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|I. INTRODUCTION

Driven by the continuousprogressin CMOS fabrication
technology, digital computersbasedon Von-Neumannma-

chine have reachedunprecedented¢omputationalcapability.
In spite of that, it is well recognizedthat there are still

classeof computationabroblems,suchasdataclassifica-tion

and recognitionwhere conventionaligital computers
perform very poorly comparedto the elementaryskill of

humanintelligence.For theseapplications,it is expectedthat
unconventionalbrain-inspiredneurocomputingcharacterized

by a massiveparallelismcouldleadto significantadvance$1].
Arrays of weakly coupled oscillatorgpresent a promising
approachto unconventionatomputation.t hasbeenproved

that oscillator arrayscan implementcomputationataskssuch

as patternrecognitionand associativememory by exploiting

their natural attitude to synchronization[2]—-[4]. In these
oscillatorarrays,datainformationis commonlyencodedn the

relative phasedifferencesachievedat synchronizationwhich
makes computationrobust againstintrinsic noise of circuit

implementation.

However, while the associativememory capability has
beenprovedin principle using ideal oscillator models and

couplings the actualimplementatiorwith physicaldevicesstill
presents many unsolved challengisgues. A first issue
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is related to finding oscillatory devices and coupling ways
that allows a precise control of the array response in terms
of relative phase differences. Intuition suggests that proper
coupling methods are those that produce phase modulation
while minimally affecting oscillating amplitudes.

A second crucial issue consists in developing a robust
design methodology. An oscillator array contains a huge
number of free parameters that determine its dynamics and
synchronization properties. Furthermore, the analysis of the
phase response of medium/large oscillator arrays via transistor-
level simulation is totally unfeasible due to the prohibitively
long simulation times it would take. Behavioral models of os-
cillators and couplings are thus mandatory to enable oscillator
arrays design and associative-memory function verification.

In this paper, we describe an efficient simulation and design
approach for arrays of resonant oscillators coupled through
transconductance elements. The methodology is developed in
the paper by referring to a LC tank oscillatory device but it
can be applied to other resonant nano-oscillators fabricated
in emerging technologies, such as MEMS resonant body
transistor [5]. Extensions to non-resonant oscillators [6]-[7]
are also possible in principle and will be the subject of future
investigations.

First, we report detailed circuit-level simulations for the case
of an elementary array formed by two coupled oscillators.
These simulations provide fundamental evidences about the
oscillator responses and the shape of the coupling currents.
Second, we exploit the above gained insights to provide a
realistic phase-domain macromodel of the oscillator array.
Such a macromodel is a generalization of previously pre-
sented ones [8]-[11] in that it can incorporate the relevant
array nonidealities, such as the nonlinear nature of coupling,
the variability of oscillating frequency and the unavoidable
intrinsic noise. By means of a series of simplifications, we
show how the proposed model can be linked to the theory
of oscillating computing available in the literature [1], [2],
[12]. This theory is in fact essential to highlight the associa-
tive memory capability of oscillator arrays. Finally, efficient
simulations are carried out with the nonlinear phase-domain
model to check the actual associative-memory performance for
a bench-mark case study. It is investigated how nonidealities
and coupling strength affect the associative memory capability.
The aforementioned issues are organized in the paper as fol-
lows: Sec. Il analyses the elementary array with two coupled
resonant oscillators. In Sec. Ill, we provide the detailed phase-
domain model of the oscillator array and we link it to the
theory of oscillator neurocomputing. Sec. 1V, describes the
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associative memory procedure for pattern recognition. Finalfjg- 2. Aray outputs in case a) and b).
in Sec. V we illustrate numerical experiments for a bench-

mark case study.
Fig. 3 shows the differential curreht

) : _ _ Ip,(t) = (I (t) = Iy (t))/2 1)
In this section, we analyze in details the elementary array

shown in Fig. 1 composed of two LC oscillators. The twavhich is injected by oscillator 2 into oscillator 1 for two
oscillators have the identical nominal parameters reporteddifferent polarization current$, = 20 A and I, = 30 uA of
Table-l. When working in free-running mode (i.e., with nahe coupling transistors. The differential pair works as a harsh
couplings) the two devices oscillate at the same frequeneymparator and thus its output differential currdit (¢) is
of 1.0261 GHz and their output voltage$, (t) = Vi,(t) well approximated by the sign function of its input voltage
(measured across the two LC tanks) are purely sinusoidad], i.e.
waveforms with peak values a3.1V. The oscillators are - :
coupled through differential pair transistors whose transcon- Ip,(8) ~ 912 - SigN(Vo, (1))- @

ductance is controlled by a programmable current soijce |, aqgition, we see that by selecting the polarization curfgnt
S_U(_:h current sources are usually found in current-steerifg 4re able to control the amplituge of the injected current,
digital to analog converters [13]. . _i.e. we can modulate the strength of coupling. The evidences
For_ this c_eleme_ntary array, we perform a series of detailegl e lead us to the schematic model plotted in Fig. 4
electrical simulations considering the two different ways §)here mutual coupling is achieved through transconductance
_and _b) of inserting the cquplmg transistors shown in the box@ﬁements. The module of transconductance paramgters:
in Fig. 1. We repeat simulations for several values of thg 2 jetermines the coupling strength while their sign depends
polarization currentl,,. Fig. 2 shows the output voltages 0fyp, the way the gates of coupling transistors are connected to
the coupled oscillators in the two cases a) and b) and f9fs oytput nodes: Case a) in Fig. 1 corresponds to a positive
I, = 20 pA. In Case a), the two oscillators synchronize i, _ /. narameter (which leads to anti-phase synchroniza-
anti-phasewhile in Case b) they synchroniie-phase In both tion) whereas Case b) corresponds to a negafive= go1

cases, the output voltagés, () andVo, (1) remain sinusoidal parameter (which leads to in-phase synchronization).
with the same peak value as in the free-running mode. This

indicates a first ewdence_about the couplmg circuitin Flg..l. It1 - ommon mode currento(t) = (IF(t) + IF (£))/2, which is almost
prOdU_Ces ph_ase quulatlon of the oscillator responses withggflstant, is filter out by the LC tank and thus can be neglected.
affecting their amplitude. 2For reasons that will be clear later, we consider symmetric couplings.

Il. TWO COUPLED RESONANT OSCILLATORS
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Fig. 5. Array with N coupled oscillators.

Fig. 3. Injected differential currents. (Dotted line) simulated, (Continuous

li imated b - sign(Vo, (t)). . .
ine) approximated bys2 - sign(Vb, (1)) modulation of their responses. As a consequence, the output

voltage of thenth oscillator can be written as

Vi (t + an(t)) = Var cos(wnt + wnan(t)) = Var cos(0,(t))
®3)

where «,(t) is the time shift due to phase mod-

Vo, (t) Vo, () ulation, 6,(t) = w,t +wna,(t) is the total phase and
ni Ny n I E— .
! ! 2 "2 on(t) = wpan (t) represents the excess phase.
The phase-domain model of the array is thus given by the
g1 - Sign(Vi, (1)) o1 - Sign(Vo, (£)) following set of equations:
G (t) = T (t + an(t)Ip, (t) (4a)
Fig. 4. Schematic model of coupling.

N
Ip, (t) = gny SignV;(t + a; (1)), (4b)

I11. A RRAY OF MUTUALLY COUPLED OSCILLATORS j=1
We pass now to study an array witN LC oscillators for n = 1,---,N. The functionT,,(¢) in (4a) is aT),-

coupled through differential pair transistors. Each oscillat@eriodic time function that describes the periodically-varying

of index n can be coupled to any other of indgxwith phase sensitivity to the injected currefi (t) [15]. This

a transconductance,;, as schematically shown in Fig. 5.function can be calculated through simulations of the free-

Couplings are symmetric, i.@,; = gjn. running oscillator with specialized numerical techniques [16],
First, we present a nonlinear phase-domain of the array tfia¥] as well as with commercially available CAD tools [18].

is able to incorporate the relevant nondidealities of the systery. (4b) gives the total differential currefy, (¢) injected into

Such a detailed model allows performing realistic numericakcillator of indexn.

simulations of the synchronization response in relatively shortThe condition for mutual synchronization of the array is

times. Second, we derive a simplified model of the arraghat, asymptotically fort — oo, the total phase difference

This simplified model is needed to link our model to théetween any couple of oscillators of indexandj tends to a

theoretical results available in the literature about oscillateonstant valud,,; [19], i.e.

neurocomputing.

tliglo On (t) —0; (t) = On- (5)
A. Nonlinear Phase-Domain Model for Numerical SimulaAt synchronization all devices oscillate with a common angu-
tions lar frequencyw.. For thenth oscillator, it is thus possible to

define the angular variablg, (¢) that measures the deviation

We denoteV',(t) = Vi cos(wnt) the output voltage of the of its total phase from the synchronization common ang

nth oscillator when working in free-running mode, wherg |
is its angular frequency. Oscillators are nominally identici’"
and are designed to oscillate at the same nominal angulai(t) = 0,,(t) —wet = wpt +wp o, (t) —wet = Pn(t) + Awy t

frequencywy. In practical implementations, however, small (6)
mismatches among devices may introduce tiny variations where Aw¢ = w, — w. is the frequency detuning frona..
the oscillating frequencies,, = wy. Note that in the ideal case of identical oscillating frequencies

When the oscillators are connected via coupling transis;, = wy = w., we have thatAw¢ = 0 and thusy,(t) =
tors, the mutually injected differential currents produce phasg (¢).



We conclude that, for a given matri% = {g,,;} € RV*N  related transconductance coefficiepts. Thus, a positives,, ;
of transconductance values, the phase-domain model (4) aefficient favors in-phase synchronization between oscillators
lows us to simulate, in a numerically efficient way, the timef index n and j; while a negatives,; favors anti-phase
evolution of the total phase variablds,(t) and to check synchronization.
whether synchronization condition (5) is verified or not. In Eg. (11) can then be recast in terms of total phase deviations
these simulations it is possible to include the variability adefined in (6) as follows
oscillating frequencies,,. The model can be further enhanced N
by m_cludmg_ ;he effects of internal noise sources. To this aim, ), (¢) = Aw® + B - Z $nj SIN(Yj (1) — hn(t)). (14)
(4a) is modified as follows et

an(t) = Tn(t + an(t))Ip, (t) + 15, (1), (7) By extending the approach in [2], it is possible to prove the
following result: if the symmetry property,,; = s;, holds,

n —_ W F H H
whereg, () = 1.4 (t) +17,(t) i @ macro noise source thalye nhase model (14) is the gradient of the function
reproduces the effects of white and flicker noise within the

: B
nth oscillator [20]’ [21] U(’l/)lv 1/)27 cee 71/)N) = 75 Z Z Snj C05(¢J*¢n)*Awg wna
noj
B. Simplified model for Theoretical Investigation _ (15)
i.e.,
In this subsection, instead, we move in the direction to sim- . oU
plify the model (4) so as to highlight its intrinsic associative Un(t) = 75—%' (16)
memory capability. First, we exploit the fact that the sensitivitxS a consequence
functionT'(¢) of harmonic oscillators is well approximated by q
a sinusoid waveform delayed hy 2 with respect to the output dU N ooU . N )
response [11], [22], i.e. i > an == > <0 17)
n=1 n n=1
[(t) = P cos(wnt —m/2),  for anyn. (8) This means that, if oscillators are mutually synchronized,
Second, we use averaging [23], [24]. The average shapetR¥ vector of their phase deviation (t),v(t), ¥ (1)),
the functionc, (t) obtained by integrating in time (4) can bealways converges to an equilibrium point wh =0 and

approximated by using the simplification 1 (t) = a(t) = ¢ (t) = 0 which is a local minimum of the

sign(Vs cos(x)) = cos(x) (9) functionU.
Depending on the connection coefficients, the function
can have many of such minima with any of them repre-
senting a stored/known pattern. Starting from a given initial
Gn(t) = Tacos(wpt +wpan(t) —/2) phase deviation vectors, which represents a new pattern to be
N (10) rec_ogn_ized, the array will evolye _towards the sto_red pa’_ctern
,ng cos(wjt + wja;(t)). which is closest according to its internal “dynamic metric”;
= the array will thus work as an associative memory. It is worth
underlining that the theory developed in this subsection holds
rovided that oscillator array keeps synchronized and this can
verified via numerical simulations of (4).

within (4b). Thus, we substitute (4b) with the simplificatiorb
(9) into (4a) and use (3) and (8), obtaining

Keeping only the slowly varying terms that result from th
cosine products in (10), we get the averaged equations for
total phase variables

. N IV. ASSOCIATIVEMEMORY FORPATTERN RECOGNITION
On(t) = wn + B Z sng sin(0;(t) = 0u(t)),  (11) A Information Encoding
j=1

Information can be encoded into the array by taking one

where of the oscillators and its total phase deviation as a reference,
“On " Snj = 9nj (12) denoted, (¢), and then defining the relative phase differences
and 253 . AG (1) = 0u(t) — 0:(1), (18)
op = .
wn ' whereA#, (t) = 0 by construction. The constant value that the

With the notation above, the simplified model (11) lookgth phase difference assumes at synchronizatiép = 6,1
very similar to the well known Kuramoto model [2], [12]determines theith element

where the parametess ; are theconnection coefficie_ntahile £, = cos(AB,), (19)
the parameterB determines thestrength of coupling The

parametersr,, defined in (13) give thescaling factorsthat of the output vector

allow us to map the “abstract” connection coefficiests of E: (61,¢ ex) (20)
the Kuramoto model into concrete transconductance vaiyes D520 SN
of the coupling transistors. It is also interesting to note thahe element,, € (—1, 1) of the output vector can be seen as
the connection coefficients,; have the opposite sign of thethe gray level (white for+1 and black for—1) of a pixel in



a pattern image. Fig. 8 shows, as an example, three different The final phase differencedd,, (t) = 60,(t) — 61(t),
patterns defined oveN = 60 pixels of a bench-mark case substituted in (19), supply the recognized output pattern.
study that we will employ in further simulations. We conclude this section, by noting that the connection
coefficients defined in (24) and (22) are transformed via (12)
in afully-interconnecteascillator array. This implies that each
oscillator is connected to all of the othéf — 1 oscillators.
To relax this high-connectivity problem, alternative arrange-
gk = {ek ek gk, (21) ments have_ been propqsed in the Iiteratu.re that employ time-
dependent interconnections [2], [26]. In this paper, we adopt a
with k = 1,...,p are given and define the patterns to be time-varyingswitched-interconnecteatrangement where each
memorized in the array. The simplest way to memorize ttoscillator, over a given oscillation cycle, is injected only by a
patterns is to set the connection coefficients with the wedubset ofd/ << N oscillators. Formally, at theth oscillation
known Hebbian ruleused to train Hopfield neural networkscycle the transconductance coefficients in (12) are transformed

B. Initialization and Recognition
Suppose that a set gfvectors

[25] into
1N . o) = 0 - sy, (25)
snj ==Y EnEl. (22) g g
P4 wheren=1,...,NandL, <j< L.+ M with L, =r - M,

However, for oscillator arrays a different setting of the conhile 0., are the scaling factors previously defined in (13).
nection coefficients is needed to initialize the array accordify €ach oscillation cycle, the subset of transconductance

to the pattern to be recognized [2]. If the latter is describ&@UPlings is shifted over a new block 81 oscillator outputs
by the vector so as to iteratively cover all of théVv oscillators. This

FO _ [¢0 (0 0 corresponds to incrementing by the indexr so that the
& =1{&:8&, - &k (23) :
e v} N x M transconductancegél? cover theN x N connection
then, during initialization, the connection coefficients are sebefficientss,,; in N/M oscillating cycles.
to the values

so; =608, (24) V. NUMERICAL EXPERIMENTS
From (14) and neglecting detuningsw¢, we see that if A. Array of two coupled oscillators
£n€) = 1 thend,; = 0 while if £¢9 = —1 thend,,; = 7. In the first numerical experiment, we simulate the mutual

Thus, during ini_t?ali_zation, the array dynamics will converge toypling of the elementary array in Fig. 1 with the phase-
the correct equilibrium phase differencaSé,, that substituted gomain model sketched in Fig. 4 and described by equations

in (19) give the pattern-to-be-recognized vecf%r[Z]. ~ (4). The results obtained with the phase-domain model are
In conclusion, the associative-memory operation consistsdBmpared with those obtained with the detailed transistor-
a two-step procedure: level simulations described in Sec. Il. In this experiment,

« Initialization: The connection coefficients,; and the the two oscillators are considered identical with the param-
corresponding coupling coefficients,; are first initial- eters reported in Table-l. The output voltagg(t) of the
ized to the pattern to be recognized according to (24). Tree-running LC oscillator and its sensitivity functidn(¢)
array is then allowed to achieve synchronization with thisre shown in Fig. 6. The samples of these waveforms are
coupling. employed in the phase-domain model (4). We consider the
In simulations, this corresponds to integrating in time thievo coupling arrangements previously investigated in Sec. Il
phase model (4), with the coefficients (24), while startingnd corresponding to: Case @) = ¢g»1 = 10uS; Case b)
from random initial time shifts. Simulation is carriedgi1o = g21 = —10uS. Starting from arbitrary initial time
out over a time interval;,;; until array synchronization shifts a;(0) and a»(0), the time shifts waveformsa,, (¢) are
is reached. Then, the time shift values,(T;,;:) are obtained by integrating the phase model (4), then, the total
calculated forn =1,...,N. phasest,,(t) = wot + woa,(t), for n = 1,2 are deduced.

« Recognition The connection coefficients,,;, and the Fig. 7 shows the simulated total phase differefige) —0: ().
related coupling coefficients,;, are now switched to the In both cases, the total phase difference is bounded meaning
setting (22) which includes all the memorized patterrthat oscillators synchronize. In perfect accordance with the
collectively. In this condition, the oscillator array movesesults reported in Sec. Il, we have that in Case a), the
towards a new phase deviation vector. At synchronizatiophase difference tends togiving anti-phase synchronization
phase deviation vector provides the recognized outpwhile in Case b) the phase difference goes to zero giving
pattern. In simulations, the Recognition step corresponitlsphase synchronization. In both cases, the output voltages
to integrating in time the phase model (4), with co¥,,(t) = Vo (t+a,(t)) calculated with the phase-domain model
efficients (22), starting from the initial phase shiftare perfectly superimposed to the waveforms shown in Fig. 2
an(Tinit), Obtained at the previous step. The waveformend computed with transistor-level simulations. Similarly, the
of a,(t) and those of the total phasés(t) = w,t + coupling currentdp, (t) = g;.» - SigN(V,,(t)) provided by the
wna,(t) are calculated over a sufficiently long timephase-domain model match with good accuracy the waveforms
interval allowing the array to achieve synchronizatiorcomputed with transistor-level simulations, as shown in Fig. 3.
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Fig. 7. Phase differences in the elementary array for couplings a) and bbattern-to-be-recognized shown in Fig. 10 (leftmost pattern at
to) is loaded in the connection matrix. During the Initialization
This confirms the reliability of the results provided by thesAlmuIatmn,- 1.e.0 <t < to = Tinit, the phase thferences
phase-domain simulation. 0,(t) split into zero orm valges and. the associated output
pattern, computed with (19), just replicates the pattern-to-be-
o o recognized. During the Recognition simulation, ite> to,
B. Associative memory application the phase differences evolve moving towards new constant
In the second experiment, we consider an array formsteady state values close to multiples of(i.e. array syn-
with N = 60 LC oscillators and implementing the associativehronizes). The output patterns computed at the intermediate
memory function described in Sec. IV. The three patternsmulation timest,,t2,t3 and reported in Fig. 10 converge
described by vectorg®, to be memorized in the array areto the correct association. Similar results are obtained for
shown in Fig. 8. the other patterns, e.g for the distorted pattern “2” shown in
In these experiments, the oscillators may have differeRig. 11. We also verified that the correct pattern recognition
oscillating frequencies,, =~ wyp. In what follows we consider occurs for both the fully-interconnected and the switched-
two different degrees of frequency variability and severa@iiterconnected architectures described in Sec. IV-B. In the
coupling strength parametét values. case of a switched-interconned array, a small ripple appears
In the first case, the frequencieg are randomly generatedsuperimposed to the phase waveforms in Fig. 9 (the ripple is
in a narrow frequency interval dir x 100 kHz centered in very small and is not shown in the figure). Interestingly, the
wp. No internal noise is considered. In this case, a couplimgrrect association capability of the array continues to hold
strength of B = 4 - 10°, corresponding to weak couplingif the coupling strength parameté? is increased till about
currentsIp(t) of the order fractions ofuA, is enough to the upper valueB ~ 2 - 107. This upper value corresponds
yield array synchronization. Fig. 9 shows the time evolutiotlo coupling currentsip(¢t) of the order of a fewlOuA.
of the phase differencedd, (t) = 60,,(¢t) — 61(¢t) when the For stronger coupling values, mutual synchronization is lost.
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Fig. 12 shows that for large3, during the Recognitiol
simulation, some oscillators desynchronize with the refer:
and the related phase differences grow with no bound
time. The corresponding sequence of output patterns sl
in Fig. 13 alternates between the correct pattern “1” and the
wrong pattern “0”".

In the second case, we test the memory association perfo
mance for a much greater frequency variability: frequencies
w, are randomly generated in a frequency intervakefx
10 MHz centered inwg. In addition, internal phase noise of
each LC oscillator is included in the model as described in
(7). Repeated phase-domain simulations show that for larg
frequency variability mutual synchronization becomes more W~
critical and occurs for a narrower interval of coupling strength
values?2 - 106 < B < 2-107. In the presence of significant
frequency variability, in fact, a greater minimum coupling
strength is needed to synchronize the oscillator array. Fig. 1.
shows the time evolution of the phase differences for the
distorted input “1” and forB = 5 - 10° in a switched-
interconnected array with subset block of dimensidn= 5.
Switched interconnection introduces small phase ripples WEh Phase differences time evolution for large frequency variability
a period equal toN/M = 12 oscillating cycles. After a computed with a switched-interconnected array.

Recognition simulation time of about0 oscillation cycles,

Fig. 13. Sequence of output patterns for a too strong couplirength and
a distorted input “1”.

A, (t)[rad]




to incorporate the relevant nonidealities of practical imple-
mentations. Relevant nonidealities are the nonlinear nature of
coupling, the limited achievable coupling strength as well as
the variability of oscillating frequency and phase noise. Simu-
lations have revealed that for very small frequency variability,

1111

as it is the case for high Q crystal or MEMs resonators or
in the presence of some frequency tuning mechanisms, the
correct associative memory behavior holds for a wide range of
coupling strength. By contrast, for relatively large frequency
variability, e.g. for low Q devices, the associative memory
performance results to be strongly affected by the coupling
strength. In this case, the proposed phase-domain macromodel
provides an invaluable aid to the array design and to the

definition of a proper recognition timing.

Fig. 15. Sequence of output patterns for a distorted inputdfd large
frequency variability.
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[1]
[2
3]
[4]
to t to t3
Fig. 16. Sequence of output patterns for a distorted inputd@d large [5]

frequency variability.

oscillators synchronize and the phase separations state prBSJ
vides the correct output. However, the almost constant values
approached by the phase differences in Fig. 14 are quite spread
around multiple ofr and this results in the less clean output 7l
pattern shown in Fig. 15. A similar result is seen in Fig. 16 (g
for the Recognition of a distorted input “2”".

More importantly, we verified that if the Recognition sim-
ulation is extended over a longer time interval, e€5g000 9]
cycles, in some cases, synchronization is eventually lost and
a wrong output pattern is associated. A possible justificatioHO]
for such a performance deterioration is that significant fre-
quency detuningdw¢ can produce spurious phase transients,
not considered in the simplified analysis in Sec. lII. In thelll]
long run, such transients may disrupt the associative memory
mechanism. Our simulations show that this can be prevented
by limiting as much as possible the Recognition time, e.g. t62]
some hundreds oscillation cycles in our example.

(13]
VI. CONCLUSIONS

In this paper, we have presented a methodological approagia]
to the analysis and design of arrays of resonant oscillators
for associative memory applications. A realistic phase—domai%sl
model of the oscillator array has been described which is able
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