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Array-Based Approximate Arithmetic Computing: A
General Model and Applications to Multiplier and

Squarer Design
Botang Shao and Peng Li, Senior Member, IEEE

Abstract—We propose a general model for array-based approx-
imate arithmetic computing (AAAC) to guide the minimization of
processing error. As part of this model, the Error Compensation
Unit (ECU) is identified as a key building block for a wide range
of AAAC circuits. We develop theoretical analysis geared towards
addressing two critical design problems of the ECU, namely, deter-
mination of optimal error compensation values and identification
of the optimal error compensation scheme. We demonstrate how
this general AAAC model can be leveraged to derive practical
design insights that lead to optimal tradeoffs between accuracy,
energy dissipation and area overhead. To further minimize energy
consumption, delay and area of AAAC circuits, we perform ECU
design simplification by introducing logic don't cares. By applying
this model and using a commercial 90 nm CMOS standard cell
library, we propose an approximate 16 16 fixed-width Booth
multiplier that consumes 44.85% and 28.33% less energy and area
compared with theoretically the most accurate fixed-width Booth
multiplier. Furthermore, it reduces average error, max error and
mean squared error by 11.11%, 28.11%, and 25.00%, respectively,
when compared with the most accurate reported approximate
Booth multiplier and outperforms the same design significantly
by 19.10% for the energy-delay-mean squared error product.
Using the same approach, significant energy consumption, area
and error reduction is achieved for a squarer unit. To further
reduce error and cost by utilizing extra signatures and don't cares,
we demonstrate a 16-bit fixed-width squarer that improves the
energy-delay-max error product by 15.81%.

Index Terms—Approximate arithmetic computing, multiplier,
squarer.

I. INTRODUCTION

A S THE CMOS technology and VLSI design complexity
scale, delivering desired functionalities while managing

chip power consumption has become a first-class design chal-
lenge. To remedy this grand energy-efficiency challenge, array-
based approximate arithmetic computing (AAAC) has been in-
troduced as a promising solution to applications with inherent
error resilience including media processing, machine learning,
and neuromorphic systems. AAAC may allow one to trade off
accuracy for significant reduction of energy consumption for
such error tolerant applications.
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To this end, approximate multipliers and squarers have been
a focus of a great deal of past and ongoing work. Two types of
approximate multipliers exist: approximate AND-array multi-
pliers, which utilize AND gates for partial product generation
and approximate Booth multipliers, which use the modified
Booth algorithm to reduce the number of partial products.
Constant correction [1] and variable correction [2] schemes
are proposed for approximate AND-array multipliers. How-
ever, since Booth multipliers are much more efficient than
AND-array multipliers, approximate Booth multipliers have
been intensively investigated [3]–[10]. In particular, statistical
linear regression analysis [3], estimation threshold calculation
[4], and self-compensation approach [5] have been utilized
to compensate the truncation error. Accuracy of approximate
multiplier designs is increased by using certain outputs from
Booth encoders [6]–[9]. To decrease energy consumption, a
probabilistic estimation bias (PEB) scheme [10] is presented. A
series of approximate squarers have been proposed [11]–[13].
For instance, the designs of [11] and [12] compensate trunca-
tion error by utilizing constant and variable correction scheme,
respectively. A LUT-based squarer [13] is proposed by em-
ploying a hybrid LUT-based structure.
While a diverse set of array-based approximate arithmetic

unit designs exist, what is currently lacking is systemic design
guidance that allows one to optimally trade off between error,
area and energy.While the area and energy of a given design can
often be easily reasoned or estimated, getting insights on error
and thereby providing a basis for optimally trading off between
error, area, and energy consumption appears to be challenging
and not well understood.
To this end, themain contributions of this paper are two-fold.1

First, we propose a general AAAC model for reasoning about
different ways of controlling approximation errors and present
optimal error compensation schemes under ideal design sce-
narios. The proposed model is general in the sense that it cap-
tures the key design structure that is common to a major class
of array-based approximate arithmetic units (e.g., multipliers,
squarers, dividers, adders/subtractors, and logarithmic function
units). The proposed model offers critical insights of optimized
error compensation schemes and the corresponding input signa-
ture generation logic that is the key to error compensation.
Compared to the preliminary work [14], we demonstrate de-

tailed illustrations and sketches of proof for Theorems 1–4 in
Section III and propose a method of further error and cost re-
duction for AAAC circuit designs by introducing extra signa-

1A preliminary version of this work appears in [14].
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Fig. 1. The proposed AAAC model.

tures and don't cares, making our AAAC model more general
and complete. Second, as two specific applications, by lever-
aging the design insights obtained from the proposed model,
we present a new approximate Booth multiplier and squarer de-
sign that achieve noticeable reduction of error compared with
existing designs while maintaining significant benefits in terms
of delay, area and energy consumption due to the approximate
nature of computation. Compared to the preliminary work [14],
error and cost for the proposed 16-bit fixed-width squarer are
further reduced by introducing extra signatures and don't cares.
When implemented using a commercial 90 nm CMOS stan-

dard cell library, the proposed approximate 16 16 fixed-width
Booth multiplier consumes 44.85% and 28.33% less energy and
area compared with theoretically the most accurate fixed-width
Booth multiplier. Furthermore, it reduces average error, max
error and mean square by 11.11%, 28.11%, and 25.00%, re-
spectively, when compared with the most accurate reported
approximate Booth multiplier and outperforms the same design
significantly by 19.10% in terms of the energy-delay-mean
squared error product . For our approximate 16-bit
fixed-width squarer, a 18.18%, 21.67%, and 31.25% reduction
is achieved on average error, max error, and mean square,
respectively, and more than 20.00% reduction is
achieved, when compared with existing designs. By utilizing
the method of introducing extra signatures and don't cares, the
energy-delay-max error product is further reduced
by 15.81% for our proposed 16-bit fixed-width squarer. Addi-
tionally, when operated in the full-width mode, our multiplier
and squarer have an even greater improvement of accuracy.

II. AAAC MODEL

Fig. 1 contrasts an error-free computing unit (EFCU) with
-bit inputs and an -bit output (left) with its approximate

counterpart modeled using the proposed AAAC model (right).
The AAAC model consists of three units: low-precision com-
puting unit (LPCU), error compensation unit (ECU), and com-
bine unit (CU).
The LPCU in the AAAC circuit produces a low-precision ap-

proximate output, for example, based upon truncation or a frac-
tion of the input bits, with lowered energy, delay, and/or area
overheads compared with the error-free EFCU. To reduce the
error produced by the LPCU, a low-cost ECU may be included
for error compensation. Finally, the CU combines the error com-
pensation produced by the ECU with the result outputted by the
LPCU, generating the final output of the AAAC unit with re-
duced approximate error.

The generality of the AAAC model lies in the fact it re-
flects the key computing principles behind a wide range of
array-based arithmetic units, for example, approximate adders
[15]–[17], approximate multipliers [1]–[10], and approximate
squarers [11]–[13]. For instance, many approximate adders em-
ploy carry prediction from low input bits, which can be thought
as a particular way of implementing the ECU. Similarly, error
compensation is a common scheme in approximate multipliers
and squarers.
Clearly, the key AAAC design problem is to develop an ef-

ficient LPCU and, in particular, an ECU so as to significantly
reduce energy, delay, and/or area overhead while achieving a
low degree of approximation error. While the area and energy
of a given design can often be easily reasoned or estimated, the
key challenge is to develop insights on error or error distribu-
tion so as to optimize the error compensation scheme, which we
focus on in the following sections.

A. Error Metrics
We evaluate a given AAAC design with -bit inputs by

defining average error , maximum error and mean
squared error , respectively as

(1)

(2)

(3)

where , and denote the number of all pos-
sible input combinations, output of the AAAC, and output of
EFCU (error-free result), respectively, for each input combina-
tion . Note that the above error metrics are normalized with
respect to the range of the output . As shown in Fig. 1, for
each input combination , the ECU outputs error compensation,
denoted by . Hence the output of the AAAC circuit is:

, where is the output
of the LPCU. Importantly, the error of the LPCU, i.e., the error
of the AAAC before compensation and after compen-
sation ( ) is given simply by

(4)
(5)

B. Model of Error Compensation Unit (ECU)

Ideally, a specific can be computed by the ECU to
perfectly zero out the error for each input pattern . However,
this does not serve any purpose for approximate computing as
we are essentially re-implementing the error-free operation. We
present a practical yet general ECU model, which consists of a
Signature Generator and a K-to-1 Mux as shown in Fig. 2(a).
The process of error compensation is shown in Fig. 2(b). Con-
ceptually, for a given input pattern , the signature generator pro-
duces several signatures that encode certain essential informa-
tion about the inputs. Based on the actual values of the extracted
input signatures, this input pattern is classified into one of the
predetermined input classes with each having a predetermined

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:31:15 UTC from IEEE Xplore.  Restrictions apply. 



SHAO AND LI: ARRAY-BASED APPROXIMATE ARITHMETIC COMPUTING: A GENERAL MODEL AND APPLICATIONS 1083

Fig. 2. ECU model: (a) ECU blocks, (b) error compensation process.

error compensation . The compen-
sation for this input pattern is produced by using the signature
values to select the constant compensation of its corresponding
input group via the K-to-1 mux.
It is important to note that the structure of the ECUmodelmay

not immediately correspond to the specific logic implementa-
tion of the ECU. Nevertheless, it captures the general working
principle of error compensation for AAAC.

III. OPTIMAL ERROR COMPENSATION AND ECU DESIGN

In the extreme case, if each input group has only one input
pattern, then the optimal compensation for each group/input
would be simply the corresponding (4). However, in
practical cases, we need to consider the distribution
within each group.

A. Optimal Error Compensation

Now it is evident that the key ECU design problem is to find
an optimal signature generation scheme that minimizes one or
more error metrics (i.e., , , and ) under a given
set of cost constraints (e.g., area, delay, and energy). Note that
the cost of the ECU often strongly correlates with the number
of input groups . We show several provable results for op-
timal selection of error compensation constants for a given com-
pensation scheme. We also show an optimal error compensation
scheme under an ideal scenario. We first denote the number of
input patterns that fall in the group by .
Theorem 1: The optimal error compensation for the
group that minimizes is the median of (4) of the

group if is odd; otherwise it can be any value that falls in
the inclusive interval between the two medians of .
The above results are illustrated in the example of Fig. 3. For

the group, minimizing leads to minimization of the
sum of distances from each to , which makes the
value of themedian of of the group if is odd.
On the other hand, when is even, can be any value
that falls in the inclusive interval between the two medians of

.
Theorem 2: The optimal error compensation for the
group that minimizes is the mean of and

, where and are the minimum and
maximum values of in the group, respectively.

Fig. 3. Optimal -minimizing error compensation value: (left) odd,
(right) even.

Fig. 4. Optimal -minimizing error compensation value.

This result is illustrated by the example in Fig. 4, in which
is the minimum value

that can be achieved when is the mean of
and . Otherwise, either ( ) or
( ) is greater than .
Theorem 3: The optimal error compensation for the
group that minimizes is the mean of all in this

group.
To see howTheorem 3may be proven, consider the group,

for which we have

(6)

To minimize , let , we have

(7)

Equation (7) indicates that to minimize for one group, the
best compensation is the average of all in this group.
The above three theorems suggest the following important

design guidance. For a given compensation scheme, the com-
pensation for each input group can be optimally deter-
mined according to the results above to minimize the targeted
error metric. Now we turn into the other design problem by pre-
senting the optimal error compensation scheme under an ideal
scenario.
Theorem 4: Assume is uniformly and continuously

distributed from to , where and
are the minimum and maximum values of , in

the entire input range, then the optimal -minimizing error
compensation scheme with input groups partitions the en-
tire range into non-overlapping equal-length intervals
with one interval corresponding to a specific input group.
To provide an intuitive sketch of proof for Theorem 4 without

loss of generality, let us consider a 4-group example in Fig. 5.
First, it is not hard to see that with the number of input groups
fixed, partitioning the error distribution into non-overlapping
groups would not increase the overall . Now assume
and are the lower and upper bounds of and fixed for
all inputs and the corresponding lower and upper bounds for the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:31:15 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Optimal -minimizing error compensation scheme.

four input groups are and , and , and
, and can be written as

where to minimize , according to Theorem 3, the optimal
compensation for the group is given by

. Then, let ( ), we have

Therefore,

(8)

Equation (8) indicates that the four input groups are non-over-
lapping and in equal length with one compensation for each
input group. Note that is discrete and hence not con-
tinuously distributed in reality. This continuous assumption is
a good approximation when the error is densely populated be-
tween and .

B. Further Error and Cost Reduction
In practice, the above theoretical results can be used to come

up a good error compensation scheme and the corresponding
optimal compensation value for each input group while consid-
ering the logic implementation complexity. For a given applica-
tion, this process may help us identify a highly compact set of
signatures. With a good initial set of signatures chosen, to fur-
ther reduce error, one effective way is to add extra signatures
by directly considering certain input bits. Such signatures can
further divide the predetermined input classes into a larger
number, say , of smaller groups.
On the other hand, it is also important to minimize hardware

implementation cost. For this, introducing don't care terms is
a general approach to the reduction of logic complexity [18].
In logic synthesis, don't cares can be expressed using special
non-Boolean values, such as “x” [19]. When having the design
synthesized by synthesis tools such as Synopsys Design Com-
piler [20], we set constraints of minimizing power and area, so
an optimal logic will be generated.

For the case of ECU design, we propose to set the compensa-
tion values of a subset of input groups to don't cares in order to
reduce logic complexity. The issue now becomes how to deter-
mine which groups should be given a high priority to be set as
don't cares. We rank all the groups based on their impact on the
target error metric when they are set to be don't cares and adopt
the following process to systematically do so. As shown in Al-
gorithm 1 that targets , assume that there are groups
and the compensation value has bits. represents error be-
fore compensation of the element in the group. When
targeting to minimize , each group is evaluated by
considering the worst case ( ) when the compen-
sation is set to be a don't care. is computed to
be the maximum when varies from 0 to .
Then, the groups which have the smallest are set as don't
cares, while other groups are implemented precisely because
they have a comparatively greater impact on . In practice,
the more don't cares we set, the less energy consumption and
area the design can be achieved with the use of a logic synthesis
tool such as Synopsys Design Compiler [20], but the greater
the error. Therefore, the number of don't care groups should be
chosen by jointly considering the specifications of energy, delay,
area, and accuracy.

Algorithm 1 Don't care introduction while minimizing

for to do

;

for to

compute ;

if

; then

end if

end for

end for

Set don't cares to a number of groups with the smallest ;

To minimize , a process similar to Algorithm 1,
where the group is ranked by the worst case

, which is defined as the maximum value of
, when ranges from 0

to . To minimize , we rank the groups by the worst
case , which is defined as the maximum
value of , when

ranges from 0 to .

C. Practical ECU Design Guidance
The above theoretical analysis provides optimal design strate-

gies for minimizing a particular error metric. In practice, min-
imization of one error metric may often lead to near-optimal
minimization of other error metrics. We summarize the prac-
tical ECU design guidance that is directly resulted from these
results:

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:31:15 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Error-free booth multiplier blocks.

1) Hardware cost can be controlled by targeting an appro-
priate number of input groups;

2) Different input groups shall have no or little overlap on the
axis to minimize approximation error;

3) The spread of each group shall be largely of equal
length;

4) Non-uniformity of spread may be reduced by split-
ting groups with a large spread into smaller groups;

5) For a given compensation/grouping scheme, the optimal
compensation values for all groups can be determined to
minimize a given error metric according to Theorems 1–3;

6) Additional accuracy improvement may be achieved by di-
rectly introducing a subset of inputs as extra signatures to
further divide large input groups. Energy and area over-
head can be reduced by setting the compensation values of
the groups that have a comparatively small impact on the
overall error to don't cares.

IV. PROPOSED MULTIPLIER DESIGN

The AAAC model is applied to approximate fixed-width and
full-width Booth multiplier designs.

A. Fundamentals of Booth Multipliers

Booth multipliers are ideal for high speed applications and
the Radix-4 Modified Booth multipliers are most widely ap-
plied [21], [22]. The main blocks of a Radix-4 Modified Booth
multiplier are shown in Fig. 6. The encoding block applies the
Radix-4 Booth Algorithm to encode the multiplier , allowing
the selection block to generate only half number of partial prod-
ucts needed for array multipliers with each product being one of
the following: 0, A, 2A, -A, -2A. Then, the compressors (such
as 2:2, 3:2 [23], and 4:2 [24] compressors) in the compression
block compress the number of partial products to two [23], [24].
Finally, a -bit adder is used to generate the final product.

B. The Basic Idea

In this paper, we use x fixed-width Booth multipliers to
refer to approximate Booth multipliers that operate on two -bit
inputs while outputting only an -bit product [4]. For conve-
nience of discussion, we assume the higher and lower bits
of the multiplicand and multiplier correspond to the integer and
fractional parts of the inputs, respectively. In this regard, a fixed-
width multiplier outputs, possibly in an approximate manner,
the -bit integer part of the exact product.
Fig. 7 shows the full 8-partial product array for a full-pre-

cision 16 16 Booth multiplier where each dot row ( to
) is a partial product. The 16 dots (bits) in each are de-

noted by from left to right, is the correc-
tion constant required to generate the negative partial product,
and is sign of the partial product. The vertical dashed
line splits the array at the position of the binary (radix) point.
A fixed-width multiplier outputs an integer output by approxi-
mating the carry-out produced by the fractional part of the array,
which is also labeled as the truncation part (TP). On the other

Fig. 7. Partial product diagram for fixed-width 16 16 booth multipliers
.

hand, the contribution of the bits left of the binary point, i.e.,
ones in the accurate part (AP), is not approximated.
Direct-truncated Booth multipliers (DTM) [5], which are an

extreme case of fixed-width multipliers, output an -bit integer
product by simply neglecting the bits in the TP part of the array
without forming them in the first place, thus potentially pro-
ducing a large error. As another extreme, post-truncated Booth
multipliers (PTM) [3] form the complete partial product array,
compress all the bits, compute with full precision, add an extra
“1” to the column to exactly round the carry-out to the

column, and finally output the exact -bit integer part of the
final product (with rounding), as shown in Fig. 7. As such, PTMs
are theoretically the most accurate fixed-width multipliers.
Our goal in approximate fixed-width multiplier design is to

approach the accuracy of a PTMwithout incurring its high over-
head that is commensurate with that of a full-precision multi-
plier. Under the AAAC model, we associate the accurate part

and the truncation part of the array in Fig. 7 with the
LPCU and ECU, respectively. More specifically, the bits in
are processed by the LPCU while the effects of the ones in
are approximated by the ECU in the form of error compensation.
The exact product (EFCU output) is ,
where is the partial sum of , and is the LPCU
output corresponding to . To reduce the amount of approx-
imate error, we further divide into (i.e., the
column) and (Fig. 7) and have [10]

(9)
where and correspond to the partial sums of
and , and represents the sum of all bits in the
column, respectively. Now it is clear that

. The main objective in the design of ECU is to well ap-
proximate such that a fixed-width -bit output is
produced, i.e., .
Note again that the ECU of a PTM (most accurate fixed-width
multiplier) produces as the output (with rounding)

(10)

where returns the integer part of its argument. To ap-
proach the PTM, we design our ECU's output to be

(11)

where is a good approximation to . In (11), only
is approximated by the ECU while is computed
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TABLE I
MODIFIED BOOTH ENCODING

exactly. Regarding to (11), we denote the carry-out from
to by

(12)

(10) can now be simplified to

(13)

Going back to (11), it is now clear that the main task of the ECU
design is to well approximate . Since is kept exact in
(11), it is also natural to associate both and with the
LPCU, and process them with the LPCU's encoding and selec-
tion blocks. In this case, the ECU only produces an approximate
.

C. Design of Error Compensation Unit
According to Section III-C, the key problem in ECU design

is to classify all input patterns into largely equally sized groups
with none or little overlap according to values of , which
is the error before compensation (in this case ).
To start, we first examine the standard Booth encoding that

encodes each set of three consecutive bits of multiplier into
five signals and determines the corresponding partial product in
terms of multiplicand in Table I, where signifies whether
the partial product is zero or not, specifies the sign of each
partial product, and is the actual partial product gener-
ated from the selection block. As in Fig. 7, it is worth noting that
Booth encoding is applied across the entire partial product array
including the part, which is associatedwith the error. By fol-
lowing the ECU design guidance in Section III-C, we identify a
set of error compensation signatures of low cost from Table I to
compensate for the error due to .
Our key idea is to use encoded sign and magnitude informa-

tion of the partial products to classify the input patterns into
largely equally sized non-overlapping groups according to the

value. In the following, we first present a set of error sig-
natures for each partial product, and then compress them for the
entire ECU.
1) Signatures for Each Partial Product Row: The first signa-

ture to be chosen is . It is effective since a non-zero value of
signifies the zero-valued corresponding partial product ,

thereby classifying the inputs into two (zero vs. non-zero
error) groups independently of the multiplicand .
Starting from these two input groups, we select our second

signature to be , which encodes the sign of , allowing us
to further partition the large non-zero input group into
two smaller groups of positive vs. negative error.
To further reduce the approximation error, we introduce the

third signature to split the large signed error input groups by

Fig. 8. Blocks and schematics of signature generator.

using the magnitude information of each partial product. For
this, we count the number of non-zero bits in multiplicand :

.
2) Compressed Signatures for ECU: Note that and are

defined for each partial product and there are partial prod-
ucts for x bits multiplication. In addition, ranges from
0 to . Utilizing these signatures for the ECU would create a
huge number of input groups and lead to significant area and
energy overhead. To simplify the design of the signature gener-
ator, we first sum up and to produce and , respec-
tively, and then introduce a Boolean variable that indicates
whether is above or not

(14)
, , and are the final set of compressed signatures

we use for the ECU. These signatures can be implemented with
low-cost in hardware and possess the desirable properties out-
lined in Section III-C based on the proposed general AAAC
model. Fig. 8 illustrates the design of the proposed signature
generator (left) that consists of two carry propagation adders
(CPAs) (middle) for generating , and an -input odd-
even sorting network [25] (right) for generation. Note that

and are already computed by the encoders in the LPCU.

D. The Complete Fixed-Width Multiplier
With the selected signatures and classified input groups, next,

we need to determine the actual error compensation for each
group, i.e., an approximate to in (12). As discussed in Sec-
tion III-A, one can follow Theorems 1–3 to choose a fixed com-
pensation for each input group to minimize a targeted error
metric. For example, to minimize , the optimal compen-
sation is the average value for each group .
The complete proposed fixed-width Booth multiplier is shown
in Fig. 9. The ECU is designed to run in parallel with the selec-
tion block and part of compression block so that it causes little
extra delay during runtime.
We take 16 16 fixed-width Booth multiplier design as an

example to illustrate the signature and compensation genera-
tion schemes, and additional possible simplifications. To fur-
ther simplify the ECU, we consider different ranges and com-
binations of the signature values in Table II, where denotes
AND operation. The goal is to identify a smaller set of refined
input groups with controlled error spread. is the average
of in each input group. To minimize , the optimal
integer error compensation is set to be the average of (12) in
the group.
To further simplify, as shown in Table III, Case 2 and Case

3 are merged to form Group 1 (G1). Group 2 (G2) consists of
Cases 1 and 4. Finally, Case 5 is Group 3 (G3). Each merged
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Fig. 9. Proposed fixed-width booth multiplier architecture.

TABLE II
COMPENSATION FOR INPUT GROUPS OF 16 16 MULTIPLIER

TABLE III
COMPENSATION FOR THE REFINED INPUT GROUPS

group has the same and error selection is realized by a simple
3-to-1 mux.

E. Proposed Full-Width Booth Multiplier
Approximate full-width multipliers, i. e., ones that approxi-

mate accurate Booth multipliers by outputting a full-width
-bit approximate product, are also useful for many practical

applications.
The presented fixed-width design can be readily extended to

facilitate full-width operation with the difference being that in
this case we would like to approximate by as in
(11). Again, to minimize , for instance, the optimal com-
pensation for each input group would be the average of ,
denoted by , in that group. For =16, we show the values
of for the same three input groups in the last column of
Table III and we have

(15)

Similar to the proposed fixed-width multiplier, since is
kept exact in (15), it is also natural to associate both and

with the LPCU, and process them with the LPCU's en-
coding and selection blocks. In this case, the ECU only produces
an approximate .

V. PROPOSED SQUARER DESIGN

A. The Basic Squarer Design
We demonstrate the application of the AAAC model to ap-

proximate fixed-width and full-width squarer designs.
Fig. 10 shows the full 8-partial squaring array ( to )

for a full-precision 16-bit squarer, where the input is denoted
by [11]. Here, we use the method in [11] to

Fig. 10. Squaring diagram for 16-bit fixed-width squarers.

TABLE IV
COMPENSATION FOR INPUT GROUPS OF 16-BIT SQUARER

implement squarers instead of using Booth algorithm as ap-
plied to multiplier design in Section IV because squarers imple-
mented by using the method in [11] are more energy-efficient
and faster since most partial products bits are implemented by
simple AND operation of two input bits instead of more com-
plex Booth encoding and selection blocks.
The squarer design process is very similar to the one pre-

sented for the proposed multipliers, e.g., based on (9)–(15).
Again, the key problem is to design an ECU to well approx-
imate . Briefly, by following the ECU design guidance in
Section III-C, we consider the signals on the column
as signatures since they have the highest weight on and
include all input bits which contribute to . To simplify
the design of the signature generator, we sum up the signals
on the column to produce the first signature . To
further reduce the approximation error, we introduce one input
bit as the second signature ( ) to further split the large input
groups formed by . Accordingly, input bit is chosen as
the second signature for the proposed 16-bit squarer.
The final input groups of the 16-bit squarer classified by

and are show in Table IV. is generated by an odd-even
sorting network [25], which has a low hardware overhead, and

is selected directly from the input .
The error compensations for the fixed-width squarer are

shown in the second last column of Table IV. The values of
(error compensation) of different input groups for the

full-width squarer are shown in the last column of Table IV.

B. Further Error and Cost Reduction for Fixed-Width Squarer
As described in Section III-B, we may introduce certain input

bits as extra signatures to sub-divide each of the large input
classes into a smaller group to further reduce one or more error
metrics. To further simplify the logic, thus decreasing energy
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consumption and area overhead of ECU, don't cares are set for
certain input groups.
We demonstrate the application of the above process

to the proposed 16-bit fixed-width squarer while targeting
. To give an overall evaluation of design choices, an

energy-delay-max error product is defined as .
First, we introduce extra signatures. In the proposed 16-bit

fixed-width squarer design, input bit is utilized as one signa-
ture because it can further divide some of the large eight classes
formed by signature into smaller groups. Specifically, ac-
cording to the design guidance in Section III that an efficient sig-
nature should be able to divide input cases into groups largely
of equal length (sub-dividing large input classes formed by the
first signature in this case), we evaluate each input bit from

to as a candidate extra signature. The simulation results
indicate that selecting as a signature can divide more large
original classes formed by the first signature and achieve
a better overall accuracy performance than any other input bit
from to . Using the same method, additional input bit sig-
natures are chosen one at a time subsequently. Detailed results
should be discussed in the result section.
Second, to further reduce energy consumption and area, as

illustrated in Section III-B, don't cares are introduced to some
of the input groups. The ECU with signatures of and the
extra signatures selected according to the above process has
certain logic complexity. In order to simplify ECU design and
trade off between cost and error, we set compensation values
of the input groups which have the least worst case impacts on
the overall error to be don't cares. For example, to minimize
overall , we may rank the groups based on their worst case

( ), which is the biggest that the group can
reach when is any value in its range. Since has three bits in
this case, it ranges from 0 to 7. After the groups are ranked by

, those that have the lowest are given a higher
priority to be set as don't cares.

VI. EXPERIMENTAL RESULTS

The proposed 16-bit fixed-width Booth multiplier and
squarers are designed in Verilog HDL, synthesized using
Synopsys Design Compiler [20] with a commercial 90 nm
CMOS technology and standard cell library. From Synopsys
Design Compiler synthesis (Design Vision) reports, we get the
pre-layout delay, dynamic power, leakage power, and area. We
also implement five additional fixed-width Booth multipliers:
DTM (direct truncated Booth multiplier) [5], PEBM (with
probabilistic estimation bias compensation) [10], ZSM (uses
sum of as signatures) [7], PTM (post-truncated Booth mul-
tiplier—most accurate/expensive fixed-width multiplier) [3]
and MLCP (uses a multilevel conditional probability estimator
to make error compensation) [19]. Four additional squarers
are implemented: DTS (direct truncated squarer), CCS (with a
constant compensation) [11], VCS (the signals on the
column as the compensation) [12], and PTS (post-truncated
squarer most accurate/expensive fixed-width squarer).
For all Booth multiplier and squarer designs implemented in

this paper, partial products are generated and then compressed
to two partial products using 2:2, 3:2 [23], and 4:2 [24] compres-
sors. 2:2, 3:2, and 4:2 compressors provide an efficient method
for compressing the number of partial products to two, which are

TABLE V
COMPARISON OF 16 16 FIXED-WIDTH MULTIPLIERS

optimized for speed and are well incorporated in silicon compi-
lation and logic synthesis tools. Finally, the two partial products
are added up by a carry propagation adder (CPA) to produce
final results.

A. Comparison of Different Multipliers

In Table V, six fixed-width multipliers are compared for area,
delay, energy which is the product of delay and power (sum of
dynamic power and leakage power), and an energy-delay-mean
squared error product ( ). The energy consumption and
area of the proposed multiplier are slightly larger than PEBM
and ZSM, but are much smaller than PTM, with a 44.85% and
28.33% reduction respectively. The proposed design has a sig-
nificantly reduced , with 19.10% and 10.56% reduction
compared with ZSM and MLCP. This indicates that our design
delivers much improved accuracy with a small overhead.

B. Accuracy Analysis for Multipliers

In this section, we provide a more detailed accuracy com-
parison among different approximate multipliers. Error reduc-
tion of the proposed design to existing designs are defined as

, where
represents one of error metrics ( , , and ) of the
compared existing design and is defined as the same
error metric of the proposed design.
1) Fixed-Width Booth Multipliers: We evaluate the accura-

cies of the five different designs in terms of , and
((1)–(3)) in Section II-A) as a function of bit width (

), where exact error analysis is conducted for
all possible input combinations when and . While
for , since the number of input combinations is very
large, exact error analysis becomes extremely time-consuming.
To alleviate the computational challenge while getting decent
error estimates, we evaluate and by averaging over a
large number of input combinations as follows. For instance, for

evaluation, we first randomly generate one data set of 400
million input combinations and calculate for this set. To
give a more decent and accurate error estimates, we randomly
generate 10 such data sets in total, with 400 million input com-
binations for each set, and calculate the average of the ten
sets and get the final result. While for the final re-
sult, we choose the maximum of the ten sets. Fig. 11(a)
shows the error reductions of the proposed fixed-width multi-
pliers over DTM, PEBM, and ZSM. For example, our 16-bit
design significantly reduces , , and by 11.11%,
28.11%, and 25.00%, respectively, when compared with ZSM.
Note that Fig. 11(a) also presents that with the increase of bit
width, the proposed multiplier has a more significant increase
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Fig. 11. Error reductions of proposed booth multipliers over DTM, PEBM and
ZSM: (a) fixed-width, (b) full-width.

TABLE VI
COMPARISON OF 16-BIT FIXED-WIDTH SQUARERS

in terms of reduction. To further illustrate the accuracy ad-
vantages of the proposed multiplier, we compare the proposed
16 16 fixed-width design with MLCP, which is a more recent
design. A 15.79%, 37.60%, and 31.82% reduction is achieved
in terms of , , and .
2) Full-Width Booth Multipliers: We further compare the

accuracies of the five different multipliers in full width in
Fig. 11(b). The proposed 16 16 full-width Booth multi-
plier achieves 24.14%, 37.50%, and 46.15% reduction on

, , and ((1)–(3)in Section II-A), respectively,
when compared with ZSM and outperforms the most accu-
rate fixed-width PTM with an error reduction of 12.00% and
12.50% for and , when .

C. Comparison of Different Squarers

According to the results in terms of area, delay, energy
which is product of delay and power (sum of dynamic power
and leakage power), and
in Table VI, the proposed squarer consumes 42.43% and
30.70% less energy and area than PTS. Despite slightly more
energy consumption and area than CCS and VCS, the proposed
16-bit fixed-width squarer reduces significantly, with
20.00% reduction compared with VCS.

D. Accuracy Analysis for Squarers

1) Fixed-Width Squarers: Fig. 12(a) shows the error reduc-
tions of the proposed fixed-width squarers over DTS, CCS and
VCS. For instance, our 16-bit design has a significant 18.18%,

Fig. 12. Error reductions of proposed squarers over DTS, CCS and VCS: (a)
fixed-width, (b) full-width.

21.67%, and 31.25% reduction in terms of , , and
, when compared with VCS.

2) Full-Width Squarers: More significant error reduction is
achieved when the proposed squarers operate in full width. As
shown in Fig. 12(b), the proposed 16-bit full-width squarer sig-
nificantly reduces , , and by 31.58%, 11.69%,
and 50.00%, respectively, when compared with VCS and out-
performs the most accurate fixed-width PTS with an error re-
duction of 48.00% and 62.50% for and , respectively,
when .

E. Further Reduction of Error and Cost for the 16-bit
Fixed-Width Squarer

As illustrated in Section V-B, we choose extra signatures
from input bits ( to ) and set don't cares to some of the
groups to further reduce , the energy-delay-max error
product that is an overall performance measure.
As described in Section V-B, we choose a number of extra

signatures directly from the input bits one at a time. Table VII
shows the optimal extra signatures from input bits, given the
number of extra signatures. We limit the number of extra signa-
tures to seven as giving beyond this would lead to rapid increase
of area and energy overheads. Corresponding to the last row of
the table, when introducing seven extra signatures, to trade off
between energy consumption and , we set 110 groups as
don't cares. Further optimizing the squarer by introducing seven
extra signatures and don't cares decreases signifi-
cantly, achieving a reduction of 15.81%, when compared with
the proposed 16-bit fixed-width squarer design with only one
extra signature and no don't cares (the second row).

VII. CONCLUSION

A general model is presented for array-based approximate
arithmetic computing to guide the design of approximate Booth
multipliers and squarers. To shed light on the design of ECU,
which is the key of AAAC design, we develop four theorems to
address two critical design problems of the ECU design, namely,
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TABLE VII
OF 16-BIT FIXED-WIDTH SQUARERS WITH EXTRA INPUT SIGNATURES

determination of optimal error compensation values and identi-
fication of the optimal error compensation scheme. To further
reduce energy consumption and area, we introduce don't cares
for ECU logic simplification. The presented experimental re-
sults show that the proposed approach has led to significant per-
formance improvements for a number of approximate multiplier
and squarer designs.
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