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On the Minimum Number of States for Switchable
Matching Networks

Ettore Lorenzo Firrao, Anne-Johan Annema, Frank E. van Vliet, and Bram Nauta

Abstract—The impedance of an antenna changes heavily with
changing EM environments, while RF power amplifiers (PAs) are
optimized for driving a well-defined load impedance. As a solution,
switchable matching networks are used in automatic antenna
tuners to match the antenna impedance to (about) the desired
PA load impedance. This paper presents a theoretical treaty of
the minimum number of required states for switchable matching
networks to achieve sufficient matching from a certain load
VSWR to a sufficiently low input VSWR. First for an arbitrary
passive lossless switchable matching network, the mathematical
minimum required number of states as a function of the required
input VSWR and of the required load VSWR is derived. Several
variants are analyzed and benchmarked: single-stage one-ring
configuration, single-stage two-ring configuration, two-stage
one-ring configuration and three-stage one-ring configuration
showing that single-ring configurations are optimum. An exten-
sion towards the required number of states for lossy matching
networks is also provided.
Index Terms—Automatic antenna tuners, impedance matching,

switchable matching networks, tunable matching networks.

I. INTRODUCTION

A NTENNA impedances depend heavily on their EM en-
vironment [1], [2] and hence may change significantly

during real life operation. The antenna impedance is usually
expressed in terms of reflection coefficient

, where is the characteristic impedance, or in terms of
voltage standing wave ratio .
For a typical antenna the VSWR can be up to 10:1 [1]–[5].
This changing antenna impedance causes serious design and

performance challenges for the RF power amplifier (PA) driving
the antenna due to the associated VSWR. Assuming a certain
required lower bound on maximum transmit power, a varying
load impedance for the PA (e.g., antenna impedance through a
fixed matching network) requires robustness to both maximum
voltage and maximum current levels well above those required
when driving a nominal load impedance at the same power level
[3]–[5]. Consequently, the PA then must be designed to operate
properly for a wide load impedance range and hence the PA
is necessarily overly robust at nominal conditions and conse-
quently has significantly lower efficiency at nominal conditions.
On top of this, matching losses due to non-nominal load imped-
ances decrease the efficiency and radiated power significantly.
Automatic antenna tuners may be used as solution for this.

In general, an automatic antenna tuner consists of impedance
sensors, a control network and a tunable matching network
[6]–[24]. The sensors are used to detect the impedance mismatch
or impedance value; the control network controls the state or
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setting of the tunable matching network that performs the actual
impedance tuning from its load impedance into its input
impedance .
The tunable matching network can be implemented with con-

tinuous tunable components or with switchable components. In
case of continuous tunable components it is theoretically pos-
sible to achieve a perfect tuning at the input for a certain (lim-
ited) load impedance region. In case of ideal switchable com-
ponents perfect impedance matching can be achieved for only a
finite number of load impedances. This paper presents a math-
ematical estimation of the minimum required number of states
for narrow band switchable matching networks to match a cer-
tain load impedance range to within a smaller input impedance
range. This problem was implicitly addressed in [22]–[24] for
specific implementations, without giving a general approach or
mathematical derivation.
Section II presents a mathematical estimation of the minimum

required number of states for a single stage switchable matching
network assuming a resistive source driving a lossless switch-
able matching network terminated by a load impedance (e.g., the
antenna). This derivation uses the mismatch efficiency [25] in
order to keep the mathematical formalism as general as possible
without referring to specific implementations: the only assump-
tion is that the switchable matching network is passive and loss-
less; it can be reciprocal or non-reciprocal. Consequently, the
results are valid for any (yet lossless) switchable single stage
matching network. The resulting minimum required number of
states can be used to derive a lower bound on hardware costs
to implement switchable matching networks, and can be used to
estimate the efficiency of specific hardware implementations in
terms of overhead in states.
Sections III to V extend the results of Section II in a number

of ways. Section III discusses the merits and limitations of multi
stage matching networks: it shows that partitioning a matching
network in multiple simpler matching networks can be very effi-
cient in terms of minimum total required number of states to per-
form a certain impedance matching. Section IV briefly discusses
the impact of using an arbitrary complex source impedance in-
stead of a purely real source resistance, while an extension to-
wards (general) lossy matching networks is discussed in Sec-
tion V. Section VI summarizes the findings.

II. NEAR MINIMUM NUMBER OF STATES FOR LOSSLESS
SWITCHABLE MATCHING NETWORKS

This section presents a mathematical derivation of the min-
imum required number of states for lossless switchable matching
networks at a single frequency. The matching network matches
any load impedance in a certain impedance range to imped-
ances that are sufficiently close to the complex conjugate of
the source impedance. In this section, a real source impedance

is assumed.
In this paper, complex impedances are mainly specified in

terms of reflection coefficient . Some
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basic properties of this bilinear transformation between and
form the mathematical basis for the work in this paper. A first
property is that the entire complex Z-plane is mapped to the en-
tire complex -plane with the point removed. Secondly,
the bilinear transformation is holomorphic: it maps circles in the
Z-plane into circles in the -plane; non-overlapping circles in
one plane are non-overlapping in the other plane [25, ch. 10].
The “number of states” denotes the actual number of dif-

ferent settings that the switchable matching network can have.
Assuming for example a matching network that incorporates
in total switched reactances, the number of states for that
network equals of which a number may be coinciding,
thereby effectively reducing the actual number of (unique)
states. Assuming e.g., a slide-screw tuner that can be set in
discrete settings, the number of states typically equals . In this
paper we, however, do not assume any specific implementation
for the matching network.
In the current paper, the switchable matching network aims

to match a load impedance into a that is sufficiently
close to target impedance , using a minimum number of
required states. This “sufficiently close” means that the associ-
ated magnitude of the reflection coefficient is lower than a
predefined value .

A. Single State Impedance Matching

The mismatch efficiency equals the ratio of actual power in
the load and the maximum achievable power into the load

[25]. For a passive lossless matching network, see Fig. 1,
at a single frequency this is a function of the complex source
and load impedances seen at a cross section. At cross section A
in Fig. 1 this translates into

(1)

showing that maximum power transfer is achieved for
.

The derivations in this paper are valid both for reciprocal and
for non-reciprocal networks. Note that for lossless matching net-
works the is the same at cross section A and B in Fig. 1.
For simplicity reasons we first assume a real source impedance

.
At a single frequency the impedance matching network can be

designed to match a load impedance , with a reflec-
tion coefficient , to the center of the Smith chart. For
this perfect match, and , as depicted
in Fig. 2.
For this matching network, a certain mismatch efficiency
corresponds to all lying on a circle centered on the center

of the Smith chart having a radius . Due
to the bilinear properties of the matching networks, this circle
for corresponds to a circle of values on the Smith
chart. This latter circle encloses , but in general is
not centered on due to the compressive character of
the Smith chart with larger distances towards its center point.
A description of this circle can be obtained by solving (1),

for all values at cross section B (see Fig. 1) for a given
. Under assumption that the resulting -circle does not

encircle the center of the Smith chart, it can be proven that the
center of the circle lies on the line through the center of the Smith
chart and . Using the previously described matching
network that matches onto to the center of the Smith
chart, there are now two impedances and that lie
on a line in the Smith chart crossing both the center point and

Fig. 1. Circuit topology and naming conventions in the derivation.

Fig. 2. Mapping of one load impedance circle onto an input impedance circle
for a certain matching efficiency M.

Fig. 3. Constructing a matchable area with radius matchable onto
a circle around the origin with radius , using multiple (here 10 1)
number of states for switchable matching networks.

crossing that are matched onto impedances corre-
sponding to some points on a circle around the origin with ra-
dius that corresponds to the specific , see Fig. 2 for
a graphical representation. Solving (1) yields:

(2)

with and where .
The center and the radius of the circle that is mapped by

the matching network onto a circle around the origin with radius
follow from (2):

(3)

(4)

B. Single Ring Impedance Matching
Due to the bilinear nature of impedance transformations of

switchable matching networks, circles described by (3) and (4)
can be mapped onto circles centered at the origin of the Smith
chart with radius . Using many suitably positioned cir-
cles a whole band can be constructed, directly outside the circles
with radius that can be mapped onto the center circle
[22], [23], see Fig. 3.
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Fig. 4. Radius of the matchable region as a function of the
number of matching network states , for various .

Fig. 5. Constructing a area with radius matchable onto a circle
around the origin with radius , using multiple (here 35) number of states
in a two-ring configuration.

Fig. 3. illustrates such a matching network configuration
with in total 11 states, having one center circle with sufficiently
low , and 10 circles around it that can individually be
mapped onto the center circle, and in total forming the largest
region matchable region described by .
Impedance mapping of two distinct impedances in one of the
outer circles onto the center circle is also depicted in Fig. 3.
It appears that analytically deriving the required number

of matching network states as a function of and
is (at least) hard. However, it is possible to derive

the region that can be matched to an impedance inside a circle
with radius as a function of the number of matching
network states.
Using only one ring consisting of circles (each circle cor-

responds to a single matching network state) around the center
(see Fig. 3), the total circle that can be matched follows from
using (3) and (4) in plain geometrical constructions to build a
larger circle. This yields a 6th order equation with four trivial
or not-relevant solutions and one solution leading to a matched
overall circle with radius (see Appendix A):

(5)

where

(6)

Boundary condition for this relation include having a real
value for , and laying inside
the Smith chart of the all circles (i.e., the regions that can be

matched onto the center circle). If one or more of these boundary
conditions are not satisfied, the parameter is just too low to
find a valid solution. Fig. 4 shows a the radius of the matchable
area on the Smith chart as a function of the number
of matching network states , for a number of

-values. The “ 1” is there because the circle centered
at the center of the Smith chart must be included as state.
For low , the matched area does not form a circle larger

than the center circle, hence the lower clipping of on
in Fig. 4. With increasing the radius of the match-

able area increases and reaches (for ) the maximum
radius asymptotically. Note that for clarity reasons, the graph in
Fig. 4 shows continuous curves while can only assume in-
teger values. It follows from (5) and (6) that the maximum radius
is:

(7)

C. Two Ring Impedance Matching
The analysis in the previous section can be extended in a recur-

sive way to get, e.g., the circular region on the Smith chart that
is composed of a center circle and two rings composed of circles
that all can be matched to the center ring. For the two-ring case
it can be derived that:

(8)

where the first term on the right hand side in (8) equals (5) and
with:

(9)

where again is the required magnitude of the reflection
coefficient at the input of the switchable matching network,
and are the number of circles of the first and second ring re-
spectively. Also in case of two rings some trivial boundary con-
ditions must be satisfied to get a valid solution: e.g.,
must be real valued and . Fig. 5
shows an example of a two-ring configuration for a matching
network. In this configuration, any of the rings (here ,

) can exactly be matched to the center ring, thereby
being able to match any impedance to
within .
It appears that it is at least hard to derive a closedmathematical

expression for the maximum circular region on the Smith chart
that can be mapped onto the center circle for the two-ring case.
This is basically because an optimum in (8), (9) for a constant
number of total states cannot readily
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Fig. 6. Contour plot of as a function of and , here for
. On the plot, constant- lines are plotted for

. On these lines, the maximummatchable is denoted
with a dot.

Fig. 7. Matchable region impedances on the Smith chart as a function of the
total number of states , for a two-ring network, for

. The plot also shows the optimum and as a function
of .

be derived. These optima can, however, quite easily be derived
numerically as only integer and occur.
Fig. 6 shows a contour plot the radius of the regions that can

bematched as a function of and , here for .
For low this behavior is identical to that shown in Fig. 4 for
the single-ring configuration of the matching network: the max-
imum occurs for . For higher a second
ring gets to become beneficial and then themaximum
is achieved for .
A straight forward maximum search for constant

directly yields the maximum magnitude of the
load reflection coefficient as a function of both the
total number of states and of . Fig. 7 shows both

as a function of for (here) and
shows the distribution of across the first and second ring. In
this example, for no continuous band can be formed,
while for a single configuration ring is optimum.
For larger the two-ring solution is most efficient and can
achieve matching of a larger region compared to the
single-ring case.

III. MULTISTAGE LOSSLESS SWITCHABLE MATCHING
NETWORKS

The previous section showed an analysis of single stage
matching networks, that used matching states in one or two
rings to match any impedance to within

Fig. 8. Block diagram of a two-stage switchable matching network.

Fig. 9. Matching in a two-stage switchable matching network: the second stage
(right hand side Smith chart) matches an impedance to within ; the
first stage (left hand side Smith chart) matches this to within .

. It was also shown that a two-ring configuration can
match a larger than a single-ring matching network
configuration. This section shows that multi-stage single-ring
configurations, see Fig. 8 for a two-stage matching network,
outperform single-stage multi-ring matching networks in terms
of (e.g.) minimum required total number of states.
In multi-stage networks, the switchable matching network

connected to the load achieves coarse tuning from to
while the leftmost network achieves fine tuning from

to ; this principle is shown in Fig. 9 for matching for any
impedance within via to within

.
It follows directly from bilinear properties, and from the

analyses in Section II that this approach to match a relatively
large to within a circle is much
more efficient than using multi-ring approaches because mainly
the coarse matching stage uses relatively large circles that
require a relatively low minimum number of (large) circles to
cover a large part of the Smith chart. For illustration purposes,
the and for Fig. 9 are identical to the
ones used for Fig. 5, requiring 35 states in total for the single
stage network and 22 in total for the multi-stage solution. This
difference in minimum number of required matching network
states increases rapidly for larger ratios between and

.

A. Estimation
In case of required good input matching (i.e., low ), a

good approximation of the optimummaximum magnitude of the
reflection coefficient at the intermediate cross section, ,
can be derived. Assuming a small , (5) can be simpli-
fied to , yielding for a
two-stage matching network having one ring per stage
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Fig. 10. Maximum magnitude of load reflection coefficient as a
function of the total number of states for one-stage-one-ring, one-stage-
two-ring, two-stage-one-ring, and three-stage-one-ring networks. For the plot

.

Due to symmetry, equal distribution of the matching network
states over the two stages is optimum, yielding

For -values that are not very small an easy-to-read
expression for cannot be derived. However, com-
bining the result of two one-stage one-ring results to get
multi-stage results is quite easy, with just one numerical (in-
teger) search required to get the optimum .

B. Benchmarking Lossless Multi-Stage Matching Networks
Fig. 10 shows 4 curves, all showing as a func-

tion of the total number of states in the matching network ,
for . The curves are for single-stage matching
networks with either one of two rings of circles optimally posi-
tioned around the center ring and are for cascaded single-stage
single-ring configurations.
It follows that for maximum load reflection coefficients

close to the required magnitude of the input re-
flection coefficient , it is best to use the one-stage
one-ring configuration. As (or the total number of
states for the matching network) increases, after some point it is
more efficient to use any of the other configurations. However,
the curves show that a single-stage multi-ring configuration is
not efficient: either it degenerates to a single-stage single-ring
configuration for low or it is better to use a two-stage
single-ring configuration.
Moving to more stages (i.e., three-stage switchable matching

networks) appears to be useful only if very large
must be matched onto small . In the case of adaptive
antenna matching, these cases typically represent broken an-
tennas or electromagnetically very bad environments. In this
case switching off the PA might be a better option.

IV. COMPLEX SOURCE IMPEDANCES

For simplicity reasons, the derivations in Section II and III
were done assuming a resistive source, with a straight forward
extension towards generators with an arbitrary impedance

that require a conjugate of the matching network
(see Fig. 1) for maximum power transfer.
For RF power amplifiers, complex conjugate matching is typ-

ically not used but a specific load impedance is set to be able
to get maximum power or maximum efficiency, determined via,
e.g., load pull. Whereas mismatch efficiency contours are circles

Fig. 11. Equivalent block diagram of a lossy switchable matching network: the
cascade of two attenuators, a lossless switchable matching network, and a phase
shifter.

on the Smith chart, load pull contours usually are not [26]; they
generally address a non-linear problem. In this case the analysis
shown in this paper would only give a coarse upper bound esti-
mation on the number of required states for an adaptive matching
network.
However, usually in PA design the electrical length between

the PA and the actual load is unknown or unspecified which
results in having to accept an arbitrary phase shift in the load
impedance. This means that actual PAs usually must be designed
for the smallest area enclosed by arbitrarily rotated load pull con-
tours. This smallest enclosed area equals the largest circle en-
closed by the not-rotated load pull contour. For this circular area,
the analyses shown in this paper hold.

V. LOSSY MATCHING NETWORKS

In Sections II and III, requirements on the minimum required
number of states were derived for general lossless switchable
impedance matching networks. In reality, switchable matching
networks are lossy, although with low loss to have any signif-
icance as impedance matching network. This section presents
an extension of the work in Section II and III towards lossy
matching networks. Note that also in this section no specific
hardware implementation is assumed to keep the results as gen-
eral as possible.
Any two-port linear network can be described as an 2 2 S-

or ABCD matrix; in this section first the ABCD-representation
is used. As shown in Appendix B, the ABCD-matrix of a lossy
matching network can be decomposed in 3 ABCD-
matrices and an extra phase shift:

(10)

where are purely real lossy circuits, with in
total (at least) 3 degrees of freedom, and is a
lossless (reciprocal or non-reciprocal) matching network having
4 degrees of freedom as assumed in Sections II–V in this paper,
see Fig. 11.
In other to extend the results in Sections II–V to lossy

matching networks, it is useful to switch back to the S matrix.
Using the decomposition of the lossy network into a lossless
network with attenuators (and a phase shifter) wrapped around
it, the effect of losses can be illustrated and calculated. For
the illustrations, relatively high losses are used for visibility
reasons.
In Fig. 11 the lossless network is between planes (B) and (C).

For this part of the lossy matching network, the analyses in Sec-
tions II and III hold. An example of the corresponding match-
able region and circle to match to are shown in Fig. 12(c) and
Fig. 12(b) respectively.
The effect of an attenuator is twofold. Firstly the attenuation

scales up the radius of the matchable circle on the Smith chart
whenmoving towards the load side of thematching network. As-
suming only losses in the attenuator, so having
and having a lower-than-unity magnitude of for the th
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Fig. 12. Transformation of the Smith chart moving from the input to the output:
(A) input impedance region of the lossy network: in order to make the plot clear,
the effect of the losses has been emphasized; (B) input impedance for the de-em-
bedded lossless matching network part in Fig. 11; (C) matchable region at the
output of the de-embedded lossless matching network part in Fig. 11; (D) match-
able load impedances at the output of the lossy matching network: in order to
make the plot clear, the effect of the losses has been emphasized.

attenuator, it follows that the center point does not shift and
. Secondly, for a more general at-

tenuator , which results in a change of both the
radius and the center point of the circles according to

.
The power efficiency of the lossy matching network is

(11)

where is the power to the load, is the input power and
the other symbols are defined in Fig. 11.

VI. CONCLUSION
This paper shows a mathematical derivation for the

minimum number of states for passive lossless switch-
able matching networks to match any load impedance for
which to an impedance for which

. In this paper, the switchable
matching network can be reciprocal or non-reciprocal.
For relatively simple single-stage matching networks, a

closed form expression is derived for the largest matchable
region as a function of maximum input
reflection and of the number of states for the matching
network.
Several other configurations were studied: more complex

one stage configuration as well as cascaded simple matching
networks. It appears that at low ratios between and

the one-stage one-ring configuration is the best
choice. As the mismatch between required input impedance
and required load impedance increases, a cascaded configu-
ration consisting of simple matching networks becomes the
best option. The analysis has been extended to lossy passive
switchable matching networks; the main difference with the
lossless situation is a shift and scaling of the matchable region.

APPENDIX A
This appendix presents the mathematical derivation of match-

able region in case of a single-ring switchable matching net-

Fig. 13. Geometric construction to derive the matchable region for one-stage
one-ring switchable matching networks.

works, described by in (5) and (6). The region that
can be matched using a single-ring containing evenly spaced
circles that individually can be matched onto the center ring
can be derived by geometrical construction under constrains im-
posed by bilinear transformations and e.g., (2).
From a geometrical point-of-view, see Fig. 13 for an example

configuration that shows just the center circle and 2 circles in the
first ring, the distance between the origin of the Smith chart and
the center of one of the circles in the ring is given by

(12)

where the angle directly follows from the equidistant spacing,
. The radius of the smaller circles and the angle

are related as . Using this, the
region that can be matched to within the inner circle is a circle
centered on the origin of the Smith chart, having a radius

From a bilinear point-of-view, (2) can be used to get another
set of equations for and that also must be satisfied:

(13)

and

(14)

Substituting (13), (14) into (12) yields

Eliminating the square root and using ,
the previous equation can be rewritten into an equation that is 6th
order in and 4th order in . This equation can
be rewritten into an equation that is 4th order in and
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3rd order in under the (always satisfied) constraints
that and :

Excluding a trivial (and for matching networks invalid) solu-
tion , this directly yields

which leads to

(15)

with (1) and (4), (15) yields (5) and (6).

APPENDIX B
This Appendix shows some background on the decomposition

of the transfer function of an arbitrary lossy matching network
into a cascade of transfer functions, one of which corresponding
to the transfer of a lossless matching network [27]–[29]. Any
two-port linear network can be described as an 2 2 S- or ABCD
matrix. For a lossless network, the on-diagonal elements in the
ABCD-matrix are real and the off-diagonal elements are imag-
inary. For lossy networks the power gain is lower than unity
which results in additional constraints which are irrelevant for
the decomposition in this Appendix. In general the ABCD-ma-
trix of any lossless matching network therefore has 4 degrees of
freedom. For reciprocal circuits,
and the number of degrees of freedom would be 3; however, in
this paper no reciprocity is assumed.
The transfer of an arbitrary (lossy) network can be written in

a complex 2 2 ABCD-matrix with no constraints on any el-
ement in that matrix: the ABCD-matrix then has 8 degrees of
freedom. This general ABCD-matrix can be decomposed into
multiple ABCD-matrices (one of which corresponds to a loss-
less network) in a number of ways. Common to all these decom-
positions is that the total number of degrees of freedom is (at
least) 8 and that the decomposition can be made. This last re-
quirement can be reformulated into being able to cover the 8 (4
real and 4 imaginary) dimensional space spanned by the original
ABCD-matrix by the cascade of ABCD-matrices in the decom-
position.
The hardest decomposition is that of the arbitrary ABCD-ma-

trix into a cascade of ABCD-matrices with in total 8 degrees of
freedom. In case that the cascade of ABCD-matrices has more
degrees of freedom clearly themapping can bemademore easily.
In the derivation below purely resistive attenuator circuits are as-
sumed for simplicity reasons; equivalent circuits including trans-
formers also may be used. Then, starting from basic mathemat-
ical rules on determinants:

it directly follows that decomposing a general (lossy)
ABCD-matrix into a cascade including one
lossless matching network requires at least

a phaseshifter and 2 lossy attenuators
. For a decomposition into a cascade that has

8 degrees of freedom we then get, e.g.,

Using the inverse function theorem it can be shown that this
decomposition can be made with attenuators having in total 3
degrees of freedom (total insertion loss and impedance ratios).
Using more degrees of freedom in the attenuators enables infin-
itely many ways to decompose the general transfer function in
the way shown in the above relation.
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