

Zosc̃ig = F (Zosc, Y ) ĩg, (21)

whereF (Zosc, Y ) is the linear fractional transformationthat
captures the negative feedback interconnection ofZosc andY
(see (8) for a formal definition). Using (21), we see that the
corresponding differential system admits the compact block-
diagram representation in Fig. 4. The linear and nonlinear
portions of the system are clearly compartmentalized by
F (Zosc, Y ) and the map̃g : ṽ → −ĩg, respectively.

V. GLOBAL ASYMPTOTIC SYNCHRONIZATION IN

NETWORKSWITHOUT SHUNT ELEMENTS

This section focuses exclusively on synchronization in elec-
trical networks that have no shunt elements. We begin this
section by describing the class of electrical networks without
shunt elements that satisfy(P1)-(P2), and then present suffi-
cient conditions for global asymptotic synchronization ofthe
nonlinear-circuit terminal voltages in such networks.

First, we present a result which helps us to establish that
Kron-reduced admittance matrices satisfy(P1) if the originat-
ing electrical networks have no shunt elements. The following
result also offers a converse statement to [12, Lemma 3.1].

Theorem 1. The following statements are equivalent:

(i) The original electrical network has no shunt elements.
(ii) The Kron-reduced network has no shunt elements.

Proof: Let us first prove the sufficiency(i) =⇒ (ii) . In
the absence of shunt elements, the admittance matrixYA has
zero row sums by construction (see (12)), that is,

[
0

0

]
=

[
YNN YNI

Y T
NI YII

] [
1

1

]
. (22)

An elimination of the second set of equations in (22) results
in

(
YNN − YNIY

−1
II Y T

NI

)
1 = Y 1 = 0, that is,Y has zero

row sums (and zero column sums due to closure of symmetry
under the Schur complement [32]). By construction of the
admittance matrix in (12), it follows that the Kron-reduced
electrical network corresponding toY has no shunt elements.

gĩ=giΠ ṽ=vΠ))s(, Y)s(oscZ(F

Figure 4: Block-diagram representation of the corresponding differ-
ential system. The linear and nonlinear portions of the system are
compartmentalized inF (·, ·) and g̃, respectively.

We now prove the converse statement(ii) =⇒ (i) by proving
its negation¬(i) =⇒ ¬(ii) , that is, an original network with
shunt elements always leads to a Kron-reduced network with
shunt elements. Consider the augmented matrixŶA associated
with YA, which is obtained by modeling the ground as an
additional node in the network with index|A| + 1 and fixed
(zero) voltage (see Appendix A for more details on the
augmentation). Then̂YA is the admittance matrix associated
to a network without shunt elements, that is,ŶA1 = 0.
By the reasoning (i)=⇒ (ii) above, the associated Kron-
reduced admittance matrix̂Y has no shunt elements, that is,
Ŷ 1 = 0. Since Kron-reduction and augmentation commute
(see Lemma 5 in Appendix A), the reduced network with
admittance matrixY obtained by removing the grounded node
(that is removing the column and row with indexN +1 from
Ŷ ) does not have zero row sums. Equivalently, the Kron-
reduced network has shunt elements.

Corollary 1. If the original electrical network has no shunt el-
ements, then property(P1) holds, that is,Y commutes withΠ.

Proof: If the original network has no shunt elements, then
the Kron-reduced network has no shunt elements. Thus,Y has
zero row and column sums, andY commutes withΠ.

A. Identifying Electrical Networks that Satisfy(P1)-(P2)

The synchronization criteria we develop within this section
apply to the following classes of networks:
(i) networks with uniform line characteristics[33], in which

the branch admittances are givenynm = yseriesanm for all
(n,m) ∈ E , whereanm ∈ R is real-valued andyseries∈
C \ {0} is identical for every branch (see Figs. 5(a)-(c));

(ii) homogeneous networks[12], in which the effective
impedances are identical for all boundary nodes, that
is, znm =: zeff = r + jx, r, x ∈ R, ∀n,m ∈ N (see
Fig. 5(d)).

For these networks, we will first derive the general form of
the Kron-reduced admittance matrices, and then subsequently
demonstrate compliance to(P2).

We first focus on networks with uniform line characteris-
tics, which physically correspond to networks for which all
branches are made of the same material [33], i.e., the admit-
tance of each branch(n,m) depends on its constant per-unit-
length admittance,yseries∈ C, and its length,anm > 0 (see
Fig. 5(a)). Notice that these networks include as special cases
resistive networks (Fig. 5(b)) and lossless networks (Fig.5(c))
for which yseries is real-valued or purely imaginary, respec-
tively. For these networks, we can expressYA = yseries· LA,
where LA is a symmetric, positive semidefinite, and real-
valued Laplacian matrix. We have the following result:

Lemma 1. Consider a network with uniform line character-
istics, that is,YA = yseries · LA, whereLA ∈ R|A|×|A| is
a real-valued Laplacian matrix andyseries ∈ C. Then, the
Kron-reduced network has uniform line characteristics with
the Kron-reduced admittance matrix given by

Y = yseriesL (23)

whereL = LNN − LNIL
−1
IIL

T
NI .
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Figure 5: Illustrating electrical networks with no passiveshunt elements that are: (a) uniform, (b) resistive, (c) lossless (inductive in this
particular example), and (d) homogeneous. Uniform networks have identical per-unit-length impedances,zseries, such that the value of the
(n,m) line impedance is expressed as the product ofzseries andanm, the line length, which corresponds to the nonnegative weight from
the underlying weighted Laplacian,L. In resistive (lossless) networks, notice that the line impedances are purely resistive (inductive in
this particular example), and the values of the line impedances between different internal nodes are allowed to be arbitrary. Finally, in
homogeneous networks, the effective impedance between anytwo nodes is the same.

The proof of Lemma 1 follows by direct construction of
the Kron-reduced matrix and due to the closure properties of
Kron reduction [12, Lemma 3.1]. Due to the special form of
the Kron-reduced admittance matrix in (23), it follows thatY
is diagonalizable with a unitary matrix. We conclude that(P2)
is satisfied by Kron-reduced matrices for which the original
electrical network has uniform line characteristics.

To address homogeneous networks, we recall from [12,
Theorem III.4] that (in the purely resistive case) a sparse
electrical network becomes denser under Kron reduction and
even complete under mild connectivity assumptions. However,
the branch admittances in the reduced network are still hetero-
geneous and reflect the topology and electrical properties of
the original network. In the following result, we show that for
a homogeneous original network, the associated Kron-reduced
network is characterized by identical branch admittances.

Lemma 2. The following statements are equivalent:

(i) The original network is homogeneous: for all bound-
ary nodesn,m ∈ {1, . . . , N}, the pairwise effective
impedances take the uniform valueznm = zeff ∈ C\{0}.

(ii) The Kron-reduced network is complete and the branch
admittances take the uniform valueyseries ∈ C \ {0}.
Equivalently, the Kron-reduced admittance matrix is
given by

Y = yseriesΓ , (24)

whereΓ = NI − 11
T is the Laplacian of the complete

graph.

If statements (i) and (ii) are true, thenzeff =
2

Nyseries
.

Lemma 2 is obtained as a direct corollary to Theorem 4
in Appendix A. Since the Laplacian of the complete graph is
Γ = NΠ, it commutes with the projector matrixΠ. Finally,
notice that since the Kron-reduced admittance matrixY in
the homogeneous case (24) is a special case of the Kron-
reduced admittance matrix for the network with uniform line
characteristics (23), it follows that Kron-reduced admittance
matrices for homogeneous electrical networks satisfy(P2).

B. Sufficient Condition for Global Asymptotic Synchronization

This subsection derives sufficient conditions to ensure
global asymptotic synchronization in the network of coupled
nonlinear circuits described in Section V-A. First, we present
a lemma that establishes an upper bound on the differentialL2

gain of the functiong(·), that governs the nonlinear voltage-
dependent current sources in the nonlinear circuits.

Lemma 3. ( [11, Lemma 1]) The differentialL2 gain of g(·)
is finite, and upper bounded byσ:

γ̃ (g) :=
‖̃ig‖L2

‖ṽ‖L2

≤ σ := sup
v∈R

∣∣∣∣
d

dv
g(v)

∣∣∣∣ < ∞. (25)

We now provide a sufficient synchronization condition for
the case where the nonlinear circuits are connected in networks
with uniform line characteristics. Subsequently, we consider
homogeneous networks.

Theorem 2. Suppose the electrical network that couples the
system ofN identical nonlinear circuits has no shunt elements,
and has uniform line characteristics. Let the Kron-reduced
admittance matrix be of the formY = yseriesL as in (23). The
terminal voltages of the nonlinear circuits synchronize inthe
sense of(15) if for all j ∈ {2, . . . , N}

‖F(zosc(jω), yseries(jω)λj)‖∞σ < 1 , (26)

whereλj , j ∈ {2, . . . , N}, are the nonzero eigenvalues of the
Laplacian matrixL.

For purely resistive networks the synchronization condi-
tion (26) has to be evaluated only forλ2. The second-
smallest eigenvalueλ2 of the Laplacian matrix is known as
the algebraic connectivity, and it is a spectral connectivity
measure [34]. It can be shown that the algebraic connectivity in
a resistive Kron-reduced network upper-bounds the algebraic
connectivity in the original network [12, Theorem III.5].
Hence, condition (26) implies that the nonlinear circuits should
be sufficiently strongly connected, which is aligned with
synchronization results in complex oscillator networks with
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a static interconnection topology (i.e., with only resistive ele-
ments) [2]. On the other hand, if the interconnecting network
is dynamic, e.g., if it contains capacitive or inductive storage
elements, then the synchronization condition (26) needs tobe
evaluated for all nonzero network modesλj , j ∈ {2, . . . , N}.

Proof of Theorem 2:Consider the block-diagram of the
differential system in Fig. 4. From Lemma 1, we have

‖̃ig‖L2
≤ σ‖ṽ‖L2

. (27)

For the linear fractional transformation, we can write

‖ṽ‖L2
≤ γ̃ (F (Zosc, Y )) ‖̃ig‖L2

+ η, (28)

for some non-negativeη, where γ̃ (F (Zosc, Y )) denotes the
differentialL2 gain of the linear fractional transformation. By
combining (27) and (28), we arrive at

‖ṽ‖L2
≤ γ̃ (F (Zosc, Y )) σ‖ṽ‖L2

+ η. (29)

By isolating‖ṽ‖L2
from (29), we can write

‖ṽ‖L2
≤ η

1− γ̃ (F (Zosc, Y ))σ
, (30)

provided that the following condition holds

γ̃ (F (Zosc, Y ))σ < 1. (31)

If (31) holds true, then we havẽv ∈ L2. It follows from
Barbalat’s lemma [13]–[15] thatlimt→∞ ṽ(t) = 0. Hence, if
the network of nonlinear circuits satisfies the condition (31),
global asymptotic synchronization can be guaranteed.

In the remainder of the proof, we establish an equivalent
condition for (31). By definition of the differentialL2 gain of
the linear fractional transformation, we can express

γ̃ (F (Zosc, Y )) = γ̃ (F (zoscI, Y )) (32)

= sup
ω∈R

∥∥∥F (zosc (jω) I, Y (jω)) ĩg (jω)
∥∥∥
2∥∥∥̃ig(jω)

∥∥∥
2

= sup
ω∈R

∥∥∥(I + zosc(jω)Y (jω))
−1

zosc(jω)̃ig (jω)
∥∥∥
2∥∥∥̃ig(jω)

∥∥∥
2

= sup
ω∈R

∥∥∥Q (I + zosc(jω)yseries(jω)Λ)
−1 zosc(jω)Q

T ĩg(jω)
∥∥∥
2∥∥∥QTĩg(jω)

∥∥∥
2

,

where we made use of property(P2) to diagonalize the
admittance matrix asY = yseriesL = yseriesQΛQT, whereQ is
unitary andΛ is a diagonal matrix containing the real-valued
and nonnegative eigenvalues of the Laplacian matrixL.

Since the Kron-reduced network has no shunt elements
connected to ground, the row and column sums ofY are zero.
Furthermore, since the Kron-reduced network is connected,
Y has a single zero eigenvalue. Analogous comments apply
to L and we obtainλ1 = 0 with corresponding eigenvector
q1 = (1/

√
N)1. Finally, since1TΠ = 0

T, we can express

QTĩg = QTΠig = [0, p]
T
, (33)

wherep ∈ CN−1 is made of the non-zero elements ofQTΠig.

Using the observation in (33), denoting theN − 1×N − 1
identity matrix byIN−1, and the diagonal matrix with entries
composed of the non-zero eigenvalues ofY by ΛN−1, we can
simplify (28) as follows:

γ̃ (F (zoscI, Y ))

= sup
ω∈R

∥∥∥(IN−1 + zosc(jω)yseries(jω)ΛN−1)
−1

zosc(jω)p(jω)
∥∥∥
2

‖p(jω)‖2
= max

j=2,...,N
sup
ω∈R

∣∣∣∣
zosc(jω)

1 + zosc(jω)yseries(jω)λj

∣∣∣∣ . (34)

By combining (34) and (31), and using the definition of the
linear fractional transformation in (8), we arrive at condi-
tion (26).

Corollary 2. Suppose the original electrical network that
couples the system ofN identical nonlinear circuits has no
shunt elements and is homogeneous with a Kron-reduced
admittance matrixY = yseriesΓ as in (24). The terminal
voltages of the nonlinear circuits connected in such a network
synchronize in the sense of(15) if

‖F(zosc(jω), yseries(jω)N)‖∞σ < 1. (35)

Proof: The condition in (35) follows from the fact that
the eigenvalues ofΓ (the Laplacian matrix of the complete
graph), are given byλ1 = 0 andλ2 = · · · = λN = N .

VI. GLOBAL ASYMPTOTIC SYNCHRONIZATION IN

NETWORKSWITH SHUNT ELEMENTS

In this section, we explore the family of electrical networks
with shunt elements for which sufficient synchronization con-
ditions similar to (26) can be derived.

A. Identifying Electrical Networks that Satisfy(P1)-(P2)

Consider the case of a Kron-reduced electrical network,
where—in addition to a single nonlinear circuit—each node
m ∈ N in the network is connected to an identical shunt
admittanceym = yshunt. In this case, the Kron-reduced
admittance matrix can be expressed as

Y = yshuntI + Y ′, (36)

whereY ′ corresponds to the admittance matrix that captures
the coupling between the nonlinear circuits. Note that the
row and column sums ofY ′ are zero sincey′m = 0 for all
m ∈ N by construction (sinceY ′ does not include shunt
elements). If the network modeled by such aY ′ has uniform
line characteristics (such as resistive or lossless lines), then we
obtain

Y = yshuntI + yseriesL, (37)

whereL is the associated real-valued, symmetric Laplacian
matrix. Clearly,Y as in (37) satisfies properties(P1) and(P2).

In general, it is difficult to identify networks that admit
Kron-reduced admittance matrices of the form in (36) or even
(37). However, we can identify a family of electrical networks
that admit Kron-reduced admittance matrices of the same form
as (37). Towards this end, we first present a result on Kron
reduction of homogeneous networks with shunt elements.



8

22
i

−

+

2
v

1

1i −

+
1v

sh
u
n
t

z

sh
u
n
t

z

Ni

−

+N
v s

h
u
n
t

z

seriesz
s
e
r
ie
s

z

s
e
r
ie
s

z

N

Figure 6: Kron-reduced electrical network recovered from ahomo-
geneous originating network. The shaded region captures the inter-
circuit interactions through identical line impedances that are equal
to zseries. All the shunt impedances are equal tozshunt.

Lemma 4. The following statements are equivalent:

(i) The original network is homogeneous: for all bound-
ary nodesn,m ∈ {1, . . . , N}, the pairwise effective
impedances take the uniform valueznm = zeff–series ∈
C\{0} and the effective impedances to electrical ground
(denoted by the node,N + 1) take the uniform value
zn(N+1) = zeff–shunt∈ C \ {0}, with zeff–series

zeff–shunt
6= 2N

N−1 .
(ii) The branch and shunt admittances in the Kron-reduced

network are uniform, that is, there areyseries∈ C \ {0}
and yshunt∈ C \ {0}, with yshunt 6= −Nyseries, such that

Y = yshuntI + yseriesΓ. (38)

If statements (i) and (ii) are true, then

yseries=
2

2Nzeff–shunt− (N − 1)zeff–series
,

yshunt=
2(zeff–series− 2zeff–shunt)

zeff–series((N − 1)zeff–series− 2Nzeff–shunt)
. (39)

Lemma 4 is obtained as a direct corollary to Theorem 4 in
Appendix A, by inverting the constitutive relations between
admittances and effective impedances. The parametric as-
sumptionyshunt 6= −Nyseries (respectively,zeff–series/zeff–shunt 6=
2N/(N − 1)) is practically not restrictive: it is violated only
in pathological cases, e.g., when a capacitive (respectively
inductive) shunt load compensates exactly forN inductive
(respectively capacitive) line flows.

The admittance matrixY in (38) satisfies(P1) and (P2),
and it is clearly a special case of (36), withY ′ = yseriesΓ.
While the formulation in (38) is more restrictive, Lemma 4
identifies theunique class of electrical networks that admit
Kron-reduced matrices of the form (38). An illustration of a
Kron-reduced electrical network recovered from a homoge-
neous originating electrical network is depicted in Fig. 6.

B. Sufficient Condition for Global Asymptotic Synchronization

We now present sufficient conditions for global asymptotic
synchronization for the cases where the Kron-reduced admit-
tance matrices are given by (37), or as a special case, by (38).

Corollary 3. Suppose the electrical network that couples
the system ofN identical nonlinear circuits admits a Kron-
reduced admittance matrix given by(37), where the network
corresponding toL has uniform line characteristics and no
shunt elements connected to ground. The terminal voltages of
the nonlinear circuits synchronize in the sense of(15) if for
all j ∈ {2, . . . , N}

‖F(zeq(jω), yseries(jω)λj)‖∞σ < 1 , (40)

whereλj , j ∈ {2, . . . , N}, are the nonzero eigenvalues of the
Laplacian matrixL, and zeq is the equivalent impedance of
the parallel combination ofzshunt := y−1

shunt andzosc given by

zeq :=
zshuntzosc

zshunt + zosc
. (41)

Proof: The proof for this corollary follows along the same
lines as that for Theorem 2. In particular, if (31) holds, then
synchronization is guaranteed. Now, consider that withY =
yshuntI + yseriesL, we have that

F (Zosc, Y ) = (I + ZoscY )
−1

Zosc

= (I + Zosc (yshuntI + yseriesL))
−1

Zosc

=

(
I +

zshuntzosc
zshunt + zosc

yseriesL

)−1
zshuntzosc

zshunt + zosc
I

= F (zeqI, yseriesL) , (42)

where the last line in (42) follows from the definition of
the linear fractional transformation (8), and the definition of
zeq in (41). By repeating the reasoning as in the proof of
Theorem 2, we obtain

γ̃ (F (Zosc, Y )) = γ̃ (F (zeqI, yseriesL))

= max
j=2,...,N

sup
ω∈R

∣∣∣∣
zeq(jω)

1 + zeq(jω)yseries(jω)λj

∣∣∣∣ . (43)

The claimed synchronization condition (40) then follows by
combining (31) and (43).

Corollary 4. Suppose the original electrical network that
couples the system ofN identical nonlinear circuits admits a
Kron-reduced admittance matrix of the form(38). The terminal
voltages of nonlinear circuits connected in such a network
synchronize in the sense of(15) if

‖F(zeq(jω), yseries(jω)N)‖∞σ < 1. (44)

Proof: The condition in (44) follows from the fact that
the eigenvalues ofΓ (the Laplacian matrix of the complete
graph), are given byλ1 = 0 andλ2 = · · · = λN = N .

VII. C ASE STUDIES

We now present simulation case studies to validate the
synchronization conditions in some illustrative LTI electrical
network topologies that interconnectChua’s circuits [28].
The electrical schematic of Chua’s circuit is depicted in
Figure 2(a). Two network topologies are considered in this
section: i) an arbitrary lossless network with nonidentical
inductive line impedances and without shunt elements, and
ii) a homogeneous network with a symmetric star topology
and a shunt load.
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Figure 7: Schematic of lossless inductive network and the Kron-
reduced counterpart examined in Section VII-A. This is an example of
a network with uniform line characteristics (see Section V), in that the
Kron-reduced admittance matrix can be expressed asY = yseriesL,
whereL is a weighted, real-valued, symmetric Laplacian matrix.

The nonlinear voltage-dependent current source in Chua’s
circuit is illustrated in Fig. 2(a), and the impedance of the
linear subsystem is given by

zosc(s) =
RLCaCbs

3 + LCas
2 + RCas

RLCaCbs3 + (C2
a + LCb + LCa)s2 +RCas+ 1

.

(45)
Since the functiong(·) in Fig. 2(a) is piecewise linear, it
immediately satisfies (10). Parameters of the constituent cir-
cuit elements in Chua’s circuit utilized in both case studies
are summarized in Appendix B. With the choice of circuit
parameters, it follows thatσ = supv∈R

∣∣ d
dvg(v)

∣∣ = σ2.

A. Lossless Inductive Network without Shunt Elements

The network topology examined here is illustrated in Fig. 7.
This is an example of a network with uniform line charac-
teristics (see Section V-A). Following Lemma 1, we obtain
the Kron-reduced network (also illustrated in Fig. 7) with
admittance matrix given byY = yseriesL, where L is a
weighted, real-valued, symmetric Laplacian matrix. The suffi-
cient synchronization condition for this case is given by (26).

For the first set of network parameters in Appendix C, we
get ||F

(
zosc(jω), y

−1
series(jω

)
λj ||∞σ < 1, j = 2, 3, 4, which

implies that the terminal voltages of the Chua’s circuits are
guaranteed to synchronize. We confirm this with time-domain
simulations. Figure 8(a) illustrates the terminal voltages and
the voltage synchronization error, with the inset capturing a
close-up during startup with nonidentical initial conditions as
the voltages begin to pull into phase. Figure 8(b) depicts a
three-dimensional view of the internal states of the Chua’s
circuits as a function of time, and clearly demonstrates the
chaotic double-scroll attractor [28] in the asymptotic limit.

Now consider the second set of network parameters
in Appendix C. For this set of parameters, we obtain
||F

(
zosc(jω), y

−1
series(jω

)
λj ||∞σ ≮ 1, j = 2, 3, 4, and our

condition (26) is violated. While this is not an indication that
the terminal voltages cannot synchronize (since the condition
(26) is only sufficient), it turns out that in this case, the
terminal voltages indeed do not synchronize. With the same
set of initial conditions as before, we plot the the terminal
voltages and the voltage synchronization error in Fig. 9 for
this network.
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Figure 8: Synchronization of terminal voltages in Chua’s circuits
for the lossless electrical network depicted in Fig. 7. (a) Terminal
voltages,v(t), and voltage synchronization error,||ṽ(t)||2. The inset
illustrates a close-up view of system dynamics at startup with
nonidentical initial conditions. (b) Chaotic double-scroll attractor is
discernible in the asymptotic limit.

B. Homogeneous Network with Shunt Load

The network topology examined here is illustrated in
Fig. 10. The network branch impedance is given byznet (s) =
sLnet +Rnet. The impedance of the shunt load connected to
the internal node is denoted byzload (s). This is an example
of a homogeneous network since the effective impedances
between any two nonlinear circuits are identical, and the effec-
tive impedances between the nonlinear circuits and electrical
ground are also identical (see Section VI-A). In particular

zeff−series = 2znet, zeff−shunt = znet + zload. (46)

Following Lemma 4, we obtain the Kron-reduced network
(also illustrated in Fig. 10) with admittance matrix given by
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Figure 9: Terminal voltages, v(t), and voltage synchro-
nization error, ||ṽ(t)||2, for a particular network where
||F

(
zosc(jω), y

−1

series
(jω

)
λj ||∞σ ≮ 1, j = 2, 3, 4, and

synchronization is not guaranteed.

Y = yshuntI + yseriesΓ, where Γ is the Laplacian of the
complete graph. By applying (39), we obtain

yshunt = (znet + 4zload)
−1

,

yseries = zload

(
znet (znet + 4zload)

−1
)−1

. (47)

Substitutingyshunt andyseries in (44), we obtain the following
sufficient condition for synchronization in this network:

∥∥F(zosc, z
−1
net)

∥∥
∞

σ =

∥∥∥∥
zosc(jω)znet(jω)

zosc(jω) + znet(jω)

∥∥∥∥
∞

σ < 1. (48)

It is instructive to explore the impact of the network parameters
Rnet and Lnet on synchronization. First, consider Fig. 11,
which plotsξ(Rnet, Lnet) := ‖F(zosc, z

−1
net)‖∞σ for a range

of different values ofRnet and Lnet. For sufficiently low
values ofRnet andLnet, synchronization is guaranteed since
ξ(Rnet, Lnet) < 1 as required by (48).

Consider now, the asymptotic behavior ofξ(Rnet, Lnet).
Particularly, we will focus on two points[a] and [b] that
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Figure 10: Network composed of nonlinear electrical circuit con-
nected to a common load through identical branch impedances, and
the corresponding Kron-reduced circuit. Homogeneity of the original
electrical network implies that the admittance matrix of the Kron-
reduced network is given byY = yshuntI + yseriesΓ.
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are marked in Fig. 11. Figure 12 depicts the magnitude of
F(zosc(jω), z

−1
net(jω))σ as a function of frequency,ω, for three

representative values ofRnet, Lnet; two of which correspond
to the asymptotes[a] and[b]. The effect of reducing the values
of Rnet, Lnet translates to damping the peak of the magnitude
response. Synchronization is guaranteed when the peak is less
than unity.

VIII. C ONCLUDING REMARKS AND DIRECTIONS FOR

FUTURE WORK

We derived a synchronization condition for a class of
nonlinear electrical circuits coupled through passive LTIelec-
trical networks. We considered particular classes of networks,
where perfect synchronization of the terminal voltages can
be achieved. These classes included homogeneous networks
and networks with uniform line characteristics—both with and
without shunt elements. Whereas these classes of networks
seem to be restrictive at first, it is the belief of the authors
that—with the present setup—perfect synchronization cannot
be achieved for more general and heterogeneous networks,
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where the nonlinear circuits are possibly non-identical and
support different loads. In this case, the subsystems have no
common asymptotic dynamics to synchronize on [35].

In ongoing and future work, we plan to address the prob-
lems of synchronization in heterogeneous networks and the
regulation of the asymptotic synchronized dynamics. Further
topics of interest include the analysis of Kron reduction of
generalRLC circuits (including pathological cases) and syn-
chronization through directed and possibly nonlinear electrical
networks with diodes and rectifiers.

APPENDIX

A. Kron Reduction of Complex-Symmetric Matrices

In this appendix, we discuss the Kron reduction of complex-
valued admittance matrices and the properties of the effec-
tive impedances. The following results are extensions from
the real-valued and symmetric cases considered in [12], to
complex-symmetric (and not necessarily Hermitian) settings
relevant in this work. Since only a subset of results in
[12] directly carries over to the complex-symmetric case, we
present self-contained statements with brief proof sketches.
These results directly lead up to Lemmas 2 and 4 in this paper.

First, notice that an admittance matrixYA without shunt
elements is singular due to zero row and column sums, and
an admittance matrix with at least one shunt element is
invertible due to irreducibly block diagonally dominance [31,
Corollary 6.2.27]. To analyze regular and singular admittance
matrices simultaneously, we associate anaugmented admit-
tance matrixŶA to a regular admittance matrixYA:

ŶA :=




−y1

YA ...
−y|A|

−y1 · · · −y|A|

∑|A|
m=1 ym




, (49)

The augmented admittance matrix̂YA corresponds to the
case when the ground is modeled as an additional node with
index|A|+1 and zero voltage. Notice that̂YA is singular with
zero row and column sums. Likewise, a singular admittance
matrix resulting from a network without shunt elements can
be regularized by grounding an arbitrary node. We denote the
Kron-reduced matrix associated tôYA by Ŷ . As it turns out,
the augmentation process and the Kron reduction commute.

Lemma 5. Consider a singular admittance matrixYA, its
augmented matrixŶA, and their associated Kron-reduced
matricesY and Ŷ , respectively. The following diagram com-
mutes:

YA

Y Ŷ

ŶA

augmentation

augmentation

Kron

reduction

Kron

reduction

Proof: The proof is analogous to the proof of [12, Lemma
III.1, Property 3]. The result in [12] relies on the Quotient
Formula [32, Theorem 1.4] which extends to complex-valued

matrices, as well as the closure of symmetry and zero row
(column) sums under Kron reduction (shown in Theorem 1).

As the next key property, we establish that the effective
impedancesznm among the boundary nodesn,m ∈ N are
invariant under Kron reduction and augmentation.

Theorem 3. Consider the admittance matrixYA and the Kron-
reduced matrixY . The following statements hold:

1) Invariance under Kron reduction: the effective impedance
between any two boundary nodes is equal when computed
from Y or YA, that is, for anyn,m ∈ {1, . . . , N}

znm = (en − em)TY †(en − em)

≡ (en − em)TY †
A(en − em). (50)

2) Invariance under augmentation: ifYA is a nonsingular
matrix, then the effective impedance is equal when com-
puted fromYA or ŶA, that is, for anyn,m ∈ {1, . . . , |A|}

znm = (en − em)TY −1
A (en − em)

≡ (en − em)TŶ †
A(en − em). (51)

Equivalently, statements 1) and 2) imply that, ifYA is a regular
admittance matrix, then the following diagram commutes:

YA

Y Ŷ

ŶA

augmentation

augmentation

Kron

reduction

Kron

reduction

znm

n,m ∈ {1, . . . , N}

Proof: To prove Theorem 3, we first establish some
matrix identities. We need the following identity for a singular
admittance matrixY ∈ CN×N and a real nonzero numberδ:

(
Y + (δ/N)11T

)−1
= Y † + (1/δN)11T . (52)

Using the projector formula (for a singular admittance matrix)
Y Y † = Y †Y = Π, the identity (52) can be verified since the
product of the left-hand and the right-hand side of (52) equal
the identity matrix. If a singular admittance matrixY ∈ CN×N

is of dimensionN ≥ 3, then by taking theN th node as a
reference and deleting the associatedN th column andN th

row, we obtain the nonsingular matrixY ∈ C(N−1)×(N−1).
As suggested by physical intuition, the effective impedance
among the nodesn,m ∈ {1, . . . , N − 1} is not affected by
grounding theN th node, that is, for alln,m ∈ {1, . . . , N−1}

znm = (en − em)TY
−1

(en − em)

≡ (en − em)TY †(en − em). (53)

The identity (53) can be verified by using the formulaY
−1

nm =
Y †
nm − Y †

nN − Y †
mN + Y †

NN [36, Appendix B, formula (17)]
whose derivation extends to the complex-valued case.

To prove statement 1), consider first the case whenYA is
invertible due to presence of shunt admittances. Recall that
we are interested in the effective impedances only among the
boundary nodes, that is, the leading principal(N×N)-block of
Y †
A = Y −1

A . The Schur complement formula [32, Theorem 1.2]
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gives the leading(N ×N)-block of Y −1
A as the inverse Schur

complementY −1. It follows that, for alln,m ∈ {1, . . . , N},

znm = (en − em)TY −1(en − em)

≡ (en − em)TY −1
A (en − em). (54)

On the other hand, ifYA is singular due to absence of shunt
admittances, an analogous reasoning applies on the image of
Y and using the identity (52), or after grounding an arbitrary
interior node (i.e., regularizingYA) and using the identity (53),
see the proof of [12, Theorem III.8, Property 1] for details.

To prove statement 2), notice that the regular admittance
matrix YA with shunt elements is the leading principal(|A|×
|A|)-block of the augmented singular admittance matrixŶA.
Statement 2) follows then directly from identity (53) after
replacingN , Y , andY with N + 1, ŶA, andYA.

Theorem 4. Consider an admittance matrixYA and its Kron-
reduced matrixY . Consider the following two cases:

1) No shunt elements: Assume thatYA is singular due to the
absence of shunt elements. LetZ ∈ CN×N be the matrix of
effective impedances. The following statements are equivalent:

(i) The effective impedances among the boundary nodes
{1, . . . , N} are uniform, that is, there iszeff ∈ C \ {0}
such thatznm = zeff for all distinct n,m ∈ {1, . . . , N};

(ii) The branch admittances in the Kron-reduced network take
the uniform valueyseries∈ C \ {0}, that is,Y = yseriesΓ.

If statements (i) and (ii) are true, thenzeff =
2

Nyseries
.

2) Shunt elements: Assume thatYA is regular due to the
presence of shunt elements. Consider the grounded node|A|+
1 and the augmented admittance matricesŶA and Ŷ . LetZ ∈
R(|A|+1)×(|A|+1) be the matrix of effective impedances in the
augmented network. The following statements are equivalent:

(iii) The effective impedances both among the boundary nodes
{1, . . . , N} and between all boundary nodes{1, . . . , N}
and the grounded node|A|+1 are uniform, that is, there
are zeff–series∈ C \ {0} and zeff–shunt∈ C \ {0} satisfying
zeff–series/zeff–shunt 6= 2N/N − 1 such thatzij = zeff–series

for all distinct n,m ∈ {1, . . . , N} and zn,|A|+1 =
zeff–shunt for all n ∈ {1, . . . , N}.

(iv) The branch and shunt admittances in the Kron-reduced
network are uniform, that is, there areyseries∈ C \ {0}
and yshunt ∈ C \ {0} satisfyingyshunt 6= −Nyseries such
that Y = yshuntI + yseriesΓ.

If statements (iii) and (iv) are true, then

zeff–series=
2

Nyseries+ yshunt
, (55)

zeff–shunt=
yshunt+ yseries

yshunt(Nyseries+ yshunt)
. (56)

The admittance assumptionyshunt 6= −Nyseries (and the
equivalent assumptionzeff–series/zeff–shunt 6= 2N/N − 1 for
the effective impedances) guarantees regularity (respectively a
single zero eigenvalue) of the admittance matrix. As discussed
in Section VI-A, this assumption is practically not restrictive.

Proof of Theorem 4:Here, we present the proof strategy
for case 1). Due to the invariance of the effective impedance
(and Kron reduction) under the augmentation process (see

Lemma 5 and Theorem 3), an analogous reasoning and similar
formulae apply to case 2), see [12].

We first prove the statement(i) =⇒ (ii): Notice that
Z = ZT has zero diagonal elements andY † is symmetric with
zero row and column sums. Hence, both matrices haveN(N−
1)/2 independent elements, and the linear formula relating the
elementsznm andY †

nm can be inverted [12, identity (34)]:

Y †
nm = −1

2

(
znm− 1

N

N∑

k=1

(znk+zmk)+
1

N2

N∑

k,ℓ=1

zkℓ

)
. (57)

From the above formula, it can be readily verified that a
uniform effective impedance matrix,Z = zeff (11

T − I),
yields a uniform inverse matrixY † = zeff/(2N) Γ. It is worth
mentioning that for an admittance matrix with uniform branch
admittances,Y = yseriesΓ, the pseudo inverseY † is again an
admittance matrix with uniform branch admittances given by

Y † = (yseriesΓ)
†
= 1/(N2yseries) Γ . (58)

Identity (58) can be verified sinceY and Y † satisfy the
Penrose equations. According to (58), this uniform inverse
matrixY † = zeff/(2N) Γ yields the uniform admittance matrix
Y = 2/(Nzeff) Γ.

Now we consider the converse implication(ii) =⇒ (i).
Due to Theorem 3 the effective impedance is invariant under
Kron reduction. In this case, substitutingY † from (58) in (9),
we see that the effective impedances are given by

znm =
1

(N2yseries)
(en − em)T(NI − 11

T)(en − em)

=
2

Nyseries
= zeff, ∀n,m ∈ {1, . . . , N}. (59)

Hence, theN(N − 1)/2 pairwise effective impedancesznm
between the boundary nodes are uniform.

B. Parameters of Chua’s Circuits

Linear subsystem parameters:R = 10/7Ω, L = 1/7H,
Ca = 1/9 F, Cb = 1F. Nonlinear-subsystem parameters:
σ0 = −0.8 S, σ1 = −0.5 S, σ2 = 0.8 S, ϕ0 = 1V, ϕ1 = 14V.

C. Lossless network parameters

Guaranteed Synchronization:L12 = 0.834H, L15 =
0.671H, L26 = 0.277H, L56 = 1.0575H, L45 = 0.3655H,
L46 = 1.0245H, L36 = 0.3240H, L67 = 0.4735H, L37 =
0.1875H, L47 = 0.74H.

No Guarantee on Synchronization:L12 = 3.336H, L15 =
2.684H, L26 = 1.108H, L56 = 4.23H, L45 = 1.462H,
L46 = 4.098H, L36 = 1.296H, L67 = 1.894H, L37 =
0.75H, L47 = 2.96H.
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