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Abstract—This paper proposes a high-throughput energy-
efficient Successive Cancellation (SC) decoder architecture for
polar codes based on combinational logic. The proposed combi-
national architecture operates at relatively low clock frequencies
compared to sequential circuits, but takes advantage of thehigh
degree of parallelism inherent in such architectures to provide
a favorable tradeoff between throughput and energy efficiency
at short to medium block lengths. At longer block lengths, the
paper proposes a hybrid-logic SC decoder that combines the
advantageous aspects of the combinational decoder with the
low-complexity nature of sequential-logic decoders. Performance
characteristics on ASIC and FPGA are presented with a detailed
power consumption analysis for combinational decoders. Finally,
the paper presents an analysis of the complexity and delay of
combinational decoders, and of the throughput gains obtained
by hybrid-logic decoders with respect to purely synchronous
architectures.

Index Terms—Polar codes, successive cancellation decoder,
error correcting codes, VLSI, energy efficiency.

I. I NTRODUCTION

POLAR codes were proposed in [1] as a low-complexity
channel coding method that can provably achieve Shan-

non’s channel capacity for any binary-input symmetric dis-
crete memoryless channel. Apart from the intense theoretical
interest in the subject, polar codes have attracted attention for
their potential applications. There have been several proposals
on hardware implementations of polar codes, which mainly
focus on maximizing throughput or minimizing hardware
complexity. In this work, we propose an architecture for SC
decoding using combinational logic in an effort to obtain a
high throughput decoder with low power consumption. We
begin with a survey of the relevant literature.

The basic decoding algorithm for polar codes is the SC de-
coding algorithm, which is a non-iterative sequential algorithm
with complexityO(N logN) for a code of lengthN . Many
of the SC decoding steps can be carried out in parallel and
the latency of the SC decoder can be reduced to roughly2N
in a fully-parallel implementation, as pointed out in [1] and
[2]. This means that the throughput of any synchronous SC
decoder is limited tofc2 in terms of the clock frequencyfc, as
pointed out in [3]. The throughput is reduced further in semi-
parallel architectures, such as [5] and [6], which increasethe
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decoding latency further in exchange for reduced hardware
complexity. This throughput bottleneck in SC decoding is
inherent in the logic of SC decoding and stems from the fact
that the decoder makes its final decisions one at a time in a
sequential manner.

Some algorithmic and hardware implementation methods
have been proposed to overcome the throughput bottleneck
problem in polar decoding. One method that has been tried
is Belief Propagation (BP) decoding, starting with [7]. In BP
decoding, the decoder has the capability of making multiple
bit decisions in parallel. Indeed, BP throughputs of2 Gb/s
(with clock frequency500 MHz) and 4.6 Gb/s (with clock
frequency300 MHz) are reported in [8] and [9], respectively.
Generally speaking, the throughput advantage of BP decoding
is observed at high SNR values, where correct decoding can
be achieved after a small number of iterations; this advantage
of BP decoders over SC decoders diminishes as the SNR
decreases.

A second algorithmic approach to break the throughput
bottleneck is to exploit the fact that polar codes are a class
of generalized concatenated codes (GCC). More precisely, a
polar codeC of length-N is constructed from two length-N/2
codesC1 and C2, using the well-known Plotkin|u|u + v|
code combining technique [10]. The recursive nature of the
polar code construction ensures that the constituent codesC1
and C2 are polar codes in their own right and each can be
further decomposed into two polar codes of lengthN/4, and
so on, until the block-length is reduced to one. In order to
improve the throughput of a polar code, one may introduce
specific measures to speed up the decoding of the constituent
polar codes encountered in the course of such recursive
decomposition. For example, when a constituent codeCi of
rate 0 or 1 is encountered, the decoding becomes a trivial
operation and can be completed in one clock cycle. Similarly,
decoding is trivial when the constituent code is a repetition
code or a single parity-check code. Such techniques have
been applied earlier in the context of Reed-Muller codes by
[11] and [12]. They have been also used in speeding up SC
decoders for polar codes by [13]. Results reported by such
techniques show a throughput of1 Gb/s by using designs
tailored for specific codes [14]. On the other hand, decoders
utilizing such shortcuts require reconfiguration when the code
is changed, which makes their use difficult in systems using
adaptive coding methods.

Implementation methods such as precomputations,
pipelined, and unrolled designs, have also been proposed
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to improve the throughput of SC decoders. These methods
trade hardware complexity for gains in throughput. For
example, it has been shown that the decoding latency may
be reduced toN by doubling the number of adders in a
SC decoder circuit [18]. A similar approach has been used
in a first ASIC implementation of a SC decoder to reduce
the latency at the decision-level LLR calculations byN/2
clock cycles and provide a throughput of49 Mb/s with
150 MHz clock frequency for a rate-1/2 code [5]. In contrast,
pipelined and unrolled designs do not affect the latency of the
decoder; the increase in throughput is obtained by decoding
multiple codewords simultaneously without resource sharing.
A recent study [19] exhibits a SC decoder achieving254
Gb/s throughput with a fully-unrolled and deeply-pipelined
architecture using component code properties for a rate-1/2
code. Pipeling in the context of polar decoders was used
earlier in various forms and in a more limited manner in [2],
[3], [4], [18], and [20].

SC decoders, while being simple, are suboptimal. In [15],
SC list-of-L decoding was proposed for decoding polar codes,
following similar ideas developed earlier by [16] for Reed-
Muller codes. Ordinary SC decoding is a special case of SC list
decoding with list sizeL = 1. SC list decoders show markedly
better performance compared to SC decoders at the expense of
complexity, and are subject to the same throughput bottleneck
problems as ordinary SC decoding. Parallel decision-making
techniques, as discussed above, can be applied to improve the
throughput of SC list decoding. For instance, it was shown
in [17] that by using4-bit parallel decisions, a list-of-2 SC
decoder can achieve a throughput of around500 Mb/s with a
clock frequency of500 MHz.

The present work is motivated by the desire to obtain high-
throughput SC decoders with low power consumption, which
has not been a main concern in literature so far. These desired
properties are attained by designing completely combinational
decoder architectures, which is possible thanks to the recursive
and feed-forward (non-iterative) structure of the SC algorithm.
Combinational decoders operate at lower clock frequencies
compared to ordinary synchronous (sequential logic) decoders.
However, in a combinational decoder an entire codeword
is decoded in one clock cycle. This allows combinational
decoders to operate with less power while maintaining a high
throughput, as we demonstrate in the remaining sections of
this work.

Pipelining can be applied to combinational decoders at any
depth to adjust their throughput, hardware usage, and power
consumption characteristics. Therefore, we also investigate the
performance of pipelined combinational decoders. We do not
use any of the multi-bit decision shortcuts in the architectures
we propose. Thus, for a given block length, the combinational
decoders that we propose retain the inherent flexibility of polar
coding to operate at any desired code rate between zero and
one. Retaining such flexibility is important since one of the
main motivations behind the combinational decoder is to use
it as an “accelerator” module as part of a hybrid decoder that
combines a synchronous SC decoder with a combinational
decoder to take advantage of the best characteristics of the
two types of decoders. We give an analytical discussion of the

throughput of hybrid-logic decoders to quantify the advantages
of the hybrid decoder.

The rest of this paper is organized as follows. Section II
give a brief discussion of polar coding to define the SC
decoding algorithm. Section III introduces the main decoder
architectures considered in this paper, namely, combinational
decoders, pipelined combinational decoders, and hybrid-logic
decoders. Also included in that section is an analysis of
the hardware complexity and latency of the proposed de-
coders. Implementation results of combinational decodersand
pipelined combinational decoders are presented in SectionIV,
with a detailed power consumption analysis for combinational
decoders. Also presented in the same section is an analysis
of the throughput improvement obtained by hybrid-logic de-
coders relative to synchronous decoders. Section V concludes
the paper.

Throughout the paper, vectors are denoted by boldface
lowercase letters. All matrix and vector operations are
over vector spaces over the binary fieldF2. Addition over
F2 is represented by the⊕ operator. For any setS ⊆
{0, 1, . . . , N − 1}, Sc denotes its complement. For any vec-
tor u = (u0, u1, . . . , uN−1) of length N and setS ⊆

{0, 1, . . . , N − 1}, uS

def
= [ui : i ∈ S]. We define a binary

sign functions(ℓ) as

s(ℓ) =

{

0, if ℓ ≥ 0
1, otherwise.

(1)

II. BACKGROUND ON POLAR CODING

We briefly describe the basics of polar coding in this section,
including the SC decoding algorithm. Consider the system
given in Fig. 1, in which a polar code is used for channel
coding. All input/output signals in the system are vectors of
lengthN , whereN is the length of the polar code that is being
used.

u Polar
Encoder W LLR

Calc.
SC Polar
Decoder û

a

x y ℓ

Fig. 1. Communication scheme with polar coding

The encoder input vectoru ∈ F
N
2 consists of adata part

uA and afrozenpartuAc , whereA is chosen in accordance
with polar code design rules as explained in [1]. We fix the
frozen partuAc to zero in this study. We define afrozen-bit
indicator vectora so thata is a 0-1 vector of lengthN with

ai =

{

0, if i ∈ Ac

1, if i ∈ A.

The frozen-bit indicator vector is made available to the decoder
in the system.

The channelW in the system is an arbitrary discrete memo-
ryless channel with input alphabetX = {0, 1}, output alphabet
Y and transition probabilities{W (y|x) : x ∈ X , y ∈ Y}. In
each use of the system, a codewordx ∈ F

N
2 is transmitted,

and a channel output vectory ∈ YN is received. The receiver
calculates a log-likelihood ratio (LLR) vectorℓ = (ℓ1, . . . , ℓN )
with

ℓi = ln

(

P (yi|xi = 0)

P (yi|xi = 1)

)

,
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and feeds it into the SC decoder.

Algorithm 1: û = DECODE(ℓ,a)

N =length(ℓ)
if N == 2 then

û0 ← s (f(ℓ0, ℓ1)) · a0
û1 ← s (g(ℓ0, ℓ1, û0)) · a1
return û← (û0, û1)

else
ℓ
′ ← fN/2(ℓ)
a
′ ← (a0, . . . , aN/2−1)

û′ ← DECODE(ℓ′,a′)
v← ENCODE(û′)
ℓ
′′ ← gN/2(ℓ,v)
a
′′ ← (aN/2, . . . , aN−1)

û′′ ← DECODE(ℓ′′,a′′)
return û← (û′, û′′)

end

The decoder in the system is an SC decoder as described in
[1], which takes as input the channel LLRs and the frozen-bit
indicator vector and calculates an estimateû ∈ F

N
2 of the data

vectoru. The SC algorithm outputs bit decisions sequentially,
one at a time in natural index order, with each bit decision
depending on prior bit decisions. A precise statement of the
SC algorithm is given in Algorithm 1, where the functions
fN/2 andgN/2 are defined as

fN/2(ℓ) = (f(ℓ0, ℓ1), . . . , f(ℓN−2, ℓN−1))

gN/2(ℓ,v) =
(

g(ℓ0, ℓ1, v0), . . . , g(ℓN−2, ℓN−1, vN/2−1)
)

with

f(ℓ1, ℓ2) = 2 tanh−1 (tanh (ℓ1/2) tanh (ℓ2/2))

g(ℓ1, ℓ2, v) = ℓ1(−1)
v + ℓ2.

In actual implementations discussed in this paper, the function
f is approximated using themin-sumformula

f(ℓ1, ℓ2) ≈ (1− 2s(ℓ1)) · (1− 2s(ℓ2)) ·min {|ℓ1| , |ℓ2|} , (2)

andg is realized in the alternative (exact) form

g(ℓ1, ℓ2, v) = ℓ2 + (1 − 2v) · ℓ1. (3)

A key property of the SC decoding algorithm that makes
low-complexity implementations possible is its recursivena-
ture, where a decoding instance of block lengthN is broken
in the decoder into two decoding instances of lengthsN/2
each.

III. SC DECODERUSING COMBINATIONAL LOGIC

The pseudocode in Algorithm 1 shows that the logic of SC
decoding contains no loops, hence it can be implementated
using only combinational logic. The potential benefits of a
combinational implementation are high throughput and low
power consumption, which we show are feasible goals. In
this section, we first describe a combinational SC decoder
for length N = 4 to explain the basic idea. Then, we
describe the three architectures that we propose. Finally,we
give an analysis of complexity and latency characteristicsof
the proposed architectures.

A. Combinational Logic for SC Decoding

In a combinational SC decoder the decoder outputs are
expressed directly in terms of decoder inputs, without any
registers or memory elements in between the input and output
stages. Below we give the combinational logic expressions
for a decoder of sizeN = 4, for which the signal flow graph
(trellis) is depicted in Fig. 2.
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f

g
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g
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û1

û2

û3

Stage 0Stage 1

Fig. 2. SC decoding trellis forN = 4

At Stage 0 we have the LLR relations

ℓ′0 = f(ℓ0, ℓ1), ℓ′1 = f(ℓ2, ℓ3),

ℓ′′0 = g(ℓ0, ℓ1, û0 ⊕ û1), ℓ′′1 = g(ℓ2, ℓ3, û1).

At Stage 1, the decisions are extracted as follows.

û0 = s [f (f(ℓ0, ℓ1), f(ℓ2, ℓ3))] · a0,

û1 = s [g (f(ℓ0, ℓ1), f(ℓ2, ℓ3), û0)] · a1,

û2 = s [f (g(ℓ0, ℓ1, û0 ⊕ û1), g(ℓ2, ℓ3, û1))] · a2,

û3 = s [g (g(ℓ0, ℓ1, û0 ⊕ û1), g(ℓ2, ℓ3, û1), û2)] · a3,

where the decisionŝu0 and û2 may be simplified as

û0 = [s(ℓ0)⊕ s(ℓ1)⊕ s(ℓ2)⊕ s(ℓ3)] · a0,

û2 = [s (g(ℓ0, ℓ1, û0 ⊕ û1))⊕ s (g(ℓ2, ℓ3, û1))] · a2.
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Fig. 3. Combinational decoder forN = 4

Fig. 3 shows a combinational logic implementation of the
above decoder using only comparators and adders. We use
sign-magnitude representation, as in [21], to avoid exces-
sive number of conversions between different representations.
Channel observation LLRs and calculations throughout the
decoder are represented byQ bits. The functiong of (3)
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ℓ

a

fN/2(ℓ)DECODE(ℓ′,a′)ENCODE(v)
gN/2(ℓ,v)DECODE(ℓ′′,a′′)û

DECODE(ℓ,a)

bb

ℓ
′

a
′û′ v

a
′′

ℓ
′′

û′′

Fig. 4. Recursive architecture of polar decoders for block lengthN

is implemented using the precomputation method suggested
in [18] to reduce latency. In order to reduce latency and
complexity further, we implement the decision logic for odd-
indexed bits as

û2i+1 =







0 , if a2i+1 = 0
s(λ2) , if a2i+1 = 1 and |λ2| ≥ |λ1|
s(λ1)⊕ û2i, otherwise.

(4)

B. Architectures

In this section, we propose three SC decoder architectures
for polar codes: combinational, pipelined combinational,and
hybrid-logic decoders. Thanks to the recursive structure of the
SC decoder, the above combinational decoder of sizeN = 4
will serve as a basic building block for the larger decoders
that we discuss in the next subsection.

1) Combinational Decoder: A combinational decoder ar-
chitecture for any block lengthN using the recursive algorithm
in Algorithm 1 is shown in Fig. 4. This architecture uses two
combinational decoders of sizeN/2, with glue logic consisting
of onefN/2 block, onegN/2 block, and one size-N/2 encoder
block.
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Fig. 5. RTL schematic for combinational decoder (N = 8)

The RTL schematic for a combinational decoder of this type
is shown in Fig. 5 forN = 8. The decoder submodules of size-
4 are the same as in Fig. 3. The size-4 encoder is implemented
using combinational circuit consisting of XOR gates. The
logic blocks in a combinational decoder are directly connected
without any synchronous logic elements in-between, which
helps the decoder to save time and power by avoiding mem-
ory read/write operations. Avoiding the use of memory also

reduces hardware complexity. In each clock period, a new
channel observation LLR vector is read from the input registers
and a decision vector is written to the output registers. The
clock period is equal to the overall combinational delay of
the circuit, which determines the throughput of the decoder.
The decoder differentiates between frozen bits and data bits by
AND gates and the frozen bit indicatorsai, as shown in Fig. 3.
The frozen-bit indicator vector can be changed at the start
of each decoding operation, making it possible to change the
code configuration in real time. Advantages and disadvantages
of combinational decoders will be discussed in more detail in
Section IV.

2) Pipelined Combinational Decoder: Unlike sequential
circuits, the combinational architecture explained abovehas
no need for any internal storage elements. The longest path
delay determines the clock period in such a circuit. This saves
hardware by avoiding usage of memory, but slows down the
decoder. In this subsection, we introduce pipelining in order to
increase the throughput at the expense of some extra hardware
utilization.

It is seen in Fig. 4 that the outputs of the first decoder block
(DECODE(ℓ′,a′)) are used by the encoder to calculate partial-
sums. Therefore, this decoder needs to preserve its outputs
after they settle to their final values. However, this particular
decoder can start the decoding operation for another codeword
if these partial-sums are stored with the corresponding channel
observation LLRs for the second decoder (DECODE(ℓ

′′,a′′)).
Therefore, adding register blocks to certain locations in the
decoder enable a pipelined decoding process.

Early examples of pipelining in the context of synchronous
polar decoders are [2], [3], and [4]. In synchronous design with
pipelining, shared resources at certain stages of decodinghave
to be duplicated in order to prevent conflicts on calculations
when multiple codewords are processed in the decoder. The
number of duplications and their stages depend on the number
of codewords to be processed in parallel. Since pipelined
decoders are derived from combinational decoders, they do
not use resource sharing; therefore, resource duplications are
not needed. Instead, pipelined combinational decoders aimto
reuse the existing resources. This resource reuse is achieved
by using storage elements to save the outputs of smaller
combinational decoder components and re-employ them in
decoding of another codeword.

A single stage pipelined combinational decoder is shown in
Fig. 6. The channel observation LLR vectorsℓ1 andℓ2 in this
architecture correspond to different codewords. The partial-
sum vectorv1 is calculated from the first half of the decoded
vector forℓ1. Output vectorŝu′

2 andû′′
1 are the first and second

halves of decoded vectors forℓ2 and ℓ1, respectively. The
schedule for this pipelined combinational decoder is givenin
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a
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N/2×1 fN/2(ℓ)DECODE(ℓ′,a′)ENCODE(v)
gN/2(ℓ,v)DECODE(ℓ′′,a′′)

û′2

û′′1

DECODE(ℓ,a)

bb

ℓ
′
2

a
′v1

ℓ1

a
′′

ℓ
′′
1

Fig. 6. Recursive architecture for pipelined polar decoders for block lengthN

Table I.

TABLE I
SCHEDULE FORSINGLE STAGE PIPELINED COMBINATIONAL DECODER

Clock Cycle 1 2 3 4 5 6 7 8

Input of
DECODE(ℓ,a)

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6

Output of
DECODE(ℓ′,a′) û

′
1

û
′
2

û
′
3

û
′
4

û
′
5

û
′
6

Output of
DECODE(ℓ′′,a′′)

û
′′
1

û
′′
2

û
′′
3

û
′′
4

û
′′
5

û
′′
6

Output of
DECODE(ℓ,a)

û1 û2 û3 û4 û5 û6

As seen from Table I, pipelined combinational decoders,
like combinational decoders, decode one codeword per clock
cycle. However, the maximum path delay of a pipelined com-
binational decoder for block lengthN is approximately equal
to the delay of a combinational decoder for block lengthN/2.
Therefore, the single stage pipelined combinational decoder
in Fig. 6 provides approximately twice the throughput of a
combinational decoder for the same block length. On the
other hand, power consumption and hardware usage increase
due to the added storage elements and increased operating
frequency. Pipelining stages can be increased by making the
two combinational decoders for block lengthN/2 in Fig. 6
also pipelined in a similar way to increase the throughput
further. Comparisons between combinational decoders and
pipelined combinational decoders are given in more detail in
Section IV.

3) Hybrid-Logic Decoder: In this part, we give an architec-
ture that combines synchronous decoders with combinational
decoders to carry out the decoding operations for compo-
nent codes. In sequential SC decoding of polar codes, the
decoder slows down every time it approaches the decision
level (where decisions are made sequentially and number of
parallel calculations decrease). In a hybrid-logic SC decoder,
the combinational decoder is used near the decision level to
speed up the SC decoder by taking advantage of the GCC
structure of polar code. The GCC structure is illustrated in
Fig. 7, which shows that a polar codeC of lengthN = 8 can
be seen as the concatenation of two polar codesC1 andC2 of
lengthN ′ = N/2 = 4, each.

The dashed boxes in Fig. 7 represent the compo-
nent codes C1 and C2. The input bits of compo-
nent codes arêu(1) = (û

(1)
0 , . . . , û

(1)
3 ) = (û0, . . . , û3) and

û(2) = (û
(2)
0 , . . . , û

(2)
3 ) = (û4, . . . , û7). For a polar code of

block length8 andR = 1/2, the frozen bits arêu0, û1, û2,
and û4. This makes3 input bits of C1 and 1 input bit of C2
frozen bits; thus,C1 is a R = 3/4 code with û(1)

0 , û(1)
1 , û(1)

2

andC2 is aR = 1/4 code withû(2)
0 frozen.
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Fig. 7. Encoding circuit ofC with component codesC1 andC2 (N = 8 and
N ′ = 4)

Encoding of C is done by first encodinĝu(1) and û(2)

separately using encoders for block length4 and obtain
coded outputŝx(1) and x̂(2). Then, each pair of coded bits
(

x̂
(1)
i , x̂

(2)
i

)

, 0 ≤ i ≤ 3, is encoded again using encoders for
block length2 to obtain the coded bits ofC.
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Fig. 8. Decoding trellis for hybrid-logic decoder (N = 8 andN ′ = 4)

Decoding ofC is done in a reversed manner with respect to
encoding explained above. Fig. 8 shows the decoding trellis
for the given example. Two separate decoding sessions for
block length4 are required to decode component codesC1
and C2. We denote the input LLRs for component codes as
λ
(1) andλ(2), as shown in Fig. 8. These inputs are calculated

by the operations at stage 0. The frozen bit indicator vector
of C is a = (0, 0, 0, 1, 0, 1, 1, 1) and the frozen bit vectors of
component codes area(1) = (0, 0, 0, 1) anda(2) = (0, 1, 1, 1).
It is seen thatλ(2) depends on the decoded outputs ofC1,
sinceg functions are used to calculateλ(2) from input LLRs.
This implies that the component codes cannot be decoded in
parallel.

The dashed boxes in Fig. 8 show the operations performed
by a combinational decoder forN ′ = 4. The operations
outside the boxes are performed by a synchronous decoder.
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Algorithm 2: HL DECODE(ℓ,a, N ′)

for i = 1 to N/N ′ do
if i == 1 then

λ
(i) ← DECODE SYNCH(ℓ, i, N ′)

else
λ
(i) ← DECODE SYNCH(ℓ, i, N ′, û(i−1))

end
û(i) ← DECODE(λ(i),a(i))

end
return û

The sequence of decoding operations in this hybrid-logic
decoder is as follows: a synchronous decoder takes channel
observations LLRs and use them to calculate intermediate
LLRs that require no partial-sums at stage0. When the
synchronous decoder completes its calculations at stage0,
the resulting intermediate LLRs are passed to a combinational
decoder for block length4. The combinational decoder outputs
û0, . . . , û3 (uncoded bits of the first component code) while
the synchronous decoder waits for a period equal to the
maximum path delay of combinational decoder. The decoded
bits are passed to the synchronous decoder to be used in
partial-sums (̂u0 ⊕ û1 ⊕ û2 ⊕ û3, û1 ⊕ û3, û2 ⊕ û3, and û3).
The synchronous decoder calculates the intermediate LLRs
using these partial-sums with channel observation LLRs and
passes the calculated LLRs to the combinational decoder,
where they are used for decoding ofû4, . . . , û7 (uncoded
bits of the second component code). Since the combinational
decoder architecture proposed in this work can adapt to operate
on any code set using the frozen bit indicator vector input,
a single combinational decoder is sufficient for decoding
all bits. During the decoding of a codeword, each decoder
(combinational and sequential) is activated2 times.

Algorithm 2 shows the algorithm for hybrid-logic polar
decoding for generalN and N ′. For the ith activation of
combinational and sequential decoders,1 ≤ i ≤ N/N ′, the
LLR vector that is passed from synchronous to combina-
tional decoder, the frozen bit indicator vector for theith

component code, and the output bit vector are denoted by
λ
(i) = (λ

(i)
0 , . . . , λ

(i)
N ′−1), a

(i) = (a(i−1)N ′ , . . . , aiN ′−1), and
û(i) = (û(i−1)N ′ , . . . , ûiN ′−1), respectively. The function DE-
CODE SYNCH represents the synchronous decoder that cal-
culates the intermediate LLR values at stage(log2(N/N ′)−1),
using the channel observations and partial-sums at each repe-
tition.

During the time period in which combinational decoder
operates, the synchronous decoder waits for⌈DN ′ · fc⌉ clock
cycles, wherefc is the operating frequency of synchronous
decoder andDN ′ is the delay of a combinational decoder for
block lengthN ′. We can calculate the approximate latency
gain obtained by a hybrid-logic decoder with respect to the
corresponding synchronous decoder as follows: letLS (N) de-
note the latency of a synchronous decoder for block lengthN .
The latency reduction obtained using a combinational decoder
for a component code of length-N ′ in a single repetition is
Lr (N

′) = LS (N
′)− ⌈DN ′ · fc⌉. In this formulation, it is as-

sumed that no numerical representation conversions are needed
when LLRs are passed from synchronous to combinational
decoder. Furthermore, we assume that maximum path delays
of combinational and synchronous decoders do not change
significantly when they are implemented together. Then, the
latency gain factor can be approximated as

g(N,N ′) ≈
LS (N)

LS (N)− (N/N ′) Lr (N ′)
. (5)

The approximation is due to the additional latency from
partial-sum updates at the end of each repetition using the
N ′ decoded bits. Efficient methods for updating partial sums
can be found in [6] and [22]. This latency gain multiplies the
throughput of synchronous decoder, so that:

TPHL(N,N ′) = g(N,N ′) TPS(N),

whereTPS(N,N ′) andTPHL(N) are the throughputs of syn-
chronous and hybrid-logic decoders, respectively. An example
of the analytical calculations for throughputs of hybrid-logic
decoders is given in Section IV.

C. Analysis

In this section, we analyze the complexity and delay of
combinational architectures. We benefit from the recursive
structure of polar decoders (Algorithm 1) in the provided
analyses.

1) Complexity: Combinational decoder complexity can be
expressed in terms of the total number of comparators, adders,
and subtractors in the design, as they are the basic building
blocks of the architecture with similar complexities.

First, we estimate the number of comparators. Comparators
are used in two different places in the combinational decoder
as explained in Section III-A: in implementing the functionf
in (2), and as part of decision logic for odd-indexed bits. Let
cN denote the number of comparators used for implementing
the function f for a decoder of block lengthN . From
Algorithm 1, we see that the initial value ofcN may be taken
asc4 = 2. From Fig. 3, we observe that there is the recursive
relationship

cN = 2cN/2 +
N

2
= 2

(

2cN/4 +
N

4

)

+
N

2
= . . . .

This recursion has the following (exact) solution

cN =
N

2
log2

N

2

as can be verified easily.
Let sN denote the number of comparators used for the

decision logic in a combinational decoder of block lengthN .
We observe thats4 = 2 and more generallysN = 2sN/2;
hence,

sN =
N

2
.

Next, we estimate the number of adders and subtractors.
The functiong of (3) is implemented using an adder and a
subtractor, as explained in Section III-A. We definerN as
the total number of adders and subtractors in a combinational



7

decoder for block lengthN . Observing thatrN = 2cN , we
obtain

rN = N log2 (N/2) .

Thus, the total number of basic logic blocks with similar
complexities is given by

cN + sN + rN = N

(

3

2
log2 (N)− 1

)

, (6)

which shows that the complexity of the combinational decoder
is roughlyN log2 (N).

2) Combinational Delay: We approximately calculate the
delay of combinational decoders using Fig. 4. The combi-
national logic delays, excluding interconnect delays, of each
component forming DECODE(ℓ,a) block is listed in Table II.

TABLE II
COMBINATIONAL DELAYS OF COMPONENTS INDECODE(ℓ,a)

Block Delay

fN/2(ℓ) δc + δm
DECODE(ℓ′,a′) D′

N/2

ENCODE(v) EN/2

gN/2(ℓ,v) δm
DECODE(ℓ′′,a′′) D′′

N/2

The parallel comparator blockfN/2(ℓ) in Fig. 4 has a
combinational delay ofδc + δm, whereδc is the delay of a
comparator andδmis the delay of a multiplexer. The delay
of the parallel adder and subtractor blockgN/2(ℓ,v) appears
as δm due to the precomputation method, as explained in
Section III-A. The maximum path delay of the encoder can
be approximated asEN/2 ≈

[

log2
(

N
2

)]

δx, whereδx denotes
the propagational delay of a2-input XOR gate.

We model D′

N/2 ≈ D′′

N/2, although it is seen from
Fig. 4 that DECODE(ℓ′,a′) has a larger load capacitance
than DECODE(ℓ′′,a′′) due to the ENCODE(v) block it drives.
However, this assumption is reasonable since the circuits that
are driving the encoder block at the output of DECODE(ℓ

′,a′)
are bit-decision blocks and they compose a small portion of
the overall decoder block. Therefore, we can expressDN as

DN = 2D′

N/2 + δc + 2δm + EN/2. (7)

We use the combinational decoder forN = 4 as the base
decoder to obtain combinational decoders for larger block
lengths in Section III-A. Therefore, we can writeDN in terms
of D′

4 and substitute the expression forD′
4 to obtain the

final expression for combinational delay. Using the recursive
structure of combinational decoders, we can write

DN =
N

4
D′

4 +

(

N

4
− 1

)

(δc + 2δm)

+

(

3N

4
− log2 (N)− 1

)

δx +TN . (8)

Next, we obtain an expression forD′
4 using Fig. 3. Assuming

δc ≥ 3δx + δa, we can write

D′
4 = 3δc + 4δm + δx + 2δa, (9)

where δa represents the delay of an AND gate. Finally,
substituting (9) in (8), we get

DN = N

(

3δm
2

+ δc + δx +
δa
2

)

− {δc + 2δm + [log2 (N) + 1] δx}+TN , (10)

for N > 4. The interconnect delay of the overall design,
TN , cannot be formulated since the routing process is not
deterministic.

We had mentioned in Section III-A that the delay reduction
obtained by precomputation in adders increases linearly with
N . This can be seen by observing the expressions (8) and
(9). Reminding that we model the delay of an adder with
precomputation byδm, the first and second terms of (8) contain
the delays of adder block stages, both of which are multiplied
by a factor of roughlyN/4. This implies that the overall delay
gain obtained by precomputation is approximately equal to the
difference between the delay of an adder and a multiplexer,
multiplied byN/2.

The expression (10) shows the relation between basic logic
element delays and maximum path delay of combinational
decoders. AsN grows, the second term in (8) becomes
negligible with respect to the first term, making the maximum
path delay linearly proportional to

(

3δm
2 + δc + δx + δa

2

)

with
the additive interconnect delay termTN . Combinational archi-
tecture involves heavy routing and the interconnect delay is
expected to be a non-negligible component in maximum path
delay. The analytical results obtained here will be compared
with implementation results in the next section.

IV. PERFORMANCERESULTS

In this section, implementation results of combinational and
pipelined combinational decoders are presented. Throughput
and hardware usage are studied both in ASIC and FPGA, and
a detailed discussion of the power consumption characteristics
is given form the ASIC design.

The metrics we use to evaluate ASIC implementations are
throughput, energy-per-bit, and hardware efficiency, which are
defined as

Throughput[b/s] =
N [bit]

DN [sec]
,

Energy−per−bit[J/b] =
Power[W]

Throughput[b/s]
,

Hardware Efficiency[b/s/m2] =
Throughput[b/s]

Area[m2]
,

(11)

respectively. These metrics of combinational decoders arealso
compared with state-of-the-art decoders. The number of look-
up tables (LUTs) and flip-flops (FFs) in the design are studied
in addition to throughput in FPGA implementations. Formulas
for achievable throughputs in hybrid-logic decoders are also
given in this section.

A. ASIC Synthesis Results
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1) Post-Synthesis Results: Table III gives the post-synthesis
results of combinational decoders using Cadence Encounter
RTL Compiler for block lengths26 - 210 with Faraday’s UMC
90 nm 1.3 V FSD0K-A library. Combinational decoders of
such sizes can be used as standalone decoders,e.g., wireless
transmission of voice and data; or as parts of a hybrid-logic
decoder of much larger size, as discussed in Section III-B3.
We useQ = 5 bits for quantization in the implementation. As
shown in Fig. 9, the performance loss with5-bit quantization
is negligible atN = 1024 (this is true also at lower block
lengths, although not shown here).

TABLE III
ASIC IMPLEMENTATION RESULTS

N 26 27 28 29 210

Technology 90 nm, 1.3 V
Area [mm2] 0.153 0.338 0.759 1.514 3.213

Number of Cells 24.3K 57.2K 127.5K 260.8K 554.3K
Dec. Power [mW] 99.8 138.8 158.7 181.4 190.7
Frequency [MHz] 45.5 22.2 11.0 5.2 2.5
Throughput [Gb/s] 2.92 2.83 2.81 2.69 2.56
Engy.-per-bit [pJ/b] 34.1 49.0 56.4 67.4 74.5

Hard. Eff. [Mb/s/mm2] 19084 8372 3700 1776 796
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Fig. 9. FER performance with different numbers of quantization bits (N =
1024, R = 1/2)

The results given in Table III verify the analytical analyses
for complexity and delay. It is expected from (6) that the ratio
of decoder complexities for block lengthsN andN/2 should
be approximately2. This can be verified by observing the
number of cells and area of decoders in Table III. As studied
in Section III-C2, (8) implies that the maximum path delay
is approximately doubled due to the basic logic elements,
and there is also a non-deterministic additive delay due to
the interconnects, which is also expected to at least double
when block length is doubled. The maximum delay results in
Table III show that this analytical derivation also holds for the
given block lengths.

It is seen from Table III that the removal of registers and
RAM blocks from the design keeps the hardware usage at
moderate levels despite the high number of basic logic blocks
in the architecture. Moreover, the delays due to register read
and write operations and clock setup/hold times are discarded,
which accumulate to significant amounts asN increases.

2) Power Analysis: Table III shows that the power con-
sumption of combinational decoders tends to saturate asN
increases. In order to fully understand this behavior, a detailed
report for power characteristics of combinational decoders is
given in Table IV.

TABLE IV
POWER CONSUMPTION

N 26 27 28 29 210

Stat. [nW] 701.8 1198.7 2772.8 6131.2 14846.7
Dyn. [mW] 99.8 138.8 158.7 181.3 190.5

Table IV shows the power consumption in combinational
decoders in two parts: static and dynamic power. Static power
is due to the leakage currents in transistors when there is no
voltage change in the circuit. Therefore, it is proportional to
the number of transistors and capacitance in the circuit ([23]).
By observing the number of cells given in Table III, we can
verify the static power consumption doubling in Table IV when
N is doubled. On the other hand, dynamic power consumption
is related with the total charging and discharging capacitance
in the circuit and defined as

Pdynamic = αCV 2
DDfc, (12)

where α represents the average percentage of the circuit
that switches with the switching voltage,C is the total load
capacitance,VDD is the drain voltage, andfc is the operating
frequency of the circuit ([23]). The behavior of dynamic power
consumption given in Table IV can be explained as follows:
The total load capacitance of the circuit is approximately dou-
bled whenN is doubled, since load capacitance is proportional
to the number of cells in the decoder. On the other hand,
operating frequency of the circuit is approximately reduced
to half when N is doubled, as discussed above. Activity
factor represents the switching percentage of load capacitance,
thus, it is not affected from changes inN . Therefore, the
multiplication of these parameters produce approximatelythe
same result for dynamic power consumption in decoders for
different block lengths.

The decoding period of a combinational decoder is almost
equally shared by the two combinational decoders for half
code length. During the first half of this period, the bit estimate
voltage levels at the output of the first decoder may vary
until they are stabilized. These variations cause the inputLLR
values of the second decoder to change as they depend on
the partial-sums that are calculated from the outputs of the
first decoder. Therefore, the second decoder may consume
undesired power during the first half of decoding period. In
order to prevent this, the partial-sums are fed to thegN/2 block
through2-input AND gates, the second input of which is given
as low during the first half of delay period and high during the
second half. This method can be recursively applied inside the
decoders for half code lengths in order to reduce the power
consumption further.

We have observed that small variations in timing constraints
may lead to significant changes in power consumption. More
precise figures about power consumption will be provided in
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the future when an implementation of this design becomes
available.

3) Comparison With Other Polar Decoders: In order to
have a better understanding of decoder performance, we com-
pare the combinational decoder forN = 1024 with three state-
of-the-art decoders in Table V. We use standard conversion
formulas in [24] and [25] to convert all designs to65 nm,
1.0 V for a fair (subject to limitations in any such study)
comparison.

TABLE V
COMPARISON WITH STATE-OF-THE-ART POLAR DECODERS

Comb. [5] [6] [9]**

Decoder Type SC SC SC BP**

Block Length 1024 1024 1024 1024
Technology 90 nm 180 nm 65 nm 65 nm
Area [mm2] 3.213 1.71 0.68 1.476
Voltage [V] 1.3 1.3 1.2 1.0 0.475
Freq. [MHz] 2.5 150 1010 300 50
Power [mW] 190.7 67 - 477.5 18.6
TP [Mb/s] 2560 49† 497 4676 779.3

Engy.-per-bit
[pJ/b]

74.5 1370 - 102.1 23.8

Hard. Eff.
[Mb/s/mm2 ] 796 29* 730* 3168 528

Converted to65 nm, 1.0 V
Area [mm2] 1.676 0.223 0.68 1.476
Power [mW] 81.5 14.3 - 477.5 82.4
TP [Mb/s] 3544 136 497 4676 779.3

Engy.-per-bit
[pJ/b]

23.0 105.2 - 102.1 105.8

Hard. Eff.
[Mb/s/mm2 ]

2114 610 730 3168 528

* Not presented in the paper, calculated from the presented results
** Results are given for(1024, 512) code at4dB SNR
† Information bit throughput for(1024, 512) code

As seen from the technology-converted results in Table V,
combinational decoder provides the highest throughput among
the state-of-the-art SC decoders. Combinational decodersare
composed of simple basic logic blocks with no storage ele-
ments or control circuits. This helps to reduce the maximum
path delay of the decoder by removing delays from read/write
operations, setup/hold times, complex processing elements
and their management. Another factor that reduces the de-
lay is assigning a separate logic element to each decoding
operation, which allows simplifications such as the use of
comparators instead of adders for odd-indexes bit decisions.
Furthermore, the precomputation method reduces the delaysof
addition/subtraction operations to that of multiplexers.These
elements create an advantage to the combinational decoders
in terms of throughput with respect to even fully-parallel
SC decoders; and therefore, [5] and [6], which are semi-
parallel decoders with slightly higher latencies than fully-
parallel decoders. The reduced operating frequency gives
the combinational decoders a low power consumption when
combined with simple basic logic blocks, and the lack of read,
write, and control operations.

The use of separate logic blocks for each computation in
decoding algorithm and precomputation method increase the
hardware consumption of combinational decoders. This can be
observed by the areas spanned by the three SC decoders. This

is an expected result due to the trade-off between throughput,
area, and power in digital circuits. However, the high through-
put of combinational decoders make them hardware efficient
architectures, as seen in Table V.

Implementation results for BP decoder in [9] are given for
operating characteristics at4 dB SNR, so that the decoder
requires6.57 iterations per codeword for low error rates. The
number of required iterations for BP decoders increase at
lower SNR values Therefore, throughput of the BP decoder
in [9] is expected to decrease while its power consumption
increases with respect to the results in Table V. On the other
hand, SC decoders operate with the same performance metrics
at all SNR values since the total number of calculations in
conventional SC decoding algorithm is constant (N log2 N )
and independent from the number of errors in the received
codeword.

The performance metrics for the decoder in [9] are
given for low-power-low-throughput and high-power-high-
throughput modes. The power reduction in this decoder is
obtained by reducing the operating frequency and supply
voltage for the same architecture, which also leads to the
reduction in throughput. Table V shows that the throughput of
the combinational decoder is only lower than the throughput
of [9] when it is operated at high-power mode. In this
mode, [9] provides a throughput which is approximately1.3
times larger than the throughput of combinational decoder,
while consuming5.8 times more power. The advantage of
combinational decoders in power consumption can be seen
from the energy-per-bit characteristics of decoders in Table V.
The combinational decoder consumes the lowest energy per
decoded bit among the decoders in comparison.

4) Comparison With LDPC Decoders: A comparison of
combinational SC polar decoders with state-of-the-art LDPC
decoders is given in Table VI. The LDPC decoder presented
in [26] is a multirate decoder capable of operating with4
different code rates. The LDPC decoder in [27] is a high
throughput LDPC decoder. It is seen from Table VI that
the throughputs of LDPC decoders are higher than that of
combinational decoders for5 and 10 iterations without early
termination. The throughput is expected to increase for higher
and decrease for lower SNR values, as explained above. Power
consumption and area of the LDPC decoders is seen to be
higher than those of the combinational decoder.

An advantage of combinational architecture is that it pro-
vides a flexible architecture in terms of throughput, power
consumption, and area by its pipelined version. One can
increase the throughput of a combinational decoder by adding
any number of pipelining stages. This increases the operating
frequency and number of registers in the circuit, both of which
increase the dynamic power consumption in the decoder core
and storage parts of the circuit. The changes in throughput
and power consumption with the added registers can be esti-
mated using the characteristics of the combinational decoder.
Therefore, combinational architectures present an easy way
to control the trade-off between throughput, area, and power.
FPGA implementation results for pipelined combinational
decoders are given in the next section.
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TABLE VI
COMPARISON WITH STATE-OF-THE-ART LDPC DECODERS

Comb.** [26]* [27]

Code/Decoder Type Polar/SC LDPC/BP LDPC/BP
Block Length 512 672 672

Code Rate Any 1/2, 5/8,
3/4, 7/8

1/2

Area [mm2] 0.79 1.56 1.60
Power [mW] 77.5 361† 782.9††

TP [Gb/s] 3.72 5.79† 9.0††

Engy.-per-bit [pJ/b] 20.8 62.4 89.5**

Hard. Eff. [Gb/s/mm2] 4.70 3.7 5.63**

* Technology=65 nm, 1.0 V
** Technology converted to65 nm, 1.0 V
† Results are given for(672, 588) code and5 iterations without early
termination
†† Results are given for(672, 336) code and10 iterations without early
termination

B. FPGA Implementation Results

Combinational architecture involves heavy routing due to
the large number of connected logic blocks. This increases
hardware resource usage and maximum path delay in FPGA
implementations, since routing is done through pre-fabricated
routing resources as opposed to ASIC. In this section, we
present FPGA implementations for the proposed decoders and
study the effects of this phenomenon.

Table VII shows the place-and-route results of combina-
tional and pipelined combinational decoders on Xilinx Virtex-
6-XC6VLX550T (40 nm) FPGA core. The implementation
strategy is adjusted to increase the speed of the designs. We
use RAM blocks to store the input LLRs, frozen bit indicators,
and output bits in the decoders. FFs in combinational decoders
are used for small logic circuits and fetching the RAM outputs,
whereas in pipelined decoder they are also used to store the
input LLRs and partial-sums for the second decoding function
(Fig. 4). It is seen that the throughputs of combinational
decoders in FPGA drop significantly with respect to their
ASIC implementations. This is due to the high routing delays
in FPGA implementations of combinational decoders, which
increase up to90% of the overall delay.

Pipelined combinational decoders are able to obtain
throughputs on the order of Gb/s with an increase in the
number FFs used. Pipelining stages can be increased further
to increase the throughput with a penalty of increasing FF
usage. The results in Table VII show that we can double the
throughput of combinational decoder for everyN by one stage
of pipelining as expected.

The error rate performance of combinational decoders is
given in Fig. 10 for different block lengths and rates. The
investigated code rates are commonly used in various wireless
communication standards (e.g., WiMAX, IEEE 802.11n). It is
seen from Fig. 10 that the decoders can achieve very low error
rates without any error floors.

C. Throughput Analysis for Hybrid-Logic Decoders

As explained in Section III-B3, a combinational decoder
can be combined with a synchronous decoder to increase its
throughput by a factorg(N,N ′) as in (5). In this section, we

1 2 3 4 5 6 7
10

−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o

E
rr

or
 R

at
es

 

 

N=1024, R=1/2, FER

N=1024, R=1/2, BER

N=512, R=5/6, BER

N=512, R=5/6, FER

Fig. 10. FER performance of combinational decoders for different block
lengths and rates

present analytical calculations for the throughput of a hybrid-
logic decoder. We consider the semi-parallel architecturein
[21] as the synchronous decoder part and use the implemen-
tation results given in the paper for the calculations.

A semi-parallel SC decoder employsP processing elements,
each of which are capable of performing the operations (2)
and (3) and perform one of them in one clock cycle. The
architecture is called semi-parallel sinceP can be chosen
smaller than the numbers of possible parallel calculations
in early stages of decoding. The latency of a semi-parallel
architecture is given by

LSP (N,P ) = 2N +
N

P
log2

(

N

4P

)

. (13)

The minimum latency that can be obtained with the semi-
parallel architecture by increasing hardware usage is2N − 2,
the latency of a conventional SC algorithm, whenP = N/2.
Throughput of a semi-parallel architecture is its maximum
operating frequency divided by its latency. Therefore, using
N/2 processing elements does not provide a significant mul-
tiplicative gain for the throughput of the decoder.

We can approximately calculate the approximate throughput
of a hybrid-logic decoder with semi-parallel architectureusing
the implementation results given in [21]. Implementationsin
[21] are done using Stratix IV FPGA, which has a similar tech-
nology with Virtex-6 FPGA used in this work. Table VIII gives
these calculations and comparisons with the performances of
semi-parallel decoder.

Table VIII shows that throughput of a hybrid-logic decoder
is significantly better than the throughput of a semi-parallel
decoder. It is also seen that the multiplicative gain increases as
the size of the combinational decoder increases. This increase
is dependent onP , asP determines the decoding stage after
which the number of parallel calculations become smaller than
the hardware resources and causes the throughput bottleneck.
It should be noted that the gain will be smaller for decoders
that spend less clock cycles in final stages of decoding trellis,
such as [28] and [29]. The same method can be used in ASIC
to obtain a high increase in throughput.

Hybrid-logic decoders are especially useful for decoding
large codewords, for which the hardware usage is high for
combinational architecture and latency is high for synchronous
decoders.
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TABLE VII
FPGA IMPLEMENTATION RESULTS

N
Combinational Decoder Pipelined Combinational Decoder

LUT FF RAM (bits) TP [Gb/s] LUT FF RAM (bits) TP [Gb/s] TP Gain

24 1479 169 112 1.05 777 424 208 2.34 2.23
25 1918 206 224 0.88 2266 568 416 1.92 2.18
26 5126 392 448 0.85 5724 1166 832 1.80 2.11
27 14517 783 896 0.82 13882 2211 1664 1.62 1.97
28 35152 1561 1792 0.75 31678 5144 3328 1.58 2.10
29 77154 3090 3584 0.73 77948 9367 6656 1.49 2.04
210 193456 6151 7168 0.60 190127 22928 13312 1.24 2.06

TABLE VIII
APPROXIMATETHROUGHPUTINCREASE FORSEMI -PARALLEL SC

DECODER

N P
f TPSP N ′ g

TPHLSP

[Mhz] [Mb/s] [Mb/s]

210 64 173 85 24 5.90 501
210 64 173 85 25 6.50 552
210 64 173 85 26 7.22 613
211 64 171 83 24 5.70 473
211 64 171 83 25 6.23 517
211 64 171 83 26 7.27 603

V. CONCLUSION

In this paper, we proposed a combinational architecture
for SC polar decoders with high throughput and low power
consumption. The proposed combinational SC decoder op-
erates at much lower clock frequencies compared to typical
synchronous SC decoders and decodes a codeword in one
long clock cycle. Due to the low operating frequency, the
combinational decoder consumes less dynamic power, which
reduces the overall power consumption.

Post-synthesis results showed that the proposed combina-
tional architectures are capable of providing a throughputof
approximately2.5 Gb/s with a power consumption of190 mW
for a 90 nm 1.3 V technology. These figures are independent
of the SNR level at the decoder input. We gave analytical
formulas for the complexity and delay of the proposed combi-
national decoders that verify the implementation results,and
provided a detailed power analysis for the ASIC design. We
also showed that one can add pipelining stages at any desired
depth to this architecture in order to increase its throughput
at the expense of increased power consumption and hardware
complexity.

We also proposed a hybrid-logic SC decoder architecture
that combined the combinational SC decoder with a syn-
chronous SC decoder so as to extend the range of applicability
of the purely combinational design to larger block lengths.In
the hybrid structure, the combinational part acts as anacceler-
ator for the synchronous decoder in improving the throughput
while keeping complexity under control. The conclusion we
draw is that the proposed combinational SC decoders offer a
fast, energy-efficient, and flexible alternative for implementing
polar codes.
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