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Robust Global Stabilization of the DC-DC Boost
Converter via Hybrid Control

T.A.F. Theunisse, J. Chai, R.G. Sanfelice,Senior Member, IEEE,and W.P.M.H. Heemels,Senior Member, IEEE

Abstract—In this paper, we consider the modeling and (robust)
control of a DC-DC boost converter. In particular, we derive
a mathematical model consisting of a constrained switched
differential inclusion that includes all possible modes ofoperation
of the converter. The obtained model is carefully selected to
be amenable for the study of various important robustness
properties. For this model, we design a control algorithm that
induces robust, global asymptotic stability of a desired output
voltage value. The guaranteed robustness properties ensure
proper operation of the converter in the presence of noise inthe
state, unmodeled dynamics, and spatial regularization to reduce
the high rate of switching. The establishment of these properties is
enabled by recent tools for the study of robust stability in hybrid
systems. Simulations illustrating the main results are included.

Index Terms—Boost converter, DC-DC converters, hybrid con-
trol, stability, robustness, stability.

I. I NTRODUCTION

T HE increasing number of renewable energy sources and
distributed generators requires new strategies for the

operation and management of the electricity grid in order
to maintain, and even to improve, the reliability and quality
the power supplied. Power electronics play a key role in dis-
tributed generation and in integration of renewable sources into
the electric grid [2]. A recent challenge for these systems is the
unavoidable variability of the power obtained from renewable
resources, which, in turn, demands conversion technology that
robustly adapts to changes in the supplies and demands.

One type of converter that is widely used in energy con-
version is the DC-DC Boost converter. This converter draws
power from a DC voltage source and supplies power to a load
at a higher DC voltage value. Different approaches have been
employed in the literature for the analysis and the design of
such converters. Arguably, the most popular method used to
control such converters is Pulse-Width Modulation (PWM). In
PWM-based controllers, the switch in the circuit is turned on
at the beginning of each switching period and is turned off
when the reference value is lower than a certain carrier signal
[3]. The analysis and design of a PWM controller is typically
carried out by averaging the two steady state configurationsof
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the circuit, leading to a single differential equation model, see,
e.g. [4]. More recently, a renewed interest in power converters
has originated from the rise of switching/hybrid modeling
paradigms [3], [5]–[13], and new perspectives on their control
were proposed, including time-based switching, state-event
triggered control, and optimization-based control.

In this paper, motivated by the need of converters that
robustly adapt to changes in renewable energy systems, we
consider the modeling and robust control of a DC-DC Boost
converter. As a difference to previous approaches, in which
models only capture steady state modes of operation (see,
e.g., [6], [7]), we propose a model that includes all possible
modes of operation of the converter, including the discontin-
uous conduction mode. In this way, our model captures both
transient behavior and every possible state of the system. Our
proposed model consists of a switching differential inclusion
with constraints. Using hybrid systems tools, we study the
properties induced by a controller that triggers switches of
the differential inclusion based on the value of the internal
current and output voltage of the converter as well as on the
value of the discrete state of the controller (a logic variable).
We formally prove that the controller we employ, which is
inspired by the one first proposed in [7] and that was studied by
simulations therein, induces robust, global asymptotic stability
of a desired output voltage value. The robustness properties
guarantee proper operation of the converter in the presence
of small noise in the state, unmodeled dynamics, and spatial
regularization to relax the rate of switching. To the best of
our knowledge, these properties of the Boost converter have
not been previously established in the literature. The recently
developed tools for robust stability in hybrid systems [14]form
the enabling techniques to achieve these important results.

The remainder of the paper is organized as follows. After
introducing notation, the principles of operation of the Boost
converter are discussed and our mathematical model is pre-
sented in Section II. A switching control law is presented
in Section III. In Section IV, global asymptotic stability for
the closed-loop system is proven. In addition, the results on
robustness are also presented in Section IV. In Section V,
simulations are performed to illustrate our results. Finally,
concluding remarks are presented in Section VI.

Notation: R denotes the set of real numbers.R
n denotes

the n-dimensional Euclidean space.R≥0 denotes the set of
nonnegative real numbers, i.e.,R≥0 = [0,∞). N denotes the
set of natural numbers including 0, i.e.,N = {0, 1, . . .}. B
denotes the closed unit ball in a Euclidean space centered at
the origin. Given a setS, ∂S denotes its boundary. Given a
vector x ∈ R

n, |x| denotes its Euclidean vector norm, i.e.

|x| =
√∑n

j=1 x
2
j . Given a setK ⊂ R

n and a pointx ∈

R
n, the distance fromx to the setK is denoted by|x|K :=

infy∈K |x − y|. We use the notationco to denote the closed
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convex hull of a set. Forl vectorsxi ∈ R
ni , i = 1, 2, . . . , l,

we denote the vector obtained by stacking all the vectors in
one (column) vectorx ∈ R

n with n = n1 + n2 + . . .+ nl by
(x1, x2, . . . , xl), i.e., (x1, x2, . . . , xl) = [x⊤

1 , x
⊤
2 , . . . , x

⊤
l ]

⊤.
A function α : R≥0 → R≥0 is said to be of classK if it is
continuous, zero at zero and strictly increasing. It is saidto be
of classK∞ if it is of classK and it is unbounded. A function
β : R≥0 × R≥0 → R≥0 is said to be of classKL if β(·, t) is
of classK for each fixedt ≥ 0 andβ(s, ·) is nonincreasing
and satisfieslimt→∞ β(s, t) = 0 for each fixeds ≥ 0.

II. M ODELING

In this section, we describe the principles of operation of
the DC-DC Boost converter. Afterwards, we present a model
covering all possible system modes.
A. Principles of operation

The DC-DC Boost converter is shown in Figure 1. The
Boost circuit consists of a capacitorc, an ideal dioded, a
DC voltage sourceE, an inductorL, a resistorR, and an
ideal switchS. The voltage across the capacitor is denoted
vc, and the current through the inductor is denotediL. The
purpose of the circuit is to draw power from the DC voltage
source, and supply power to the load at a higher DC voltage
value. This task is accomplished by first closing the switch to
store energy in the inductor, and then opening the switch to
transfer that energy to the capacitor, where it is availableto
the load.

+ −

−

+

−

+

+

−

+ −

+

−

vc

iL

vd

id

vSiS
S

d

R
E c

L

Fig. 1.Schematic representation of the DC-DC Boost converter.

The presence of switching elements (d and S) causes the
overall system to be of a switching/hybrid nature. Depending
on the (discrete) state of the diode and of the switch, one can
distinguish four modes of operation [11]:

mode 1:(S = 0, d = 1) mode 2:(S = 1, d = 0)
mode 3:(S = 0, d = 0) mode 4:(S = 1, d = 1)

The circuits associated to each mode are shown in Figure 2.
When the system is in mode 1, in which the switch is open
(S = 0) and the diode is conducting (d = 1), the inductor
is charged by the input source, which, also offloads power to
the resistor. In mode 2, in which the switch is closed (S = 1)
and the diode is blocking (d = 0), the inductor is charged by
the input source and the capacitor is offloading its charge to
the load. In mode 3, the capacitor offloads its charge to the
load. Finally, mode 4, in which the switch is closed, the diode
is conducting and the voltage in the capacitor is zero, hence
only the inductor is charging. Using the ideal diode model:

conducting(d = 1) : id ≥ 0, vd = 0

blocking (d = 0) : id = 0, vd ≤ 0

and the ideal switch model:

conducting(S = 1) : vS = 0

blocking (S = 0) : iS = 0

the differential equations for each mode, along with the
specific values ofS andd, are given by

1 :





S = 0

d = 1
d
dt
vc = − 1

Rc
vc +

1
c
iL

d
dt
iL = − 1

L
vc +

E
L

2 :





S = 1

d = 0
d
dt
vc = − 1

Rc
vc

d
dt
iL = E

L

3 :





S = 0

d = 0
d
dt
vc = − 1

Rc
vc

d
dt
iL = 0

4 :





S = 1

d = 1
d
dt
vc = 0

d
dt
iL = E

L

In addition to the differential equations indicated above,the
inequalities present in the ideal diode model impose further
algebraic conditions on the statesiL andvc for each individual
mode. These mode-dependent conditions can be derived by
inspecting for which statesiL andvc a flow can take place in
the mode over a time interval of positive length. This leads to
the following conditions:

• For the diode to stay conducting while in mode 1, since
id = iL, we need

iL > 0, or (vc ≤ E, iL = 0).

Note that the ideal diode model being used implies that
during this mode we should havevd = 0.

• For the diode to stay blocking during mode 2, sincevd =
−vc, we should have

vc ≥ 0.

Note that in this modeiL is unconstrained.
• For the diode to be blocking during mode 3, we should

havevd ≤ 0. Since for the configuration in mode 3, we
havevd = E − vc, then this implies

vc > E.

Moreover, since the diode is blocking and the switch is
open, we shall have

iL = 0.

• For the diode to stay conducting in mode 4 (which
requiresvd = 0) sincevd = −vc, we have

vc = 0.

Since the diode is grounding the capacitor, no current can
circulate through the diode, hence

id = 0.

Combining the conditions above with the differential equations
for each mode, the resulting constrained algebraic differential
equations for each mode are given in terms of(S, vc, iL) as
follows:

1 :





S = 0
d
dt
vc = − 1

Rc
vc +

1
c
iL

d
dt
iL = − 1

L
vc +

E
L

iL > 0, or (vc ≤ E, iL = 0)

2 :





S = 1
d
dt
vc = − 1

Rc
vc

d
dt
iL = E

L

vc ≥ 0
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3 :





S = 0
d
dt
vc = − 1

Rc
vc

d
dt
iL = 0

vc > E, iL = 0

4 :





S = 1
d
dt
vc = 0

d
dt
iL = E

L

vc = 0

L

E
c R

+

-

+

+

-

-

+ -

(a) mode 1

c R
+

+

-

-

(b) mode 3

E

L

c R
+ +

+

+

-

-

-

-

(c) mode 2

L

E

+

+

-

-

(d) mode 4

Fig. 2. Four different modes for the Boost converter.
From the above, it is clear that mode 2 and mode 4 can be

combined into a single mode 2’ with the following dynamics:

2’ :





S = 1
d
dt
vc = − 1

Rc
vc

d
dt
iL = E

L

vc ≥ 0, any sign ofiL

Therefore, the value of the switchS determines whether
the system is in mode 1/mode 3 (S = 0, iL ≥ 0) or
mode 2’ (S = 1, vC ≥ 0). Note that it is possible that
when S changes,vc and iL may not be in the regions of
viability in the subsequent mode, in which casevc and iL
should be appropriately reset. As a physical interpretation of
a reset, one might think of an instantaneous discharge of
the capacitor, which will happen if the capacitor is short-
circuited. These resets can be formalized through consistency
projectors mapping the state to the algebraic conditions ofthe
subsequent mode [9], [10], [15], [16]. Although, a full model
with resets can be derived, see [11], for practical operation of
the converter it is clearly undesirable that such resets occur as
they may damage the circuit. Therefore, to avoid such resets,
our controller will allowS = 0 only wheniL ≥ 0, andS = 1
only when vc ≥ 0. Indeed, in Section III-A, we propose a
controller that guarantees that after every switch ofS, the
algebraic conditions of the subsequent mode are satisfied.

For convenience, we definex := (vc, iL) and the algebraic
constraints for the modes above in terms of sets as follows:

M1 = {x ∈ R
2 : iL > 0} ∪ {x ∈ R

2 : vc ≤ E, iL = 0},

M2′ = {x ∈ R
2 : vc ≥ 0},

M3 = {x ∈ R
2 : vc > E, iL = 0}

Hence,S = 0 is only allowed whenx ∈ M1∪M3 andS = 1
is only allowed whenx ∈ M2′ . Using these restrictions, we
can derive a switched differential inclusion encompassingall
the modes of operation derived so far.
B. Mathematical model

In this section, we define a mathematical model of the
Boost converter in which the differential equations in each

mode define the continuous dynamics. Since the vector field
associated with mode 1 is

fa(x) =

[
− 1

Rc
vc +

1
c
iL

− 1
L
vc +

E
L

]

and the vector field associated with mode 3 is

fb(x) =

[
− 1

Rc
vc

0

]

the resulting vector field forS = 0 is discontinuous. To
establish robust asymptotic stability of the upcoming closed-
loop system, a Krasovskii regularization1 of the vector field
will be performed following the ideas in [17], [18]. The system
will take the form of a switched differential inclusion with
constraints, namely

ẋ ∈ FS(x) x ∈ M̃S (1)

whereS ∈ {0, 1} is the position of the switchS, and for
eachS ∈ {0, 1}, FS(x) is the Krasovskii regularization of the
vector fields andM̃S is the corresponding regularization of
the sets capturing the regions of validity for each mode.

Following [18], the regularization of̃MS for S = 0 is M̃0 =
M1 ∪M3 = {x ∈ R

2 : iL ≥ 0}, and M̃S for S = 1 is
M̃1 = M2′ = {x ∈ R

2 : vc ≥ 0}. Note that forx ∈ M3, fa
andfb reduce to

fa(x) =

[
− 1

Rc
vc

− 1
L
vc +

E
L

]
, fb(x) =

[
− 1

Rc
vc

0

]
.

Then, we have the discontinuous vector field for mode 1 and
mode 3 as

f0(x) =

{
fa(x) if x ∈ M1;

fb(x) if x ∈ M3.

The regularization off0 at eachx ∈ M̃0 is given by

F0(x) :=
⋂

δ>0

cof0
(
(x+ δB) ∩ M̃0

)
(2)

=





{fa(x)} if x ∈ M1 \M3

co

{[
− 1

Rc
vc

− 1
L
vc +

E
L

]
,

[
− 1

Rc
vc

0

]}
if x ∈ M3

=





{[
− 1

Rc
vc +

1
c
iL

− 1
L
vc +

E
L

]}
if x ∈ M1 \M3

{− 1
Rc

vc} ×
[
− 1

L
vc +

E
L
, 0
]

if x ∈ M3

Since the vector field for mode 2’ is given byf1(x) =[
− 1

Rc
vc

E
L

]
which is continuous, we have for eachx ∈ M̃1

F1(x) = {f1(x)} (3)
The model (1) is a constrained switched differential in-

clusion. This is a key difference with previous modeling
approaches (see, e.g. [6], [7]) where the third mode is omitted.
Based on this complete model, we propose a controller that
induces robust, global asymptotic stability of desired (output
voltage) setpoints in the next section. As we will see, the
hybrid systems approach proposed here is the enabling tool
to achieve this result.

III. STATE-DEPENDENT SWITCHING LAW

In this section, a switching control law for the model (1)
of the Boost converter is proposed. In Section IV, we will

1A Krasovskii regularization of this vector field is used due to the fact that
the discontinuity occurs on a set of measure zero. A Filippovregularization
would not account for discontinuities on such sets and wouldyield an incom-
plete mapping for mode 1 and mode 3. In fact, the Filippov regularization
would yield a singleton setfa on M1.
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establish that this control law induces a robust and global
asymptotic stability property. Besides that, we determine
various robustness properties of the closed-loop system. To
propose the control law, we will use a control Lyapunov
function (CLF) approach, see [19].
A. Control Lyapunov function

Given a desired set-point voltagev∗c > 0 and currenti∗L > 0,
let x∗ = (v∗c , i

∗
L) and consider the CLF candidate

V (x) = (x − x∗)⊤P (x− x∗) (4)

whereP =

[
p11 0
0 p22

]
> 0. To establish that the function

V is indeed a CLF [19], we need to show that for each state
x = (vc, iL) of relevance there exists a choice ofS ∈ {0, 1}
such that the derivative ofV along (1) is negative. To do so,
we compute the inner product between the gradient ofV and
the directions belonging to the (set-valued) mapFS in (1).

• For S = 0 and eachx ∈ M1 \M3, we get

〈∇V (x), F0(x)〉 = 〈∇V (x), fa(x)〉

= 2p11(vc − v∗c )

(
−

1

Rc
vc +

1

c
iL

)
+

2p22(iL − i∗L)

(
−vc + E

L

)
(5)

• For S = 0 and eachx ∈ M3, sinceF0(x) is a set, we
have

max
ξ∈F0(x)

〈∇V (x), ξ〉 =

max
ξ1=−

1
Rc

vc, ξ2∈[− 1
L

vc+
E
L

, 0]
〈[2p11(vc − v∗c ), 2p22(iL − i∗L)]

⊤
, ξ〉 =

2p11(vc − v∗c )

(
−

1

Rc
vc

)
+ max

ξ2∈[− 1
L

vc+
E
L

, 0]
2p22(iL − i∗L)ξ2 =





2p11(vc − v∗c )
(
− 1

Rc
vc
)

if iL ≥ i∗L
2p11(vc − v∗c )

(
− 1

Rc
vc
)
+

2p22(iL − i∗L)
(
− 1

L
vc +

E
L

)
if iL < i∗L

Sincei∗L > 0 and every point inM3 is such thatiL = 0,
inequality iL ≥ i∗L will never happen for points inM3.
Then, forS = 0 and eachx ∈ M3, we have

max
ξ∈F0(x)

〈∇V (x), ξ〉 = 2p11(vc − v∗c )

(
−

1

Rc
vc

)
+

2p22(iL − i∗L)

(
−
1

L
vc +

E

L

) (6)

• For S = 1 and eachx ∈ M2, we get

〈∇V (x), F1(x)〉 = 〈∇V (x), f1(x)〉 =

2p11(vc − v∗c )

(
−

1

Rc
vc

)
+ 2p22(iL − i∗L)

(
E

L

)
(7)

Define for eachx ∈ R
2

γ0(x) := 2p11(vc − v∗c )

(
−

1

Rc
vc +

1

c
iL

)
+

2p22(iL − i∗L)

(
−vc + E

L

) (8)

γ1(x) := 2p11(vc−v∗c )

(
−

1

Rc
vc

)
+2p22(iL−i∗L)

(
E

L

)
(9)

Combining (5)-(7) and observing that the expressions in (5)
and (6) are equal, for eachS ∈ {0, 1} andx ∈ M̃S we get

max
ξ∈FS(x)

〈∇V (x), ξ〉 =

{
γ0(x) if S = 0
γ1(x) if S = 1

(10)

The sign of the functionsγ0, γ1 will be used to define a
state-dependent switching control law assigning the control
input S. Let

Ax = {x ∈ R
2 : vc = v∗c , iL = i∗L} (11)

define the isolated point to be stabilized, namely, the point
(vc, iL) = x∗ = (v∗c , i

∗
L). The following lemma establishes a

property of the functionsγ0, γ1 that will be instrumental in
our stability result in Section IV-A and, in fact, shows thatV
is a CLF [19] for (1). The constraints̃MS on the switching
are not taken into account at this point, but are incorporated
again later (see Proposition IV.2 below).

Lemma III.1. LetR,E, p11, p22 > 0, p11

c
= p22

L
, v∗c > E, and

i∗L =
v∗

c
2

RE
. Then, for eachx ∈ R

2 \Ax, there existsS ∈ {0, 1}
such that

γS(x) < 0 (12)

Moreover,{x ∈ R
2 : γS(x) = 0, S ∈ {0, 1}} = Ax.

Proof. Consider the functionsγS , S ∈ {0, 1}, using the
relationshipp11

c
= p22

L
, we can rewrite (8) and (9) as

γ0(x) = 2(A0v
2
c +B0vc + C0iL +D0) (13)

γ1(x) = 2(A1v
2
c +B1vc + C1iL +D1) (14)

where the coefficients,A0 throughD0 andA1 throughD1 are
defined as

A0 = −
p11
Rc

A1 = −
p11
Rc

B0 =
p11v

∗
c

Rc
+

p22i
∗
L

L
B1 =

p11v
∗
c

Rc

C0 = −
p11v

∗
c

c
+

p22E

L
C1 =

p22E

L

D0 = −
p22i

∗
LE

L
D1 = −

p22i
∗
LE

L
To guarantee that for every(vc, iL) ∈ R

2 \Ax there exists an
S ∈ {0, 1} such thatγS(x) < 0 and that{x ∈ R

2 : γS(x) =
0, S ∈ {0, 1}} = Ax, we consider the setsΓS := {x ∈ R

2 :
γS(x) < 0} for S ∈ {0, 1}. We will also use the boundaries
of the setsΓS given by ΩS := {x ∈ R

2 : γS(x) = 0}
for S ∈ {0, 1}, which are parabolas. We first derive explicit
expressions forΓS , S ∈ {0, 1}, next.

(i) For x ∈ Γ0, we haveA0v
2
c + B0vc + C0iL + D0 < 0.

Substituting the coefficientsA0 throughD0, using p11

c
=

p22

L
andv∗c > E gives

iL >
1

E − v∗c

(
1

R
v2c −

(
v∗c
R

+ i∗L

)
vc + i∗LE

)
(15)

(ii) For x ∈ Γ1, we haveA1v
2
c + B1vc + C1iL + D1 < 0.

Substituting the coefficientsA1 throughD1, using again
p11

c
= p22

L
gives

iL <
1

RE
v2c −

v∗c
RE

vc + i∗L (16)

This gives the expressions

Γ0 =

{
(vc, iL) ∈ R

2 : iL >

1

E − v∗c

(
1

R
v2c −

(
v∗c
R

+ i∗L

)
vc + i∗LE

)} (17)

Γ1 =

{
(vc, iL) ∈ R

2 : iL <
1

RE
v2c −

v∗c
RE

vc + i∗L

}
(18)

and similar ones forΩS , S ∈ {0, 1}. Both parabolasΩS ,
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S ∈ {0, 1}, have their axis of symmetry parallel to theiL-
axis. Hence, we have to show now thatΓ1 ∪ Γ2 = R

2 \ Ax

andΩ0 ∩Ω1 = Ax.
To shows this, note that 1

(E−v∗
c )

< 0 indicating thatΩ0 is
a “downward” parabola (it has a maximum iniL-direction)
andΓ0 is the region above it. Similarly, since1

RE
> 0, Ω1 is

an “upward” parabola (it has a minimum iniL-direction) and
Γ1 is the region below it. See Figure 3 for an illustration. If
we now can show thatΩ0 ∩ Ω1 = Ax, then it follows that
Γ1∪Γ2 = R

2 \Ax as in Figure 3, and the proof of the lemma
is complete.

vc

iL

γ0(x) = 0

γ0(x) < 0

γ0(x) < 0

γ1(x) = 0

γ1(x) < 0

γ1(x) < 0

Fig. 3. An example of a possible sign distribution for the two
parabolasγ0(x) = 0 andγ1(x) = 0.

To show thatΩ0 ∩ Ω1 = Ax, we observe that if(vc, iL) ∈
Ω0 ∩ Ω1 we must have that the right-hand sides of (16) and
(15) are equal, which leads to(

−
1

R
v2c +

(
v∗c
R

+ i∗L

)
vc − i∗LE

)
1

E − v∗c
=

−
1

RE
v2c +

v∗c
RE

vc − i∗L.

(19)

Sincei∗L =
v∗

c
2

RE
, we have

−
v∗c
RE

(v2c − 2v∗cvc + (v∗c )
2) = 0,

which has a unique solutionvc = v∗c , and implies thatΩ0∩Ω1

is indeed{(v∗c , i
∗
L)}. This completes the proof.

The property in Lemma III.1 shows indeed thatV is a CLF-
like function in the sense that

min
S∈{0,1}

max
ξ∈FS(x)

〈∇V (x), ξ〉 < 0 ∀x ∈ R
2 \ Ax (20)

This condition can be used to derive a suitable stabilizing
control law, as will be done next.

B. Proposed control law

The condition obtained in (20) naturally leads to the fol-
lowing selection of the inputS, which is a nonlinear system
with discontinuous right-hand side (if we forget for a moment
the constraints on the switching in (1)):

S = argmin
S′∈{0,1}

max
ξ∈FS′ (x)

〈∇V (x), ξ〉 (21)

The control law, which we will propose below, will take
advantage of this observation. However, the direct application
of (21) as the switching law, leads to a discontinuous control
law and results in chattering (sliding motions; see [7]), which
is undesirable in practice. Therefore, we will propose a modi-
fied logic-based control law (and a corresponding regularized
closed-loop system), which is practically feasible. In fact,
for the resulting (regularized) controller various robustness
properties can be derived and proved mathematically based on
the hybrid system setup particularly chosen for this purpose
(see Section IV below).

Let q ∈ {0, 1} be a logic state indicating the value of the
actual inputS. The envisioned logic-based control law will
select the input according to the current active inputq and
the value of the state, namely, when certain well-designed
functions γ̃q become zero. These functions̃γq are control
design parameters that are related to the functionsγq in (13)
and (14) and will be chosen as in the following lemma.

Remark III.2. The functions̃γq are not chosen exactly equal
to γq, because mode 1 would have an equilibrium(vc, iL) =(
E, E

R

)
exactly atγ0(x) = 0. This would prevent to achieve

global asymptotic stability of the desired setpoint.

Lemma III.3. Let R,E, p11, p22 > 0, p11

c
= p22

L
, v∗c > E,

andi∗L =
v∗

c
2

RE
. For eachq ∈ {0, 1}, let γ̃q be given forx ∈ R

2

as
γ̃0(x) = γ0(x) +K0 (vc − v∗c )

2 (22)

γ̃1(x) = γ1(x) +K1 (vc − v∗c )
2 (23)

andK0 ∈
(
0, 2p11

Rc

)
, K1 ∈

(
0, 2p11

Rc

)
. The following hold:

(a) For q ∈ {0, 1} and x /∈ Ax we have that̃γq(x) ≥ 0
implies γ̃1−q(x) < 0;

(b) For q ∈ {0, 1} and x /∈ Ax we have that̃γq(x) ≤ 0
impliesγq(x) < 0;

(c) For x ∈ R
2 it holds that

1
C0

lim
K0→

2p11
Rc

γ̃0(x) = 1
C1

lim
K1→

2p11
Rc

γ̃1(x) = −
2i∗L
v∗
c
vc + 2iL,

lim
K0→0

γ̃0(x) = γ0(x), lim
K1→0

γ̃1(x) = γ1(x).

The proof is given in Appendix A.
Based on the properties derived in the lemma above we

can define an appropriate (robustly) stabilizing control law. In
fact, the control law makes sure that for the current value of
q and x it holds thatγ̃q(x) ≤ 0, which implies by property
(b) that as long asx /∈ Ax, we have thatγq(x) < 0, which, in
turn, implies that the CLFV in (4) is decreasing. Oncẽγq(x)
becomes 0, a switch occurs fromq to 1−q, and, due to property
(a) in the above lemma, we have then thatγ̃1−q(x) < 0
if x /∈ Ax, and hence, the switching is well defined. The
constantsK0 and K1 control the shape and position of the
switching boundaries, which are parabolas in the(vc, iL)
plane. In fact, according to property(c) of Lemma III.3, as
K0 andK1 approach zero, the switching boundary approaches
the zero level set ofγ0(x) andγ1, respectively. Moreover, as
K0 andK1 approach2p11

Rc
, the switching boundaries approach

the line given by the pointsx such that− 2i∗L
v∗
c
vc + 2iL = 0.

S is assigned toq, namely,S = q, and combining this with
the constraints in (1), leads to the hybrid systemH given by

[
ẋ
q̇

]
∈

[
Fq(x)
0

]
=: F (x, q) (x, q) ∈ C

[
x+

q+

]
=

[
x

Gq(x)

]
=: G(x, q) (x, q) ∈ D

(24)

where

C =
{
(x, q) : x ∈ M̃0, γ̃0(x) ≤ 0, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ̃1(x) ≤ 0, q = 1

}

D =
{
(x, q) : x ∈ M̃0, γ̃0(x) = 0, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ̃1(x) = 0 q = 1

}
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and, for each(x, q) ∈ R
3, Gq is continuous and at points

(x, q) ∈ R
2 × {0, 1} is given by

Gq(x) =

{
{1} if q = 0
{0} if q = 1

The flow mapF of the hybrid systemH is constructed by
stacking the mapFS (with S = q) of (1) and zero, while the
flow set enforces the constraints in (1) as well as those of
the switching mechanism of the proposed controller. In this
way, the continuous evolution ofx is according to (1) under
the effect of the proposed controller, whileq does not change
during flows. The jump mapG is such thatx does not change
at jumps andq is toggled at jumps, while the jump set enforces
the jumps ofGq(x) within the constraints of (1), as we will
prove below (see Proposition IV.2).

Sample contour plots and switching boundariesγq(x) = 0
and γ̃q(x) = 0 of the proposed controller for a particular set
of parameters (x∗ = (7, 3.27), E = 5V, R = 3Ω, c =
0.1F, L = 0.2H, p11 = c

2 , p22 = L
2 , and varyingK0 and

K1) are shown in Figure 4. By varying the constantsK0 ∈

vc

iL

γ0(x) < 0

γ0(x) > 0

x∗

0 2 4 6 8 10
0

1

2

3

4

5

vc

iL

γ1(x) > 0

γ1(x) < 0

x∗

0 2 4 6 8 10
0

1

2

3

4

5

0 2 4 6 8 10
0

1

2

3

4

5

vc

iL

x∗

γ0(x) = 0

γ1(x) = 0

γ̃0(x) = 0,K0 = 0.14

γ̃1(x) = 0,K1 = 0.14

γ̃q(x) = 0,Kq =
2p11
Rc

Fig. 4. The switching boundariesγq(x) = 0 and γ̃q(x) = 0,
whenx∗ = (7, 3.27), E = 5V, R = 3Ω, c = 0.1F, L = 0.2H,
p11 = c

2 , p22 = L
2 , and different values forK0 andK1.

(0, 2p11

Rc
) andK1 ∈ (0, 2p11

Rc
), the shape and the position of

the switching boundaries can be controlled. Some examples
are shown in Figure 4. Note that the switching boundaries can
also be modified by changing system parametersR and E
(because of uncertainties in supply and demand of renewable
energy sources).

In the next section we derive important properties of the
resulting closed-loop systemH.

IV. STABILITY AND ROBUSTNESS PROPERTIES

To prove closed-loop properties of the hybrid systemH
regarding stability and robustness, we first recall some pre-
liminaries.

A. Preliminaries on hybrid systems

Depending on the flow and the jump dynamics, solutions
to the closed-loop systemH evolve either continuously or
discretely. Following [20], we treat the number of jumps as
an independent variablej next to the usual time and we
parameterize the hybrid time by(t, j). Solutions toH will
be given on hybrid time domains, which are defined next.

First, a setS ⊂ R≥0 ×N is a compact hybrid time domain
if

S =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2 · · · ≤
tJ . A set S ⊂ R≥0 × N is a hybrid time domain if for all
(T, J) ∈ S, S ∩ ([0, T ] × {0, 1, . . . J}) is a compact hybrid
time domain. A hybrid arc, as defined in [14], is a functionx
defined ondomx that is locally absolutely continuous int on
domx ∩ (R≥0 × {j}) for eachj ∈ N. For hybrid arcsx, we
will use the following definitions regarding its domain:

• suptdom x = sup{t ∈ R≥0 : ∃j ∈ N such that(t, j) ∈
domx}

• supjdom x = sup{j ∈ N : ∃t ∈ R≥0 such that(t, j) ∈
domx}

• sup domx =
(
suptdom x, supjdomx

)

Then, solutions (or trajectories) to the general hybrid system
ξ̇ ∈ F (ξ), ξ ∈ C

ξ+ = G(ξ), ξ ∈ D
(25)

with state ξ ∈ R
n are defined as follows: a hybrid arc

χ : domχ → R
n is a solution to the hybrid system (25)

if χ(0, 0) ∈ C ∪D and

(S1) For allj ∈ N,
χ(t, j) ∈ C for all t
χ̇(t, j) ∈ F (χ(t, j)) for almost allt

such that(t, j) ∈ domχ.
(S2) For all(t, j) ∈ domx such that(t, j + 1) ∈ domx,

χ(t, j) ∈ D, χ(t, j + 1) = G(χ(t, j))
A solution χ is said to be maximal if there does not exist

a solutionχ′ such thatχ is a truncation ofχ′ to some proper
subset ofdomχ′. A solution is called nontrivial ifdomχ
contains at least one point different from(0, 0). A solution is
said to be complete ifdomχ is unbounded.

We will use [14, Proposition 6.10] to prove the existence
and completeness of solutions to the proposed system. For
self-containedness, we recall [14, Proposition 6.10] next.

Proposition IV.1. Let H = (C,F,D,G) satisfy the hybrid
basic conditions, i.e., its data(C,F,D,G) is such that2

(A1) C andD are closed sets;
(A2) F : R3

⇒ R
3 is outer semicontinuous and locally

bounded relative toC, C ⊂ domF , and F (x) is
nonempty and convex for allx ∈ C;

(A3) G : R3 → R
3 is continuous andD ⊂ domG.

2A set-valued mapS : Rn
⇒ Rm is outer semicontinuousat x ∈ Rn if

for each sequence{xi}
∞

i=1
converging to a pointx ∈ R

n and each sequence
yi ∈ S(xi) converging to a pointy, it holds thaty ∈ S(x); see [21, Definition
5.4]. Given a setX ⊂ Rn, it is outer semicontinuous relative toX if the
set-valued mapping fromRn to Rm defined byS(x) for x ∈ X and ∅ for
x 6∈ X is outer semicontinuous at eachx ∈ X. It is locally boundedif, for
each compact setK ⊂ Rn there exists a compact setK ′ ⊂ Rn such that
S(K) := ∪x∈KS(x) ⊂ K ′.
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Take an arbitraryξ ∈ C ∪D. If ξ ∈ D, or

(VC) there exists a neighborhoodU of ξ such that for
everyx ∈ U ∩ C,

F (x) ∩ TC(x) 6= ∅

then there exists a nontrivial solutionφ toH with φ(0, 0) = ξ.
If (VC) holds for everyξ ∈ C\D, then there exists a nontrivial
solution toH from every initial point inC ∪ D, and every
φ ∈ SH, whereSH denotes the set of solutions of the hybrid
systemH, satisfies exactly one of the following conditions:
(a) φ is complete;
(b) domφ is bounded and the intervalIJ , where J =

supj domφ, has nonempty interior andt 7→ φ(t, J) is a
maximal solution toż ∈ F (z), in fact limt→T |φ(t, J)| =
∞, whereT = supt domφ (finite escape time);

(c) domφ(T, J) /∈ C ∪D, where(T, J) = sup domφ.
Furthermore, ifG(D) ⊂ C∪D, then (c) above does not occur.

The following result establishes that every solution to the
closed-loop system is complete.

B. Completeness of trajectories

Proposition IV.2. (Properties of solutions) For eachξ ∈ C ∪
D, every maximal solutionχ = (x, q) to the hybrid system
H = (C,F,D,G) in (24) with χ(0, 0) = ξ is complete.

The proof is given in Appendix B.

C. Closed-loop stability

Our goal is to show that the compact setA in (11) is
asymptotically stable. To this end, we employ the following
stability notion for general hybrid systems [14].

Definition IV.3 (Stability). A compact setA ⊂ R
n is said to

be
• stableif for eachε > 0 there existsδ > 0 such that each

solution χ with |χ(0, 0)|A ≤ δ satisfies|χ(t, j)|A ≤ ε
for all (t, j) ∈ domχ;

• attractiveif there existsµ > 0 such that every maximal
solutionχ with |χ(0, 0)|A ≤ µ is complete and satisfies
lim(t,j)∈domχ,t+j→∞ |χ(t, j)|A = 0;

• asymptotically stableif A is stable and attractive;
• globally asymptotically stableif the attractivity property

holds for every point inC ∪D.

The following result on the structural properties ofH in
(24) is key for robust stability, see [14].

Lemma IV.4. The closed-loop systemH given by(24) sat-
isfies the hybrid basic conditions given by (A1)-(A3) in [14,
Proposition 6.5].

Proof. (A1) follows from the continuity of̃γS for eachS ∈
{0, 1} and the closedness of̃M0 andM̃1. Next, (A2) follows
from the Krasovskii regularization. Lastly, (A3) follows from
the fact that the jump map is continuous.

Using these properties, we are now ready to establish the
following theorem, which states global asymptotic stability of
the compact setA for the hybrid systemH.

Theorem IV.5. Consider the hybrid systemH in (24) with
c, L,R,E,K0,K1 > 0. Given a desired set-point voltage and

current (v∗c , i
∗
L), where v∗c > E and i∗L =

v∗

c
2

RE
, then the

compact set
A = Ax × {0, 1} (26)

is globally asymptotically stable forH.

Proof. Consider the functionV given in (4) and define
Ṽ (x, q) = V (x) for all (x, q) ∈ C ∪D. Note thatṼ (x, q) = 0
whenx ∈ Ax andṼ (x, q) > 0 for all (x, q) ∈ (R2×{0, 1})\
Ax. From the computation of the inner product between∇V
and the direction belonging toFS in (10), for each(x, q) ∈ C
(see Lemma III.1), we have
uc(x, q) := max

ξ∈F (x,q)
〈∇Ṽ (x, q), ξ〉

=





(vc − v∗c )(−
1
R
vc + iL) + (iL − i∗L)(−vc + E) =

γ0(x) ≤ 0 if q = 0,
(vc − v∗c )

(
− 1

R
vc
)
+ (iL − i∗L)E =

γ1(x) ≤ 0 if q = 1

and, for each(x, q) ∈ D, we have

ud(x, q) := max
ξ∈G(x,q)

Ṽ (ξ)− Ṽ (x, q) = 0 (27)

Then, by [14, Theorem 3.18], the set (26) is stable.
To show attractivity, we apply the invariance principle in

[22, Theorem 4.7]. To this end, we compute the zero level set
of uc andud defined above. It follows that

u−1
c (0) = {(x, q) ∈ C : uc(x, q) = 0 } = D

u−1
d (0) = {(x, q) ∈ D : ud(x, q) = 0 } = D

Then, each complete and bounded solution(x, q) to H con-
verges to the largest weakly invariant3 subset of the set

{
(x, q) ∈ C ∪D : Ṽ (x, q) = r

}
∩

(
u−1
c (0) ∪ (u−1

d (0) ∩G(u−1
d (0)))

) (28)

for somer ≥ 0. With the definitions above, the set of points
(28) reduces to

{(x, q) ∈ C ∪D : V (x) = r } ∩D (29)

Note that the only invariant set forH within (29) is A since
solutions cannot stay in (29) unlessvc = v∗c and iL = i∗L
(i.e., r = 0). In fact, solutions to the hybrid systemsH in (24)
cannot stay in a constant level set ofV since the equilibrium
points of the vector fieldF do not belong toC ∩ D and,
for points inC \D, the derivative ofV is negative for each
q ∈ {0, 1}.

D. Robustness to general perturbations

The construction of the controller in Section III-A is such
that the closed-loop systemH has data satisfying the properties
in Lemma IV.4. With these properties, we have that the
asymptotic stability property asserted by Theorem IV.5 is
robust to small perturbations. We consider the following model
of the (regularized) plant in (1) with perturbations:

ẋ ∈ Fq(x + d1) + d2 (30)

3For the set of hybrid trajectoriesS, the setM ⊂ O is said to beweakly
invariant (with respect toS) if it is both weakly forward invariant and weakly
backward invariant; see [22, Definition 3.1], it isweakly forward invariant
(with respect toS) if for eachx0 ∈ M, there exists at least one complete
hybrid trajectoryx ∈ S(x0) with x(t, j) ∈ M for all (t, j) ∈ dom x. It is
weakly backward invariant(with respect toS) if for each q ∈ M, N > 0,
there existx0 ∈ M and at least one hybrid trajectoryx ∈ S(x0) such that
some(t∗, j∗) = q andx(t, j) ∈ M for all (t, j) ≤ (t∗, j∗), (t, j) ∈ dom x.
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whered1 corresponds to state noise andd2 captures unmod-
eled dynamics. Then, defining̃di = (di, 0), the closed-loop
systemH results in the perturbed hybrid system, which is
denoted byH̃, with stateχ := (x, q) and dynamics

χ̇ ∈ F (χ+ d̃1) + d̃2 χ+ d̃1 ∈ C̃

χ+ ∈ G(χ) χ+ d̃1 ∈ D̃

The following result establishes a nominal robustness property
of H.

Theorem IV.6. Under the assumptions of Theorem IV.5, there
existsβ̃ ∈ KL such that, for each̃ε > 0 and each compact set
K ⊂ R

2, there existsδ > 0 such that for any two measurable
functions d̃1, d̃2 : R≥0 → δB, every solutionχ̃ = (x̃, q̃) to
H̃ with χ̃(0, 0) ∈ K × {0, 1} is such that itsx̃ component,
namely,(vc, iL), satisfies

|x̃(t, j)|Ax
≤ β̃(|x̃(0, 0)|Ax

, t+j)+ ε̃ ∀(t, j) ∈ dom χ̃ (31)

Proof. SinceA is asymptotically stable forH, by [23, The-
orem 6.5], there existsβ ∈ KL such that all solutionsχ to
H satisfy |χ(t, j)|A×{0,1} ≤ β(|χ(0, 0)|A×{0,1}, t+ j) for all
(t, j) ∈ domχ. Consider the perturbed hybrid system̃H. Since
d̃1(t), d̃2(t) ∈ δB for all t ≥ 0, the closed-loop system̃H can
be written as

χ̇ ∈ Fδ(χ) χ ∈ Cδ

χ+ ∈ Gδ(χ) χ ∈ Dδ
(32)

where
Fδ(χ) := coF (χ+ δB) + δB,

Gδ(χ) := {η : η ∈ χ′ + δB, χ′ ∈ G(χ+ δB) } ,

Cδ :=
{
χ : (χ+ δB) ∩ C̃ 6= ∅

}
,

Dδ :=
{
χ : (χ+ δB) ∩ D̃ 6= ∅

}
.

This hybrid system corresponds to an outer perturbation ofH
and satisfies (C1), (C2), (C3), and (C4) in [23] (see Example
5.3 in [23] for more details). Then, the claim follows by
Theorem 6.6 in [23] since, for each compact setK of the
state space and each̃ε > 0, there existsδ∗ > 0 such that for
eachδ ∈ (0, δ∗], every solutionχ̃ to H̃ from K satisfies, for
all (t, j) ∈ dom χ̃, |χ̃(t, j)|A ≤ β(|χ̃(0, 0)|A, t+ j) + ε̃. This
establishes the result since|χ̃|Ax×{0,1} = |x̃|Ax

.

Unlike previous results in the literature, this robustness
property implies that our controller is robust to small mea-
surement noise and unmodeled dynamics. In addition to the
robustness to general perturbations shown above, the asymp-
totic stability of A is robust to slow variations of the system
parameters, such as input voltageE and loadR. Such a result
follows from a direct application of [14, Corollary 7.27].

E. Robustness to spatial regularization

When the system reaches its desired steady state using
the controller in Section IV-A, arbitrarily fast switchingmay
occur. To alleviate this problem, spatial regularization is per-
formed to the closed-loop systemH (at the controller level).
More precisely,γ0 and γ1 are modified by using a constant
factor ρ, with ρ ∈ R≥0. The regularized system will be
denoted asHρ, and its flow map is given by the same equation
asH, i.e., [

ẋ
q̇

]
∈

[
Fq(x)
0

]
(x, q) ∈ Cρ

where, now, the flow set is replaced by

Cρ =
{
(x, q) : x ∈ M̃0, γ̃0(x) ≤ ρ, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ̃1(x) ≤ ρ, q = 1

}

Furthermore, the jump map is given by

x+ = x
q+ ∈ Gq(x)

(x, q) ∈ Dρ

where, now, the jump set is given by

Dρ =
{
(x, q) : x ∈ M̃0, γ̃0(x) = ρ, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ̃1(x) = ρ, q = 1

}

and

Gq(x) =

{
{1} if q = 0, γ̃0(x) ≥ ρ
{0, 1} if γ0(x) ≥ ρ, γ1(x) ≥ ρ
{0} if q = 1, γ̃1(x) ≥ ρ

Theorem IV.7. Under the assumptions of Theorem IV.5, there
existsβ ∈ KL such that, for eachε > 0 and each compact
setK ⊂ R

2, there existsρ∗ > 0 guaranteeing the following
property: for eachρ ∈ (0, ρ∗] every solutionχ = (x, q) to
Hρ with χ(0, 0) ∈ K × {0, 1} is such that itsx component
satisfies

|x(t, j)|Ax
≤ β(|x(0, 0)|Ax

, t+j)+ε ∀(t, j) ∈ domχ (33)

The proof follows analogously to the proof of Theorem
IV.6. The property asserted by Theorem IV.7 will be illustrated
numerically in Section V-C. A similar result can be obtained
using temporal regularization.

For the spatially regularized control algorithm, no Zeno be-
havior occurs and certainly no “eventually discrete” solutions
(in the sense of the solution that after some timet only jumps)
exist due to the uniformly finite (nonzero) separation between
the flow and jump sets–this property follows from [22, Lemma
2.7] since the closed-loop system satisfies the properties listed
in Proposition IV.2.

V. SIMULATION RESULTS

In this section, we present several simulation results. First,
in Section V-A, the closed-loop systemH is simulated. Af-
terwards, the closed-loop system with general perturbations is
simulated in Section V-B. Next, due to undesirable chattering,
the spatially regularized systemHρ is simulated in Section
V-C. Afterwards, in Section V-D, simulations are performed
to show how the system can enter the discontinuous conduc-
tion mode. In Section V-E, simulations are performed with
changes in supply and demand of the Boost converter. The
simulations are performed usingE = 5V, R = 3Ω, c = 0.1F,

L = 0.2H, P =

[
c
2 0
0 L

2

]
, andx∗ = (7, 3.27), unless noted

otherwise. We used the HYBRID EQUATIONS TOOLBOX [24]
for performing the simulations.

A. Simulating the closed-loop system

The simulation results for the closed-loop systemH with
initial conditionsx0 = (0, 5) andx0 = (5, 0), for K0 = 0.05
andK1 = 0.12 are shown in Figure 5. As can be seen, the
solutions converge from both initial conditions to the setA in
correspondence with Theorem IV.5.

If we now change the desired setpointx∗ = (v∗c , i
∗
L), which

is only a parameter chance, the CLF and its derivative change

https://hybrid.soe.ucsc.edu/files/preprints/74.pdf
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Fig. 5. Simulation results for the closed-loop systemH with
initial conditionsx0 = (0, 5), q0 = 0 andx0 = (5, 0), q0 = 1,
usingK0 = 0.05, K1 = 0.12, and whereS is only drawn for
the simulation usingx0 = (0, 5).

accordingly, and therefore also the control law. A simulation
for the system with initial conditionx0 = (3, 0), K0 = 0.12,
K1 = 0.08, and desired outputv∗c = 9V and i∗L = 5.4A is
shown in Figure 6.
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Fig. 6. Simulation results with initial conditionsx0 = (0, 3),
q0 = 1, when x∗ = (9, 5.4), K0 = 0.12, andK1 = 0.08,
starting in the setC.

As mentioned at the end of Section IV-D, the closed-loop
system is robust to slowly varying parameters. To illustrate
this, a simulation is performed with a dynamically changing
set pointx∗ and adapting the CLF according to the changing
set-point (the control law is modified accordingly). Initially,
x∗ = (7, 3.27), but when this value is reached, we linearly
increasex∗ from (7, 3.27) to (10, 6.67). This simulation is
shown in Figure 7. As it can be seen, the CLF can adapt to
slow changes in the setpoint. Furthermore, the Boost converter
follows the reference well and eventually reaches the final
setpointx∗ = (10, 6.67).
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Fig. 7. Simulation results with initial conditionsx0 = (5, 0), q0 = 0, K0 =
0.05, K1 = 0.12, when x∗ linearly changes from(7, 3.27) to (10, 6.67)
and whereK0 and K1 change to 0.07, where the black and green curves
denote the switching boundaries forx∗ = (7, 3.27) and x∗ = (10, 6.67),
respectively.

B. Simulating the closed-loop system with general perturba-
tions

The perturbed closed-loop system̃H is simulated, using
K0 = 0.28, K1 = 0.23, and a sinusoidal perturbation injected

in the statex, resulting ind1 = 0.5 sin(500t) andd2 = 0 in
(30). The results for initial conditionsx0 = (8, 5) are shown
in Figure 8. The Boost converter reaches a neighborhood ofx∗

and remains fluctuating due to the presence of the perturbation.
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Fig. 8. Simulation results for the perturbed closed-loop systemH̃ with δ =
0.5, K0 = 0.28, andK1 = 0.23 for initial conditionsx0 = (8, 5), q0 = 1.

To provide insight on the results in Theorem IV.6, more
simulations are performed in order to find a relationship be-
tween the maximal perturbation parameterδ (for the indicated
sinusoidal perturbation, and where(d1, 0), (d2, 0) ∈ δB) and
the ball radius̃ε, which is defined as the size of the ball where
the steady state values converge to (forvc and iL), see (31)
in Theorem IV.6. Note that in this simulationδ is used to
find a value ofε̃. The value of̃ε is approximated for various
initial conditions (and the same sinusoidal perturbation using
different values ofd1) using

ε̃ = lim
t+j→∞

sup
√
(vc(t, j)− v∗c )

2 + (iL(t, j)− i∗L)
2 (34)

In particular here Theorem IV.6 indicatesδ exists.

TABLE I
SIMULATION RESULTS FOR DIFFERENT VALUES OFε.

δ vc(t, j) iL(t, j) ε̃ ε̃/δ0.3

0.01 6.483 3.025 0.571 2.27
0.05 5.682 2.890 1.371 3.37
0.1 5.345 2.532 1.811 3.61
0.25 5.152 2.438 2.025 3.07
0.5 4.808 2.313 2.391 2.94
1 4.116 2.123 3.103 3.10

From the simulation results shown in Table I, wherevc(t, j)
and iL(t, j) denote typical values observed for larget and j
where the system reached its steady state behavior,the relation
betweenδ and ε̃ can now be approximated specifically for
x∗ = (7, 3.27), as

ε̃ ≈ 3δ0.3

C. Simulating the spatially regularized closed-loop system

Now, the spatially regularized closed-loop systemHρ is
simulated. The results for initial conditionsx0 = (0, 5), q0 = 1
andx0 = (5, 0), q0 = 0 for K0 = 0.28 andK1 = 0.12 are
shown in Figure 9. To validate Theorem IV.7, more simulations
are performed (usingK0 = 0.7 andK1 = 0.1) in order to find
a relationship between the regularization parameterρ and the
deviation from the equilibrium given byε in Theorem IV.7
(similarly as in section V-B, see (34)).
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Fig. 9. Simulation results for the spatially regularized closed-loop systemHρ

with ρ = 0.2, K0 = 0.28, andK1 = 0.12 for initial conditionsx0 = (0, 5),
q0 = 1 and x0 = (5, 0), q0 = 0, and whereS is only drawn for the
simulation usingx0 = (5, 0).

TABLE II
SIMULATION RESULTS FOR DIFFERENT VALUES OFρ.

ρ vc(t, j) iL(t, j) ε ε/ρ #SWs

0.01 6.989 3.259 0.013 1.34 1260
0.05 6.951 3.232 0.060 1.20 277
0.1 6.926 3.164 0.127 1.27 140
0.25 6.717 3.026 0.372 1.49 54
0.5 6.520 2.977 0.561 1.12 26

From the simulation results shown in Table II, the relation-
ship betweenρ and ε, specifically forx∗ = (7, 3.27), can
now be approximated asε ≈ 1.3ρ. The last column of the
table shows the number of switches per second over the same
time horizon when a neighborhood of the setA is reached.
As can be seen, the switching rate is reduced significantly by
increasing the spatial regularization parameterρ.

From the simulation results, the relationship betweenρ and
ε, specifically forx∗ = (7, 3.27), can now be approximated
asε ≈ 1.3ρ.

Simulations for different values ofρ and different initial
conditions are shown in Figure 10. As it can be seen, the
larger the spatial regularization (the largerρ) the larger the
steady state error will be, as expected. Furthermore, the
switching rate is reduced significantly by increasing the spatial
regularization parameterρ. Eventually, whenρ becomes too
large, the controller may not be able to stabilize (a small regio
around) the desired pointx∗ any longer.

D. Simulating the discontinuous conduction mode

In the next simulation we show how the system can enter the
discontinuous conduction mode, thereby illustrating the rele-
vance of the employed model including this mode explicitly;
see [25]. The system parameters are nowE = 3V, R = 3Ω,
and x∗ = (4, 1.78). In Figure 11, the simulation results for
ρ = 0.1, K0 = 0.22, and K1 = 0.13 are shown. As can
be seen, the system starts in mode 1 untiliL becomes zero,
whereafter the system switches to mode 3. Next, the system
remains in mode 3 until it hits the boundarỹγ0(x) = ρ and
switches to mode 2. Afterwards, switching between mode 1
and mode 2 occurs and a neighborhood of the pointx∗ is
reached. Note that the closed-loop system works for a certain
time period in the discontinuous conduction mode, showing
the importance to include this mode in the overall model and
global stability analysis.

E. Robustness to changes in supply and demand

The input voltageE and loadR are now varied to assess
the robustness of the spatially regularized control strategy to
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Fig. 10. Simulation results using different spatial regularization ρ for different
initial conditions andx∗ = (7, 3.27), usingK0 = 0.33 andK1 = 0.12.
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Fig. 11. Simulation results forE = 3V, R = 3Ω, ρ = 0.1, K0 = 0.22, and
K1 = 0.13, for initial condition x0 = (15, 2), q0 = 0 andx∗ = (4, 1.78).

such changes. During the next simulation, the controller is
observing the changes inE andR and is adapting accordingly,
i.e., i∗L, E andR are now time-varying in the CLF. Figure 12
shows a simulation whereE is increased after 2 seconds from
2.5V to 5V andR is decreased after 4 seconds from3Ω to
2Ω, the switching boundaries for the three different situations
are shown as well. As it can be seen, a neighborhood ofv∗c is
reached in all three situations, which means that the controller
is able to cope with variations in the supplyE and demand
R.

In the next simulation, again input voltageE and load
R are varied, but now the CLF/controller is not observing
these variations, consequently, the controller is based ona
constantE = 5V and R = 3Ω. During the simulation,E
is decreased after 2 seconds from 5 to 4V, and after 4 seconds
back to 4V,R is decreased after 6 seconds from 3 to 2.5Ω,
and after 8 seconds increased to 3Ω again. As can be seen
in Figure 13, the solutions converge to a neighborhood of the
setA, however the performance decreases when theE andR
are not identical to the parameters used for the CLF. Hence,
adapting the controller to measured fluctuations in supplyE
and demandR is certainly beneficial.

VI. CONCLUSIONS

In this paper, a hybrid system approach to the control of
the Boost converter was presented. First of all, a constrained
switched system model with discontinuous right-hand side
for all the modes was derived (including the discontinuous
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Fig. 12. Simulation results for a varying input voltageE and a varying load
R with an adapting CLF andρ = 0.5, K0 = 0.56/0.28/0.42, andK1 =
0.05/0.12/0.18, respectively, for initial conditionx0 = (0, 5), q0 = 0.
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Fig. 13. Simulation results for a varying input voltageE and a varying load
R with a constant CLF andρ = 0.5, K0 = 0.28, andK1 = 0.12 for initial
conditionx0 = (0, 5), q0 = 0.

conduction mode). For this model, a suitable Krasovskii reg-
ularization was determined, leading to a constrained switched
differential inclusion. Based on this modeling setup a control
Lyapunov function-based control design procedure was pro-
posed. By formalizing the control setup in the hybrid systems
framework of [14] and establishing important basic properties
of the control scheme, various indispensable stability and
robustness properties of the closed-loop system were derived.
This is the first time that these essential properties are formally
established for this electrical circuit. This article demonstrates
the importance of hybrid systems tools for the analysis of
the DC-DC Boost converter. The same tools can be used for
the study of other converters. We hope the presented results
stimulate the use of hybrid system tools for the analysis of
general power systems.

Future work will involve the investigation of the state-
dependent switching control law using the hybrid system
framework for other type of converters.

APPENDIX A
PROOF OFLEMMA III.3

To show(b), note that we can rewrite (22) and (23) as

γ0(x) = γ̃0(x)−K0 (vc − v∗c )
2

γ1(x) = γ̃1(x)−K1 (vc − v∗c )
2

BecauseK0,K1 > 0, γ̃q(x) ≤ 0 impliesγq(x) < 0 if vc 6= v∗c .
If vc = v∗c and iL 6= i∗L (as otherwisex = x∗), we have

γ̃q(x) = γq(x) ≤ 0. However, we know that̃γq(x) = γq(x) =
0 cannot occur, as together withvc = v∗c this would imply
iL = i∗L, which would be a contradiction. Hence, also in this
caseγ̃q(x) = γq(x) < 0, and the proof of property(b) is
complete.

The proof of(a) follows analogously to the proof of lemma
III.1. First define

γ̃0(x) = γ0(x) +K0 (vc − v∗c )
2 = γ0(x) +K0δ0(vc) (35)

γ̃1(x) = γ1(x) +K1 (vc − v∗c )
2
= γ1(x) +K1δ1(vc) (36)

we consider the sets̃Γq := {x ∈ R
2 : γ̃q(x) < 0} for

q ∈ {0, 1}. We will also use the boundaries of the setsΓ̃q

given byΩ̃q := {x ∈ R
2 : γ̃q(x) = 0} for q ∈ {0, 1}, which

are parabolas. Now definẽΓ0 and Γ̃1 by deriving (35) and
(36) in similar forms as in (17) and (18)

Γ̃0 =

{
(vc, iL) ∈ R

2 : iL >
1

E − v∗c(
1

R
v2c −

(
v∗c
R

+ i∗L

)
vc + i∗LE +K0δ0(vc)

)} (37)

Γ̃1 =

{
(vc, iL) ∈ R

2 : iL <

1

RE
v2c −

v∗c
RE

vc + i∗L +
K1δ1(vc)

E

} (38)

and similar ones for̃Ωq, q ∈ {0, 1}. Both parabolas̃Ωq,
q ∈ {0, 1}, have their axis of symmetry parallel to theiL-
axis. Then, because 1

(E−v∗
c )

< 0,K0δ0(vc) > 0, andΩ0 is a

“downward” parabola, we know that̃Ω0 is also a “downward”
parabola (it has a maximum iniL-direction) andΓ̃0 is the
region above it. Similarly, sinceΩ1 is an “upward” parabola
and K1δ1(vc)

E
> 0, we haveΩ̃1 is also an “upward” parabola

(it has a minimum iniL-direction) and̃Γ1 is the region below
it. If we now can show that̃Ω0 ∩ Ω̃1 = Ax, then it follows
that Γ̃1 ∪ Γ̃2 = R

2 \ Ax.

To show thatΩ̃0 ∩ Ω̃1 = Ax, we find out thevc, iL value
for the intersection of the two curves̃Ω0 and Ω̃1. When the
right-hand-side of the inequalities in (37) and (38) equalsto
each other, we get a similar expression to (19):

1

E − v∗c

(
1

R
v2c −

(
v∗c
R

+ i∗L

)
vc + i∗LE +K0δ0(vc)

)

=
1

RE
v2c −

v∗c
RE

vc + i∗L +
K1δ1(vc)

E
. (39)

Then, we can rewrite (39) in quadratic form, and find its

simplified discriminant∆ to be
(

v∗

c
2

RE

)2
−i∗L

2, which equals to

zero becausei∗L =
v∗

c
2

RE
. Therefore (39) has a unique solution.

We can find the unique solution by solvingvc from (39), and
the result is

vc =
−
((

1
R
− E−vc

∗

RE
+ 2K0 −

2K1(E−v∗

c )
E

)
v∗c + iL

∗
)

2
(

E−vc∗

RE
− 1

R
−K0 +

K1(E−v∗
c )

E

) = v∗c

while iL = i∗L. This implies thatΩ̃0 ∩ Ω̃1 is the set-point
{(v∗c , i

∗
L)} and therefore completes the proof of property(a).

Property (c) can be shown by explicitly computing the
limits. For finding the limit of the first two equations, we can
rewrite the formulation ofγq(x) with q ∈ {0, 1} as

γq(x) = (1− q)γ0(x) + qγ1(x)

= −α(vc − v∗c )
2 + (βq + C0)

(
−
2i∗L
v∗c

vc + 2iL

)

whereα = 2p11

Rc
, β =

p11v
∗

c

c
andC0 is given in the proof for

Lemma III.1. Then, we get an expression

γ̃q(x) = (Kq − α)(vc − v∗c )
2 + (βq + C0)

(
−
2i∗L
v∗c

vc + 2iL

)

(40)

We discuss the following cases whenKq → α,
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• if q = 0, we have the limit of (40) expression as

lim
K0→α

γ̃q(x) = C0

(
−
2i∗L
v∗c

vc + 2iL

)
.

• if q = 1, we have the limit of (40) expression as

lim
K1→α

γ̃q(x) = (β + C0)

(
−
2i∗L
v∗c

vc + 2iL

)

=
p11E

c

(
−
2i∗L
v∗c

vc + 2iL

)

= C1

(
−
2i∗L
v∗c

vc + 2iL

)
.

Thus, we complete the proof for the first two limits, and the
last two limits follow naturally from the expressioñγq(x) =
γq(x) +Kq(vc − v∗c )

2.

APPENDIX B
PROOF OFPROPOSITIONIV.2

Proof. We apply Proposition IV.1. First we check the viabil-
ity condition (V C), which requires verifying that for each
(x, q) ∈ C \D, there exists a neighborhoodU of (x, q) such
that

F (x, q) ∩ TC(x, q) 6= ∅ ∀(x, q) ∈ U ∩ C (41)

In fact, note that if(x, q) ∈ C \D, then for any sufficiently
small neighborhoodU of (x, q), it holds that(x, q) ∈ U ∩ C
implies (x̄, q̄) ∈ C \D due to continuity of̃γS , S ∈ {0, 1}.
Therefore, it suffices to show that (we dropped the bars in
x, q)

F (x, q) ∩ TC(x, q) 6= ∅ ∀(x, q) ∈ C \D (42)

To do so, we will first compute the tangent conesTC(x, q) for
the setC as defined just below (24) for(x, q) ∈ C \D:

• q = 0, iL > 0: TC(x, q) = R
2 × {0}

• q = 0, iL = 0: TC(x, q) = R× R+ × {0}
• q = 1, vc > 0: TC(x, q) = R

2 × {0}
• q = 1, vc = 0: TC(x, q) = R+ × R × {0}

Using these calculations, we have the following:
1) For (x, q) ∈ C \D such thatq = 0, iL > 0, (41) trivially

holds.
2) For (x, q) ∈ C \D such thatq = 0, iL = 0, we have to

distinguish two cases based on different set-valued vector
fields in (2) depending ifx ∈ M1 \M3 (i.e. vc < E) or
x ∈ M3 (i.e. vC ≥ E).
a) If x ∈ M1 \M3 and thusvc < E, we have the vector

field
(
fa(x)
0

)
=



− 1

Rc
vc +

1
c
iL

− 1
L
vc +

E
L

0


 ∈ TC(x, q)

because− 1
L
vc +

E
L
> 0.

b) Whenx ∈ M3 and thusvc > E, we have a set-valued
vector field (see (2)) given by

{
−

1

Rc
vc

}
×

[
−
1

L
vc +

E

L
, 0

]
× {0}

Since(− 1
Rc

vc, 0, 0) is an element of the set above and
also lies inTC(x, q), (2) holds.

3) For (x, q) ∈ C \D such thatq = 1, vc > 0, (41) trivially
holds.

4) For (x, q) ∈ C \ D such thatq = 1, vc = 0, the
vector field is given byF1(x) × {0} that only contains
the element(0, E

L
, 0) (see (3)), which lies inTC(x, q) =

R+ × R × {0}. Hence, (42) holds.

In summary, for eachξ ∈ C\D, there exists a neighborhoodU
of ξ such that (41) holds. Thus, according to Proposition IV.1,
there exists a nontrivial solutionχ to H for points inC ∪D.

Now, to show that every maximal solutionχ is complete,
we prove that cases(b) and (c) in Proposition IV.1 cannot
hold, and hence, only case(a) can be true.

Case (b) (finite escape time) cannot happen due to the
fact that every maximal solutionχ is bounded. Indeed, using
lemma III.1 and property(b) of lemma III.3, the functionV
in (4), along a maximal solutionχ, has non-positive derivative
for flows and non-positive changes at jumps. SinceV is
quadratic it upper bounds the norm of the state (relative to the
desired set point) and has compact sub-level sets. Therefore,
limt→T |χ(t, j)| ≤ M < ∞ for some constantM and
T = suptdomχ.

Case(c) (solutions jumping outsideC∪D4) can be excluded
as well, because below we will show thatG(D) ⊂ C, and thus
G(D) ⊂ C ∪D.

In fact, to complete the proof we establish now thatG(D) ⊂
C and we consider two situations: I.x ∈ D and q = 0, and
II. x ∈ D andq = 1.

I. Let x ∈ D and q = 0, and thus̃γ0(x) = 0 andx ∈ M̃0

(i.e. iL ≥ 0). We will first show that this implies that
x ∈ M̃1 (i.e. vc ≥ 0), i.e.

γ̃0(x) = 0
iL ≥ 0

}
⇒ vc ≥ 0 (43)

This latter implication will follow from the fact that
Ω̃0 := {x ∈ R

2 | γ̃0(x) = 0} is a downward
parabola and the fact that the minimal rootmin{vc |
x ∈ Ω̃0, iL = 0} is non-negative. Indeed, sincẽΩ0 is a
downward parabola, these two facts would give

min{vc | x ∈ Ω̃0, iL ≥ 0} = min{vc | x ∈ Ω̃0, iL = 0}

≥ 0

which is equivalent to (43).

To compute the minimal root, we can use the expression
in (22), showing that the pointsx = (vc, iL) with
γ̃0(x) = 0 (x ∈ Ω̃0) and iL = 0 satisfy

iL = −
Ã0

C0
v2c −

B̃0

C0
vc −

D̃0

C0
= 0

where Ã0 = A0 + K0

2 , B̃0 = B0 − K0v
∗
c , and D̃0 =

D0 +
K0

2 v∗c
2, which can be rewritten as

(
vc −

(
−

B̃0

2Ã0

))2

= −
D̃0

Ã0

+

(
−

B̃0

2Ã0

)2

Then, the rootsvc1,2 of the functioñγ0(x)|iL=0 are given

4Note that flowing outsideC ∪D is not possible due to the closedness of
C andD as formulated in the hybrid basic conditions.
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by

vc1,2 = −
B̃0

2Ã0

±

√√√√−
D̃0

Ã0

+

(
−

B̃0

2Ã0

)2

= −

(
p11 +

p11

E
v∗c −RcK0

−2p11 +RcK0

)
v∗c±

√

−(v∗c )
2 +

(
−

(
p11 +

p11

E
v∗c −RcK0

−2p11 +RcK0

)
v∗c

)2

in terms of system constants. Becausev∗c > E > 0 and
K0 ∈ (0, 2p11

Rc
), min{vc1, vc2} ≥ 0 as long as−(v∗c )

2 +(
−
(

p11+
p11
E

v∗

c−RcK0

−2p11+RcK0

)
v∗c

)2
> 0. The left-hand side of

the inequality can be rewritten as



p11

Rc

(
1−

v∗

c

E

)

K0 −
2p11

Rc


 v∗c

2

which is always positive since conditionsv∗c > E > 0
and K0 ∈ (0, 2p11

Rc
). This establishes (43). Using now

property(a) of Lemma III.3, andγ̃0(x) = 0, we know
that γ̃1(x) ≤ 0 and thusG(x, 0) = (x, 1) ∈ C.

II. Let x ∈ D andq = 1, and thus̃γ1(x) = 0 andx ∈ M̃1

(i.e. vc ≥ 0). Similar to case I. we will first show that
this implies thatx ∈ M̃0 (i.e. iL ≥ 0), i.e.

γ̃1(x) = 0
vc ≥ 0

}
⇒ iL ≥ 0 (44)

To show this we computemin{iL | γ̃1(x) = 0, vc ≥ 0}
and show it is nonnegative. First we observe thatΩ̃1 :=
{x ∈ R

2 | γ̃1(x) = 0} is an upward parabola. Using
the expression in (23), the pointsx = (vc, iL) satisfying
γ̃1(x) = 0 are given by

iL = −
Ã1

C1
v2c −

B̃1

C1
vc −

D̃1

C1

whereÃ1 = A1+
K1

2 , B̃1 = B1−K1v
∗
c , andD̃1 = D1+

K1

2 v∗c
2. The minimum valueiLmin := min{iL | γ̃1(x) =

0} results in two cases, namely

iLmin,1 =
B̃2

1 − 4Ã1D̃1

4Ã1C1

, vcmin,1 > 0, K1 ∈
(
0,

p11
Rc

)

(45)

iLmin,2 = −
D̃1

C1
, vcmin,2 = 0, K1 ∈

[
p11
Rc

,
2p11
Rc

)

(46)
whereiLmin is found by either the vertex of the parabola
or at vc = 0 due to the constraintvc ≥ 0, respectively.
Substituting the expressions of̃A1, B̃1, D̃1 into the right-
hand side of (45) and (46), we have

iLmin,1 =
B̃2

1 − 4Ã1D̃1

4Ã1C1

=
(6p11 − 4K1Rc) v∗c

2

4p11RE (2p11 −K1Rc)

iLmin,2 = −
D̃1

C1
=

(2p11 −K1Rc)v∗c
2

2p11RE

SinceR, c, E, v∗c , p11 > 0, we obtain

iLmin > 0

and thusmin{iL | γ̃1(x) = 0, vc ≥ 0} ≥ min{iL |
γ̃1(x) = 0} = iLmin > 0. This establishes (44). Using
now property(a) of Lemma III.3 andγ̃1(x) = 0, we
know thatγ̃0(x) ≤ 0 and thusG(x, 1) = (x, 0) ∈ C.

This completes the proof.
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