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Abstract—N-path filters exploiting switched-series-R-C net-
works can realize high-Q blocking-tolerant band-pass filters.
Moreover, their center frequency is flexibly programmable by
a digital clock. Unfortunately, the time variant nature of these
circuits also results in unwanted signal folding. This paper proves
analytically that folding can be reduced and band pass filtering
can be improved by adding an inductance in series with the
switched-R-C network. In contrast, a shunt capacitor degrades
band-pass filter performance. The interaction between the reac-
tive series impedance and the switched capacitors of an N-path
filter complicates analysis due to memory effects associated with
reactive components. Assuming identical signal paths with 1/
duty cycle, we show it is possible to solve the set of differential
equations, by assuming that the signals in each path only differ in
delay. Analytical equations are verified versus simulations, and
the benefits in filter properties and reduction in signal folding are
demonstrated.

Index Terms—Cognitive radio, commutated network filters,
filter, frequency translated filtering, linear periodically time
variant circuit, N-path filter, reconfigurable filter, software defined
radio, switched capacitor filters, tunable filter.

I. INTRODUCTION

T UNABLE filters with high linearity and strong blocker
handling capability are highly wanted to realize recon-

figurable radio receivers and enable cognitive radio [1]. Recent
research has shown that N-path filters are promising
candidates to realize tunable band-pass filters [2]–[12] and
also simultaneous frequency and spatial domain filtering [13],
[14]. Although the concept dates back to the 1960s [15], [16],
only with the advent of nanometer CMOS technologies can
such filters now operate at low GHz RF frequencies. Fig. 1
shows a 4-path filter with 4 capacitors and switches driven
by multi-phase non-overlapping digital clocks that define the
filter center frequency. Basically the input signal is mixed
down, filtered, and mixed up again by the same set of switches,
resulting in second order band-pass filter behavior, also without
the inductor: essentially the low-pass R-C filter shape is shifted
to around . The associated bandwidth BW defined by the
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Fig. 1. (a) Single-ended 4-path switch-R-C filter with series inductor and
parasitic capacitance . Switches are driven by non-overlapping clocks. Con-
ditionally, the circuit can be split in independent single-ended “kernels,” where:
(b) is a switch-R-C kernel (index R); (c) is a switch-R-L-C kernel.

RC time and duty cycle of the clock can be as low as a few
MHz, equal to a typical channel bandwidth. As GHz clock
frequencies are possible, the can be high, e.g., a

is feasible. Moreover, the linearity of passive mixers
realized with MOS switches can be very good, and blockers in
the order of 0 dBm can be handled provided the switches have
sufficient overdrive voltage. As switches and capacitors scale
well with CMOS downscaling, the technique can benefit from
process scaling (see for instance [14] which compares a 65 nm
and 28 nm chip).
Unfortunately, the time variant nature of N-path filters due

to the on/off switching also results in unwanted signal folding
(somewhat similar to aliasing in samplers, but with attenuation
due to the embedded low-pass filtering as we will see later).
Hence, pre-filtering is wanted to attenuate signals that would
otherwise fold on top of the wanted signal. Pre-filtering can also
reduce harmonic passbands at multiples of the switching fre-
quency, although these are less problematic than folding (they
do not overlap with the main filter passband). Although using
more paths allows for cancelling more harmonics and folding
products [17], there is a limit to the number of feasible phases
for amulti-phase clock because of process speed and power con-
sumption. Moreover, phase errors limit the achievable cancella-
tion of harmonic and folding responses. Hence, assistance by a
pre-filter may be needed to achieve sufficient suppression of a
problematic folding product. The strongest folding to the pass-
band of interest occurs from , the folding sideband
nearest to the passband [17]. For a 4-path this is around
and for 8 paths around . As these frequencies

are more than an octave away from the desired signal at
, low-order low-pass pre-filtering can be enough to attenuate
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Fig. 2. Simulated periodic transfer function (PXF) for the wanted transfer and
unwanted folding from for the 4-path filter of Fig. 1(a), showing improve-
ment with a series inductor and degradation with a shunt capacitor

, compared to the pre-filter less resistive case .

folding products. However, filter design is less straightforward
than one might expect. This is due to interaction between re-
active pre-filter components with memory and the switched ca-
pacitors. The circuit in Fig. 1(a) with resistive source
can be analyzed by exploiting the lack of memory in a resistor,
and the lack of interaction between the capacitor charges due to
the non-overlapping clocks. Hence the circuit can be split in in-
dependent kernels (Fig. 1(b), [5], [18]), and the response of the
complete system can be found by adding the responses of the
kernels. However, if an inductor or capacitor is present between
the signal source and switches, the states of the switched capac-
itors are also affected by the mutual interaction via this memory
element. The purpose of this paper is to derive analytical equa-
tions describing this interaction and its impact on signal transfer
and folding. Although it has been observed that adding a se-
ries inductor can improve the filter transfer and noise [19], [20],
only approximate equations for the desired transfer function,
the input impedance and noise are available [4], [21], [22], as-
suming the RF-frequency is , with .
Broadband signal folding cannot be analyzed with these equa-
tions. This paper includes folding and extends the exact analysis
in [5], [12], [18] to include memory effects for the case that a
series inductance is added. We focus on this case as, in contrast
to adding a shunt capacitor before the switches, a series in-
ductance increases passband gain and selectivity, while also re-
ducing signal folding (see Fig. 2).
This paper is structured as follows: in Section II the analysis

of the switched-series-R-C kernel in Fig. 1(b) is reviewed [5],
[18]. This both serves as basis for the analysis of the case with
series inductance [Fig. 1(c)] in Section III, and as benchmark
to quantify filter improvements. Section IV compares analysis
results with simulations and Section V presents conclusions.

II. N-PATH FILTER WITH RESISTIVE SOURCE IMPEDANCE

In [18] a detailed analysis of a switched series R-C network
is presented that is also applicable to N-path filter analysis as
shown in [5]. In this section, we quickly review the analysis for
a resistive source impedance, as basis for the analysis with an
inductive source impedance, which is done in the next section.
In a single-ended N-path filter the switches are driven by

polyphase clocks, i.e., clocks with the same duty-cycle starting
at regularly spaced intervals within the period time. The clocks
do not overlap when high and the capacitor voltages are thus
independent, which simplifies analysis. In Fig. 3, a timing dia-
gram of the intervals in a general N-path filter is shown, where

Fig. 3. Timing diagram for (a) the N-path filter, (b) the kernel to be analyzed,
which contributes to during .

is defined to be 0. To simplify mathematical expressions,
ideal switches will be assumed that switch infinitely fast be-
tween of infinity and of zero. Moreover, we assume
that no time interval exists in which all switches are open, i.e.,
the clock duty-cycle is 1/ , with the number of paths. Thus
only the switch in the -th path will be closed during interval ,
during an on-time .
The analysis will now be performed by decomposing the

N-path circuit in so-called “kernels” [18] as shown in Fig. 1(b).
First, only one kernel will be analyzed. Other kernels have the
same transfer function, except for a phase shift in the clock.
We can find the combined effect of all kernels in a polyphase

system, using the analysis for one kernel and adding that phase
shift term later, in subsection A. We choose the kernel for which
the switch is closed during for analysis, so is the
on-time of the switch and the off-time, as shown in Fig. 3(b).
For zero switch resistance, the output voltage is equal to

one of the capacitor voltages. The kernel under analysis defines
the output only during . Other kernels will provide the
output during other intervals, each for exactly 1/ th of . This
periodicity is crucial for the filter behavior and signal folding to
be analyzed. In order to limit mathematical derivations, we will
write equations in the same form as in [18], [23] and re-use the
Fourier transform derived there [16]. To this end we will write
differential equations as a function of and , where relates
to the time variant behavior. Considering the kernel in Fig. 1(b)
during an interval identified by , the following equation holds:

(1)
We have a series-R-C network (index R) only during , so:

(2)

while the coefficients are 0 for other values (the capacitor
voltage doesn’t change during the hold-phase). Following [16]
we introduce a time windowed version of the capacitor
voltage, defined as:

(3)

(4)

where is a time windowing function that is useful from
a mathematical point of view [16], and conveniently chosen so
that the contributions of to the output voltage occur
during this time window. The window can be modelled by step



DUIPMANS et al.: ANALYSIS OF THE SIGNAL TRANSFER AND FOLDING IN N-PATH FILTERS WITH A SERIES INDUCTANCE 265

functions and as derived in Appendix A, the differential equa-
tion for the kernel, valid for all , can now be written as:

(5)

where the -functions add and subtract samples at interval ends,
as discussed in [23, eq. (7)]. By applying the Fourier transqform
to this equation, is found [18, app. A]:

(6)

where is the transfer function associated with fre-
quency shift , while index refers to a purely resistive
source . Note that a frequency component at the
input not only contributes to as in a Linear Time Invariant
filter, but also renders frequency shifted terms .
This renders signal folding to the pass band if an input signal ex-
ists at frequency spacing from the pass band, which should
be minimized. Evaluating the Fourier transform gives [18]:

(7)

Because the kernels are identical, it is sufficient to determine
the transfer of only one of them. As we analyzed a kernel active
during , i.e., . The functions and
that are then required for (7) are [18, app. B]:

(8)

(9)

The function is the transfer to the output voltage when
sampled at (when the switch closes) and when
sampled at (when the switch opens). Because during
(when the switch is open) the voltage on the capacitor does

not change, these transfers differ only by a delay.

A. Polyphase Multi-Kernel Combination

The final step is to combine the kernel transfer functions into
one transfer function for the polyphase system. Assuming no
switch resistance, kernel 1, active during , contributes
to via transfer function . The only difference
between the kernels or paths in an N-path filter as depicted in
Fig. 1 is the phase shift of the clocks driving the switches. With
defined as the path number and the number of paths, the phase
shift of the clock of kernel compared to kernel 1 is .
The transfer function of the combined output then is equal to the

following sum [18]:

(10)

with the transfer of a single kernel calculated for the
interval where the switch is on (note the periodicity with ).
The output spectrum is given by:

(11)

It can be seen from (10) that is non-zero
for , with an integer. Hence, some of the harmonic
folding terms remain un-cancelled, namely from input frequen-
cies around to the desired filter band around . (7)
and (10) can be combined and simplified. The transfer function
with (no frequency shift) can be determined by taking the
limit of the first term between brackets in (7) for approaching
zero. This leads to:

(12)

Where:

(13)

(14)

is the ratio between the switch-on time and the RC-time
constant as introduced in [18], with the only difference that the
duty-cycle is fixed here to 1/ to minimize signal loss [5]. For
N-path filters, the , so for high Q we
want . Hence, we operate in the “slow” region [18], in
which the RC time is much larger than the switch-on time (nar-
rowband filtering, slow settling). Note that this is quite different
from discrete-time switched-capacitor filters, where fast settling
of capacitor voltages is required within one clock period.
The harmonic folding effects are characterized by (8) and

(9) with non-equal to zero. Taking into consideration that the
on-time is always and is 0 we find:

(15)

III. N-PATH FILTER WITH INDUCTIVE SOURCE IMPEDANCE

In the current section, an N-path filter with a series induc-
tance as shown in Fig. 1(a) is analyzed. The presence of such a
“memory-element” results in interaction between the different
paths. At the moment a switch closes, the inductor already car-
ries a current which is dependent on the history of the voltage
across the inductor, i.e., the previous path voltages.



266 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 1, JANUARY 2015

The analysis starts again with decomposing the circuit into
kernels [Fig. 1(c)]. However, now the differential equation valid
during on-time of the switch is of second order:

(16)

(17)

while the coefficients are zero for other values of . The voltage
transfer function can be found by applying the Fourier trans-
form on the differential equation above. In order to make this
possible, the equation has to be made valid for all t. This process
is described in Appendix A and results in:

(18)

For evaluating the above equation, the sampled output
voltage terms at the switching moments are needed and also the
derivative of the output voltage at those moments. In the next
section, the process of how to express these terms as a function
of the input voltage will be described. When these terms are
known, the Fourier transform can be performed on (18) leading
to the wanted transfer function.
For sinusoidal input voltage the general solution to

(16) is of the form [24]:

(19)

in which the first two terms are the solution of the homogeneous
equation, with and the roots of the characteristic polyno-
mial [24, Lesson 20]:

(20)
The constants will be solved from the initial conditions. The

last term in (19) represents the particular solution [24, lesson
21]. Substitution of this solution in (16) and evaluation for
leads to:

(21)

For :

(22)

The function is equal to the frequency domain transfer
function of a single kernel with the switch closed.

The expression of the output voltage during the on-time of
the switch is dependent on the initial conditions, i.e., the output
voltage at the time instant the particular switch closes and
its derivative (or strictly speaking the related current through
the inductor). Suppose, the time instant of the closing of the
switch is . The remaining constants can now be determined
by solving the following two equations for and :

(23)

(24)

Resulting in:

(25)

(26)

Substitution of the constants in (19) gives:

(27)

And for the derivative of the output voltage:

(28)

Using these equations, the output voltage and the derivative
of the output voltage at the end of the on-time of the switch
can be calculated, given the initial conditions. Setting the time
instant of closing of the switch at and assuming that the
on-time of the switch is equal to (see Fig. 3), the following
equations can be composed:

(29)

(30)

(31)

(32)

(33)

(34)
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(35)

(36)

From now on, the process comes down to setting up the dif-
ference equations for the sampled and . Since the capacitor
voltage remains constant during the interval the switch is off,
we also write:

(37)
For composing the difference equation for , it is assumed

that the current through the inductor at the moment the switch
opens is equal to the current at the moment the switch of the
next path closes. As a consequence, assuming equal capacitors,
this equality also holds for the derivative of the output voltage
at these time instants. With a duty-cycle of exactly 1/ , this
assumption will indeed be valid. Using this result:

(38)

In which is the capacitor voltage of path number . At first
sight, this difference equation seems difficult to solve, because
it is dependent on the output state of the previous path, which
is again dependent on the output state of the path before that,
and so on. However, all paths are identical, albeit that the time
interval in which they are connected to the output differs. As
these intervals are spaced apart by , different paths will see
a phase shifted version of the input signal. Assuming an input
voltage , a relation between different path voltages
of the following form should be expected:

(39)

A similar relation also holds for :

(40)

With help of the last two equations we can write (38) as:

(41)

where the subscript is left out, because the function is no longer
dependent on the path number. The next step is to solve for

and substituting for leading to:

(42)

Substituting this into (37) we get:

(43)

This equation is of the same form as [18, eq. 87] and leads to
the following steady state solution:

(44)

With:

(45)

Using (44), can be determined using (42):

(46)

With:

(47)

Next, the goal is to find and (or equivalently:
and ):

(48)

Hence:

(49)

When using (45) and (47) to evaluate (49), after some straight-
forward mathematics we get:

(50)

Note that this relation was also found for the case without a
reactive component. The procedure for finding is similar:

(51)

(52)

After expressing in terms of by means of (47) and sub-
stitution in (52), the following simple result arises:

(53)

Using the functions and , the Fourier transform
can now be applied to (18) following a similar approach as [18,
app. A and B]. However, not only the Fourier transform of the



268 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 1, JANUARY 2015

capacitor voltage [18, eq. 77], but also that of the derivative of
the capacitor voltage is needed, for which we find:

(54)

We can then find the solution for one kernel. As all kernels
are equal, their response is equal apart from a phase shift and
hence calculating only is sufficient. In (10) we see that the
polyphase transfer function will only produce results non-equal
to zero when is an integer. Considering that and

, after some math we get:

(55)

By using (10), filling in the correct coefficients as defined in
(17) and taking into account that is equal to , the polyphase
transfer can be determined:

(56)

(57)

IV. MODEL VERIFICATION AND APPLICATION

To verify the analysis, the transfer function was calculated
and simulated for a 4-path filter with the default parameters
given in Table I: of 1 GHz, of 50 , C of 50 pF and an
inductance of 0 and 10 nH. Fig. 4 shows the simulated and calcu-
lated curves are identical, confirming correct analysis. We will
now compare some results for the resistive and inductive source
impedance and show that adding an inductor can improve filter
properties significantly. First the filter shape will be discussed in
Section IV-A, then the input impedance (Section IV-B), noise
(Section IV-C), harmonic response (Section IV-D), and finally
the unwanted signal folding (Section IV-E).

A. Filter Shape

Substituting in (56) and taking the limit of the first
term between brackets for approaching zero, yields:

(58)

Fig. 4. Calculated and simulated , and , showing in-
creased passband gain and reduced folding to the pass-band with inductor.

TABLE I
DEFAULT VALUES USED FOR SIMULATIONS

with:

(59)

(60)

This equation is of the same form as (12), but is a second
order low-pass function instead of a first order function and
is now also a function of frequency due to the extra LC-term
in the denominator Actually, (58) reduces to a regular second
order low-pass function when approaches infinity. However,
this occurs when goes to infinity, i.e., when the switching is
eliminated and only one switch is permanently on. Hence, the
first term between brackets represents low-pass behavior. The
second term in (58) with and contains exponentials ren-
dering repetitive peaks in the transfer characteristic at multiples
of the switching frequency. To understand this intuitively, please
refer to the time domain analysis in [5].When decreases, these
peaks become narrower, i.e., quality factor increases. Compared
to a resistive source impedance, there is an additional LC-term
in the denominator of , so that the series inductance renders
an extra degree of freedom to adjust the filter. If the bandwidth
of this filter is compared to that of a filter with resistive source
impedance, it appears that the same bandwidth can be realized
with a lower capacitance.

B. Input Impedance

We define an input impedance close to the fundamental as [5]:

(61)

Fig. 5 shows a plot of this impedance for two L-values. As
contains imaginary terms due to the up-converted

impedance of the baseband capacitors, there is a dip in
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Fig. 5. Input impedance versus RF-frequency for .

Fig. 6. Improvement in Noise Figure due to reduced noise folding.

Fig. 7. Amplitude of for a 4-path filter, using the values in Table I.

impedance for , because the R- and L-term in the
numerator of (61) largely cancel each other at 1.02 GHz.

C. Noise Figure

The noise figure can be written as the total output noise di-
vided by the output noise contribution from the source via the
intended frequency translation:

(62)

Fig. 6 shows that adding a series inductor improves the noise
figure, as expected, due to the reduced noise folding. In practice
finite inductor-Q will limit the improvement as is also shown.

D. Harmonic Responses

As can be seen in Fig. 7, the N-path filter also has harmonic
responses at .
Using (58) the filter response near harmonics of the switching

frequency was analyzed versus inductance value. In Fig. 8, the
absolute value of the peaks at a multiple m of the switching fre-
quency is represented as a function of the series inductance. The
values are calculated for a 4-path filter with of 1 GHz, C of
50 pF and of 50 . It is apparent from the graph that the
gain in the pass band for , i.e., the value of the peak

Fig. 8. Calculated peak values of the transfer function near the fundamental
and second and third harmonic.

at , is a strongly increasing function of and can be much
bigger than 1. Note that this concerns voltage, not power gain.
The second harmonic response even grows faster with induc-
tance, but can be cancelled in a fully differential topology. The
third harmonic suppression compared to the fundamental bene-
fits from increasing inductance especially for 1–10 nH.

E. Effect of Folding (Aliasing)

Next, the unwanted signal folding effects will be treated. The
transfer of the N-path filter with unequal to zero is given by:

(63)
If is evaluated for a frequency shifted input using (45), it
appears that the only term dependent on is . For the
remaining terms, the dependency reduces to a phase shift of
in the argument of the exponents. Using this result, the fol-

lowing relation can be written:

(64)

If we also do this for and substitute in (63), we can cal-
culate the ratio of a folded term to the wanted term, and using
(58) we get:

(65)

If is sufficiently high and is small, the last term in
(65) reduces to a value close to one. This assumption is true for
N-path filters with a gain close to or above 1 at frequency .
The following approximation holds then:

(66)

This is a very interesting outcome: it appears that the signal
folding to is suppressed by low-pass filter . In other
words, the suppression of the folded components will only be
dependent on the low-pass network (with transfer function
H(f)) that the input sees when the switch is closed (see Fig. 9).
This is also the case for an N-path filter with resistive source
impedance, because (12) and (15) are equivalent to (58) and
(63). The only difference is that the function is now a
second order low-pass function instead of a first order function.
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Fig. 9. (a) Low-pass filter obtained by closing the switch of the kernel. (b) The
resulting transfer function with the relevant rejection ratio.

Fig. 10. Calculated folding for and variable L, both equation (65)
(lines) and approximation equation (66) (dots), showing reduction for increasing
inductance.

Fig. 11. Calculated wanted passband and unwanted folding for a fixed series
inductance of 5 nH and equal to 0.5, 1 and 2 GHz.

Fig. 12. Calculated folding [exact and approximate (lines with markers)] with
, showing good approximation for .

This means that the suppression of components folding back
to the desired band can be much higher. To quantify this effect,
let’s assume that both and will fall outside the pass-
band on the 12 dB/octave slope of the low-pass function. Now,
the ratio in (66) can be approximated by:

(67)

The nearest component that folds back to the band of interest
in a 4-path filter is the input shifted by . Hence
an RF signal at or is shifted to and falls on top of
the filter band. As is closer to and hence more prob-
lematic, Fig. 9(b) graphically shows the relevant “pre-filter”1

function H(f), which should now be evaluated at and .
Ratio gives the attenuation for the folding com-
pared to the wanted signal at (see Fig. 9(b), a rough
estimate is ). Fig. 10 plots the calculated folding versus
L-value, both for the exact and approximate (66). Clearly, more
folding reduction is usually wanted and one might wonder what
happens for more paths. For an 8-path filter, the folding from

is suppressed to roughly or 34 dB (versus 17 dB
for ). Still often, more attenuation is desired and extra
low-pass pre-filtering should be added. From the equations de-
rived in the previous section, it appears that the function
is linearly related to the low-pass function , both for a first
order filter (resistive source impedance) and a second order filter
(inductive source impedance). This dependency results
from the particular solution of the differential equation. For a
higher order pre-filter, a higher order transfer function and more
filtering will likely result, but demonstrating this is left as future
work.
The folding from reduces from about 9 to 17 dBwhen
increases from 0 to 10 nH. In practice a fixed value of

will often be used, and then it may be interesting to see how
the passband shape varies and how folding reduction varies as a
function of the target center frequency . The results are shown
in Fig. 11. It can be verified that the best passband gain and least
(relative) folding from occurs at 2 GHz.
It should be noted that the results above assume an ideal in-

ductor. A practical inductor may show parasitic capacitance to
ground, which may have detrimental effects. Further research is
needed to quantify what is feasible in practice, where this paper
derives the ideal limit. The model in Fig. 9 with the “pre-filter”
concept is intuitively attractive. However, it should be noted that
it is an approximation which is only valid if .
Fig. 12 illustrates model validity limits for , showing
a good match above 100 MHz.

V. CONCLUSIONS

Analytical equations for the transfer function and signal
folding of single-ended N-path filters with resistive and induc-
tive series impedance have been derived. The analysis assumes
ideal switches that switch instantly from an on-resistance of
zero to an off-resistance of infinity. Furthermore, the duty-cycle
is assumed ideal, i.e., equal to 1/ .
The resulting equations have been examined and show that

the addition of a series inductance results in improved band pass
filter behavior. Increasing this inductance increases the in-band
voltage gain and reduces the bandwidth, while also reducing
noise and odd order harmonic responses. Moreover, and even
more important for realizing a practical N-path filter, the addi-
tion of an inductor increases the suppression of signal folding
from to . Interestingly, a good estimate for the fil-
tering of folding products can be obtained by simply considering

1Strictly speaking this filter is not a separate pre-filter but an intrinsic part of
the time variant circuit. Still, given our aim to reduce folding and given the filter
transfer is multiplied with the N-path transfer function, we use this term.
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the low-pass filter that results when only one switch of the filter
is continuously closed.

APPENDIX

When looking at a single R-C kernel, during the on-time of
the switch, the system is linear time invariant and the voltage
is described by differential (1). Using step function , this
equation can be adapted to one valid for all as follows:

(68)

This equation also defines during interval , i.e., .
Since is equal to within interval and zero outside this
interval, can be written as:

(69)
For simplicity, during further calculations for one kernel the

summation is left out in this expression and is substi-
tuted. In the end, the summation and time shift will be rein-
troduced when combining to a polyphase system. Hence, the
simplified will be:

(70)

The same can be done for by simply replacing by
in the above equation. Using the product rule, the derivative of

can be calculated as well:

(71)

Applying the same simplifications to (68) yields:

(72)

Using (70) and (71), (72) can easily be expressed in terms of
and :

(73)

When the Dirac delta functions between brackets are replaced
by the infinite sum of Dirac functions and time shift is rein-
troduced, the result is (5).
For the R-L-C case, the equation that is valid for all , equiv-

alent to (72), is as follows:

(74)

As for the first order differential equation, the above equation
should be expressed in terms of . For this case, a second
derivative of is also needed:

(75)

Then, using (70), (71) and (75), (74) can be rewritten as:

(76)

For the N-path filter (76) reduces to (18) after reintroducing
the infinite summation.
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