arXiv:1310.4550v1 [math.OC] 16 Oct 2013

Synchronization of Nonlinear Circuits in Dynamic
Electrical Networks with General Topologies

Sairaj V. Dhople Member, IEEE Brian B. JohnsonMember, IEEE
Florian Dorfler, Member, IEEE and Abdullah Hamadeh

Abstract—Sulfficient conditions are derived for global asymp-
totic synchronization in a system of identical nonlinear ekctrical
circuits coupled through linear time-invariant (LTI) elec trical
networks. In particular, the conditions we derive apply to sttings
where: i) the nonlinear circuits are composed of a parallel
combination of passive LTI circuit elements and a nonlinear
voltage-dependent current source with finite gain; and ii) a
collection of these circuits are coupled through either urform
or homogeneous LTI electrical networks. Uniform electrica net-
works have identical per-unit-length impedances. Homogezous
electrical networks are characterized by having the same &ctive
impedance between any two terminals with the others open
circuited. Synchronization in these networks is guaranteg by
ensuring the stability of an equivalent coordinate-transbrmed
differential system that emphasizes signal differences. file ap-
plicability of the synchronization conditions to this broad class
of networks follows from leveraging recent results on strutural
and spectral properties of Kron reduction—a model-reductbn
procedure that isolates the interactions of the nonlinear iccuits in
the network. The validity of the analytical results is demorstrated
with simulations in networks of coupled Chua’s circuits.

Index Terms—Kron reduction, Nonlinear circuits, Synchro-
nization.

I. INTRODUCTION

YNCHRONIZATION of nonlinear electrical circuits cou-
pled through complex networks is integral to modelind,
analysis, and control in application areas such as the o

electrical grid, solid-state circuit oscillators, semmdaictor

laser arrays, secure communications, and microwave atsxill previous work in [11], [13]-{15], whereC,

arrays [1], [2]. This paper focuses on the global asymptoﬁ‘%ecj to analyze synchronization in feedback systems thereb

synchronization of terminal voltages in a class of nonline

circuits coupled through passive LTI electrical networiée

assume that the nonlinear circuits are composed of a plaralﬁ)é
combination of a passive LTI circuit and a nonlinear voltag
dependent current source with finite gain. A collection aftsu

identical circuits are coupled through uniform or homogere

passive LTI electrical networks. Uniform networks havenide

tical per-unit-length impedances and include purely tesis

and lossless networks as special cases. Homogeneougealec
networks are characterized by identical effective impedan
between the terminals (essentially, the impedance betwé

any two terminals with the others open circuited). Section V
provides precise definitions of these network types.

The nonlinear-circuit models, and the uniform and ho-
mogeneous networks examined in this work offer a broad
level of generality and ensure a wide applicability of the
analytical results to many settings. For instance, a wariet
of chaotic and hyperchaotic circuits as well as nonlinear
oscillators [3]-[11] can be modeled as a parallel connaatio
a linear subsystem and a nonlinear voltage-dependentnturre
source with finite gain. Similarly, the types of networksttha
our results accommodate, facilitate the analysis of varied
interconnections between the nonlinear circuits. In ganer
we study interconnecting networks that algnamig i.e., the
network can contain capacitive or inductive storage eldémen
For uniform networks, the per-unit-length line impedancas
be complex (i.e., not exclusively resistive or reactive)l ame
network topology can be arbitrary. With regard to resistive
(lossless) networks, we allow the branch resistances gcesp
tively, reactances) and the network topology to be arbjtrar
Finally, homogeneous networks are frequently encountered
symmetric engineered setups (e.g., power grid monitonmy a
electrical impedance tomography), in large random network
or regular lattices, as well as in idealized settings whélre a
erminals are electrically uniformly distributed with pest to
h other [12].

The analytical approach adopted in this paper builds on
methods were

ering an alternate perspective compared to a rich body of

ﬁterature that has examined synchronization problem# wit

apunov- and passivity-based mehods [9], [10], [16]-[d38]

énvestigate synchronization, the linear and nonlinearsgsb

tems in the network of coupled nonlinear electrical cirsaite

compartmentalized, and a coordinate transformation iiexpp
to recover an equivalerdifferential systenthat emphasizes
signal differences. Once the differenti®} gains of the linear

IEnd nonlinear subsystems are identified, synchronizaton c

e guaranteed by ensuring the stability of the coordinate-
E}qpsformed differential system with a small-gain argutnen
The suite of synchronization conditions presented in this
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limited to electrical networks with a star topology) to drary

network topologies. Integral to the analysis that allowstas
investigate varied topologies is a model-reduction praced
calledKron reduction[24]. This procedure explicitly uncovers
the interactions between the nonlinear electrical cisswithile

systematically eliminating exogenous nodes in the netwark
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major contribution of this work pertains to leveraging nece where||u (jw)||, = 1, provided that all poles off have strictly
results on structural and spectral properties of Kron redutgegative real parts [26]. For a single-input single-outpans-
tion [12] in deriving synchronization conditions. Towaridtés fer functionh : C — C, v (H) = |||, = sup ||k (jw)||5-

end, another significant contribution is that some key lesima R

we
. A construct we will find particularly useful in assessing
from [12] are extended from the real-valued and symmetric g(?gnal differences is th&V x N projector matrix[14], [19],

the complex-symmetric (and not necessarily Hermitian)ecas[ ], which is denoted byT, and defined as
and we also offer converse results to some statements in [1%]2 ' '

The remainder of this manuscript is organized as follows. Oo=17— illT_ (5)
Section Il establishes some mathematical preliminaries an
notation. In Section Ill, we describe the nonlinear eleetri For a vectoru, we defineu := ITu to be the corresponding
circuits, and describe their network interactions by cartit  differential vector[13]-[15], [19], [22].
ing the electrical admittance matrix that couples them. In Given a symmetric and nonnegative matrix € RN*N
Section IV, we formulate the problem statement, and defige tassociated with an undirected and weighted graph, we define
differential system. Synchronization conditions for netks its Laplacian matrixZ component-wise by,.,, = —a,, for
with and without shunt elements are then derived in Seclonsoff-diagonal elements and,,, = Zf:’l:l anm for diagonal
and VI, respectively. Simulations-based case studies @re pelements. The Laplacian matrix has zero row and column
vided in Section VIl to validate the approach. We conclude tisums, it is symmetric and positive semidefinite, and its zero
paper in Section VIII by highlighting a few pertinent dirsts  eigenvalue is simple if and only if the graph is connected Th
for future work. Laplacian of a complete graph with unit weights is

I'=NI—-11" = NIL (6)
Il. NOTATION AND PRELIMINARIES
A causal system with input and outputy is said to be

Given adgomplelx-valuedf-tuple {_“1’ < uN dTenotE the differentially finite £, gain stableif there exist finite, non-
corTrespon iNg column _vector. as = [ul’.' i, ’Q_‘N] » Where negative constants; and, such that
(-)* denotes transposition (without conjugation). Denote the
N x N identity matrix asl, and theN-dimensional vectors 9l 2, < Allully, +7, Vue L, (7)

of all ones and zeros ak and 0, respectively. The Moore- _ _ _
Penrose pseudo inverse of a mattixis denoted by, Let wherey = I1y. The smallest value of for which there exists

j = v/—1 be the imaginary unit. Denote the Laplace transforf non-negative value of such that (7) is satisfied is referred

of a continuous-time functiorf(t) by . Cardinality of the set © @S thedifferential £, gain of H. The differentialC, gain
N is denoted byl of a system provides a measure of the largest amplification

imparted to input signal differences.
Consider two systems that are modeled by transfer matrices
A and B. The linear fractional transformationis the trans-
|ully = Vuru, (1) fer matrix of the negative-feedback interconnection ofsthe
systems, and it is given by [27]
where(-)* signifies the conjugate transpose. The space of all .
piecewise continuous functions such that F(A(s), B(s)) == (I + A(s)B(s)) " A(s). (8)

For an electrical network with admittance matnixk, the

The Euclidean norm of a complex vectar, is denoted by
|lul|, and is defined as

o0
- AT (1) dt 5 effective impedance,,,, between nodes: and m is the
lullg, = u(t) u(t) dt < oo, (@ potential difference between nodesand m, when a unit
0 current is injected in node and extracted from node:. In

this case, the current-balance equationsere- e,, = Yo,
wheree,, is the canonicalvector of all zeros except with a 1
in the nt" position, andv is the vector of the resulting nodal
voltages. The effective impedance is then

is denoted a<s, where|ul| ., is referred to as th&€; norm
of u [25]. If u € Lo, thenw is said to bebounded

A causal systent{, with input« and outputy is finite-gain
Lo stableif there exist finite and non-negative constantand
7 such that Zom = (€n —em)Tv = (en — em)TY (e, —em). (9)

Iyl e, = " (@), <vlullg, +n, VueLs. (3) The effective impedance is an electric and graph-theoretic

) . distance measure, see [12] for details and further refesenc
The smallest value ofy for which there exists am such

that (3) is satisfied is called thé, gain of the system. If
‘H is linear and can be represented by the transfer matrix
H : C — CN*N it can be shown that th&€, gain of
is equal to its Hinfinity norm denoted by||#| ., and defined =~ We begin this section with a brief description of the type
as of nonlinear electrical circuits for which we derive suféint
H (w)u (jw)l, synchronization conditions. Next, we describe the eleatri
700 = 1Mo = Zg llu (jw)|l, “) network that couples the nonlinear electrical circuits.

Il. SYSTEM OF COUPLED NONLINEAR ELECTRICAL
CIRCUITS



A. Nonlinear Circuit Model electrical ground is given by,, € C. We will assume that the
An electrical schematic of the nonlinear circuits studiefoundary nodes in the saf are not connected to any passive

in this work is depicted in Fig. 1. Each circuit has a lineathunt elements, which implies,, = 0 for all m € .

subsystem composed of an arbitrary connection of passiv(penote the vecto_rs that collect the nodal current ir_1jestion
circuit elements described by the impedangg, € C, and a and node voltages in the network by andwv 4, respectively.

nonlinear voltage-dependent current souige= —g(v). We The’coupling be:\tween the _circuits can be Qescribed by Kirch-
will require that the maximum slope of the functig.) be hoff’s and Ohm’s laws, which read in matrix-vector form as

bounded: q ia=Yava. (11)
%g(v)

0 1= sup
veER

< 00. (20)

In (11), Y4 € CIAIXIAl denotes the admittance matrix of the

. . . . . electrical network, and it is constructed element-wise as
A wide class of electrical circuits can be described within

these constructs. An example is Chua’s circuit [5], [28], fo Ym + Z(m,k)eg Ymk, if m=mn,
which the impedance,s. and nonlinear functiony(-) are  [Yalmn :=q —Ymn, if (m,n) €€, (12)
illustrated in Fig. 2(a). The functiop(-) is piecewise linear, 0, otherwise

and satisfies (10). In previous work on voltage synchrotuzat yherey,, denotes the shunt admittance at ned@ndy,,,, =
of voltage source inverters in small-sca_ll,e power systerhf [1ynm denotes the line admittance of brar(eh, n). Notice that
[29], [30], we introduced a nonlinear Liénard-type deadeo jf the electrical network has no shunt elements, thag,is,=

In this case, the functiop(-) is constructed with a negative ;gjumn sums.

resistance and a dead-zone function with finite slope, and et ;= [i,,... iy]T andv=[vy,...,vn]T be the vectors

thus satisfies (10). Similar dead-zone-type oscillatoref@so collecting the current injections and terminal voltagesthu
been proposed in [9], [10] for related power-systems applichon|inear circuits, and let; andv; be the vectors collecting
tions. Some families of hyperchaotic circuits and negativghe current injections and nodal voltages for the interior

resistance oscillators can also be described with the mogglest with this notation in place, we can rewrite (11) as
above, see [4], [6]-[8] and the references therein.
Y Y/\/I} {v] (13)

A notable example of a well-known circuit thaannotbe {’] = { '
described within the above framework is the Van der Pol 'z Yyr Yiz]|vz
oscillator [26]. While the linear subsystem of the Van del P&ince the internal nodes are only connected to passive LTI
oscillator is the same as the nonlinear dead-zone oscilth® circuit elements, all the entries of are equal to zero in (13).
nonlinear voltage-dependent current sougde) « v3, which In the following, we assume that the submatii¥zs is
does not satisfy the slope requirement in (10) (see Fig).2(a)onsingular such that the second set of equations in (1e&an
uniquely solved for the interior voltages as = — Y,/ Y\ ;.
B. Electrical Network Model For }_%L, R_C’, or RLQ networks w|th0ut shunt _elements, the
matrix Y4 is irreducibly block diagonally dominant (due to
The nonlinear circuits are coupled through a passive, CQfbnnectivity of the network), and’zz is always nonsingu-
nected, LTI electrical network. The nodes of the electricgi, [31, Corollary 6.2.27]. FOrRLC networks with shunt
network are collected in the sefl, and branches of the glements, it is possible to construct pathological casesrevh
electrical network are represented by the set of edjes y._ is singular, and the interior voltages are not uniquely
{m,n)} ¢ Ax A Let N := {1,...,N} C A collect determined. In this paper, we assume that all principal sub-
boundary nodeshat the nonlinear circuits are connected tqnatrices are nonsingular and such pathological cases do not
and letZ = A\ N be the set ofinterior nodeswhere occur. Substituting; = —Y;;'V,L v in (13), then provides

the current injections are zero since they are not connecifd following equations that relate the nonlinear-circuitrent
to the nonlinear electrical circuits. The series admitéangnjections and terminal voltages:

corresponding to thém, n) € £ branch is given by,,,, € C,

and the shunt admittance connected betweentfienode and i=(Yyn —YnzYeg Y/\T/I) v=:Yv. (14)
This model reduction through &chur complemeni32] of
i the admittance matrix is known a&on reduction[12]. We
[ N —= refer to the matrixt” in (14) as theKron-reduced admittance
Zose + + matrix. From a control-theoretic perspective, (14) is a minimal
‘ v = v realization of the circuit (13). We remark that even though t

27

Kron-reduced admittance matriX is well-defined, it is not
necessarily the admittance matrix of a passive circuitufe@

_ _ _ _ ... depicts an illustrative electrical network and its Kromlieed
Figure 1: Electrical schematic of the nonlinear circuitdééal in this

work. Each circuit is composed of a linear subsystem modejed counterpart for a system @¥ = 3 nonlinear circuits.
passive impedance,s., and a nonlinear voltage-dependent current ;
source,g(+). Circuit symbol used to represent the nonlinear circuit iﬁ,
shown on the right.

To be consistent with notation, we would have to include thbssript
when referring to the current and voltage vectors corrediponto the
nonlinear circuits. However, we drop this subscript to eaggosition.
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Figure 2: The linear-subsystem impedancg,, and the nonlinear voltage-dependent current sourge, illustrated for (a) Chua’s circuit,
(b) the Dead-zone oscillator, and (c) the Van der Pol odoilla

The results in this paper apply to Kron-reduced admittanée Global Asymptotic Synchronization

matrices that satisfy the following two properties: We are interested in global asymptotic synchronization of
(P1) The Kron-reduced admittance matrik, commutes with the terminal voltages of identical nonlinear circuits désed
the projector matrix]1, that is,I1Y = YI. in Section 1lI-A, coupled through the electrical LTI networ

(P2) The Kron-reduced admittance matrix, is normal, that described in Section IlI-B. In particular, we will seek soiéint
is, YY* = Y*Y. ConsequentlyY” can be diagonalized conditions that ensure

by a unitary matrix, that is, we can write = QAQ*, . L _ .
whereQQ* = I andA is a diagonal matrix with diagonal tlim vilt) —vk(t) =0 Vi k=1, N. (15)
entries composed of the eigenvaluesyof For ease of analysis, we will find it useful to implement a

We will find (P1) useful in Section IV-B, where we derivecoordinate transformation by employing the projector matr
a compartmentalized system description that clearly diffell, to obtain the correspondirdifferential systenthat clearly
entiates the linear and nonlinear subsystems in the aattrihighlights signal differences. To emphasize the analytica
network. Similarly,(P2) will be leveraged in the proof of The- advantages afforded by this coordinate transformatiote no
orem 2 in Section V-B. We will identify classes of networkghat:

with and without shunt elements that satisfy properties) o . 1 X )
and (P2) in Sections V and VI, respectively. U(t)To(t) = (Mo (t))" (To(t)) = IN D () —we(t)*
k=1
j (16)
IV. PROBLEM STATEMENT AND SYSTEM Hence, (15) can be equivalently reformulated as
COMPARTMENTALIZATION tlim () = tlim v (t) = 0. (17)
—00 —00

In this section, we first formulate the problem statemefte coordinate transformation with the projector matrlg
relating to global asymptotic synchronization. Next, we-sy s to cast the voltage synchronization problem as an eguival
tematically compartmentalize the linear and nonlineasgsb stapility problem in the coordinates of the corresponding
tems in the electrical network of coupled nonlinear eleelri gitferential system.
circuits. The differentialC, gains of the linear and nonlinear
electrical subsystems will be used in subsequent sect'm)nth

. 2 Y " Compartmentalization of Linear and Nonlinear Subsystem
establish sufficient synchronization conditions. P y

In order to establish synchronization conditions, we seek a
system description where the linear and nonlinear subsigste
(z0sc @nd g(-), respectively) in the network of coupled non-
linear circuits are clearly compartmentalized. In lightthé
importance of differential signals in facilitating the deation
of synchronization conditions, the compartmentalizatien
carried out in the corresponding differential system.

Towards this end, recall that the vectarsand v collect
the current injections and terminal voltages of the nomline
circuits. Similarly, denote by, := [ig1,. .., isn]T, the vector
that collects the currents sourced by the nonlinear voltage
dependent current sources. From Fig. 1, we see that the
terminal voltage of thej*® nonlinear circuit, v;, can be
expressed as

’Uj:ZOSC(igj—ij),ijl,...,N. (18)

Kron
reduction

IH 21

Figure 3: Kron reduction illustrated for a representatiyestem
comprising N = 3 nonlinear circuits, whered = {1,2,3,4},
N ={1,2,3}, andZ = {4}. Original electrical network described
by the admittance matrix; 4, is shaded. In this setup Kron reduction
is equivalent to the well-known star-delta transformation 0 = Zose (ig — 1) = Zosclg — ZoseY 0, (19)

By collecting allv;’s, we can write



where Zose := zosc € CN*N, and we substituted = Yv We now prove the converse statem@int—> (i) by proving

from (14). A multiplication of both sides of (19) by the pro-its negation—(i) = —(ii), that is, an original network with

jector matrixII yields the differential terminal-voltage vectorshunt elements always leads to a Kron-reduced network with
- ) ) shunt elements. Consider the augmented mafiixassociated
U= v = (Zose (ig = Yv)) = Zosc (Ilig — 1Y v) with Y4, which is obtained by modeling the ground as an

= Zose (Zg - yg) , (20) additional node in the network with indgx| + 1 and fixed
N (zero) voltage (see Appendix A for more details on the
where we utilized the fact thal Zos. = Tlzosc] = 2osc/Il = augmentation). Thed’4 is the admittance matrix associated

ZoscIl, and leveraged property1) which requires that the to a network without shunt elements, that €41 = O.
admittance and projector matrices commute. We can N@Y the reasoning ()= (ii) above, the associated Kron-
isolatev in (20) as follows: reduced admittance matriX has no shunt elements, that is,
~ -1 ~ ~ Y1 = 0. Since Kron-reduction and augmentation commute
U= Tt ZoseY) " Zosely = F (Zose: V) igy - (21) (see Lemma 5 in Appendix A), the regduced network with
whereF (Z,s.,Y) is thelinear fractional transformatiorthat admittance matrix” obtained by removing the grounded node
captures the negative feedback interconnectiodgf andY Qhat is removing the column and row with indék-+ 1 from
(see (8) for a formal definition). Using (21), we see that thE) does not have zero row sums. Equivalently, the Kron-
corresponding differential system admits the compactklocreduced network has shunt elements. [ ]

diagram representation in Fig. 4. The linear and rmrlllr1e(3}r()rollary 1. If the original electrical network has no shunt el-

gro(rtzlonsygfa;hdetsé/sr;ea% .avieécle?rly;egg;ncrisretr;ental|zed t@Fnents, then propertyP1) holds, that isY” commutes withil.
0SCy . g, .

Proof: If the original network has no shunt elements, then
V. GLOBAL ASYMPTOTIC SYNCHRONIZATION IN the Kron-reduced network has no shunt elements. THusas
NETWORKSWITHOUT SHUNT ELEMENTS zero row and column sums, and commutes withll. ]
This section focuses exclusively on synchronization ic-€le o . .
trical networks that have no shlilnt eleyments. We begin tﬁAi‘s' Identifying Electrical Networks that Satisfy1)-(P2)
section by describing the class of electrical networks eith ~ The synchronization criteria we develop within this settio
shunt elements that satisf1)-(P2), and then present suffi- 2Pply to the following classes of networks:
cient conditions for global asymptotic synchronizationtloé (i) networks with uniform line characteristi¢33], in which

nonlinear-circuit terminal voltages in such networks. the branch admittances are givgn,, = yseriegtnm for all
First, we present a result which helps us to establish that (n,m) € £, wherea,,, € R is real-valued andseries €
Kron-reduced admittance matrices satié® ) if the originat- C\ {0} is identical for every branch (see Figs. 5(a)-(c));
ing electrical networks have no shunt elements. The foligwi (i) homogeneous networkgL2], in which the effective
result also offers a converse statement to [12, Lemma 3.1].  impedances are identical for all boundary nodes, that
Theorem 1. The following statements are equivalent: Elgzré”(ld))_ o = 14 jore € Rynm € N (see

(i) The original electrical network has no shunt elements. coy these networks, we will first derive the general form of

(ify The Kron-reduced network has no shunt elements.  ihe Kron-reduced admittance matrices, and then subsdguent
Proof: Let us first prove the sufficiencfi) — (ii). In demonstrate compliance (®2). _ _

the absence of shunt elements, the admittance mtikas  We first focus on networks with uniform line characteris-

zero row sums by construction (see (12)), that is, tics, which physically correspond to networks for which all
branches are made of the same material [33], i.e., the admit-
[0] — [Yf\é/\f YNI] [1] ) (22) tance of each brancin, m) depends on its constant per-unit-
0 Yz Yzz| |1 length admittanceyseries € C, and its lengtha,,,, > 0 (see

An elimination of the second set of equations in (22) resultdg. 5(a)). Notice that these networks include as specisg¢sa
in (YN/\/ — YNZYZ_ZIYJ\TfI) 1 =Y1 =0, that is,Y has zero resistive networks (Fig. 5(b)) and lossless networks (&{g))
row sums (and zero column sums due to closure of symmet®f Which yseries is real-valued or purely imaginary, respec-
under the Schur complement [32]). By construction of thively. For these networks, we can expré$s = yseries” L .4,
admittance matrix in (12), it follows that the Kron-reducetvhere L4 is a symmetric, positive semidefinite, and real-
electrical network corresponding 16 has no shunt elements.valued Laplacian matrix. We have the following result:

Lemma 1. Consider a network with uniform line character-
istics, that is,Y4 = yseries: L4, Where Ly € RIMAIXIAl s
a real-valued Laplacian matrix an@series € C. Then, the
Kron-reduced network has uniform line characteristicshwit

the Kron-reduced admittance matrix given by
Figure 4: Block-diagram representation of the correspupdiiffer- Yy — o (23)
ential system. The linear and nonlinear portions of theesysare = Yserie

compartmentalized itF (-, -) andg, respectively. whereL = Ly — LNZLE%L/T\/I-
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Figure 5: lllustrating electrical networks with no passsteunt elements that are: (a) uniform, (b) resistive, (cklEss (inductive in this
particular example), and (d) homogeneous. Uniform netwdr&ve identical per-unit-length impedances;ics, such that the value of the
(n,m) line impedance is expressed as the productsgfes andann, the line length, which corresponds to the nonnegative ftgigpm
the underlying weighted Laplaciad,. In resistive (lossless) networks, notice that the line édances are purely resistive (inductive in
this particular example), and the values of the line impedarbetween different internal nodes are allowed to berarhitFinally, in
homogeneous networks, the effective impedance betweemannodes is the same.
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The proof of Lemma 1 follows by direct construction oB. Sufficient Condition for Global Asymptotic Synchroriaat
the Kron-reduced matrix and due to the closure properties of-l-his subsection derives sufficient conditions to ensure

Kron reduction [12, Le_mma 3.1]. Dug to the_special form 0élobal asymptotic synchronization in the network of codple
the Kron-reduced admittance matrix in (23), it follows that |\, inear circuits described in Section V-A. First, we ferets

?S diago_nalizable with & unitary maFrix. We con_clude tﬁaf_) . alemma that establishes an upper bound on the differefial
is satisfied by Kron-reduced matrices for which the ongm%ain of the functiong(-), that governs the nonlinear voltage-

electrical network has uniform line characteristics. dependent current sources in the nonlinear circuits.
To address homogeneous networks, we recall from [12,

Theorem 111.4] that (in the purely resistive case) a spars&@mma 3. ([11, Lemma 1]) The differential, gain of g(-)
electrical network becomes denser under Kron reduction aigdfinite, and upper bounded ly.
even complete under mild connectivity assumptions. Howeve ~

the branch admittances in the reduced network are stilktrete (g) = HZEH“ <o :=sup
geneous and reflect the topology and electrical properfies o 2l ., veR

the original network. In the following result, we show thatf  \va now provide a sufficient synchronization condition for

a homogeneous original network, the associated Kron-e#lughe case where the nonlinear circuits are connected in meswo
network is characterized by identical branch admittances. \.ith uniform line characteristics. Subsequently, we coesi

Lemma 2. The following statements are equivalent: homogeneous networks.

(f—vg(v) < 0o0. (25)

() The original network is homogeneous: for all boundTheorem 2. Suppose the electrical network that couples the
ary nodesn,m € {1,...,N}, the pairwise effective system ofV identical nonlinear circuits has no shunt elements,
impedances take the uniform valug,, = zer € C\{0}. and has uniform line characteristics. Let the Kron-reduced

(i) The Kron-reduced network is complete and the branchdmittance matrix be of the fordi = yqeries L @s in(23). The
admittances take the uniform valugeies € C \ {0}. terminal voltages of the nonlinear circuits synchronizettie
Equivalently, the Kron-reduced admittance matrix isense of(15)if for all j € {2,...,N}

gven by 1 (ose 1), Boories (0)A ) loc < 1, (26)
Y = yseried (24)
] ] where);, j € {2,..., N}, are the nonzero eigenvalues of the
wherel’ = NI — 117 is the Laplacian of the CompleteLaplacian matrix L.
graph.
. G 9 For purely resistive networks the synchronization condi-
If statements (1) and (i) are true, theny = Nyseries” tion (26) has to be evaluated only fox,. The second-

Lemma 2 is obtained as a direct corollary to Theorem gmnallest eigenvalu@, of the Laplacian matrix is known as
in Appendix A. Since the Laplacian of the complete graph the algebraic connectivityand it is a spectral connectivity
I" = NII, it commutes with the projector matriX. Finally, measure [34]. It can be shown that the algebraic connectivit
notice that since the Kron-reduced admittance ma¥fixn a resistive Kron-reduced network upper-bounds the algebra
the homogeneous case (24) is a special case of the Kronnnectivity in the original network [12, Theorem II1.5].
reduced admittance matrix for the network with uniform linélence, condition (26) implies that the nonlinear circuiiewd
characteristics (23), it follows that Kron-reduced adaritte be sufficiently strongly connected, which is aligned with
matrices for homogeneous electrical networks sati§fy). synchronization results in complex oscillator networkshwi



a static interconnection topology (i.e., with only resistele- Using the observation in (33), denoting the— 1 x N — 1
ments) [2]. On the other hand, if the interconnecting nekwoidentity matrix by/y_;, and the diagonal matrix with entries
is dynamig e.g., if it contains capacitive or inductive storageomposed of the non-zero eigenvalue¥oby Ay_1, we can
elements, then the synchronization condition (26) needmto simplify (28) as follows:
evaluated for all nonzero network modes j € {2,...,N}. _

Proof of Theorem 2:Consider the block-diagram of the” (7 (zose], )

differential system in Fig. 4. From Lemma 1, we have (In—1 + Zose (jw)yseriedjw) An_1) " zosc(jw)p(jw)H
2

- _ = sup -

ligllc, < ollv]l.- (27) weR PGl
For the linear fractional transformation, we can write = max sup Zose (jw) . (34)

N 3=2,0N eR |1+ Zose(jw)Yseriedjw) A,
[0l <5 (F (Zose, Y) lligle, +m, (28) By combining (34) and (31), and using the definition of the

for some non-negative, whered (F (Zos,Y)) denotes the I|_near fractional transformation in (8), we arrive at condi
differential £, gain of the linear fractional transformation. Bytio" (26). u

combining (27) and (28), we arrive at Corollary 2. Suppose the original electrical network that
couples the system df identical nonlinear circuits has no

Plc: <7(F (Zose, Y)) o[tz + 1 (29) shunt elements and is homogeneous with a Kron-reduced
By isolating [|v]|, from (29), we can write admittance matrixY¥’ = yeericsl' @s in (24). The terminal
n voltages of the nonlinear circuits connected in such a nekwo
vz, < 30 ize i i
0]z, < 15 (F (ZowY)) 0 (30) synchronize in the sense (£5) if
provided that the following condition holds 17 (zosc (i), Yseries (jw) N) | ooor < 1. (35)
~ Proof: The condition in (35) follows from the fact that
Y (F (Zoscr V)0 < 1. (31) the eigenvalues of' (the Laplacian matrix of the complete
If (31) holds true, then we havé € L,. It follows from graph), are given by, =0 andX; =--- = Ay = V. u
Barbalat's lemma [13]-[15] thdim;,~, ¥(¢) = 0. Hence, if
the network of nonlinear circuits satisfies the conditiofh)(3 VI. GLOBAL ASYMPTOTIC SYNCHRONIZATION IN
global asymptotic synchronization can be guaranteed. NETWORKSWITH SHUNT ELEMENTS

In the remainder of the proof, we establish an equivalent|n this section, we explore the family of electrical netwsrk

condition for (31). By definition of the differential, gain of with shunt elements for which sufficient synchronization-co
the linear fractional transformation, we can express ditions similar to (26) can be derived.

V(F (Zoso Y)) =7 (F (205!, Y 32
7V (Zoso Y)) =7 (F ( ) (32) A. ldentifying Electrical Networks that Satisfi?1)-(P2)

— sup F (Zose (jw) 1Y (jw)) 1 (Jw)Hg Consi<_jer thg_case of a Kron—reduced (?Iec_trical network,
weR 7g(jw)H where—lp addition to a _smgle nonlinear cwcn_nt—e_ach node
2 m € N in the network is connected to an identical shunt
(I+Zosc(jw)y(jw))ilZosc(jw);;g (jw)H admittancey,, = yshunt- IN this case, the Kron-reduced
= sup — 2 admittance matrix can be expressed as
[t /
2 L ~ Y = yshuntI +Y ) (36)
~ Q (I + 2ose(jw)yseried jw) A) ZOSC(J“)QTZg(Jw)HQ whereY” corresponds to the admittance matrix that captures
weR Qng(jw)" ’the coupling between the nonlinear circuits. Note that the
row and column sums oY’ are zero sincey,,, = 0 for all

where we made use of properP2) to diagonalize the ™ € N by construction (since&”” does not include shunt
admittance matrix a¥ = yseried: = yseried?AQT, whereQ is  €lements). If the network modeled by sucl’ahas uniform
unitary andA is a diagonal matrix containing the real-valuedin® characteristics (such as resistive or lossless ljieej we
and nonnegative eigenvalues of the Laplacian mdtrix obtain
Since the Kron-reduced network has no shunt elements Y = yshunt{ + Yseries L, (37)
connected to ground, the row and column sum¥ afre zero. here 7, is the associated real-valued, symmetric Laplacian
Furthermore, since thg Kron-reduced network is connectgfaqrix. ClearlyY as in (37) satisfies propertiéB1) and(P2).
Y has a single zero eigenvalue. Analogous comments applyn general, it is difficult to identify networks that admit
to L and we obtain\; = 0 with corresponding eigenvector on.reduced admittance matrices of the form in (36) or even
1 = (1/V'N)1. Finally, since1™II = 0", we can express (37). However, we can identify a family of electrical netksr
Q" = Q"Mliy = [0, p|" (33) that admit Kron-reduced admittance matrices of the sanme for
as (37). Towards this end, we first present a result on Kron
wherep € CV~1 is made of the non-zero elements@fI1i,. reduction of homogeneous networks with shunt elements.



Corollary 3. Suppose the electrical network that couples
the system ofV identical nonlinear circuits admits a Kron-
reduced admittance matrix given §87), where the network
corresponding toL has uniform line characteristics and no
shunt elements connected to ground. The terminal voltafjes o
the nonlinear circuits synchronize in the sense(d5) if for

all j € {2,...,N}

H]:(Zeq(jw)ayserieijw))\j)HooU <1, (40)

where);, j € {2,..., N}, are the nonzero eigenvalues of the
Laplacian matrix L, and z.4 is the equivalent impedance of
the parallel combination ofgp,y¢ 1= y;h}mt and z.s. given by

Zshunt 2osc
. . Zeq = T (41)
Figure 6: Kron-reduced electrical network recovered froroao- Zshunt 1 Zosc
geneous originating network. The shaded region capturesntier- Proof: The proof for this corollary follows along the same

circuit interactions through identical line impedanceatthre equal

{0 2eurice. All the shunt impedances are equalgu.. lines as that for Theorem 2. In particular, if (31) holds,the

synchronization is guaranteed. Now, consider that With=
yshuntI + yserieJ/, we have that

Lemma 4. The following statements are equivalent: F(Zose, Y) = (I + ZoseY) " Zose
(i) The original network is homogeneou;: for all bopnd- = (I + Zose (yShuntI‘FyseriesL))ilZosc
ary nodesn,m € {1,...,N}, the pairwise effective _
impedances take the uniform valug,, = zef-series € _ ( [ 4 PehuntZosc ysem@) ZshuntZosc
C\ {0} and the effective impedances to electrical ground Zshunt T Zosc Zshunt T Zosc
(denoted by the nodey + 1) take the uniform value = F (zeql; Yseried) » (42)

Zn(N+1) = Zeff-shunt€ C \ {0}, with %ﬁ # %
(i) The branch and shunt admittances in the Kron-reduc
network are uniform, that is, there ateres€ C \ {0}

and yshunte C \ {O}, Wlth yshunt¢ —Nyseries SUCh that

here the last line in (42) follows from the definition of
E‘}t,i\ﬁue linear fractional transformation (8), and the defimitiof
Zeq IN (41). By repeating the reasoning as in the proof of
Theorem 2, we obtain

Y = Yshunt! series] - 38 ~ -
eone Ly (38) T (F (Zones Y)) = 7 (F (zeal, yseied)
If statements (i) and (ii) are true, then i
(i) (i) — max_ sup ?eq(JW) : (43)
2 §=2,..N wer |1+ Zeq(jw)yseriedjw) A
Yseries= ) . i . -,
2N zeft-shunt— (N — 1) Zeff-series The claimed synchronization condition (40) then follows by
- 2( Zeft-series— 22eﬁ—shunt) combining (31) and (43). |
Yshunt = (39)

efi-seried (N — 1) efr-series— 2N zefr-shun) Corollary 4. Suppose the original electrical network that
Lemma 4 is obtained as a direct corollary to Theorem 4 tbuples the system of identical nonlinear circuits admits a

Appendix A, by inverting the constitutive relations betweekron-reduced admittance matrix of the fo(88). The terminal

admittances and effective impedances. The parametric @sttages of nonlinear circuits connected in such a network

sumptionyshunt 7 — N Yseries (respecuve|y12'eff—'serie¥Zef‘f—shunt7’é synchronize in the sense ¢f5) if

2N /(N — 1)) is practically not restrictive: it is violated only ) )

in pathological cases, e.g., when a capacitive (respégtive 1 (Zeq(Jw); Yseries (j) V) oo < 1. (44)

inductive) shunt load compensates exactly férinductive Proof: The condition in (44) follows from the fact that

(respectively capacitive) line flows. the eigenvalues of® (the Laplacian matrix of the complete
The admittance matrix” in (38) satisfies(P1) and (P2), graph), are given by\; = 0 and )y = --- = Ay = N. -

and it is clearly a special case of (36), Wit = ygeriesl-

While the formulation in (38) is more restrictive, Lemma 4
identifies theunique class of electrical networks that admit . . . .
Kron-reduced matrices of the form (38). An illustration of a We now present simulation case studies to validate the

Kron-reduced electrical network recovered from a homoggynchrclzmzatl?n gondglong n some g‘r‘f”?“"‘? LT.I et;?l
neous originating electrical network is depicted in Fig. 6. networ to_po ogies t at_ mterconne:- uas C!FCUItS[ ] .
The electrical schematic of Chua’s circuit is depicted in

o N ] . Figure 2(a). Two network topologies are considered in this
B. Sufficient Condition for Global Asymptotic Synchroni@@t section: i) an arbitrary lossless network with nonidertica
We now present sufficient conditions for global asymptotinductive line impedances and without shunt elements, and
synchronization for the cases where the Kron-reduced adniif a homogeneous network with a symmetric star topology
tance matrices are given by (37), or as a special case, by (Z8)d a shunt load.

VII. CASE STUDIES



Kron
reduction

Y

Y= yseriesL
A\

Figure 7: Schematic of lossless inductive network and thenKr 0 o . . . . )
reduced counterpart examined in Section VII-A. This is aaneple of 0 10 20 30 40 50 60
a network with uniform line characteristics (see SectioniN}hat the t [s]

Kron-reduced admittance matrix can be expressel! as yseries L,

where L is a weighted, real-valued, symmetric Laplacian matrix. (@)

2l [V]

The nonlinear voltage-dependent current source in Chua’s
circuit is illustrated in Fig. 2(a), and the impedance of the
linear subsystem is given by
B RLC,Cys® + LC,s?> + RCys
- RLC,Cys3 + (C2 + LCy, + LC,)s% + RCys JE415 )
Since the functiong(-) in Fig. 2(a) is piecewise linear, it =
immediately satisfies (10). Parameters of the constitugnt ¢
cuit elements in Chua’s circuit utilized in both case stadie
are summarized in Appendix B. With the choice of circuit
parameters, it follows that = sup,c | & g(v)| = 0.

Zosc ()

A. Lossless Inductive Network without Shunt Elements

The network topology examined here is illustrated in Fig. 7.
This is an example of a network with uniform line charac-
teristics (see Section V-A). Following Lemma 1, we obtain
the Kron-reduced network (also illustrated in Fig. 7) with
admittance matrix given by = ysiesl, Where L is a
weighted, real-valued, symmetric Laplacian matrix. Thii-su
cient synchronization condition for this case is given b§)(2 (b)

For the first set of network parameters in Appendix C, Weigure 8: Synchronization of terminal voltages in Chua’scuits
get ||.F (zosc(jw),y;ciics(jw) Ajllwo < 1, 5 = 2,3,4, which for the lossless electrical network depicted in Fig. 7. (ajrinal
implies that the terminal voltages of the Chua’s circuits avoltages(t), and voltage synchronization errgfy(t)||o. The inset
guaranteed to synchronize. We confirm this with time-domalff/Strates a close-up view of system dynamics at startufh wi
. . . . . nonidentical initial conditions. (b) Chaotic double-dtrattractor is
simulations. Figure 8_(a) _|IIustrates the term!nal volm@&n_d discernible in the asymptotic limit.
the voltage synchronization error, with the inset capirén
close-up during startup with nonidentical initial condits as
the voIt_ages .begin t_o pull into .phase. Figure 8(b) depictsg Homogeneous Network with Shunt Load
three-dimensional view of the internal states of the Chua’s ) o )
circuits as a function of time, and clearly demonstrates the 1N€ network topology examined here is illustrated in
chaotic double-scroll attractor [28] in the asymptoticitim 19+ 10. The network branch impedance is given:hy (s) =

Now consider the second set of network parametef&net + Fnet. The impedance of the shunt load connected to
in Appendix C. For this set of parameters, we obtaif’® internal node is denoted by..q (s). This is an example
1 (Zose () YL () Ml £ 1, j = 2,3,4, and our of a homogeneous network since the effective impedances
osc » Jseries VALISS] ’ - i

condition (26) is violated. While this is not an indicatidrat P€tween any two nonlinear circuits are identical, and tecef

the terminal voltages cannot synchronize (since the ciamdit V€ impedances between the nonlinear circuits and efedtri
(26) is only sufficient), it turns out that in this case, th@round are also identical (see Section VI-A). In particular
terminal voltages indeed do not synchronize. With the same
set of initial conditions as before, we plot the the terminal
voltages and the voltage synchronization error in Fig. 9 féollowing Lemma 4, we obtain the Kron-reduced network
this network. (also illustrated in Fig. 10) with admittance matrix given b

Zeff —series — 2chta Zeff—shunt = Znet T Zload- (46)



0 L L L J
0 20 40 60 80
t[s]
Figure 9: Terminal voltages,v(t), and voltage synchro-
nization error, ||v(t)||2, for a particular network where

2,3,4, and

||f (Zosc(jw), y;ilcs(Jw) >‘J | |°°U % 1! .7 -

synchronization is not guaranteed.

Y = Yshunt! + Yseries], WhereD' is the Laplacian of the
complete graph. By applying (39), we obtain

(cht + 42«'load)71 )
Zload (Znet (Znet + 4Zload)_1)

Substitutingysnuns @andyseries iN (44), we obtain the following
sufficient condition for synchronization in this network:

Yshunt

- (47)

Yseries

Zosc (jw)znct (Jw) ’
Zose (Jw) + Znet (Jw) [[ o
Itis instructive to explore the impact of the network partene

o <1. (48)

H]:(Zosm Z;clt)||oo g =

Ryet and Lyt on synchronization. First, consider Fig. 11,

which plots&(Ryet, Lnet) := ||]-'(zosc,z;01t)||ooa for a range
of different values ofR..; and L. For sufficiently low

values of R,.; and L., synchronization is guaranteed sinc

€(Rnet, Lnet) < 1 as required by (48).
Consider now, the asymptotic behavior &fRuet, Lnet)-
Particularly, we will focus on two point$a] and [b] that

Kron
reduction

ey

®

Znet

I»ﬂ@” 1@

Y= yshuntl + yseriesr

Figure 10: Network composed of nonlinear electrical ciraton-
nected to a common load through identical branch impedarces
the corresponding Kron-reduced circuit. Homogeneity ef ehiginal
electrical network implies that the admittance matrix o tkron-
reduced network is given bY = yshunt I + Yseries] -

10
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2
Rnet [Q]

Figure 11: The function(Rnet, Lnet) plotted for a range of values
of Rnet and Lynet. Synchronization is guaranteed for valuesif.:
and Lyet Where&(Ruet, Lnet) < 1.
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?:igure 12: Magnitude OfF (zosc(jw), zaet (jw))o as a function of

frequency,w.

are marked in Fig. 11. Figure 12 depicts the magnitude of
F(2ose (jw), 2mes (jw) o as a function of frequency, for three
representative values dt,, Lyt; two of which correspond

to the asymptotefg] and[b]. The effect of reducing the values
of Ryet, Lnet translates to damping the peak of the magnitude
response. Synchronization is guaranteed when the peassis le

than unity.

VIIl. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

We derived a synchronization condition for a class of
nonlinear electrical circuits coupled through passive &Ec-
trical networks. We considered particular classes of nekgjo
where perfect synchronization of the terminal voltages can
be achieved. These classes included homogeneous networks
and networks with uniform line characteristics—both wittda
without shunt elements. Whereas these classes of networks
seem to be restrictive at first, it is the belief of the authors
that—with the present setup—perfect synchronization octinn
be achieved for more general and heterogeneous networks,
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where the nonlinear circuits are possibly non-identical anématrices, as well as the closure of symmetry and zero row
support different loads. In this case, the subsystems have (nolumn) sums under Kron reduction (shown in Theorernmt).
common asymptotic dynamics to synchronize on [35]. As the next key property, we establish that the effective
In ongoing and future work, we plan to address the probmpedances,,,, among the boundary nodesm < N are

lems of synchronization in heterogeneous networks and tineariant under Kron reduction and augmentation.
reg_ulatlon_ of the qsymptotlc synchro_mzed dynamics. Emth'l%heorem 3. Consider the admittance matrig4 and the Kron-
topics of interest include the analysis of Kron reduction o . . )

A . : reduced matrixt”. The following statements hold:
generalRLC circuits (including pathological cases) and syn- ) _ o
chronization through directed and possibly nonlinearteitea 1) Invariance under Kron reduction: the effective impedanc

networks with diodes and rectifiers. between any two boundary nodes is equal when computed
fromY or Y4, that is, for anyn,m € {1,...,N}
APPENDIX Znm = (en —em)TY (e, — em)
A. Kron Reduction of Complex-Symmetric Matrices = (en — em)TYj‘(en —em). (50)

In this appendix, we discuss the Kron reduction of complex- . . . .
: . : 2) Invariance under augmentation: ¥4 is a nonsingular
valued admittance matrices and the properties of the effec- : L .
matrix, then the effective impedance is equal when com-

tive impedances. The following results are extensions from S .

the reaFIJ-vaIued and symmetricgcases considered in [12], to puted fromy, or Y4, thatis, foranyn,m € {1,..., | Al}
complex-symmetric (and not necessarily Hermitian) sg#in (en — em)TYgl(en —em)

relevant in this work. Since only a subset of results in o TSt

[12] directly carries over to the complex-symmetric case, w = (en —em) Yalen —em). (51)
present self-contained statements with brief proof sketchEquivalently, statements 1) and 2) imply thai/jf is a regular

These results directly lead up to Lemmas 2 and 4 in this papgéimittance matrix, then the following diagram commutes:
First, notice that an admittance matrig, without shunt

an

augmentation =

elements is singular due to zero row and column sums, and Y4 A
an admittance matrix with at least one shunt element is \ /
invertible due to irreducibly block diagonally dominan@& | Kron “nm Kron
Corollary 6.2.27]. To analyze regular and singular admitéa reduction | 7,m € {1,..., N} | reduction
matrices simultaneously, we associate argmented admit- / \ Y
tance matrixY4 to a regular admittance matriKy: augmentation
0 Proof: To prove Theorem 3, we first establish some
S Y.A : matrix identities. We need the following identity for a sirgr
Yp= YA ’ (49)  admittance matrix” € CV*N and a real nonzero numbér
A _
—yi o Y ‘ Sl ym (Y + (6/N)117) fovtrapn1t. (52)

The augmented admittance matrix, corresponds to the Using the projector formula (for a singular admittance itr
case when the ground is modeled as an additional node with’* = YY" = II, the identity (52) can be verified since the
index|.A| + 1 and zero voltage. Notice that, is singular with product of the left-hand and the right-hand side of (52) équa
zero row and column sums. Likewise, a singular admittantiee identity matrix. If a singular admittance matlixe CV >~
matrix resulting from a network without shunt elements cas of dimensionN > 3, then by taking theN*™® node as a
be regularized by grounding an arbitrary node. We denote tigference and deleting the associaf€th column andN‘™
Kron-reduced matrix associated 1o by Y. As it turns out, row, we obtain the nonsingular matrik € C(V-1x(V=1),

the augmentation process and the Kron reduction commutés suggested by physical intuition, the effective impedanc
among the nodes,m € {1,...,N — 1} is not affected by
grounding theV*" node, that is, for ath,m € {1,...,N—1}

(en — em)T771(en —em)

=(en—em) Y (e, —em). (53)

Lemma 5. Consider a singular admittance matriXy, its
augmented matrixY4, and their associated Kron-reduced
matricesY andY, respectively. The following diagram com-
mutes:

an

augmentation -~

Ya Yu . . . . — 1
The identity (53) can be verified by using the formulg,,, =
Kron J l Kron v, =Yy =Yl + Y, [36, Appendix B, formula (17)]
reduction reduction whose derivation extends to the complex-valued case.
Yy To prove statement 1), consider first the case whignis

augmentation . ! X
invertible due to presence of shunt admittances. Recall tha

Proof: The proof is analogous to the proof of [12, Lemmave are interested in the effective impedances only among the
1.1, Property 3]. The result in [12] relies on the Quotienboundary nodes, that is, the leading princi@@slx N )-block of
Formula [32, Theorem 1.4] which extends to complex-valuédT = Ygl. The Schur complement formula [32, Theorem 1.2]
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gives the leadingN x N)-block of Y;l as the inverse Schur Lemma 5 and Theorem 3), an analogous reasoning and similar
complement” L. It follows that, for alln,m € {1,..., N}, formulae apply to case 2), see [12].
Tr1 We first prove the statemerfi) = (i:): Notice that
Znm = (en = em) Y (en — em) Z = Z" has zero diagonal elements axidl is symmetric with
= (en—em) Y (en — €m). (54)  zero row and column sums. Hence, both matrices Ragd —
)/2 independent elements, and the linear formula relating the

On the other hand, it 4 is singular due to absence of shun} I8fnent52nm andY! can be inverted [12, identity (34)]:

admittances, an analogous reasoning applies on the imagg
Y and using the identity (52), or after grounding an arbitrary 1 1 & 1 X
interior node (i.e., regularizingx) and using the identity (53), Yrm = —5 (an—ﬁ Z(an+zmk)+m Z Zkl) . (57)
see the proof of [12, Theorem II1.8, Property 1] for details. k=1 k,e=1

To prove statement 2), notice that the regular admittansgom the above formula, it can be readily verified that a
matrix Y4 with shunt elements is the leading principjalﬁllx uniform effective impedance matrix = ze (117 — 1),
|A|)-block of the augmented singular admittance malfix yields a uniform inverse matriX ' = zeq/(2N) T. It is worth
Statement 2) follows then directly from identity (53) aftefnentioning that for an admittance matrix with uniform branc
replacingN, Y, andY with N + 1, Y4, andYy4. B admittancesY = yseriesl’, the pseudo inversE' is again an

Theorem 4. Consider an admittance matri, and its Kron- admittance matrix with uniform branch admittances given by

reduced matrixy”. Consider the following two cases: vy = (yseriesF)T =1/(N?yseried T (58)

1) No shunt elements: Assume thratis singular due to the Identity (58) can be verified sinc& and Y satisfy the

NXN H
a?fsetr_lce .Of sr:junt elen%e;]nt?. ”l@tg C tat be tthe matrlx.of Penrose equations. According to (58), this uniform inverse
effective impedances. The following statements are eigniva matrix YT = ze/(2V) I yields the uniform admittance matrix

(i) The effective impedances among the boundary nodes. o /(N )T

{1,..., N} are uniform, that is, there iser € C\ {0}  Now we consider the converse implicati¢ii) = (3).

__ such thatz,,, = ze for all distinctn,m € {1,.... N} pye to Theorem 3 the effective impedance is invariant under
(if) The branch admittances in the Kron-reduced networletakicyqn reduction. In this case, substitutiag from (58) in (9),

the uniform valugyseiiesc C \ {0}, that is,Y = yseried”. e see that the effective impedances are given by

If statements (i) and (ii) are true, theny = 2_, 1
] Yseries o . T NI . 11T)(e e )

2) Shunt elements: Assume tHaj is regular due to the Fnm = (NisterieQ (en —€m) ( n = €m
presence of shunt elements. Consider the grounded jotide 9
1 and the augmented admittance matridésandY . Let Z = Ny Zeft, Vn,m € {1,..., N}. (59)
RUIAHDx(A+1) pe the matrix of effective impedances in the o o
augmented network. The following statements are equitzaleH€NCe, theV (N —1)/2 pairwise effective impedances,
o GPetween the boundary nodes are uniform. ]
(i) The effective impedances both among the boundarysode

{1,..., N} and between all boundary nod¢s, ..., N} o
and the grounded nodet| + 1 are uniform, that is, there B Parameters of Chua’s Circuits
are zefiseries€ C \ {0} and zeg_shunt€ C \ {0} satisfying Linear subsystem parameter®: = 10/79, L = 1/7H,
Zefi-seried Zefi-shunt 7 2N /N — 1 such thatz;; = zeftsees Ca = 1/9F, C,, = 1F. Nonlinear-subsystem parameters:
for all distinct n,m € {1,...,N} and z, 441 = o00o=-0.85,01=-0.5502=0.8S,¢p9=1V, 1 =14V.
Zeftshuntfor all n € {1,..., N}.

(iv) The branch and shunt admittances in the Kron-reducesl | pssless network parameters
network are uniform, that is, there ateres€ C \ {0}
and yshunt € C \ {0} satisfyingyshunt # — N Yseries SUCh
that Y = yshuntI + yscricsF-

Guaranteed SynchronizationZ;, = 0.834H, L5 =
0.671H, Log = 0.277H, Lsg = 1.0575H, L45 = 0.3655H,
Lijs = 1.0245H, L3g = 0.3240H, Ly = 0.4735H, L3y =

If statements (iii) and (iv) are true, then 0.1875H, Ly7 = 0.74 H.
o 2 55 No Guarantee on Synchronizatio:yo = 3.336 H, L5 =
“Ee1e™ N yceries + Yshunt (55) 9684 H, Lys = 1.108H, Lss = 4.23H, Ly = 1.462H,
Yshunt+ Yseries Ly = 4.098H, Lsg = 1.296H, Lgy = 1.894H, L3; =
Zeff-shunt= (56)

yshunt(Nyseries+ yshunt) . 0.75H, L47 = 2.96 H.

The admittance assumptiofsnunt # —Nyseries (@nd the
equivalent assumptioReft_series Zefi-shunt # 2N/N —1 for
the effective impedances) guarantees regularity (rema [1] s. H._ Strogatz,NonImear_ Dynamics ar_1d Chaos: V\ﬁth Appll(_:atlor]s to

. . . : . Physics, Biology, Chemistry, and Engineeringtudies in nonlinearity,
single zero eigenvalue) of the admittance matrix. As diseds Westview Press, 1 ed., Jan. 2001.
in Section VI-A, this assumption is practically not redtikie.  [2] F. Dérfler and F. Bullo, “Synchronization in complex déator networks:

Proof of Theorem 4:Here, we present the proof strategy A survey,” Automatica August 2013. In review. .
. . . . 3] L. O. Chua and G. N. Lin, “Canonical realization of Chua&scuit
for case 1). Due to the invariance of the effective impedan family,” |IEEE Transactions on Circuits and Systerasl. 37, pp. 885—
(and Kron reduction) under the augmentation process (see 902, July 1990.
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