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I. INTRODUCTION

Driven by the continuous progress in CMOS fabrication
technology, digital computers based on Von-Neumann ma-
chine have reached unprecedented computational capability.
In spite of that, it is well recognized that there are still
classes of computational problems, such as data classifica-tion 
and recognition, where conventional digital computers
perform very poorly compared to the elementary skill of
human intelligence. For these applications, it is expected that 
unconventional brain-inspired neurocomputing characterized
by a massive parallelism could lead to significant advances [1]. 
Arrays of weakly coupled oscillators represent a promising
approach to unconventional computation. It has been proved
that oscillator arrays can implement computational tasks such 
as pattern recognition and associative memory by exploiting
their natural attitude to synchronization [2]–[4]. In these
oscillator arrays, data information is commonly encoded in the 
relative phase differences achieved at synchronization, which
makes computation robust against intrinsic noise of circuit 
implementation.

However, while the associative memory capability has 
been proved in principle using ideal oscillator models and

couplings, the actual implementation with physical devices still 
presents many unsolved challenging issues. A first issue
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is related to finding oscillatory devices and coupling ways
that allows a precise control of the array response in terms
of relative phase differences. Intuition suggests that proper
coupling methods are those that produce phase modulation
while minimally affecting oscillating amplitudes.

A second crucial issue consists in developing a robust
design methodology. An oscillator array contains a huge
number of free parameters that determine its dynamics and
synchronization properties. Furthermore, the analysis of the
phase response of medium/large oscillator arrays via transistor-
level simulation is totally unfeasible due to the prohibitively
long simulation times it would take. Behavioral models of os-
cillators and couplings are thus mandatory to enable oscillator
arrays design and associative-memory function verification.

In this paper, we describe an efficient simulation and design
approach for arrays of resonant oscillators coupled through
transconductance elements. The methodology is developed in
the paper by referring to a LC tank oscillatory device but it
can be applied to other resonant nano-oscillators fabricated
in emerging technologies, such as MEMS resonant body
transistor [5]. Extensions to non-resonant oscillators [6]-[7]
are also possible in principle and will be the subject of future
investigations.

First, we report detailed circuit-level simulations for the case
of an elementary array formed by two coupled oscillators.
These simulations provide fundamental evidences about the
oscillator responses and the shape of the coupling currents.
Second, we exploit the above gained insights to provide a
realistic phase-domain macromodel of the oscillator array.
Such a macromodel is a generalization of previously pre-
sented ones [8]-[11] in that it can incorporate the relevant
array nonidealities, such as the nonlinear nature of coupling,
the variability of oscillating frequency and the unavoidable
intrinsic noise. By means of a series of simplifications, we
show how the proposed model can be linked to the theory
of oscillating computing available in the literature [1], [2],
[12]. This theory is in fact essential to highlight the associa-
tive memory capability of oscillator arrays. Finally, efficient
simulations are carried out with the nonlinear phase-domain
model to check the actual associative-memory performance for
a bench-mark case study. It is investigated how nonidealities
and coupling strength affect the associative memory capability.
The aforementioned issues are organized in the paper as fol-
lows: Sec. II analyses the elementary array with two coupled
resonant oscillators. In Sec. III, we provide the detailed phase-
domain model of the oscillator array and we link it to the
theory of oscillator neurocomputing. Sec. IV, describes the
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Fig. 1. Coupled LC oscillators. We consider the two different coupling ways
(a) and (b) shown in the boxes.

associative memory procedure for pattern recognition. Finally,
in Sec. V we illustrate numerical experiments for a bench-
mark case study.

II. T WO COUPLED RESONANT OSCILLATORS

In this section, we analyze in details the elementary array
shown in Fig. 1 composed of two LC oscillators. The two
oscillators have the identical nominal parameters reported in
Table-I. When working in free-running mode (i.e., with no
couplings) the two devices oscillate at the same frequency
of 1.0261GHz and their output voltagesV01(t) = V02(t)
(measured across the two LC tanks) are purely sinusoidal
waveforms with peak values of3.1V. The oscillators are
coupled through differential pair transistors whose transcon-
ductance is controlled by a programmable current sourceIp.
Such current sources are usually found in current-steering
digital to analog converters [13].

For this elementary array, we perform a series of detailed
electrical simulations considering the two different ways a)
and b) of inserting the coupling transistors shown in the boxes
in Fig. 1. We repeat simulations for several values of the
polarization currentIp. Fig. 2 shows the output voltages of
the coupled oscillators in the two cases a) and b) and for
Ip = 20µA. In Case a), the two oscillators synchronize in
anti-phasewhile in Case b) they synchronizein-phase. In both
cases, the output voltagesV01(t) andV02 (t) remain sinusoidal
with the same peak value as in the free-running mode. This
indicates a first evidence about the coupling circuit in Fig. 1: it
produces phase modulation of the oscillator responses without
affecting their amplitude.

TABLE I

PARAMETERS OF THELC OSCILLATOR

Parameter Value

VDD 2.5 V
IT 460 µA
C 0.3 pF
L 40 nH
R 11 kΩ

(W/L) 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−9

−4

−2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−9

−4

−2

0

2

4

V01(t)

V01(t)

V02(t)

V02(t)

V
0
k
(t
)
[V

]
V
0
k
(t
)
[V

]

Time [s]

Fig. 2. Array outputs in case a) and b).

Fig. 3 shows the differential current1

ID1
(t) = (I+1 (t)− I−1 (t))/2 (1)

which is injected by oscillator 2 into oscillator 1 for two
different polarization currentsIp = 20µA and Ip = 30µA of
the coupling transistors. The differential pair works as a harsh
comparator and thus its output differential currentID1

(t) is
well approximated by the sign function of its input voltage
[14], i.e.

ID1
(t) ≈ g12 · sign(V02 (t)). (2)

In addition, we see that by selecting the polarization currentIp
we are able to control the amplitudeg12 of the injected current,
i.e. we can modulate the strength of coupling. The evidences
above lead us to the schematic model plotted in Fig. 4
where mutual coupling is achieved through transconductance
elements. The module of transconductance parametersg12 =
g21

2 determines the coupling strength while their sign depends
on the way the gates of coupling transistors are connected to
the output nodes: Case a) in Fig. 1 corresponds to a positive
g12 = g21 parameter (which leads to anti-phase synchroniza-
tion) whereas Case b) corresponds to a negativeg12 = g21
parameter (which leads to in-phase synchronization).

1Common mode currentIC(t) = (I+
1
(t) + I+

1
(t))/2, which is almost

constant, is filter out by the LC tank and thus can be neglected.
2For reasons that will be clear later, we consider symmetric couplings.
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Fig. 3. Injected differential currents. (Dotted line) simulated, (Continuous
line) approximated byg12 · sign(V02 (t)).
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III. A RRAY OF MUTUALLY COUPLED OSCILLATORS

We pass now to study an array withN LC oscillators
coupled through differential pair transistors. Each oscillator
of index n can be coupled to any other of indexj with
a transconductancegnj , as schematically shown in Fig. 5.
Couplings are symmetric, i.e.gnj = gjn.

First, we present a nonlinear phase-domain of the array that
is able to incorporate the relevant nondidealities of the system.
Such a detailed model allows performing realistic numerical
simulations of the synchronization response in relatively short
times. Second, we derive a simplified model of the array.
This simplified model is needed to link our model to the
theoretical results available in the literature about oscillator
neurocomputing.

A. Nonlinear Phase-Domain Model for Numerical Simula-
tions

We denoteVn(t) = VM cos(ωnt) the output voltage of the
nth oscillator when working in free-running mode, whereωn

is its angular frequency. Oscillators are nominally identical
and are designed to oscillate at the same nominal angular
frequencyω0. In practical implementations, however, small
mismatches among devices may introduce tiny variations of
the oscillating frequenciesωn ≈ ω0.

When the oscillators are connected via coupling transis-
tors, the mutually injected differential currents produce phase
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Fig. 5. Array withN coupled oscillators.

modulation of their responses. As a consequence, the output
voltage of thenth oscillator can be written as

Vn(t+ αn(t)) = VM cos(ωnt+ ωnαn(t)) = VM cos(θn(t))
(3)

where αn(t) is the time shift due to phase mod-
ulation, θn(t) = ωnt+ ωnαn(t) is the total phase and
φn(t) = ωnαn(t) represents the excess phase.

The phase-domain model of the array is thus given by the
following set of equations:

α̇n(t) = Γn(t+ αn(t))IDn
(t) (4a)

IDn
(t) =

N∑

j=1

gnj sign[Vj(t+ αj(t))], (4b)

for n = 1, · · · , N . The functionΓn(t) in (4a) is a Tn-
periodic time function that describes the periodically-varying
phase sensitivity to the injected currentIDn

(t) [15]. This
function can be calculated through simulations of the free-
running oscillator with specialized numerical techniques [16],
[17] as well as with commercially available CAD tools [18].
Eq. (4b) gives the total differential currentIDn

(t) injected into
oscillator of indexn.

The condition for mutual synchronization of the array is
that, asymptotically fort → ∞, the total phase difference
between any couple of oscillators of indexn andj tends to a
constant valueθnj [19], i.e.

lim
t→∞

θn(t)− θj(t) = θnj . (5)

At synchronization all devices oscillate with a common angu-
lar frequencyωc. For thenth oscillator, it is thus possible to
define the angular variableψn(t) that measures the deviation
of its total phase from the synchronization common oneωct,
i.e.

ψn(t) = θn(t)−ωct = ωnt+ωnαn(t)−ωct = φn(t)+∆ωc
n t
(6)

where∆ωc
n = ωn − ωc is the frequency detuning fromωc.

Note that in the ideal case of identical oscillating frequencies
ωn = ω0 = ωc, we have that∆ωc

n = 0 and thusψn(t) =
φn(t).



We conclude that, for a given matrixG = {gnj} ∈ R
N×N

of transconductance values, the phase-domain model (4) al-
lows us to simulate, in a numerically efficient way, the time
evolution of the total phase variablesθn(t) and to check
whether synchronization condition (5) is verified or not. In
these simulations it is possible to include the variability of
oscillating frequenciesωn. The model can be further enhanced
by including the effects of internal noise sources. To this aim,
(4a) is modified as follows

α̇n(t) = Γn(t+ αn(t))IDn
(t) + ηneq(t), (7)

whereηneq(t) = ηWeq (t) + ηFeq(t) is a macro noise source that
reproduces the effects of white and flicker noise within the
nth oscillator [20], [21].

B. Simplified model for Theoretical Investigation

In this subsection, instead, we move in the direction to sim-
plify the model (4) so as to highlight its intrinsic associative
memory capability. First, we exploit the fact that the sensitivity
functionΓ(t) of harmonic oscillators is well approximated by
a sinusoid waveform delayed byπ/2 with respect to the output
response [11], [22], i.e.

Γn(t) = ΓM cos(ωnt− π/2), for anyn. (8)

Second, we use averaging [23], [24]. The average shape of
the functionαn(t) obtained by integrating in time (4) can be
approximated by using the simplification

sign(VM cos(x)) ≈ cos(x) (9)

within (4b). Thus, we substitute (4b) with the simplification
(9) into (4a) and use (3) and (8), obtaining

α̇n(t) = ΓM cos(ωnt+ ωnαn(t)− π/2)

·

N∑

j=1

gnj cos(ωjt+ ωjαj(t)).
(10)

Keeping only the slowly varying terms that result from the
cosine products in (10), we get the averaged equations for the
total phase variables

θ̇n(t) = ωn +B ·

N∑

j=1

snj sin(θj(t)− θn(t)), (11)

where
−σn · snj = gnj , (12)

and
σn =

2B

ωn ΓM

. (13)

With the notation above, the simplified model (11) looks
very similar to the well known Kuramoto model [2], [12]
where the parameterssnj are theconnection coefficientswhile
the parameterB determines thestrength of coupling. The
parametersσn defined in (13) give thescaling factorsthat
allow us to map the “abstract” connection coefficientssnj of
the Kuramoto model into concrete transconductance valuesgnj
of the coupling transistors. It is also interesting to note that
the connection coefficientssnj have the opposite sign of the

related transconductance coefficientsgnj. Thus, a positivesnj
coefficient favors in-phase synchronization between oscillators
of index n and j while a negativesnj favors anti-phase
synchronization.

Eq. (11) can then be recast in terms of total phase deviations
defined in (6) as follows

ψ̇n(t) = ∆ωc
n +B ·

N∑

j=1

snj sin(ψj(t)− ψn(t)). (14)

By extending the approach in [2], it is possible to prove the
following result: if the symmetry propertysnj = sjn holds,
the phase model (14) is the gradient of the function

U(ψ1, ψ2, . . . , ψN ) = −
B

2

∑

n

∑

j

snj cos(ψj−ψn)−∆ωc
n ψn,

(15)
i.e.,

ψ̇n(t) = −
∂U

∂ψn

. (16)

As a consequence

dU

dt
=

N∑

n=1

∂U

∂ψn

ψ̇n = −

N∑

n=1

|ψ̇n|
2 ≤ 0. (17)

This means that, if oscillators are mutually synchronized,
the vector of their phase deviations(ψ1(t), ψ2(t), ψN (t)),

always converges to an equilibrium point where
∂U

∂ψn

= 0 and

ψ̇1(t) = ψ̇2(t) = ψ̇N (t) = 0 which is a local minimum of the
functionU .

Depending on the connection coefficientssnj , the function
U can have many of such minima with any of them repre-
senting a stored/known pattern. Starting from a given initial
phase deviation vectors, which represents a new pattern to be
recognized, the array will evolve towards the stored pattern
which is closest according to its internal “dynamic metric”;
the array will thus work as an associative memory. It is worth
underlining that the theory developed in this subsection holds
provided that oscillator array keeps synchronized and this can
be verified via numerical simulations of (4).

IV. A SSOCIATIVE MEMORY FORPATTERN RECOGNITION

A. Information Encoding

Information can be encoded into the array by taking one
of the oscillators and its total phase deviation as a reference,
denotedθ1(t), and then defining the relative phase differences

∆θn(t) = θn(t)− θ1(t), (18)

where∆θ1(t) = 0 by construction. The constant value that the
nth phase difference assumes at synchronization∆θn = θn,1
determines thenth element

ξn = cos(∆θn), (19)

of the output vector

~ξ = {ξ1, ξ2, . . . , ξN}. (20)

The elementξn ∈ (−1, 1) of the output vector can be seen as
the gray level (white for+1 and black for−1) of a pixel in



a pattern image. Fig. 8 shows, as an example, three different
patterns defined overN = 60 pixels of a bench-mark case
study that we will employ in further simulations.

B. Initialization and Recognition

Suppose that a set ofp vectors

~ξk = {ξk1 , ξ
k
2 , . . . , ξ

k
N}, (21)

with k = 1, . . . , p are given and define thep patterns to be
memorized in the array. The simplest way to memorize the
patterns is to set the connection coefficients with the well
known Hebbian ruleused to train Hopfield neural networks
[25]

snj =
1

p

p∑

k=1

ξkn ξ
k
j . (22)

However, for oscillator arrays a different setting of the con-
nection coefficients is needed to initialize the array according
to the pattern to be recognized [2]. If the latter is described
by the vector

~ξ0 = {ξ01 , ξ
0
2 , . . . , ξ

0
N}, (23)

then, during initialization, the connection coefficients are set
to the values

s0nj = ξ0n ξ
0
j . (24)

From (14) and neglecting detunings∆ωc
n, we see that if

ξ0nξ
0
j = 1 then θnj = 0 while if ξ0nξ

0
j = −1 then θnj = π.

Thus, during initialization, the array dynamics will converge to
the correct equilibrium phase differences∆0θn that substituted
in (19) give the pattern-to-be-recognized vector~ξ0 [2].

In conclusion, the associative-memory operation consists in
a two-step procedure:

• Initialization: The connection coefficientssnj and the
corresponding coupling coefficientsgnj are first initial-
ized to the pattern to be recognized according to (24). The
array is then allowed to achieve synchronization with this
coupling.
In simulations, this corresponds to integrating in time the
phase model (4), with the coefficients (24), while starting
from random initial time shifts. Simulation is carried
out over a time intervalTinit until array synchronization
is reached. Then, the time shift valuesαn(Tinit) are
calculated forn = 1, . . . , N .

• Recognition: The connection coefficientssnj , and the
related coupling coefficientsgnj, are now switched to the
setting (22) which includes all the memorized patterns
collectively. In this condition, the oscillator array moves
towards a new phase deviation vector. At synchronization,
phase deviation vector provides the recognized output
pattern. In simulations, the Recognition step corresponds
to integrating in time the phase model (4), with co-
efficients (22), starting from the initial phase shifts
αn(Tinit), obtained at the previous step. The waveforms
of αn(t) and those of the total phasesθn(t) = ωnt +
ωnαn(t) are calculated over a sufficiently long time
interval allowing the array to achieve synchronization.

The final phase differences∆θn(t) = θn(t) − θ1(t),
substituted in (19), supply the recognized output pattern.

We conclude this section, by noting that the connection
coefficients defined in (24) and (22) are transformed via (12)
in a fully-interconnectedoscillator array. This implies that each
oscillator is connected to all of the otherN − 1 oscillators.
To relax this high-connectivity problem, alternative arrange-
ments have been proposed in the literature that employ time-
dependent interconnections [2], [26]. In this paper, we adopt a
time-varyingswitched-interconnectedarrangement where each
oscillator, over a given oscillation cycle, is injected only by a
subset ofM << N oscillators. Formally, at therth oscillation
cycle the transconductance coefficients in (12) are transformed
into

g
(r)
nj = −σn · snj , (25)

wheren = 1, . . . , N andLr ≤ j < Lr +M with Lr = r ·M ,
while σn are the scaling factors previously defined in (13).
At each oscillation cycle, the subset of transconductance
couplings is shifted over a new block ofM oscillator outputs
so as to iteratively cover all of theN oscillators. This
corresponds to incrementing by1 the index r so that the
N ×M transconductancesg(r)nj cover theN ×N connection
coefficientssnj in N/M oscillating cycles.

V. NUMERICAL EXPERIMENTS

A. Array of two coupled oscillators

In the first numerical experiment, we simulate the mutual
coupling of the elementary array in Fig. 1 with the phase-
domain model sketched in Fig. 4 and described by equations
(4). The results obtained with the phase-domain model are
compared with those obtained with the detailed transistor-
level simulations described in Sec. II. In this experiment,
the two oscillators are considered identical with the param-
eters reported in Table-I. The output voltageV0(t) of the
free-running LC oscillator and its sensitivity functionΓ(t)
are shown in Fig. 6. The samples of these waveforms are
employed in the phase-domain model (4). We consider the
two coupling arrangements previously investigated in Sec. II
and corresponding to: Case a)g12 = g21 = 10µS; Case b)
g12 = g21 = −10µS. Starting from arbitrary initial time
shifts α1(0) andα2(0), the time shifts waveformsαn(t) are
obtained by integrating the phase model (4), then, the total
phasesθn(t) = ω0t + ω0αn(t), for n = 1, 2 are deduced.
Fig. 7 shows the simulated total phase differenceθ2(t)−θ1(t).
In both cases, the total phase difference is bounded meaning
that oscillators synchronize. In perfect accordance with the
results reported in Sec. II, we have that in Case a), the
phase difference tends toπ giving anti-phase synchronization
while in Case b) the phase difference goes to zero giving
in-phase synchronization. In both cases, the output voltages
Vn(t) = V0(t+αn(t)) calculated with the phase-domain model
are perfectly superimposed to the waveforms shown in Fig. 2
and computed with transistor-level simulations. Similarly, the
coupling currentsIDj

(t) = gj,n · sign(Vn(t)) provided by the
phase-domain model match with good accuracy the waveforms
computed with transistor-level simulations, as shown in Fig. 3.
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This confirms the reliability of the results provided by the
phase-domain simulation.

B. Associative memory application

In the second experiment, we consider an array formed
with N = 60 LC oscillators and implementing the associative
memory function described in Sec. IV. The three patterns,
described by vectors~ξk, to be memorized in the array are
shown in Fig. 8.

In these experiments, the oscillators may have different
oscillating frequenciesωn ≈ ω0. In what follows we consider
two different degrees of frequency variability and several
coupling strength parameterB values.

In the first case, the frequenciesωn are randomly generated
in a narrow frequency interval of2π × 100 kHz centered in
ω0. No internal noise is considered. In this case, a coupling
strength ofB = 4 · 105, corresponding to weak coupling
currentsID(t) of the order fractions ofµA, is enough to
yield array synchronization. Fig. 9 shows the time evolution
of the phase differences∆θn(t) = θn(t) − θ1(t) when the

Fig. 8. Patterns memorized in the array.
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Fig. 9. Phase difference time evolution during the Initialization0 < t ≤ t0
and the Recognition simulationst ≥ t0 . Oscillators synchronize.

pattern-to-be-recognized shown in Fig. 10 (leftmost pattern at
t0) is loaded in the connection matrix. During the Initialization
simulation, i.e.0 < t ≤ t0 = Tinit, the phase differences
∆θn(t) split into zero orπ values and the associated output
pattern, computed with (19), just replicates the pattern-to-be-
recognized. During the Recognition simulation, i.e.t ≥ t0,
the phase differences evolve moving towards new constant
steady state values close to multiples ofπ (i.e. array syn-
chronizes). The output patterns computed at the intermediate
simulation timest1, t2, t3 and reported in Fig. 10 converge
to the correct association. Similar results are obtained for
the other patterns, e.g for the distorted pattern “2” shown in
Fig. 11. We also verified that the correct pattern recognition
occurs for both the fully-interconnected and the switched-
interconnected architectures described in Sec. IV-B. In the
case of a switched-interconned array, a small ripple appears
superimposed to the phase waveforms in Fig. 9 (the ripple is
very small and is not shown in the figure). Interestingly, the
correct association capability of the array continues to hold
if the coupling strength parameterB is increased till about
the upper valueB ≈ 2 · 107. This upper value corresponds
to coupling currentsID(t) of the order of a few10µA.
For stronger coupling values, mutual synchronization is lost.
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Fig. 10. Sequence of output patterns at different times for a distorted input
“1”.
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Fig. 11. Sequence of output patterns at different times for a distorted input
“2”.

Fig. 12 shows that for largerB, during the Recognition
simulation, some oscillators desynchronize with the reference
and the related phase differences grow with no bounds in
time. The corresponding sequence of output patterns shown
in Fig. 13 alternates between the correct pattern “1” and the
wrong pattern “0”.

In the second case, we test the memory association perfor-
mance for a much greater frequency variability: frequencies
ωn are randomly generated in a frequency interval of2π ×
10MHz centered inω0. In addition, internal phase noise of
each LC oscillator is included in the model as described in
(7). Repeated phase-domain simulations show that for large
frequency variability mutual synchronization becomes more
critical and occurs for a narrower interval of coupling strength
values2 · 106 < B < 2 · 107. In the presence of significant
frequency variability, in fact, a greater minimum coupling
strength is needed to synchronize the oscillator array. Fig. 14
shows the time evolution of the phase differences for the
distorted input “1” and forB = 5 · 106 in a switched-
interconnected array with subset block of dimensionM = 5.
Switched interconnection introduces small phase ripples with
a period equal toN/M = 12 oscillating cycles. After a
Recognition simulation time of about100 oscillation cycles,
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Fig. 12. Phase difference time evolution during the Initialization and
Recognition simulations for a too large coupling strengthB. Oscillators do
not synchronize.
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Fig. 13. Sequence of output patterns for a too strong couplingstrength and
a distorted input “1”.
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Fig. 14. Phase differences time evolution for large frequency variability
computed with a switched-interconnected array.
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Fig. 15. Sequence of output patterns for a distorted input “1”and large
frequency variability.

t0 t1 t2 t3

Fig. 16. Sequence of output patterns for a distorted input “2”and large
frequency variability.

oscillators synchronize and the phase separations state pro-
vides the correct output. However, the almost constant values
approached by the phase differences in Fig. 14 are quite spread
around multiple ofπ and this results in the less clean output
pattern shown in Fig. 15. A similar result is seen in Fig. 16
for the Recognition of a distorted input “2”.

More importantly, we verified that if the Recognition sim-
ulation is extended over a longer time interval, e.g.5, 000
cycles, in some cases, synchronization is eventually lost and
a wrong output pattern is associated. A possible justification
for such a performance deterioration is that significant fre-
quency detunings∆ωc

n can produce spurious phase transients,
not considered in the simplified analysis in Sec. III. In the
long run, such transients may disrupt the associative memory
mechanism. Our simulations show that this can be prevented
by limiting as much as possible the Recognition time, e.g. to
some hundreds oscillation cycles in our example.

VI. CONCLUSIONS

In this paper, we have presented a methodological approach
to the analysis and design of arrays of resonant oscillators
for associative memory applications. A realistic phase-domain
model of the oscillator array has been described which is able

to incorporate the relevant nonidealities of practical imple-
mentations. Relevant nonidealities are the nonlinear nature of
coupling, the limited achievable coupling strength as well as
the variability of oscillating frequency and phase noise. Simu-
lations have revealed that for very small frequency variability,
as it is the case for high Q crystal or MEMs resonators or
in the presence of some frequency tuning mechanisms, the
correct associative memory behavior holds for a wide range of
coupling strength. By contrast, for relatively large frequency
variability, e.g. for low Q devices, the associative memory
performance results to be strongly affected by the coupling
strength. In this case, the proposed phase-domain macromodel
provides an invaluable aid to the array design and to the
definition of a proper recognition timing.
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