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IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPER

Robust Global Stabilization of the DC-DC Boost

Converter via

Hybrid Control

T.A.F. Theunisse, J. Chai, R.G. SanfeliS=nior Member, IEEEand W.P.M.H. HeemelsSenior Member, IEEE

Abstract—In this paper, we consider the modeling and (robust)
control of a DC-DC boost converter. In particular, we derive
a mathematical model consisting of a constrained switched
differential inclusion that includes all possible modes obperation
of the converter. The obtained model is carefully selectedot
be amenable for the study of various important robustness
properties. For this model, we design a control algorithm tlat
induces robust, global asymptotic stability of a desired otput
voltage value. The guaranteed robustness properties ensair
proper operation of the converter in the presence of noise irthe
state, unmodeled dynamics, and spatial regularization toeduce
the high rate of switching. The establishment of these propées is
enabled by recent tools for the study of robust stability in tybrid
systems. Simulations illustrating the main results are inluded.

Index Terms—Boost converter, DC-DC converters, hybrid con-
trol, stability, robustness, stability.

I. INTRODUCTION

the circuit, leading to a single differential equation mipdee,
e.g. [4]. More recently, a renewed interest in power comvert
has originated from the rise of switching/hybrid modeling
paradigmsl[B],[[5]-+[13], and new perspectives on their aant
were proposed, including time-based switching, statexeve
triggered control, and optimization-based control.

In this paper, motivated by the need of converters that
robustly adapt to changes in renewable energy systems, we
consider the modeling and robust control of a DC-DC Boost
converter. As a difference to previous approaches, in which
models only capture steady state modes of operation (see,
e.g., [6], [7]), we propose a model that includes all possibl
modes of operation of the converter, including the disconti
uous conduction mode. In this way, our model captures both
transient behavior and every possible state of the system. O
proposed model consists of a switching differential inidaos

HE increasing number of renewable energy sources awith constraints. Using hybrid systems tools, we study the

distributed generators requires new strategies for theoperties induced by a controller that triggers switchés o
operation and management of the electricity grid in ordd#he differential inclusion based on the value of the interna
to maintain, and even to improve, the reliability and gyalitcurrent and output voltage of the converter as well as on the
the power supplied. Power electronics play a key role in digalue of the discrete state of the controller (a logic vdgab

tributed generation and in integration of renewable sait®
the electric gridl[2]. A recent challenge for these systesrthé

We formally prove that the controller we employ, which is
inspired by the one first proposed in [7] and that was studyed b

unavoidable variability of the power obtained from renelgabsimulations therein, induces robust, global asymptotibisity
resources, which, in turn, demands conversion technolugly tof a desired output voltage value. The robustness propertie

robustly adapts to changes in the supplies and demands.

guarantee proper operation of the converter in the presence

One type of converter that is widely used in energy co®f small noise in the state, unmodeled dynamics, and spatial
version is the DC-DC Boost converter. This converter drawegularization to relax the rate of switching. To the best of
power from a DC voltage source and supplies power to a loadr knowledge, these properties of the Boost converter have
at a higher DC voltage value. Different approaches have begdt been previously established in the literature. Thertye
employed in the literature for the analysis and the design @éveloped tools for robust stability in hybrid systems [fiofin
such converters. Arguably, the most popular method usedtl@ enabling techniques to achieve these important results

control such converters is Pulse-Width Modulation (PWM). |

The remainder of the paper is organized as follows. After

PWM-based controllers, the switch in the circuit is turned ointroducing notation, the principles of operation of theoBb

at the beginning of each switching period and is turned ofbnverter are discussed and our mathematical model is pre-
when the reference value is lower than a certain carrierasigsented in Sectiof]ll. A switching control law is presented
[3]. The analysis and design of a PWM controller is typicalljh SectionIl. In Sectiod 1V, global asymptotic stabilityrf
carried out by averaging the two steady state configuratbnsthe closed-loop system is proven. In addition, the resuits o
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robustness are also presented in Secfioh IV. In Sefion V,
simulations are performed to illustrate our results. Hnal
concluding remarks are presented in Secfioh VI.

Notation: R denotes the set of real numbeR! denotes
the n-dimensional Euclidean spacR>, denotes the set of
nonnegative real numbers, i.&5( = [0,00). N denotes the
set of natural numbers including 0, i.&\, = {0,1,...}. B
denotes the closed unit ball in a Euclidean space centered at
the origin. Given a sef, 0S5 denotes its boundary. Given a
vectorx € R", |z| denotes its Euclidean vector norm, i.e.

|z = \/>j—, 3. Given a setK’ C R" and a pointz €

R™, the distance from: to the setK is denoted byz|x :
infyex |z — y|. We use the notatiolo to denote the closed



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPER 2

convex hull of a set. Fof vectorsx; € R™, i =1,2,...,1,

we denote the vector obtained by stacking all the vectors in g — g -1

one (column) vector: € R™ with n =ny +ns + ...+ n; by

(x1,22,...,21), I.€., (¥1,29,...,21) = [2],29,...,2]]T. 6{1 =1 2 (z =0

A function a : R>p — R>( is said to be of clas& if it is qilVe = —ﬁvc + %ZL JilVc = —ﬁvc

continuous, zero at zero and strictly increasing. It is $ailde %iL = —%vc + % %iL = %

of classK if it is of class/C and it is unbounded. A function

B :R>p x R>9 — Rx¢ is said to be of clas&L if (-, t) is

of classK for each fixedt > 0 and (s, -) is nonincreasing g -0 g -1

and satisfiedim;_,, 5(s,t) = 0 for each fixeds > 0. P d -1

[1. MODELING 3: a1 4: iy 0

In this section, we describe the principles of operation of arte = “Re'e arte =

the DC-DC Boost converter. Afterwards, we present a model 'l = at'l = 1

Zovgr!ng_ aIII po?smle system modes. In addition to the differential equations indicated abdbe,
- Principles of operation ) o inequalities present in the ideal diode model impose furthe
The DC-DC Boost converter is shown in Figure 1. Theigebraic conditions on the statgsandu. for each individual
Boost circuit consists of a capacitor an ideal dioded, a mode. These mode-dependent conditions can be derived by
DC voltage source, an inductorL, a resistorRz, and an inspecting for which states, andv. a flow can take place in

ideal switchS. The voltage across the capacitor is denotafle mode over a time interval of positive length. This leals t
ve, and the current through the inductor is denotgd The the following conditions:

purpose of the circuit is to draw power from the DC voltage
source, and supply power to the load at a higher DC voltage
value. This task is accomplished by first closing the switch t

« For the diode to stay conducting while in mode 1, since
iqg = i, We need

store energy in the inductor, and then opening the switch to i, >0, or (v, < E, i, = 0).
:Laenfgzé that energy to the capacitor, where it is available Note that the ideal diode model being used implies that
' T Y — during this mode we should havg = 0.

L -—
g s d Pl « For the diode to stay blocking during mode 2, singe=
—uv., we should have

i + ld
— ig
E

I||+

_I._
vs —|ve R ve 2 0.

- Note that in this modé;, is unconstrained.

o For the diode to be blocking during mode 3, we should
havewv, < 0. Since for the configuration in mode 3, we
havev; = F — v, then this implies

The presence of switching elements dnd S) causes the ve > E.
overall system to be of a switching/hybrid nature. Depegdin , . . ) o
on the (discrete) state of the diode and of the switch, one can Moreover, since the diode is blocking and the switch is
distinguish four modes of operation J11]: open, we shall have

mode 1:(S =0,d =1) mode 2:(S=1,d =0) ir, =0.

mode 3:(5 = 0,d = 0) mode 4:(5 =1,d=1) . For the diode to stay conducting in mode 4 (which
The circuits associated to each mode are shown in Figure 2. requiresy; = 0) sincevy = —v., we have
When the system is in mode 1, in which the switch is open
(S = 0) and the diode is conductingl (= 1), the inductor
is charged by the input source, which, also offloads power to Since the diode is grounding the capacitor, no current can
the resistor. In mode 2, in which the switch is closéd 1) circulate through the diode, hence
and the diode is blockingi(= 0), the inductor is charged by
the input source and the capacitor is offloading its charge to
the load. In mode 3, the capacitor offloads its charge to tilBmbining the conditions above with the differential edpras
load. Finally, mode 4, in which the switch is closed, the @iocfor each mode, the resulting constrained algebraic diffiéae

is condupting and_ the volftage in_the capacitor .is zero, hengguations for each mode are given in terms 8fv.,ir) as
only the inductor is charging. Using the ideal diode model: follows:

Fig. 1. Schematic representation of the DC-DC Boost converter.

ve = 0.

1q = 0.

i = N ) > =
condl_Jctlng(d 1) z.d >0,v9=0 S —o g
blOCkIng (d B O) ' = O7’Ud = 0 1: %’Uc = _%UC + %ZL 2. %’Uc = _%Uc
and the ideal switch Imodel. dip = _%’Uc + L di, ==
conducting(S = 1) : vg =0 ir, >0,0r(v.<E,ir=0) | v. >0

blocking (S = 0) : is =0
the differential equations for each mode, along with the
specific values oS andd, are given by
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mode define the continuous dynamics. Since the vector field
associated with mode 1 is

S =1 1 1.
d 1 d _ | TReVet gL }
T a0 el O] ek |
dc'L . at’'l = T and the vector field associated with mode 3 is
Ve > E, 1 = 0 Ve =0

fo(z) = [ —%vc }

the resulting vector field forS = 0 is discontinuous. To
establish robust asymptotic stability of the upcoming etbs
loop system, a Krasovskii regularizatfbof the vector field
will be performed following the ideas i [17],[18]. The sgst
will take the form of a switched differential inclusion with
constraints, namely N
iEFs(w) x € Mg (1)

where S € {0,1} is the position of the switctt, and for
eachS € {0, 1}, Fs(r) is the Krasovskii regularization of the
vector fields andMg is the corresponding regularization of
the sets capturing the regions of validity for each mode.

Following [18], the regularization af/s for S = 0is M =
M,UMs = {z € R* : iy, > 0}, and Mg for S = 1'is

(c) mode 2 (d) mode 4 M, = My = {x € R? : v. > 0}. Note that forz € M, f,
) and f;, reduce to
Fig. 2. Four different modes for the Boost converter. 1, _1,
From the above, it is clear that mode 2 and mode 4 can be f,(z) = { 1 RC_:E ] , folx) = [ R(’)c ¢ } .
combined into a single mode 2’ with the following dynamics: LVe™ T
S =1 Then, we have the discontinuous vector field for mode 1 and
dy 1, mode 3 as )
2. ﬁ.C_ERC c fo(z): fa(ZC) |f x € My;
at'L = T fo(x) If z € Ms.

ve >0, any sign ofiy

Therefore, the value of the switcBH determines whether The regularization offy at eachw € My is given by

the system is in mode 1/mode ¥ (= 0, iy > 0) or Fo(z):= ﬂﬁ)fo ((:v+§IB%)mM0) 2
mode 2' (§ = 1, v¢ > 0). Note that it is possible that §>0

when S changesyp. andi; may not be in the regions of {fa(z)} if €M, \M;
viability in the subsequent mode, in which caseandi, _ ) — Ly, _1, _ _
should be appropriately reset. As a physical interpratatib co —lchr E } ; { F(‘)C ¢ ]} if x € M

a reset, one might think of an instantaneous discharge of . Le . L

the capacitor, which will happen if the capacitor is short- {[ —Rele T S0L }} if 230\ 5
circuited. These resets can be formalized through comsigte = —%vc + % ! 3
projectors mapping the state to the algebraic conditiortbef {—ﬁvc} X [—%vc + %, 0] if € Ms

subsequent model[9]. [10]. [15]. [16]. Although, a full mbde  sjnce the vector field for mode 2’ is given bfi (z) =
with resets can be derived, séel[11], for practical opemnatfo 1
.

the converter it is clearly undesirable that such resetsroas _%UC } which is continuous, we have for eache M,
they may damage the circuit. Therefore, to avoid such rese T
our controller will allow.S = 0 only wheni;, > 0, andS =1 Fi(z) = {f,l(w)} , ) @)
only whenw, > 0. Indeed, in Sectiofi TI-A, we propose a The model [(L) is a constrained switched differential in-
controller that guarantees that after every switchSofthe clusion. This is a key difference with previous modeling
algebraic conditions of the subsequent mode are satisfied. 2PProaches (see, e.gl [6]! [7]) where the third mode is echitt

For convenience, we define:= (v.,i;) and the algebraic Based on this complete model,.we propose a cqntroller that
constraints for the modes above in terms of sets as foIIowéf“?uces) robust, global ﬁsymptotlc stability of deS|.r|(|adt[()uu H

B s 5 o voltage) setpoints in the next section. As we will see, the

Mi={zeR" : ir>0;U{z €R" : v. < B, i =0}, hybrid systems approach proposed here is the enabling tool

My = {z €R? : v. >0}, to achieve this result.
Ms;={z€ R? : v, >E, ij = 0} Ill. STATE-DEPENDENT SWITCHING LAW
Hence,S = 0 is only allowed when: € M;UM; andS =1 In this section, a switching control law for the modgl (1)

is only allowed whenr € Mo. Using these restrictions, weof the Boost converter is proposed. In Sectiod 1V, we will
can derive a switched differential inclusion encompassithg
the modes of operation derived so far. 1A Krasovskii regularization of this vector field is used doettie fact that
B. Mathematical model the discontinuity occurs on a set of measure zero. A Filippgularization
. . . . would not account for discontinuities on such sets and wegiditi an incom-
In this section, we define a mathematical model of th&ete mapping for mode 1 and mode 3. In fact, the Filippov keization
Boost converter in which the differential equations in eaackould yield a singleton sef, on M.
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establish that this control law induces a robust and global max (VV(z),§) :{ o(x) ifS - 0 (10)
asymptotic stability property. Besides that, we determine ¢eFs(z) ) it §=1

various robustness properties of the closed-loop system. T pe sign of the functionsy, v will be used to define a
propose the control law, we will use a control Lyapuno¥tate-dependent switching control law assigning the obntr
function (CLF) approach, seg [19]. input S. Let ) . .

A. Control Lyapunov function Ae ={z €eR” : v =0, ip =iy} (11)

Given a desired set-point voltagé > 0 and current; > 0, define the isolated point to be stabilized, namely, the point
let z* = (v},43 ) and consider the CLF candidate (ve,ir) = «* = (v}, i}). The following lemma establishes a
Viz) = (z — x*)TP(:C — %) (4) property of the functionsyy,~; that will be instrumental in

our stability result in Section TV-A and, in fact, shows thHat

where P = p(1)1 p(2)2 J > 0. To establish that the functionis a CLF lkﬂ] for [1). The con?]t_raints_is gn the s_witchir;g
o are not taken into account at this point, but are incorpdrate
V is indeed a CLF[19], we need to show that for each sta.(g%am later (see Propositign1V.2 beplow) P

x = (ve,4r,) of relevance there exists a choice $fc {0,1} ' '

such that the derivative df along [1) is negative. To do so,Lemmallll.1l. LetR, E, pi1,peo > 0, 22t = 22 9% > [, and

c

we compute the inner product between the gradierit @nd it = > Then, for each: € R2 \ A,, there existsS € {0,1}

the directions belonging to the (set-valued) nfapin (@).  s(ch that
« For S =0 and eachr € M; \ M3, we get Vs(z) <0 (12)
(VV (), Fo(z)) = (VV (), fa(2)) Moreover,{z € R? : y5(z) =0, S € {0,1}} = A,.
_ * 1 1. Proof. Consider the functionsys, S € {0,1}, using the
= 2p11(ve — vz) (_Evc + _ZL) * relationshipZt = 222 we can rewrite[{8) and}9) as
) s [~V + E Yo(z) = 2(Aov? + Bove + Coir, + Do) (13)
2paa(if, — i) | ——— (%) B 9 )
L m(z) = 2(A1v; + Byve + Cyig + Do) (14)
« For S =0 and eachr € M3, since Fy(z) is a set, we where the coefficientsd, throughD, and A, throughD; are
have defined as i .
5$§é)<VV(x),E> 0 T | 1 T
« . . puv, | p2ail P11V}
2 c — s 2 — s = B = B = —
&1:7ﬁvcv ?212’[)5 11‘ vSJ[r%?l(lJ](v UC) b2z (ZL ZL)] §> 0 RC L ! RC
1 Cy = _ puivg n paoE Oy = pooE
2p11(ve — v)) (—R—Uc> + max 2pos(if —i})& = c L L
c ¢2€[~Lvet 2,0 Do — p22i; B Dy — P21 B
. - - 5+ 11— F
2p11(ve — v3) (— A= ve) if i >} 0

9 . i To guarantee that for evefy,, i) € R?\ A, there exists an
P11 (ve = _Uc) (__Evc)1+ By e _ S € {0, 1} such thatys(z) < 0 and that{z € R? : ~g(z) =
2poain —ip) (—gve+ F) i iL<il o Se {0,1}} = A, we consider the sefSg := {z € R? :
Sinced}, > 0 and every point il\/; is such thaii;, =0, 7s(z) < 0} for 5 € {0,1}. We will also use the boundaries
inequalityi, > % will never happen for points idiZ;. Of the setsl's given by Qs := {z € R* : 4s(z) = 0}
Then, forS = 0 and each: € 35, we have for S € {0,1}, which are parabolas. We first derive explicit

1 expressions fof'g, S € {0,1}, next.
Eé%\é)WV(ff)i) = 2p11(ve — v;) <_Evc) + (i) For z € I'y, we havedgv? + Bov, + Coir, + Dy < 0.

1 B (6) Substituting the coefficientd, throughDy, using?t =
2o iy, — i%) <——vc + _) 22 andv} > E gives
. . i >#(lv2—<£+z’*)u +i*E> (15)
« For S =1 and each: € M, we get Lo E—ur\Re R b)) L
(VV (), Fi(x)) = (VV(2), f1(z)) = (i) For z € T'y, we haveA;v? + Byv. + Crig + Dy < 0.
1 B 7) Substituting the coefficientd; throughD, using again
2p11(ve —v7) | =50 | + 2p22(in —iL) | + PL — P22 gives .
Rec L c L . 1, v iy (16)
1, < ==V, — Ve + 17,
Define for eachr € R? . . RE RE
X . This gives the expressions
’70(‘@) = 2p11(Uc - Uc) (_E’l}c + EZL> + g p

Iy = {(’Uc,iL) S R2 Do >

1 1, VL "
B (ﬁ“e - (E “L) “c“LE)}

20 UCH;} (18)

1 . s (E
() = 2p11(ve—0)) (—R—Uc>+2p22(zL—2L) (f) 9) 1
¢ Fl—{(vc,iL)eRQ D < ——=0v —
and [6) are equal, for eackie {0,1} andxz € Mg we get  and similar ones fols, S € {0,1}. Both parabolads,

8)
—vet+E ) 17)

2p9a(ir, —i7) (T

Combining [5){(¥) and observing that the expressiondin (5) RE® RE
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S € {0,1}, have their axis of symmetry parallel to thg-
axis. Hence, we have to show now tHatU Ty = R?\ A,
andQy Ny = A,.
To shows this, note thaZtE— < 0 indicating that(2, is
a “downward” parabola (it has’a maximum in- dlrect|0n)
andFO is the region above it. Similarly, smcg— >0, is
n “upward” parabola (it has a minimum ip-direction) and
T'; is the region below it. See Figuké 3 for an illustration.

we now can show thaflg N Q; = A, then it follows that

Let ¢ € {0,1} be a logic state indicating the value of the
actual inputS. The envisioned logic-based control law will
select the input according to the current active inpuand
the value of the state, namely, when certain well-designed
functions 7, become zero. These functiong are control
design parameters that are related to the functigns (13)
and [I#) and will be chosen as in the following lemma.

I .
I?emark [1.2. The functionsy, are not chosen exactly equal

because mode 1 would have an equilibrige, iz,) =

I UT, =R F dth f of the | 0 Yoy ! .
islcorr?plete \ A, s in FigurdB, and the proof of the lemm E, ) exactly atyo(x) = 0. This would prevent to achieve
global asymptotic stability of the desired setpoint.
(@) =0 Lemma Ill.3. Let R, E,pii,po > 0, 2 = B2, v} > E,
andij = 75. For eachq € {0,1}, let7, be given forz € R?
as ~ «
Yo(z) <0 70(1') =Yo(x) + Ko (ve — ’UC)2 (22)
iLf 7 (2) < 0 A1 (x) = 1 (x) + K1 (ve —v7)° (23)
y(z) <0 and K, € (0,22), K, € (0,222). The following hold:
(@) _Forl_q € {O,(l]; an(;zl z ¢ A, we have thaty,(z) > 0
Ve Yo(z) =0 implies ;1 q <
Fig. 3.An example of a possible sign distribution for the twdb) Forlq € {(0)1} gnd z ¢ A, we have thaty,(z) < 0
arabola =0 and 0. IMpliesq(r) <
c) For 2 € R? it holds that
pT hsyot(h)lﬂ Q 7154) b that if ) FO &% it holds th
0 show thaty Ny «,» we observe that ifv.,ir) € I - -1 _ 92
Qo N Q; we must have that the right-hand sides [of] (16) and CO _lf%u Yo(@) S, H%u (@) + L,
(19) alre equal, l/vh|ch leads to ) 1(1(1)13070( z) = 7o(z), 1(1?3071( ) = m(z).
_—'UC—|— _C—|—i*>vc—i*E) - =
R Rt YY) B - (19) The proof is given in AppendikJA.
N B S Based on the properties derived in the lemma above we
Sincei} = %5, we have RE ¢ RE ¢ I can define an appropriate (robustly) stabilizing contrel I
vE . oo fact, the control law makes sure that for the current value of
~ g Ve = 2vcve + (v0)7) =0, ¢ and z it holds that¥,(z) < 0, which implies by property

which has a unique solution. = v}, and implies thaf2o N,
is indeed{ (v}, i} )}. This completes the proof. O

The property in Lemm@TIll1 shows indeed théais a CLF-
like function in the sense that

min  max (VV(x),£) <0

Vr e R?\ A,
Se€{0,1} (€Fs(x)

(20)

This condition can be used to derive a suitable stabilizi

control law, as will be done next.

B. Proposed control law

(b) that as long as ¢ A,, we have thaty,(x) < 0, which, in
turn, implies that the CLR/ in (@) is decreasing. Oncg,(x)
becomes 0, a switch occurs frgnto 1—¢, and, due to property
(@) in the above lemma, we have then that ,(x) < 0
if + ¢ A,, and hence, the switching is well defined. The
constantsK, and K; control the shape and position of the
switching boundaries, which are parabolas in the, i)
,—%ane. In fact, according to properfg) of Lemmal[lll.3, as

o and K, approach zero, the switching boundary approaches
the zero level set ofy(z) and~, respectively. Moreover, as
Ky andKl approacth# the switching boundaries approach

QZch—i—?zL =0.

lowing selection of the inpuf, which is a nonlinear system S is assigned tg, namely,S = ¢, and comblnlng this with
with discontinuous right-hand side (if we forget for a morenhe constraints in{1), leads to the hybrid systghgiven by

the constraints on the switching i (1)):

S =argmin max (VV(2),¢&)

(21)
5'€{0,1} §€Fs/ ()

The control law, which we will propose below, will take
advantage of this observation. However, the direct apidica

Fy(z)
0

i]<l

=l |mo@a @aep

] =: F(z,q) (z,q) € C
(24)

of (21) as the switching law, leads to a discontinuous contrg - q

law and results in chattering (sliding motions; see [7])ickh

is undesirable in practice. Therefore, we will propose aimod
fied logic-based control law (and a corresponding regugalriz
Intfac

closed-loop system), which is practically feasible.
for the resulting (regularized) controller various rolmess

properties can be derived and proved mathematically based o
the hybrid system setup particularly chosen for this pugepos

(see Section IV below).

C={(I,Q):weﬂo, %(:v)go,qzo}u
{@a) e, Fi(@) <0, q=1]

{(z.9): 2 € Mo, Fo() =0, g=0}
{(0,0): 2 € M, 1(2) =04 =1}

D U
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and, for each(z,q) € R3, G, is continuous and at pointsA. Preliminaries on hybrid systems

(z,q) € R? x {0,1} is given by . Depending on the flow and the jump dynamics, solutions
Gy(r) = { {1} !; 4= 0 to the closed-loop syster evolve either continuously or
{0} if ¢=1 discretely. Following[[20], we treat the number of jumps as
The flow mapF of the hybrid systen# is constructed by an independent variablg next to the usual time and we
stacking the magFs (with S = ¢) of () and zero, while the parameterize the hybrid time bft, j). Solutions to? will
flow set enforces the constraints i (1) as well as those @ given on hybrid time domains, which are defined next.
the switching mechanism of the proposed controller. In this First, a setS € R>o x N is a compact hybrid time domain
way, the continuous evolution of is according to[{f) under if J—1
the effect of the proposed controller, whijedoes not change S = U ([tj:tj+11,7)
during flows. The jump mag/ is such that: does not change §=0
at jumps and is toggled at jumps, while the jump set enforcefpr some finite sequence of times= ¢, < t; < ty--- <
the jumps ofG, () within the constraints of{1), as we will 4 ; A set S  Rso x N is a hybrid time domain if for all
prove below (see Propositi¢n 1V.2). (T,J) € S, SN ([0,T] x {0,1,...J}) is a compact hybrid
Sample contour plots and switching boundarigéz) = 0 time domain. A hybrid arc, as defined {n]14], is a function
and¥,(z) = 0 of the proposed controller for a particular setlefined ondom z that is locally absolutely continuous inon
of parametersa* = (7, 3.27), £ = 5V, R = 3Q, ¢ = domx N (Rxo x {j}) for eachj € N. For hybrid arcsz, we
0.1F, L = 0.2H, pii = §, p22 = %, and varyingK, and will use the following definitions regarding its domain:
K,) are shown in Figurel4. By varying the constaiifs € « supdomz = sup{t € Rso : 3j € N such that(t, j) €

domuz}
« supdomz = sup(j € N : 3t € R such that(t,j) €
domuz}
« sup domz = (supdom z, sup,dom )
Then, solutions (or trajectories) to the general hybrideys
§EF(E), ¢e€C (25)
§=G©). ¢eD

with state ¢ € R™ are defined as follows: a hybrid arc
x : domy — R" is a solution to the hybrid systenh (25)
if x(0,0) e CuD and

(S1) For allj € N,

x(t,j)eC for all ¢
x(t,j) € F(x(t,5)) foralmost allt

such that(t, j) € dom .
(S2) For all(t,j) € domz such that(t,j + 1) € domx,

x(t.j) €D, x(t.j+1)=G(x(tj))

A solution x is said to be maximal if there does not exist
a solutiony’ such thaty is a truncation ofy’ to some proper
subset ofdom y’. A solution is called nontrivial ifdom y
. contains at least one point different fraf, 0). A solution is
) 2 P 6 ) 10 said to be complete iflom y is unbounded.

Ve We will use [14, Proposition 6.10] to prove the existence

Fig. 4. The switching boundaries,(z) = 0 and7,(z) = 0, and completeness of solutions to the proposed system. For
whenz* = (7,3.27), E =5V, R = 3%, ¢ = 0.1F, L = 0.2H, self-containedness, we recall [14, Proposition 6.10] next
p11 = £, p22 = %, and different values foK, and K;.

iL

Proposition IV.1. Let H = (C, F,D,G) satisfy the hybrid

" basic conditions, i.e., its datéC, F, D, G) is such th&l
0,221) and K 0,221, the shape and the position of o
(0, Ze") 1 € ( ) P posi (A1) C and D are closed sets;

'’ Rc
are shown in FigurEl4. Note that the switching boundaries can (A2) F' : R? = R? is outer semicontinuous and locally

the switching boundaries can be controlled. Some examples

also be modified by changing system parameterand E bounded relative toC, ' C domF, and F(z) is
(because of uncertainties in supply and demand of renewable nonempt)g and convex for alf e C;
energy sources). (A3) G : R® — R* is continuous and) C dom G.

In the next section we derive important properties of the

. 2 _ . RN m H : n
resulting closed-loop systef. A set-valued mapS : R™ = R™ is outer semicontinuoust € R™ if

for each sequencér; }$°, converging to a point € R™ and each sequence
yi € S(x;) converging to a poin, it holds thaty € S(z); seel[21, Definition
IV. STABILITY AND ROBUSTNESS PROPERTIES 5.4]. Given a setX C R™, it is outer semicontinuous relative & if the
set-valued mapping frok™ to R™ defined byS(z) for z € X and@ for

_ ; ; x ¢ X is outer semicontinuous at eaeghe X. It is locally boundedif, for
To prove closed |00p properties of the hybnd Systéin each compact sek” C R™ there exists a compact s&’ C R"™ such that

regarding stability and robustness, we first recall some pr& .-, 5(x) c K.
liminaries.
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*2

Take an arbitraryé e CUD. If € € D, or current (v},iy), wherev? > E and i} = }J%LE, then the
compact set -~
(VC) there exists a neighborhodd of ¢ such that for A=Ay x{0,1} (26)
everyr e UNC, is globally asymptotically stable fo¥.
Fz) NTo(x) # 0 Proof. Consider the functionV given in [4) and define

then there exists a nontrivial solutianto A with ¢(0,0) = ¢, V(z,q) = V(z) for all (z,q) € CUD. Note thatV(z,q) =0
If (VC) holds for every € C\ D, then there exists a nontrivial whenz € A, andV (z,q) > 0 for all (z,q) € (R? x {0,1})\
solution to# from every initial point inC' U D, and every A,. From the computation of the inner product betw&ev
¢ € Sy, whereSy, denotes the set of solutions of the hybriénd the direction belonging tBs in (10), for each(z, q) € C
systenm, satisfies exactly one of the following conditions: (see Lemm&TILll), we have

(@) ¢ is complete; uc(w,q) == max (VV(x,q),£)

(b) dom ¢ is bounded and the interval’/, where J = gef(m’q)l ) ) .

sup; dom ¢, has nonempty interior and— ¢(t, J) is a (ve = vZ)(=Fve +ir) + (ir —i7)(~ve + E) =

maximal solution to: € F(z), in factlim;,7 |¢(t, J)| = = § . . () <0 if ¢ =0,

o0, whereT' = sup, dom ¢ (finite escape time); (ve — vZ) (—va) + (ip —ip)E = .
(€) dom ¢(T',J) ¢ C'U D, where(T, J) = sup dom ¢. nx) <0 if g=1
Furthermore, ifG(D) C CUD, then (c) above does not occurand, for eachx, q) € D, we have

The following result establishes that every solution to the ug(z,q) == max V({)—V(z,q)=0 (27)
closed-loop system is complete. teCla)
Then, by [14, Theorem 3.18], the sEt}26) is stable.

B. Completeness of trajectories To show attractivity, we apply the invariance principle in

Proposition IV.2. (Properties of solutions) For eache C'U [22, Theorem 4.7]. To this end, we compute the zero level set

D, every maximal solutiory = (z,¢) to the hybrid system of uc andug defined above. It follows that
H = (C,F,D,G) in 24) with x(0,0) = ¢ is complete. u;'(0) = {(2,q) €C : uc(r,q)=0}=D

The proof is given in AppendiXIB. ug'(0) = {(z,q) € D : uq(x,q) =0} =D

Then, each complete and bounded solutieng) to # con-

C. Closed-loop stability verges to the largest weakly invari@rsubset of the set

Our goal is to show that the compact sdtin (1) is

asymptotically stable. To this end, we employ the following {(:C,q) eCUD : V(:c,q) =r }m )8
stability notion for general hybrid systenis [14]. (u=1(0) U (u3(0) N G(us (0))) (28)

c d d
bDeefmmon IV.3 (Stability). A compact sed C R™ is said 10 o gome- > 0. With the definitions above, the set of points

« stableif for eache > 0 there exists) > 0 such that each (28) reduces to

solution x with |x(0,0)|4 < ¢ satisfies|x(¢,7)|a < ¢ _ _
« attractiveif there existsy > 0 such that every maximal Note that the only invariant set fd{ within (29) is A since
solution y with [x(0,0)|4 < i is complete and satisfiessolutions cannot stay if(P9) unless = v* andi; = i}

s ) edom y,t4j—o0 |X(E:J)]4 = 0; (i.e.,r = 0). In fact, solutions to the hybrid systersin (24)
» asymptotically stabléf A is stable and attractive; cannot stay in a constant level setdfsince the equilibrium
« globally asymptotically stablé the attractivity property points of the vector field” do not belong toC' N D and,
holds for every point irC' U D. for points inC'\ D, the derivative ofl” is negative for each
q€{0,1}. O

The following result on the structural properties Hf in _
(4) is key for robust stability, seé [14]. D. Robustness to general perturbations

: The construction of the controller in Sectibn 1II-A is such
Lemma IV.4. The closed-loop systefd given b sat- s .
isfies the hybrid basic conditipon)s/ givengby (Als)/-d(%g)[lthat the cIosed—Ioop_systeHJ has data sf':msfymg the properties
Proposition 6.5] ih Lemmal[lV4. With these properties, we have that the
P e asymptotic stability property asserted by Theorem]IV.5 is

Proof. (A1) follows from the continuity ofyg for eachS € robustto small perturbations. We consider the followingielo

{0,1} and the closedness afl, and M, . Next, (A2) follows of the (regularized). plant if{1) with perturbations:
from the Krasovskii regularization. Lastly, (A3) followsoim &€ Fy(z+di) +dp (30)
the fact that the jump map is continuous. S S
3For the set of hybrid trajectorieS, the setM C O is said to beweakly
Using these properties, we are now ready to establish fReriant (with respect taS) if it is both weakly forward invariant and weakly

; ; ; s backward invariant; seé [22, Definition 3.1], it vgeakly forward invariant
fOllOWIﬂg theorem, which states gIObaI asymptotic Staijold]f (with respect toS) if for eachz® € M, there exists at least one complete

the compact setl for the hybrid systen¥{. hybrid trajectoryz € S(z0) with z(t, j) € M for all (¢, 7) € domz. It is
. . . . weakly backward invarianfwith respect taS) if for eachq € M, N > 0,

Theorem IV.5. Con5|der the hyb”q systerfl n (4) with  there exists® € M and at least one hybrid trajectory € S(2°) such that

¢, L,R,E, Ky, K1 > 0. Given a desired set-point voltage andsome(t*,j*) = q andxz(t, j) € M forall (¢,§) < (t*,5%), (t,j) € dom .
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whered; corresponds to state noise afigl captures unmod- Cp = {(:v, q) :x € Mo, yo(x) <p, ¢= 0} U
eled dynamics. Then, definingg = (d;,0), the closed-loop ) ~ - _
system? results in the perturbed hybrid system, which is {(I’q) rw € My, (2) S p g = 1}
denoted byH, with statex := (z, ¢) and dynamics Furthermore, the jump map is given by

X € Flx+d)+d x+d€eC o =

xT € G(x) x+d €D ¢ € Gy (z.q) € D,

The following result establishes a nominal robustnessemyp \yhere now. the jump set is given by
of H. ' '

Theorem IV.6. Under the assumptions of Theorem1V.5, there D, = {(x, q):x € Mo, Fo(z)=p, ¢= 0} U
exists/3 € KL such that, for each > 0 and each compact set , YA _ _

K C R?, there exists) > 0 such that for any two measurable {(x’ a) i €My, (@) =p, g 1}
functionsd;,ds : R>o — 6B, every solutiony = (z,q) to and
H with x(0,0) € K x {0,1} is such that itst component, {1} if ¢=0, yo(z) > p
namely,(v.,i1,), satisfies Gy(z) = { {0,1} if ~o(2) > p, 1(z) >p

. =i~ N~ ) ~ 0 if =1,7 >

7t )4, < BF0,0)]a,,t+1)+E V(t,j) € domT (BD) 0y W a=1n@=s

Theorem IV.7. Under the assumptions of TheorEm1V.5, there

; : existsg € KL such that, for eaclkx > 0 and each compact
orem 6.5], there exist§ € KL such that all solutiong to set kK C R2, there exists* > 0 guaranteeing the following

H S,at'Sfy|X(t’3)|AX{0=1} = B(|X(O’O)|AX{O=1_}’t+jl for al property: for eachp € (0, p*] every solutiony = (z,q) to
(t,7) € dom x. Consider the perturbed hybrid systémSince 7,» \yith x(0,0) € K x {0,1} is such that itsc component
dy(t),d2(t) € 6B for all t > 0, the closed-loop systeri can gatisfies

be written as

Proof. Since A is asymptotically stable fo#, by [23, The-

X €B0) x€C j2(t, )|, < B(12(0,0)|a,,t+j)+¢ Y(t,j) € domx (33)
where XTEG00 xeDs o - '

o The proof follows analogously to the proof of Theorem

Es(x) = w0k (x + 6]]3%/) + 9B, , V.6l The property asserted by TheorEm1V.7 will be illusch
Gs(x):={n : nex' +B,x" € G(x+B) }, numerically in Sectiof V-C. A similar result can be obtained

Cs — : LB NC£0 L, using temporal regularization.

’ {X (x ) 7 } For the spatially regularized control algorithm, no Zene be

Ds = {X : (x+0B)N D £ } . havior occurs and certainly no “eventually discrete” solus

(in the sense of the solution that after some tinoaly jumps)
This hybrid system corresponds to an outer perturbatioH of exist due to the uniformly finite (nonzero) separation betwe
and satisfies (C1), (C2), (C3), and (C4) in][23] (see Examplie flow and jump sets—this property follows from|[22, Lemma
5.3 in [23] for more details). Then, the claim follows by2.7] since the closed-loop system satisfies the propeisiesl|
Theorem 6.6 in[[23] since, for each compact $étof the in Propositiod V.2.
state space and ea€h> 0, there existsi* > 0 such that for
eachd € (0,0*], every solutiony to # from K satisfies, for
all (t,) € dom¥, |X(t,j)|a < B(X(0,0)|a,t+j)+& This  In this section, we present several simulation resultstFir
establishes the result i€ .4, x 0,1} = |Z]4, - O in Section[V-A, the closed-loop sys_tem is simulated. Af-
_ ) ) _ _ terwards, the closed-loop system with general perturbati®
Unlike previous results in the literature, this robustnesgmylated in SectioR VB. Next, due to undesirable chattgri
property implies that our controller is robust to small megye spatially regularized systefi” is simulated in Section
surement noise and unmodeled dynamics. In addition to @ Afterwards, in SectiofiVZD, simulations are performed
robustness to general perturbations shown above, the asygpshow how the system can enter the discontinuous conduc-
totic stability of A is robust to slow variations of the systemis, mode. In Sectiof 'VAE, simulations are performed with

parameters, such as input voltageand loadfz. Such a result changes in supply and demand of the Boost converter. The
follows from a direct application of [14, Corollary 7.27].  gimulations are performed usifg = 5V, R = 30, ¢ = 0.1F,

E. Robustness to spatial regularization L=02H,P= (2) 2 , andz* = (7, 3.27), unless noted

When the system reaches its desired steady state USii@erwise. We used tﬁe\H;RlD EQUATIONS TOOLBOX [24]
the controller in Sectiof IV-A, arbitrarily fast switchingay o, performing the simulations.

occur. To alleviate this problem, spatial regularizatisrper-
formed to the closed-loop systef (at the controller level). A, Simulating the closed-loop system
More preu_sely,yo andy, are mod|f|ed_by using a constant The simulation results for the closed-loop systétnwith
factor p, with p € R>(o. The regularized system will bei itial conditionsae — (0, 5) ando — (5,0), for Ko — 0.05
14 H H T 1 - bl - bl 1 - .

denotgd as{’, and its flow map is given by the same equatloand K, = 0.12 are shown in Figur&l5. As can be seen, the
asH, i.e., . .2 o

{ i } [ Fy(x) } solutions converge from both initial conditions to the gein

V. SIMULATION RESULTS

X 0 (z,q) € C, correspondence with Theordm 1V.5.
4 If we now change the desired setpairit= (v}, i} ), which
where, now, the flow set is replaced by is only a parameter chance, the CLF and its derivative change


https://hybrid.soe.ucsc.edu/files/preprints/74.pdf
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in the stater, resulting ind; = 0.5sin(500¢) andds = 0 in

° (30). The results for initial conditions, = (8,5) are shown
in Figure[8. The Boost converter reaches a neighborhoad of
and remains fluctuating due to the presence of the pertorbati

©
=
S

Fig. 5. Simulation results for the closed-loop systeh with
initial conditionszy = (0,5), o = 0 andzy = (5,0), go = 1,
using Ky = 0.05, K1 = 0.12, and whereS is only drawn for
the simulation using:y = (0, 5).

. ) _ Fig. 8. Simulation results for the perturbed closed-looptesmﬁ with § =
accordingly, and therefore also the control law. A simolati 0.5, K, = 0.28, and K; = 0.23 for initial conditionszo = (8,5), qo = 1.

for the system with initial condition:y = (3, 0), Ky = 0.12,
Ky = 0.08, and desired output; = 9V andij = 5.4Ais g provide insight on the results in Theordm IV.6, more

shown in Figuré 6. simulations are performed in order to find a relationship be-
tween the maximal perturbation parametdfor the indicated
8 e sinusoidal perturbation, and whefé,,0), (d2,0) € JB) and
° the ball radiug, which is defined as the size of the ball where
° °s : Lo :  the steady state values converge to (figrandiy), see [(3]L)
ip ST in Theorem[I\.6. Note that in this simulatioh is used to
o oo - o ) find a value ofz. The value of: is approximated for various
: initial conditions (and the same sinusoidal perturbatisimg
s iw_ different values ofi;) using
! ool F= dim supy/(oelt, ) — 02)? + (in(t,4) — i) (34)
Fig. 6. Simulation results with initial conditions, = (0, 3), t+j—roo

go = 1, whenz* = (9,54), Ky = 0.12, and K; = 0.08, In particular here Theoref I\.6 indicatésexists.
starting in the set.

As mentioned at the end of Sectibn IV-D, the closed-loop SIMULATION RESULTST?C?FIQEDILFERENT VALUES OF.
system is robust to slowly varying parameters. To illustrat
this, a simulation is performed with a dynamically changing 0 | welt,g) | ir(t,)) g £/693
set pointz* and adapting the CLF according to the changing 0.01| 6.483 | 3.025 | 06571 2.27
set-point (the control law is modified accordingly). Inilya 0.05| 5682 | 2.890 | 1.371! 3.37
x* = (7,3.27), but when this value is reached, we linearly 01| 5345 | 2532 | 1.8111 361
increasex* from (7,3.27) to (10,6.67). This simulation is
shown in Figurd]7. As it can be seen, the CLF can adapt to %255 iégg ggig gg;i 28471
slow changes in the setpoint. Furthermore, the Boost ctewer 1 4.116 2'123 3'103 3'10
follows the reference well and eventually reaches the final i i i i

setpointz* = (10, 6.67).

From the simulation results shown in TaBle |, whet€, )

” . Ve e andir(t,j) denote typical values observed for largand j

8 Yo =0 o where the system reached its steady state behavior,thienela
betweens and ¢ can now be approximated specifically for
x* =(7,3.27), as

g~ 3603

C. Simulating the spatially regularized closed-loop syste

Fig. 7. Simulation results with initial conditionsy = (5,0), go = 0, Ko =

0.0d5, Iﬁl :Ko.lz,dm[/?enﬁ* Imeetirlyocof;angﬁs frOtP]T7,b?|>~2? tOd(10,6~67) Now, the spatially regularized closed-loop systé# is

and wneresog an 1 Change to 0.0/, where the Dlack and green CUurves; T+ _ _

denote the switching boundaries for = (7,3.27) andz* = (10, 6.67), Simulated. The results for initial conditions = (0,5),q0 =1
andzo = (5,0), go = 0 for Ky = 0.28 and K; = 0.12 are

respectively.

P , y ) ) shown in Figur&l. To validate Theorém1V.7, more simulagion
B. Simulating the closed-loop system with general perturbg,o performed (using, = 0.7 and &, — 0.1) in order to find
tions N a relationship between the regularization parametand the

The perturbed closed-loop syste# is simulated, using deviation from the equilibrium given by in Theorem[1\V.7
Ky = 0.28, K, = 0.23, and a sinusoidal perturbation injectedsimilarly as in sectiofi V-B, se¢ (B4)).
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Fig. 9. Simulation results for the spatially regularizedseld-loop systerf? (@) p=10.05 (b) p=0.1
with p = 0.2, K¢ = 0.28, and Ky = 0.12 for initial conditionszo = (0, 5),
g = 1 andzo = (5,0), go = 0, and whereS is only drawn for the 10 w[\ﬂﬂ
simulation usingzo = (5, 0). Ve P ve 7 X
TABLE ” OD 1 2 3 4 0 1 2 3 4
SIMULATION RESULTS FOR DIFFERENT VALUES OFp. 8
i i |
p_|velt,g) [in(tj) | € /p | #sws % ZQ\”‘ NS e
0.01| 6.989 | 3.259 | 0.013| 1.34| 1260 % : 5 3 . % 3 5 .
0.05| 6.951 | 3.232 | 0.060| 1.20| 277 t !
0.1 | 6.926 | 3.164 | 0.127 | 1.27| 140 ©p=05 @p=2
0.25| 6.717 3.026 | 0.3721 1.49 54 Fig. 10. Simulation results using different spatial regaktion p for different
X ' ' ' ' initial conditions andz* = (7, 3.27), using Ko = 0.33 and K1 = 0.12.
0.5 | 6.520 | 2.977 | 0.561| 1.12| 26 .

Ve 10

From the simulation results shown in Tablk II, the relation- ¢
ship betweerp and e, specifically forz* = (7,3.27), can
now be approximated as ~ 1.3p. The last column of the
table shows the number of switches per second over the sar
time horizon when a neighborhood of the sétis reached.
As can be seen, the switching rate is reduced significantly b
increasing the spatial regularization parameter

From the simulation results, the relationship betwpemd Fig. 11. Simulation results fof? = 3V, R = 3Q, p = 0.1, Ko = 0.22, and
e, specifically forz* = (7, 3_27), can now be approximatedKl = 0.13, for initial condition zg = (15, 2), go = 0 andz* = (4, 1.78).
ase ~ 1.3p.

Simulations for different values of and different initial _ ) ) )
conditions are shown in Figufe]10. As it can be seen, tigech C_hanges. During the next smjulatlonz the contrpller is
larger the spatial regularization (the larger the larger the OPserving the changes i and iz and is adapting accordingly,
steady state error will be, as expected. Furthermore, thg %7, £ and R are now time-varying in the CLF. Figufel12
switching rate is reduced significantly by increasing thetisp shows a simulation wherE is increased after 2 seconds from

regularization parameter. Eventually, wherp becomes too 2:5V 10 5V andR is decreased after 4 seconds fr3 to
large, the controller may not be able to stabilize (a smajicre 2(), the switching boundaries for the three different situadio

around) the desired point* any longer. are shown as well. As it can be seen, a neighborhoag @$
reached in all three situations, which means that the cth&tro

. . . . . is able to cope with variations in the su and demand
D. Simulating the discontinuous conduction mode R P ppky

In the next simulation we show how the system can enterthém the next simulation, again input voltagé and load

discontinuous conduction mode, thereby illustrating tele-r R are varied, but now the CLF/controller is not observing
vance of the employed model including this mode explicitlthese variations, consequently, the controller is based on
see [25]. The system parameters are ow= 3V, R = 3Q, constantE = 5V and R = 3Q. During the simulation,F

and z* = (4,1.78). In Figure[11, the simulation results forjs decreased after 2 seconds from 5 to 4V, and after 4 seconds
p = 0.1, Ko = 0.22, and K; = 0.13 are shown. As can back to 4V, R is decreased after 6 seconds from 3 to{2.5

be seen, the system starts in mode 1 uifibecomes zero, and after 8 seconds increased 1@ again. As can be seen
whereafter the system switches to mode 3. Next, the systenFigure[IB, the solutions converge to a neighborhood of the
remains in mode 3 until it hits the boundafy(z) = p and set.4, however the performance decreases whenfttend R
switches to mode 2. Afterwards, switching between modegte not identical to the parameters used for the CLF. Hence,

and mode 2 occurs and a neighborhood of the pointis adapting the controller to measured fluctuations in sugply
reached. Note that the closed-loop system works for a certaind demandr is certainly beneficial.

time period in the discontinuous conduction mode, showing
the importance to include this mode in the overall model and
global stability analysis.
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VI. CONCLUSIONS

) In this paper, a hybrid system approach to the control of

E. Robustness to changes in supply and demand the Boost converter was presented. First of all, a constdain
The input voltageE’ and loadR are now varied to assessswitched system model with discontinuous right-hand side
the robustness of the spatially regularized control sgsate for all the modes was derived (including the discontinuous
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: T 0 ~— given byQ, := {z € R? : F,(x) = 0} for ¢ € {0, 1}, which
' 20 N S — 5 | are parabolas. Now defing, andT'; by deriving 3%) and
(38) in similar forms as in[{A7) and@{IL8)
~ 1
'y = {(vc,iL) e R? : i >
E -
3R 1 . (37)
/ 2 v <k -
0 2 o 8 10 12 ? e <Evc - <Eg + ZL) Ve + 'LLE + KO(SO(’UC)> }
Fig. 12. Simulation results for a varying input voltageand a varying load ~
R with an adapting CLF ang = 0.5, Ko = 0.56/0.28/0.42, and K1 = ' = {(vc, i) €R? ;i <
0.05/0.12/0.18. respectivelv. for initial conditionco = (0, 5), go = 0. (38)
I Loy v o Kidi(ve)
; RE" RE" T TE
"/ % 2 4 6 8 10
i, 0L s\ and similar ones for),, ¢ € {0,1}. Both parabolas?,,
F1=0 ¢y g€ {0,1}, have their axis of symmetry parallel to thig-
2 - o axis. Then, becaus?ij < 0,Kodp(ve) > 0, and is a
. / =0 _‘;_IIMM-WWWW# “downward” parabola, we know thal, is also a “downward”
©r fwe s po ° 7 Y imeg ° " parabola (it has a maximum if-direction) andl, is the

Fig. 13. Simulation results for a varying input voltagand a varying load €gion above it. Similarly, sinc€), is an “upward” parabola
R with a constant CLF ang = 0.5, Ko = 0.28, and K; = 0.12 for inital ~ and %(”) > 0, we havef); is also an “upward” parabola
condition zo = (0,5), go = 0. (it has a minimum ini.-direction) andr'; is the region below
conduction mode). For this model, a suitable Krasovskit re@. If we now can show thaf2, N Q; = A,, then it follows
ularization was determined, leading to a constrained &wdc that'; UTy = R? \ A,.

differential inclusion. Based on this modeling setup a oaint
Lyapunov function-based control design procedure was pr,
posed. By formalizing the control setup in the hybrid syste
framework of [14] and establishing important basic projgsrt
of the control scheme, various indispensable stability afd

_To show thatQ)y N 2, = A,, we find out thev., iz value
or the intersection of the two curveéd, and ;. When the
right-hand-side of the inequalities ih_(37) and](38) equals
ch other, we get a similar expression[tg (19):

robustness properties of the closed-loop system wereetkriv 1 1, vio e

This is the first time that these essential properties aradtly E_ o (}_g”c - (E T ’L) ve i B+ KO(SO(W))
established for this electrical circuit. This article demtrates ¢ v* K161 (ve)

the importance of hybrid systems tools for the analysis of :ﬁvf — RCEUC +i7 + % (39)

the DC-DC Boost converter. The same tools can be used for
the study of other converters. We hope the presented result¥hen, we can rewrit (39) in quadratic form, and find its
stimulate the use of hybrid system tools for the analysis glfm lified discriminant to be (2 2 hich Is t
general power systems. P (RE) ¢, which equalis to

Future work will involve the investigation of the state-ero because¢: = 7;%; Therefore[(3D) has a unique solution.

dependent switching control law using the hybrid systeRve can find the unique solution by solving from (39), and

framework for other type of converters. the result is
APPENDIXA 1 E—v.* 2K (E—v.) \ s 4 ;%
PROOF OFLEMMA [T.3] - ((E —TRE T2Ko——"g )UC i ) .

:’UC

Ve =
To show(b), note that we can rewrit¢_ (22) arld123) as 9 (E;L%c* —L Ko+ Kl(l‘;vz))

Yo(x) = Fo(x) — Ko (ve — v7)? : o ~ o~ .
¢ while iy, = 4} . This implies thatQy N €2 is the set-point

n(x) =1 (2) — K1 (v —v})? {(v*,i%)} and therefore completes the proof of propey.

Becausd{y, K1 > 0, 74(x) < 0 impliesy,(x) < 0if v. # v}, Property (c) can be shown by explicity computing the

If v. = v¥ andi; # i} (as otherwiser = z*), we have limits. For finding the limit of the first two equations, we can
Yq(z) = v4(x) < 0. However, we know thaf, (z) = v,(z) = rewrite the formulation ofy,(x) with ¢ € {0,1} as
0 cannot occur, as together with = v this would imply _ 1
i, = i3, which would be a contradiction. Hence, also in this Ya() = (1= 9)70(x) + () _
casey(x) = ~v4(z) < 0, and the proof of propertyb) is — —a(ve — ) + (Bg + Co) <_ 27, i 2iL>
complete. *

The proof of(a) follows analogously to the proof of lemma ) o o )
ML First define wherea = %, 8= p“T and Cj is given in the proof for

B ) Lemma[Ill.1. Then, we get an expression
Yo(x) = v0(x) + Ko (ve —v;)” = 70(z) + Kodo(ve) (35) .

F1(x) = (@) + K1 (ve — 07)% = 71(2) + K161 (ve) (36)  Tal(x) = (Ky — a)(ve — v3)* + (Bg + Co) (—2UZ*L ve + 2iL)
(40)

we consider the set, := {z € R? : F,(z) < 0} for
q € {0,1}. We will also use the boundaries of the s&s We discuss the following cases whéf, — «,
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o if ¢ =0, we have the limit of[(40) expression as

2'*
(— Ly, + 2¢L) .
/UC

o if ¢ =1, we have the limit of[(40) expression as

20%
<— Z*L Ve + 2iL>
/UC

= p—llE <—2izv + 2iL>

*
c C

2%
= Cl <— ZLUC+27;L) .
%

*
c

lim 7,(z) = Co

KQ*}OL

lim 7, (x) = (8 + Co)

K1~>a

12

4) For (z,q) € C\ D such thatg = 1, v. = 0, the

vector field is given byFy(x) x {0} that only contains

the element0, £,0) (see [B)), which lies ifc(z, q) =

R, x R x {0}. Hence, [[4P) holds.

In summary, for eacly € C'\ D, there exists a neighborhodd
of ¢ such that[(4l1) holds. Thus, according to Proposition] IV.1,
there exists a nontrivial solutiog to ‘H for points inC U D.

Now, to show that every maximal solutiop is complete,
we prove that case®) and (¢) in Proposition[IV.1 cannot
hold, and hence, only cage) can be true.

Case (b) (finite escape time) cannot happen due to the

i - fact that every maximal solutiog is bounded. Indeed, using
Thus, we complete the proof for the first two limits, and th?emma[l]]] and propertyb) of lemmalllL3, the functiony”

last two limits follow naturally from the expression (z) =
Vo (@) + Ky(ve — v7)*.

APPENDIXB
PROOF OFPROPOSITIONIV. 2]

ity condition (VC), which requires verifying that for each
(z,q) € C\ D, there exists a neighborhoad of (z, ¢) such
that

in (@), along a maximal solutior, has non-positive derivative
for flows and non-positive changes at jumps. Siriceis
quadratic it upper bounds the norm of the state (relativééo t
desired set point) and has compact sub-level sets. Therefor

lim t,j)] < M < oo for some constantV/ and
Proof. We apply Proposition IVI1. First we check the viabil- e (L. g)] <

supdomy.

Case(c) (solutions jumping outside'UDA) can be excluded
as well, because below we will show th@i{D) c C, and thus

G(D)cCUD.

F,9NTc(z,q) #0 V(Z,q9)eUNC  (41)

In fact, to complete the proof we establish now t64D) C

In fact, note that if(z,q) € C' \ D, then for any sufficiently C' and we consider two situations: 4. € D andg = 0, and

small neighborhood’ of (z, q), it holds that(z,q) e UNC
implies (z,q) € C'\ D due to continuity ofys, S € {0,1}.

Il. x € D andg = 1.

Therefore, it suffices to show that (we dropped the bars in|. Let x € D andgq = 0, and thusy(z) = 0 andz € M,

7,q)

To do so, we will first compute the tangent cores(z, ¢) for
the setC' as defined just below (24) fdi,q) € C'\ D:

e ¢=0, iy >0: To(x,q) = R* x {0}

. q:O’ 1, =0: TC(I’,Q):RXR+ X{O}

e q=1, v.>0: Te(z,q) = R? x {0}

e q=1, v.=0:Te(z,q) =Ry xR x {0}

Using these calculations, we have the following:

1) For(z,q) € C\ D such thaty = 0, iz, > 0, (@J) trivially
holds.

2) For(x,q) € C'\ D such thaty = 0, i, = 0, we have to
distinguish two cases based on different set-valued vector
fields in [2) depending if: € M, \ M3 (i.e.v. < E) or
xr € M3 (i.e.vc > E).

a) If z € M, \ M3 and thusv. < E, we have the vector
field

1 1.
—Ei’l}c + EZL

(fa(()x)> - —r”6+ 2

because-{v. + £ > 0.
b) Whenz € M3 and thusv. > F, we have a set-valued
vector field (see[{2)) given by

1 1 E
{—EUC} X |:—E’Uc+ E’ 0:| X {0}
Since(—4-v., 0,0) is an element of the set above and
also lies inT¢(x, q), (@) holds.

3) For(x,q) € C\ D such thaty = 1, v, > 0, (41) trivially
holds.

S Tc(xv Q)

(i.e. iy > 0). We will first show that this implies that
x € My (i.e.v. > 0), i.e.

ﬁo(,@) =0

i >0 (43)

}:>UCZO

This latter implication will follow from the fact that
Q = {z € R? | F(x) = 0} is a downward
parabola and the fact that the minimal raain{v. |
x € Qo, i, = 0} is non-negative. Indeed, sinde, is a
downward parabola, these two facts would give
min{v. | z € Qo, iz > 0} = min{v, |z € Qo, iy = 0}
>0
which is equivalent to[{43).

To compute the minimal root, we can use the expression
in 22), showing that the points = (v.,i5) with
Yo(z) =0 (x € Q) andiz, = 0 satisfy

where Ag = Ao + % By = By — Kov}, and Dy =
Do + £2vz?, which can be rewritten as

() -4 (4)

Then, the roots,4 2 of the functioryy(z)|;, o are given

“Note that flowing outside” U D is not possible due to the closedness of
C and D as formulated in the hybrid basic conditions.
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by
_ . ~ .2
ae B [ B (B
' 2A0 Ap 2A0
_ <P11 + oy — RCK0> ot
—2p11 + ReKy ¢

+ Bllyx — ReK, 2
~we (- (P ) )
—2p11 + ReKy
in terms of system constants. Becauge> F > 0 and
Ko € (0,221), min{v., v} > 0 as long as—(v?)? +

Rc
2
v*) > 0. The left-hand side of

p11+ 2L vl —ReK,
- \ 72p1}+RCK0 c .
the inequality can be rewritten as

pu (1 _ oo
M 2

Ko—Z )
which is always positive since conditiond > £ > 0
and K, € (0, 221
property (a) of LemmalllL3, andyy(z) = 0, we know
that¥; (z) < 0 and thusG(z,0) = (z,1) € C.

. Let z € D andgq = 1, and thusy;(z) = 0 andz € Ml
(i.e. v. > 0). Similar to case I. we will first show that
this implies thatr € M, (i.e. i, > 0), i.e.

71 (ac) =0

e >0 (44)

}:>iLZO

To show this we computenin{iy, | 71(z) = 0,v. > 0}
and show it is nonnegative. First we observe that—=

{z € R?* | 71(z) = 0} is an upward parabola. Using

the expression if(23), the points= (v., i) satisfying
71 (z) = 0 are given by

whered; = A, +%1, B; = B~ Kv:, andD; = Dy +
K1p*?. The minimum valu€, iy, := min{iy, | 31 (z) =
0} results in two cases, namely

. E% - 4.12[1.51 pll
UL min,1 = ——=———, Ucmin,1 > 0, Kj € (0, —)
boint = O ! ! R(ZS)
; 51 P11 2p11
min,2 = T 57 cmin,2 — Y, K —, Y
0L min,2 o, Vemwin2 0 1€ {Rc Rc( |
6

This completes the proof.

(1]

(2]

(31
(4]

(5]

(6]

). This established (#3). Using now

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

wherei, iy, is found by either the vertex of the paraboléﬂ]

or atv. = 0 due to the constraint. > 0, respectively.
Substituting the expressions df;, By, D into the right-
hand side of[(45) and_(#6), we have

; . . §12 — 412[1.51 . (6]911 - 4K1RC) U:Q
fomind 44,04 4p11RE (2p11 — K1 Rc)
Di  (2p11 — K1Re)v:?

i . — _ 1
L min,2 Cl 2p11RE
SinceR, ¢, E,v},p11 > 0, we obtain

Z’L min > 0

(18]

[19]

[20]

[21]
[22]

13

and thusmin{i; | 1 (x) = 0,v. > 0} > min{iy |
F1(z) = 0} = ipmin > 0. This established(44). Using
now property(a) of LemmalllL.3 andy,(z) = 0, we
know that7y(z) < 0 and thusG(z,1) = (z,0) € C.

O
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