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Energy-Efficient Systems
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Abstract—Energy-efficiency is highly desirable for sensing
systems in the Internet of Things (IoT). A common approach
to achieve low-power systems is duty-cycling, where components
in a system are turned off periodically to meet an energy
budget. However, this work shows that such an approach is
not necessarily optimal in energy-efficiency, and proposes guided-
processing as a fundamentally better alternative. The proposed
approach offers 1) explicit modeling of performance uncertainties
in system internals, 2) a realistic resource consumption model,
and 3) a key insight into the superiority of guided-processing
over duty-cycling. Generalization from the cascade structure to
the more general graph-based one is also presented. Once applied
to optimize a large-scale audio sensing system with a practical
detection application, empirical results show that the proposed
approach significantly improves the detection performance (up to
1.7× and 4× reduction in false-alarm and miss rate, respectively)
for the same energy consumption, when compared to the duty-
cycling approach.

Index Terms—Guided-processing, duty-cycling, energy-
efficient systems, resource-aware optimization, IoT.

I. INTRODUCTION

Cisco predicted that by 2020, there will be 50 billions
Internet-connected devices, ushering in the Internet of Things
(IoT) paradigm [1]. Many of these devices will be sensors that
autonomously collect data about the physical world. Along
with supporting infrastructures such as databases and data-
analytics/inference engines, the resulting sensing system is
projected to enable many novel data-driven applications. While
the new paradigm has much potential, it also comes with
challenges. Among them are the ‘volume’ and ‘velocity’ [2] of
the data that need processing. It is becoming evident that the
naive approach of stream-all-the-data-to-the-cloud is too costly
in term of resources. And since energy is the most valuable
resource in the post-Moore-law era, it is the target of interest
for this work.

A straightforward approach to reduce the energy con-
sumption of a sensing system is duty-cycling, i.e. sensors
are periodically turned off to reduce the amount of data
that needs processing. While this approach does result in a
low-power system, it does not necessarily yield an energy-
efficiency one, since the inference performance was completely
ignored. An alternative approach is to have sensor nodes detect
information-rich data instances from a data stream before
uploading to the cloud for further processing. Unlike duty-
cycling, this approach not only reduces the data-load, but
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Fig. 1: The cascade detection system with K stages (indexed
by subscripts). For stage i, Fi denotes the feature extractor
and δi denotes the binary decision of a detector. The feature
itself is denoted by Yi. X is the (detection) target’s status, and
X̂ is the prediction about X by a detector.

also guides the downstream processing toward more quality
data (hence the name guided-processing). For instance, data
streams from audio sensors contain mostly background noise,
which can be screened out early by sensors. Intuitively, guided-
processing solves the issue of duty-cycling by explicitly ac-
counting for the inference performance, in addition to the
energy consumption.

An architecture of a detection system that implements the
guided-processing approach can be visualized in Fig. 1. The
system is a cascade of detection modules/detectors, each of
which occupies a stage. A detector at stage i consists of a
feature extractor Fi, which produces the feature Yi, and a
decision rule δi, which takes Yi and all previous features
Y1, . . . , Yi−1 as input. δi outputs different values depending
on the stage (see Eq. (1)). X is the (detection) target state,
which takes value 1 when the target is present, and 0 otherwise.
Finally, X̂ denotes the prediction of X by the detector.

The detection decision at each stage δi can take on the
following values.

δi =

{
0 : stop and declare X̂ = 0 (negative)
F : extract feature next

i = 1, . . . ,K − 1

δK =

{
0 : declare X̂ = 0 (negative)
1 : declare X̂ = 1 (positive)

(1)
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Note that only negative decisions, i.e. X̂ = 0, are allowed at
intermediate stages (i = 1, . . . ,K−1) since the goal is not to
make the final decision (which is reserved for the last stage
with the best performance) but to screen out early negative
instances that are more likely in a rare-target setting.

The cascade architecture has been studied before in the
literature. For instance, the seminal work by Viola and Jones
[3] showed empirically that such a design is very effective in
detecting rare targets in a large dataset (e.g. face detection),
and was also proposed as a resource-efficient approach for
stream mining by Turaga et al. in [4]. Detailed comparisons
with existing works are articulated in Section II. Our con-
tributions here include the explicit modeling of performance
uncertainties at intermediate layers/stages of a system. In
addition, a realistic resource/energy consumption model is
proposed. Finally, an in-depth comparison with the duty-
cycling approach reveals a key insight on how a guided-
processing system uniformly outperforms a duty-cycling one
in term of energy-efficiency. Furthermore, it is worth not-
ing that the proposed principle is more general than both
the tandem/cascade and the parallel (for instance, see [5])
structures, and can be applied to more sophisticated ones like
trees and graphs to create inference-aware, low-power sensing
systems.

The rest of the paper is organized as follows. Section II
reviews prior works that studied the cascade structure, along
with the limitations of their formulations/solutions. Section
III-A sets up preliminaries for the system model presented in
Section III-B, where the method to optimize its operation is
also discussed. The analytical comparison between the optimal
cascade system and the duty-cycling one is given in Section
III-C. Guided-processing on graph is presented in Section IV.
In Section V, the proposed theory was applied to the design
of an energy-efficient acoustic sensing system. Final remarks
are given in Section VI.

II. RELATED WORKS

It is worthwhile to note that the cascade detection system of
interest here is different from the serial detector network in the
distributed detection literature [6]–[8], in which the decision of
a current module is treated as an extra observation, instead of
as a control signal to censor subsequent modules and conserve
resources.

The cascade architecture is prevalent in many inference
applications, with the most widely-known example being the
seminal work in face detection by Viola and Jones [3]. In
[3], the system of cascaded detection modules is used to
quickly discard many negative sub-images typically observed
in face-detection applications, thus significantly speeding up
the detection process. However, the cascade is not optimized in
[3], leaving the optimal classifiers’ parameters, both thresholds
and weights, to be desired.

To this end, Luo [9] proposed to optimize thresholds
of each detection module in a cascade using the classical
Neyman-Pearson criterion, without consideration of resource
cost. Under the assumption of statistical independence between
detection modules, a gradient-based algorithm is proposed

to search for the locally optimal thresholds, which is also
a limitation of [9]. In contrast, our approach guarantees a
globally optimal, resource-aware solution and does not assume
independence between stages.

Later, Jun and Jones [10] incorporated an energy resource
constraint in the Neyman-Pearson-based optimization over
thresholds of a two-stage cascade. In this setting, three solution
types were identified: one that utilizes all of the available
energy and false-alarm rate, one that utilizes all the energy
while slacking the false-alarm constraint, and one that utilizes
all the false alarm while slacking the energy constraint. An
algorithm to find the optimal thresholds is only available if
the true solution is of the first type. Later, it is proven in [11]
that, if observations of the first stage are reused/resampled
in the second stage, then the first-type solution is optimal.
Furthermore, the individual performance of the first and sec-
ond stage detectors were used as the lower and upper bounds
on the (detection) performance of the cascade, respectively.
However, there was no comparison with the duty-cycling
approach in term of energy-efficiency. Finally, unlike [10],
[11], whose goal is the design of energy-efficient sensor nodes
(for which a two-stage architecture is often sufficient), this
work undertakes the design of an entire sensing system (for
which there are likely more than one downstream processing).
The new setting therefore motivates the development of a more
general solution, i.e. cascade systems with an arbitrary number
of stages.

Cho et al. [12] proposed a two-stage cascade architecture
for an ultra low-power acoustic sensor. The first stage coarsely
samples time-frequency (TF) characteristics of an audio stream
and triggers the full TF analysis in the second stage if an
acoustic event is detected. However, there was no attempt at
optimizing the triggering threshold.

Chen et al. [13] designed a surveillance system using a
two-stage cascade of low-end (acoustic and infrared) and
high-quality (camera) sensors. The system in [13] can find a
triggering threshold that either minimizes the detection error,
or satisfies a constraint on the CPU utilization for video
processing, but not both, and a heuristic was used to combine
the two solutions, i.e. use the threshold that minimizes the
detection error if it also satisfies the utilization constraint,
otherwise use the one that satisfies the constraint. Unlike the
ad-hoc approach of [13], our solution is derived from a well-
defined framework. It is worth noting that Cohen et al. [14]
also studied a similar problem in which a multi-modal sensing
system (with a PIR sensor and a camera) was designed for
monitoring vehicles. While the treatment in [14] is principled
(based on the partially-observable Markov decision process
(POMDP) framework), the sensors are not operated in cascade,
but instead are equally plausible options at each time step, and
hence is different from our work.

Since the optimization of the cascade is hard, Raykar et
al. [15] relaxed the problem by assuming classifiers in the
cascade produce soft/probabilistic outputs instead of hard
decisions, and converted the joint optimization of classifiers’
linear weights into a maximum a posteriori problem. Feature
costs are also incorporated into the optimization using the
standard Lagrangian argument, and a gradient-based algorithm



3

is used to find the optimal weights. However, the thresholds
must be found using an exhaustive grid search, which is
computationally intensive for cascades with many classifiers.
Our solution does not suffer this drawback.

Chen et al. [16] proposed a cyclic optimization algorithm
to optimize the linear weights of the classifiers in the cascade,
along with their early-exit thresholds. That is, at each iteration,
the algorithm cycles through all classifiers in the cascade,
optimizing each one while leaving others untouched. The
algorithm stops when the loss function no longer improves. A
disadvantage of such optimization procedure is that it requires
multiple passes through the cascade, and there is no theoretical
bound on the number of iterations it will take. In contrast, our
solution requires only a single pass through the cascade.

In stream mining, Turaga et al. [4] employed a cascade of
Gaussian mixture model (GMM)-based classifiers and formu-
lated a problem to find both the number of mixture components
and the threshold in each classifier that maximize the system
detection rate subject to constraints on false alarm, memory
and CPU. The solution in [4] takes a person-by-person ap-
proach where it iterates between 1) finding optimal numbers of
mixture components, i.e. resource allocation, for all classifiers
given thresholds, and 2) finding optimal thresholds for a given
resource allocation. However, this approach failed to capture
the direct dependence of the cascade’s resource consumption
on its thresholds, and is inherently suboptimal.

A limitation of the above works is that they only considered
open-loop solutions where the thresholds are independent
variables to be optimized. Ertin [17] considered closed-loop
solutions for the two-stage cascade detection problem where
the optimal decision rule at each stage, which is observation-
dependent, is sought. It was shown that the optimal policies
are still likelihood ratio tests, but with coupling thresholds,
i.e. the threshold at a stage depends on the receiver operating
characteristic (ROC) and the threshold of the other stage.
Namely, the optimal thresholds can not be found using the
solution technique employed by [17]. Note that, unlike classi-
cal detection problems, optimizing thresholds in a cascade is
critical in the trade-off between inference performance and
resource cost. A contribution of this paper is finding the
optimal parameters (both test-statistics and thresholds) for
general detection systems.

Trapeznikov et al. studied a generalization of the cas-
cade that was termed multi-stage sequential reject classifier
(MSRC), which is simply the cascade with an additional pos-
itive decision [18] or multiple additional (classification) deci-
sions [19] at intermediate stages. Their resource-consumption
model is ‘nebulous’, i.e. if the decision at an intermediate
stage is to defer to the next stage, an abstract, independent
”penalty” is incurred. In contrast, in our resource model, these
penalties are shown to be precisely the Lagrangian-weighted
of the feature extraction costs, and hence they are coupled (see
Eq. (40)).

On the other hand, a resource-consumption model closely
related to ours was considered by Wang et al. in [20]. The
minor difference is that, instead of being proposed, our model
was derived from first principles. However, [20] formulated
the problem using the empirical risk minimization frame-

work, since it was assumed that probabilistic models of high-
dimensional features cannot be estimated. We take a different
approach where it is assumed that probabilistic models of
features can be estimated, by first reducing the features’
dimensionality. In other words, the inputs into our algorithm
are (probabilistic) models, not a dataset as in [20]. In addition,
the solution proposed in [20] is a convex linear-program,
which requires a convex relaxation (with an upper-bounding
convex surrogate function) of the true objective function. In
contrast, our solution is a dynamic program and requires no
relaxation.

III. OPTIMALITY ANALYSIS OF A CASCADE DETECTION
SYSTEM

A. Feature models

For the rest of the document, the colon notation is used to
denote a collection, e.g.

y1:i , {y1, . . . , yi−1, yi} (2)

Recall that Yi denotes the feature used by the detector at
stage i, and is modeled as a random variable whose distribution
depends on the latent target X ∈ {0, 1}, i.e.

Yi ∼ pi(yi|x), x ∈ {0, 1}, i = 1, . . . ,K (3)

where lower-case letters denote realizations of the correspond-
ing random variable in upper case and p denotes a probability
mass/density function. It is assumed that these distributions
are stationary and hence can be estimated during training.
While the stationary assumption might seems too restrictive at
first glance, it does not preclude practical implementations of
subsequent results, as will be shown in Proposition 1. Finally,
it is worth noting that the feature (conditional) distributions in
(3) are chosen by Nature and thus conditionally independent
of prior stages’ decisions (if any), given the target state. The
decisions do influence the belief about the latent state though.

Using Bayes’ rule, the posterior probability of target pres-
ence is given by

π1(y1) =
1

1 + 1−π0

l1(y1)π0

πi(y1:i) =
1

1 + 1−πi−1(y1:i−1)
li(yi)πi−1(y1:i−1)

i = 2, . . . ,K

(4)

where li(yi) , pi(yi|1)/pi(yi|0) and πi(y1:i) , P(X =
1|y1:i) are the likelihood function and posterior probability at
stage i, respectively. π0 , P(X = 1) is the prior probability of
the target presence. Finally, the evidence probability is given
by

pi(yi|y1:i−1) = pi(yi|1)πi−1 + pi(yi|0)(1− πi−1) (5)

An important aspect of the cascade detection system is that,
except for the last stage, the main goal of other stages is to
quickly screen out negative instances, and not to make the final
decision. Therefore features used at stages other than the last
one are suboptimal for the detection task by design, to keep the
cost of their execution low. For instance, the all-band energy
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feature can neither characterize a bandpass target precisely, nor
distinguish between a bandpass target and another bandpass
interference, but can still be useful in the cascade thanks to its
low cost [21]. The sub-optimality of these early-stage features,
either due to 1) the failure to discriminate the target against
potential interferences, or 2) the insufficient modeling of the
target, can all be modeled as uncertainty in feature models.
To this end, we employ the following least-favorable feature
density models, developed by Huber in the context of robust
detection [22], [23, Chapter 10], [24, Chapter 6], in place of
the nominal ones.

pi(y|0)←


1−ε0i

v′+w′lLi
[v′pi(y|0) + w′pi(y|1)], li(y) < lLi

(1− ε0i)pi(y|0), lLi ≤ li(y) ≤ lUi
1−ε0i

w′′+v′′lUi
[w′′pi(y|0) + v′′pi(y|1)], li(y) > lUi

pi(y|1)←


(1−ε1i)lLi

v′+w′lLi
[v′pi(y|0) + w′pi(y|1)], li(y) < lLi

(1− ε1i)pi(y|1), lLi ≤ li(y) ≤ lUi
(1−ε1i)lUi

w′′+v′′lUi
[w′′pi(y|0) + v′′pi(y|1)], li(y) > lUi

i = 1, . . . ,K − 1
(6)

where the ‘←’ symbol is the assignment operator and

v′ =
ε1i + ν1i
1− ε1i

, v′′ =
ε0i + ν0i
1− ε0i

w′ =
ν0i

1− ε0i
, w′′ =

ν1i
1− ε1i

(7)

and 0 ≤ ε0i, ε1i, ν0i, ν1i ≤ 1 are uncertainty parameters of
stage i. lLi and lUi are the lower and upper bounds of the
likelihood ratio at stage i, respectively, and can be found by
solving the equations outlined in [24, Chapter 6]. Note that
since the new least-favorable densities result in a bounded
likelihood function, the corresponding posterior probability is
also bounded.

πLi ,
1

1 + 1−πi−1

lLiπi−1

≤ πi(y1:i) ≤ πUi ,
1

1 + 1−πi−1

lUiπi−1

(8)

B. System model and optimization

Optimizing the cascade system amounts to finding optimal
decision rules δ1:K that jointly minimize the proposed system’s
Bayes risk RB of incorrect decisions subject to an expected
system resource (e.g. energy) constraint e.

min
δ1:K

RB(δ1:K)

s.t. E(δ1:K) ≤ e
(9)

where E is the expected system resource consumption. The
Lagrangian technique can be used to convert the constrained
optimization problem (9) into the following unconstrained, yet
regularized, one

min
δ1:K

R(δ1:K) , λE +RK,A +

K∑
i=1

Ri,M (10)

where the parameter λ, which depends on the resource con-
straint e, couples the resource consumptions of all stages to-
gether and R denotes the system risk, which is a measure of the
combined detection performance and resource consumption.
Hence, it is evident that a system with lower system risk is

more energy-efficient. The Bayes risk RB has been broken
down into multiple terms. Ri,M , i = 1, . . . ,K − 1 are the
miss (false negative) risks due to early negative decisions at
intermediate stages. RK,M , RK,A are the miss and false-alarm
(false positive) risks due to incorrect decisions at the last stage.
Note that the system has no false-alarm risk at intermediate
stages, since the cascade structure does not allow early positive
decisions to be made. There are two reasons for this. First, to a
dummy detector that flips a coin to make decisions, rare target
makes it more likely to incur a false-alarm than a miss. Second,
intermediate stages with model uncertainties are also likely to
be fooled by interference to trigger a false-alarm. Altogether
it is relatively safe to ignore early positive decision, since they
are too unreliable. Proposition 2 later shows precisely when
this ignorant is unharmful.

The expected resource consumption at stage i is the resource
cost of feature extraction, denoted by Di, weighted by the
probability of that feature being selected by the previous stage.
In addition, even when features are not extracted, real systems
also incur a small, but non-zero, stand-by power consumption
which is modeled by di < Di, i = 2, . . . ,K. Hence,

E , D1 +

K−1∑
i=1

[Di+1P(δi = F ) + di+1P(δi = 0)] (11)

where D1 is weighted by 1 because the first-stage feature
is always extracted. Lastly, Di and di can be measured
in practice by profiling the feature-extraction process, and
resource costs generally go up by an order of magnitude1 from
one layer to another.

The solution to Problem (10) is given by the following
theorem.

Theorem 1. (The optimal decision rules for the cascade)

δ∗i (πi) =

{
0, πi(y1:i) < τ∗i
F, else

i = 1, . . . ,K − 1

δ∗K(πK) =

{
0, πK(y1:K) < τ∗K
1, else

(12)

where τ∗i ∈ [πLi, πUi] are the optimal thresholds at stage i.

Proof. See Appendix A.

Eq. (12) in Theorem 1 shows that the posterior probabilities
of intermediate stages can be used to guide the execution of
subsequent stages by thresholding them to decide whether to
stop or extract more features in the next stage. The final stage
has a standard detection rule, with the posterior probability
being thresholded to make a prediction about the target state.
The optimal threshold values {τ∗i }, which are critical in this
trade-off between performance and resource cost, can be found
using Algorithm 1.

The solution offered by Theorem 1 requires the conversion
of a feature Y into a posterior π, which can be difficult for

1It is noteworthy that this exponential cost increase is similar to that
considered by Poor in the context of quickest change detection [25], where it is
shown that the optimal statistic is still the well-known accumulated likelihood
product, but additionally weighted by the exponential base at each iteration.
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Algorithm 1 Pseudo-code to find optimal thresholds for the
cascade system.

1: function OPTIMIZE(model)
2: model is a structure containing the system’s feature

models
3: M is the probability quantization size
4: b = [0 : 1/(M − 1) : 1] (dummy) probability vector
5: Use (6) to obtain robust versions of model.
6: VK = min(CMb, CA(1− b))
7: τ∗K = CA/(CA + CM )
8: for i = K − 1 : −1 : 1 do
9: J = expected next-stage (i+1) value function

10: Vi = min(CMb+ λdi+1, J)
11: τ∗i = min{b : Vi − (CMb+ λdi+1) < 0}
12: τ∗i = max(πLi,min(πUi, τ

∗
i ))

13: end for
14: J = expected next-stage (1) value function
15: V0 = J
16: end function

practical implementations. To address this issue, an alternative,
adaptive form of the solution, similar to the one proposed in
[11, Eq. (14)], is given as follows.

Proposition 1. (Adaptive implementation) Let

δ∗i (yi) =

{
0, yi < ηi

F, else

i = 1, . . . ,K − 1

δ∗K(yK) =

{
0, yK < ηK

1, else

(13)

where the adaptive thresholds ηi are updated as follows.

ηi ← ηi + µ(q̂i − qi), i = 1, . . . ,K (14)

with
qi , P(πi ≥ τ∗i |πi−1), i = 1, . . . ,K − 1

qK , P(πK ≥ τ∗K |πK−1)
(15)

being the activation probabilities and q̂i, i = 1, . . . ,K are
their runtime estimates. Finally, µ is the adaptation step size.
Then (13) is equivalent to (12), provided that the features’
likelihood ratios are monotonic.

The advantage of the adaptive form in Proposition 1 is
that it does not require runtime posterior evaluations, but
instead K probability functions (of the prior πi−1 of stage i)
qi, i = 1, . . . ,K that can be computed at train time. Intuitively,
the thresholds ηi in this implementation are updated to ensure
that (13) produces decisions with the same probability measure
qi as that of (12), consequently making them equivalent
(assuming all features have monotonic likelihood ratios).

Given the above optimal decisions, the Corollary 1 quanti-
fies the corresponding performance of the cascade system.

Corollary 1. (Optimal performance of the cascade)

R∗(π0) , R(δ∗1:K , π0) = V0(π0) (16)

where V0(π0) is the result of the following recursion

VK(πK) , min(CMπK︸ ︷︷ ︸
miss risk

, CA(1− πK)︸ ︷︷ ︸
false-alarm risk

), πK ∈ [0, 1]

Vi(πi) , min(CMπi + λdi+1,

λDi+1 + E[Vi+1(πi+1(Yi+1, πi))]︸ ︷︷ ︸
expected next-stage value function

),

πi ∈ [πLi, πUi], i = 1, . . . ,K − 1

V0(π0) , λD1 + E[V1(π1(Y1, π0))]

(17)

And the corresponding optimal thresholds are given by

τ∗K = CA/(CA + CM )

τ∗i = max(πLi,min(πUi,

min{πi : Vi(πi)− [CMπi + λdi+1] < 0})),
i = 1, . . . ,K − 1

(18)

where CM , CA are the costs associated with miss and false-
alarm decisions and

di ,
K∑
j=i

dj (19)

is the (backward) accumulated off-costs.

Corollary 1 shows that the optimal performance achieved
by the system can be found using a recursive procedure. The
procedure has K iterations, each corresponding to a stage in
the system. Starting from the last stage K and proceeding
backward to 0, the value function V is recursively updated
(see (17)). The last-stage value function VK is the minimum
of the miss and false-alarm risk across πK . An intermediate-
stage value function Vi, i = 1, . . . ,K − 1 is the minimum
of the miss risk and the expected next-stage value function,
which requires the probabilistic updates in Eq. (4),(5). The
final value function V0 is the minimal risk achievable by the
system.

Once a value function is known, then the corresponding op-
timal threshold can be found using just arithmetic operations,
i.e. comparing the value function with the combined miss risk
and off-mode resource consumptions di. For the last stage
K, the optimal threshold can be given in closed form. Note
that the intermediate stages’ thresholds are capped between the
upper and lower bounds due to model uncertainty (see Section
III-A).

The discussion so far has been focusing on optimizing
parameters of the cascade design. A natural next question is
whether the constraints of the cascade design can be relaxed
to further improve performance. Namely, would introducing
additional degrees of freedom, i.e. early positive decisions in
intermediate stages, to the cascade always improve its perfor-
mance? Intuitively, when model uncertainties of intermediate
stages are accounted for (see Section III-A), and it is known
a priori that the target is rare, early positive decisions are
likely to have higher risk and hence are discouraged. There-
fore, introducing additional early positive decisions does not
always improve the performance of the cascade. The precise
conditions for which the cascade design itself is optimal is
given by the following proposition.



6

Proposition 2. (Optimality of the cascade design) With model
uncertainty, introducing additional early positive decisions in
intermediate stages of the cascade does not improve perfor-
mance, when

max{πi : Vi(πi)− [CA(1− πi) + λdi+1] < 0}︸ ︷︷ ︸
optimal threshold for early positive decision

> πUi,

i = 1, . . . ,K − 1
(20)

Proof. See Appendix B.

The left-hand side of (20) is the optimal threshold cor-
responding to an early positive decision. Namely, these ad-
ditional decisions also have threshold-based optimal policies
(see Appendix B), and a posterior probability above such a
threshold shall trigger an early positive decision. If such a
threshold is above the upper bound on the posterior probability
at a stage, then its early positive decision is never selected, and
hence does not affect the performance of the cascade.

C. Guided-processing vs duty-cycling

As alluded to in Section I, duty-cycling is an alternative
low-power design in which the system switches between the
on and off modes. The duration for the on mode is determined
by the duty-cycle factor ρ ∈ [0, 1], with ρ = 1 being always on
and ρ = 0 being always off. When off, the system completely
misses out any potential events. However, when on, the system
uses the best feature model, i.e. an equivalent of the cascade’s
last stage. Hence, the duty-cycling design can be viewed as
the extreme version of the cascade without intermediate layers.
The (Bayes) detection risk and the resource consumption of a
duty-cycled system is therefore given by

Rdc,B = ρ(Rdc,M +Rdc,A︸ ︷︷ ︸
risk in the on mode

) + (1− ρ) CMπ0︸ ︷︷ ︸
miss risk in
the off mode

Edc = ρDdc + (1− ρ)ddc

(21)

where Rdc,M ,Rdc,A are the miss and false-alarm risks during
the on mode, respectively. Ddc, ddc are the resource consump-
tions in the on and off modes, respectively.

In general, Ddc ≥ DK and ddc ≥ dK because they include
not only the resource consumption of the last stage, but also
additional overhead needed to get the data there. In addition,
Rdc,B ≥ RK,B , RK,M + RK,A (see Appendix C). Hence,
the theoretically best duty-cycling system is the one in which
the above bounds are met with equality.

Optimizing the duty-cycling design is straightforward since
the detection risk and the resource consumption are decoupled.
Hence the optimal detection rule does not affect the resource
consumption, and ρ can be adjusted to meet a resource budget.
While the duty-cycling design has the advantage of being
simple, it can result in a lower energy-efficiency compared
to the cascade design. Indeed, Proposition 3 shows that the
optimal cascade design can outperform even the best duty-
cycling design uniformly (across all ρ ∈ [0, 1], for a given
π0).

Proposition 3. (Guided-processing vs duty-cycling) The opti-
mal cascade design outperforms the best duty-cycling design

uniformly (across all duty-cycle factor ρ ∈ [0, 1]), provided
that

R∗(π0) ≤ CMπ0 + λdK (22)

and
K−1∑
i=1

R∗i,M (π0)︸ ︷︷ ︸
intermediate-stages’ miss risk

≤ λ(DK − e)︸ ︷︷ ︸
weighted resource saving

(23)

where
K−1∑
i=1

R∗i,M (π0) , V0,M (π0) (24)

and V0,M (π0) is the result of the following recursion

VK,M (πK) = 0, πK ∈ [0, 1]

Vi,M (πi) =

{
CMπi, πi ≤ τ∗i
E[Vi+1,M (Yi+1, πi)], else

,

πi ∈ [πLi, πUi], i = 1, . . . ,K − 1

V0,M (π0) = E[V1,M (Y1, π0)]

(25)

Proof. See Appendix C.

Eq. (22) is simply a sanity check to ensure that the minimal
risk of the proposed design must be lower than that of
doing nothing. Eq. (23) is more involved and it highlights
the core differences between the proposed and duty-cycling
approaches. In term of detection performance, the guided-
processing approach fundamentally incurs more miss risk (i.e.
additional miss terms) due to the introduction of intermediate
stages, i.e. the left-hand side of Eq. (23) and defined in Eq.
(24), to reduce the energy consumption. Hence, the key insight
is, as long as the achieved resource saving, i.e. the right-hand
side of Eq. (23), is more than the additional miss risk incurred
(for a given π0), then the guided-processing design uniformly
outperforms even the theoretically best duty-cycling one.

IV. GRAPH-BASED GUIDED-PROCESSING

Recall from the discussion on cascade structures (Section
III-B) that the guided-processing solution starts from the last
detector and works backward to the first one, since each
stage depends on the value function of a downstream stage.
Therefore, to adapt the established solution to graph-based
systems, a post-order traversal through nodes is required,
since each node, which herein represents a detection module,
depends on value functions of its downstream neighbors. An
obvious technical requirement is that there must be no cycle in
the system’s (directed) graph, i.e. only directed-acyclic graphs
(DAG) are admissible. For instance, a post-order traversal on
the graph in Fig. 2 is 9→ 6→ 7→ 8→ 2→ 3→ 4→ 5→
1. Note that while there are more than one valid post-order
traversals, they are all equivalent from the guided-processing’s
perspective.
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Fig. 2: A sample graph-based detection system where each
node is a module. There are K = 9 modules in the system,
labeled accordingly.

At each node/iteration, with all downstream neighbors pro-
cessed as the result of the post-order traversal, the guided-
processing equations are given as follows.

Vi(πi) = min(CMπi, CA(1− πi)), if N (i) = ∅
Vi(πi) = min(CMπi + λdn, {λDn + E[Vn(πn(Yn, πi))] :

n ∈ N (i)}), else
V0(π0) = λD1 + E[V1(π1(Y1, π0))]

(26)
where it is assumed that the miss and false-alarm cost of all
nodes are the same and, again, denoted by CM , CA. Similarly,
Dn and dn are the resource on-cost (for extracting feature
Yn) and the accumulated (from all downstream nodes) off-
cost of node n. The symbols i, Vi, πi denote the current node,
its value function, and its posterior probability, respectively.
N (i) denotes the set of all (downstream) neighbors of node i.
Nodes with no neighbor are last/terminal nodes.

The corresponding optimal decision functions are given as
follows.

δ∗i (πi) =

{
0, if Vi(πi) = CMπi

1, else
, if N (i) = ∅

δ∗i (πi) =


Fn, if Vi(πi) = λDn+

E[Vn(πn(Yn, πi))], n ∈ N (i)

0, else
, else

(27)

where Fn is the decision to choose a (downstream) neighbor
n for subsequent feature extraction. For practical implementa-
tion, the solution in (27) is rewritten in term of the generalized
activation probability qi as follows.

qi(πi−1) , {P(δ∗i = a|πi−1) : a = 0, 1}, if N (i) = ∅
qi(πi−1) , {P(δ∗i = a|πi−1) : a = 0, Fn, n ∈ N (i)}, else

(28)
where the notation πi−1 is slightly abused to denoted the union
of all admissible priors of node i’s parents, i.e.

πi−1 , ∪p∈P(i)πp
= [ min

p∈P(i)
πLp, max

p∈P(i)
πUp]

(29)

Fig. 3: Devices of the prototype audio sensing system.

where P(i) denotes the set of node i’s parents and πLp, πUp
are the lower and upper bounds on the admissible prior at a
parent node p. The union operation follows from the assump-
tion that triggers from parent nodes are mutually exclusive.

V. SYSTEM PROTOTYPE

This section applies the theory developed in Section III to
design an energy-efficient audio sensing system.

A. Hardware components

The proposed sensing system consists of three classes of
devices: sensors, clients, and a globally-accessible data-plane
[26] (see Fig. 3). In our current prototype, the data-plane
is an instance of MongoDb database [27] with a custom
RESTful interface specialized for audio data. Sensors are
Android smartphones with our audio analysis app (See Fig.
4) installed2. Finally, clients are standard PCs running the
Windows OS. The power consumption of sensors, profiled
using Trepn [28] on a Nexus-5X, and clients, measured using
powercfg on a 2.00 GHz machine, at different operating modes
are listed in in Table I.

TABLE I: Power consumption at different modes of devices
of the acoustic sensing system.

Devices & Modes Power consumption (mW)
Android processing 84.36

Android transmission 1097
PC sleep 264

PC processing 15131

B. Software components

While the proposed sensing system can be used for many
applications, the detection of the Golden-cheeked Warbler
(GCW)’s (type-A) calls [29] is chosen here as the application
of interest. Namely, X = 1 indicates the presence of a GCW
call, and X = 0 otherwise. Since the GCW is an endangered
bird species, this application has important implications for
their conservation.

The application’s software is organized into three subtasks:
generic energy-based analysis, spectral-based analysis, and

2Available for download at https://play.google.com/store/apps/details?id=
com.longle1.spectrogram

https://play.google.com/store/apps/details?id=com.longle1.spectrogram
https://play.google.com/store/apps/details?id=com.longle1.spectrogram
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Fig. 4: A screenshot of the proposed Android-based audio
analysis app. The app uses the adaptive implementation out-
lined by Proposition 1, with the probability q1 input via the
“Budget” slider.

Fig. 5: Spectrogram of a sample GCW’s (type-A) call.

temporal-spectral-based analysis. The energy analysis is a low-
complexity computation that produces energy-based features
useful for detecting acoustic events from silence. The spectral-
based analysis takes into account the spectral information
about the GCW calls, which only has energy in the 4500-6500
Hz and 7000-8000 Hz bands (see Fig. 5), to produce band-
specific, energy-based features using standard DSP filtering
techniques. Finally, the spectral-temporal-based analysis takes
into account both the spectral and temporal structure of the
GCW call from Fig. 5 to produce reliable, indicative features
using a template matching technique. Note that the input
into the above analyses is an audio stream (or precisely, its
high-dimensional time-frequency representation, see Fig. 5),
and their output is a scalar score sequence, i.e. a score for
each audio frame. Hence, these analyses effectively perform
dimensionality reduction.

Fig. 6: The software block diagram is organized as a cascade
with 3 stages: energy analysis as stage 1, spectral-based
analysis (along with the data transmission) as stage 2, and
temporal-spectral analysis as stage 3. Note that components of
the cascade are implemented distributedly across the network,
with the dashed line representing a remote connection. For
comparison, a system with the duty-cycling design only has
highlighted components, i.e. data transmission from sensor to
a client where the temporal-spectral analysis is carried out.

Since the generic energy analysis has low computational
complexity and can help prune out a significant amount of
noise-only data from the audio stream early, it is executed
on edge/sensor nodes. Only acoustic events are transmitted
downstream to clients, where spectral and temporal-spectral-
based analyses are further carried out. The system diagram
is illustrated in Figure 6 and arranged to fit the proposed
cascade abstraction. Note that the physical separation (between
sensors and clients) does not necessarily correspond to the
logical separation (between stages). For instance, the cost of
data transmission on sensors are included into the cost of
executing the second stage, along with the cost of spectral-
based analysis on clients, since they are both a result of the
first-stage decision.

The resource cost parameters at each stage Di, i = 1, 2, 3,
which can be estimated from values of Table I and the
execution times of the software components, are needed to
optimize the resource-performance trade-off. It is assumed that
all processing finishes before a periodic deadline, i.e. when
buffers (an ADC buffer on the sensor, a task buffer on the
client) are full. The average execution time of each task (per
audio frame of 32 ms) can be estimated/profiled and is given
as follows. The energy analysis takes 16 ms3. The average
transmission time takes 11 ms (500 ms for a 1.5 s event4).
Finally, the spectral and temporal-spectral analyses take 0.34
µs and 14 ms, respectively5. Hence,

D1 = 84.36× 0.016,

D2 = 1097× 0.011 + 15131× 0.34× 10−6,

D3 = 15131× 0.014,

(30)

3Estimated as half of the frame length.
4Profiled on the Android prototype.
5Profiled in MatLab on the PC.
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Fig. 7: Receiver operating characteristic (ROC) curves and
precision-recall (PR) curves of the features produced by the 3
analyses.

The off-mode/idle energy costs (per audio frame) on the client
are given as follows.

d2 = 264× 0.34× 10−6

d3 = 264× 0.014
(31)

The same system designed with the duty-cycling approach
will has less components (only those highlighted in Fig. 6)
and its resource/energy consumptions parameters are given as
follows.

Ddc = 1097× 0.011 + 15131× 0.014

ddc = 264× 0.014
(32)

Our dataset is a 46-minute, 24 kHz audio recording at
the field in Rancho Diana, San Antonio’s city park. The
dataset contains 206 GCW calls (manually identified and
labeled), each of whose duration is approximately one second.
In addition to GCW calls, the dataset also contains various
interferences from other animals’ vocalization, time-varying
wind noise, etc., since it is taken directly from field recording.
Precisely, the fraction of GCW calls in the entire dataset is
10.19%. Hence, this detection problem belongs to the rare-
target class, where the prior is asymmetrical, i.e. π0 � 0.5.
Throughout this section, we consider a range of prior in the
rare-event regime, i.e. π0 ∈ [0.05, 0.15]. Finally, the miss and
false-alarm costs are given by CM = 3, CA = 1 to emphasize
that the miss risk is higher in this setting.

The dataset are input to each of the three analyses discussed
above. The scalar output scores from each analysis are taken
as its respective features, resulting in a total of three feature
sets/groups/types. The discriminative power of each feature
type, or equivalently the performance of an analysis, can be
quantified using receiver operating characteristic (ROC) and
precision-recall (PR) curves as shown in Fig. 7. From the
figure, it is evident that the temporal-spectral feature is better
than the spectral feature, which in turn is better than the
generic energy feature, at detecting GCW calls.

The conditional probability mass functions (PMF), i.e.
pi(yi|x), of features from each analysis can be estimated up
to some quantization level, i.e. 100. Furthermore, as alluded
to in Section III-A, energy-based and spectral-based features,

Fig. 8: Optimal decision rules of the cascade system δ∗i (πi) ∈
{F, 0, 1}, i = 1, . . . , 3.

by construction, are inadequate to characterize GCW calls,
and hence there are inherent uncertainties in these features
for the detection of GCW calls. These uncertainties can be
explicitly accounted for in the features’ distributions using
the uncertainty model discussed in Section III-A, with the
following parameters.

ε01 = ε02 = 0.1

ε11 = ε12 = 0.1

ν01 = ν02 = 0.1

ν11 = ν12 = 0.1

(33)

Intuitively, the ε and the ν parameters indicate the level and
the strength of a contamination on the nominal distribution,
respectively. A formal method to set these parameters are
left for future work. Finally, it is assumed that the temporal-
spectral analysis (the last stage) is sufficient to characterize
GCW calls and hence there is no uncertainty in this feature
set.

C. Results

The optimal thresholds/strategies for detectors in the cas-
cade are given in Fig. 8. The equivalent, implementation-
friendly version of the solution, as discussed in Proposition 1,
is given in Fig. 9. Note that the decision functions of interme-
diate layers have limited supports due to model uncertainties.
Furthermore, Proposition 2 can be applied to verify that there
is no gain from having additional early positive decisions in
this system.

The optimized system risk is further broken down into the
weighted resource consumption, the miss and false-alarm rates
in Fig. 10 to provide an intuitive understanding of the optimal
policies.

The guided-processing system is compared against both the
theoretically-best (ideal) and the real, energy-equivalent duty-
cycling designs, to be defined herein. In the ideal case, the
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Fig. 9: The alternative representation of the optimal solution
for adaptive implementation.

Fig. 10: Breakdown of the system risk into components (see
Eq. (10)): false negative (miss), false positive (false-alarm),
and Lagrangian-weighted resource consumption. Low false-
alarm rate is achieved across the priors of interest. The miss
rate tends to increase with the prior. At a certain level, the
system must ramp up its resource consumption or incur more
false-alarm to reduce the miss rate.

lower bounds on energy costs and detection risks are assumed
to hold, i.e.

Ddc = DK , ddc = dK

Rdc,M = RK,M , Rdc,A = RK,A
(34)

while the corresponding values in the real duty-cycling system
must be measured directly. In addition, unlike the ideal case
where it is sufficient to compare against ρ ∈ {1, 0} (either
completely on or off, see Appendix C), ρ must be adjusted
in the real duty-cycling system to yield an equivalent energy
consumption to the proposed one, thus allowing the two to be
compared in term of their detection performance.

Fig. 11: Comparison of system risk between the guided-
processing (gp) and various duty-cycling (dc) approaches.

Furthermore, to demonstrate the generalization power of
the proposed approach over to that of [11], the system is
also compared against its 2-stage version, where the spectral
analysis in Fig. 6 is removed (i.e. the client only executes
the temporal-spectral analysis instead of a cascade of it and a
spectral-analysis.).

The comparison between the five approaches in term of
system risk (energy-inefficiency), energy consumption, false-
alarm and miss rates are given in Figures 11, 12, 13, 14,
respectively. From Fig. 11, it is evident that the proposed
approach is the most energy-efficient one (with the smallest
system risk) across the prior π0 of interest. Moreover, the ideal
bounds are tights, and generalization from two to three stages
helps improves the overall energy-efficiency. Fig. 12, 13, 14
together show that the guided-processing approach is able to
stay between the two ideal bounds for all three metrics and
outperform the real duty-cycling approach in both false-alarm
rate (up to 1.7×) and miss rate (up to 4×) for the same energy
consumption. Finally, it is worth noting that the removal of
the spectral analysis module (resulting in the 2-stage version)
strongly limits the design space and increases the total miss
rate (even with one less miss term, see Fig. 14) consistently
across priors, when compared to the proposed 3-stage system.

VI. CONCLUSION

This paper proposes the guided-processing approach for
sensing system design and shows that it can be fundamentally
more energy-efficient than the naive approach of duty-cycling.
Empirical evidence from a practical application also support
the analysis. The proposed design was applied to develop
an acoustic sensing service on which many applications can
be built on top. These are publicly available online6 for
demonstration.

6At http://acoustic.ifp.illinois.edu

http://acoustic.ifp.illinois.edu
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Fig. 12: Comparison of energy consumption (per audio frame)
between the guided-processing (gp) and various duty-cycling
(dc) approaches. Note that the energy consumption of the real
dc and gp approaches are the same by construction (i.e. their
curves overlap by setting ρ appropriately).

Fig. 13: Comparison of false-alarm rate between the guided-
processing (gp) and various duty-cycling (dc) approaches.
Compared to dc real across π0, gp is up to 1.7× lower in
false-alarm rate.

An apparent drawback of the proposed approach is its
stationary assumption and, as a result, the feedforward struc-
ture of the solution, i.e. the decision to invoke downstream
processing rests entirely on an upstream detector with a fixed
policy. It is conjecture that higher energy-efficiency can be
achieved by exploiting the temporal structure in extracted
features, for which a feedback-based solution might arise.
For instance, it is natural for downstream results to influence
upstream policies/decision-making over time.

Fig. 14: Comparison of miss rate between the guided-
processing (gp) and various duty-cycling (dc) approaches.
Compared to dc real across π0, gp is up to 4× lower in miss
rate.
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APPENDIX

A. Proof of Theorem 1

We start by expanding the risk terms in (10). The false
negative (miss) rate due to early negative decision for the first
stage is

R1,M =

∫
p(dy1)

{
CMπ1(y1)I(δ1 = 0)

}
(35)

where I() denotes the indicator function that takes value 1
when its argument is true and 0 otherwise. p(dy1:K) is the
probability measure of feature realizations y1:K .

Likewise, the miss terms for the stage i = 2, . . . ,K can be
given as follows.

Ri,M =

∫
p(dy1:i)

{
CMπi(y1:i)I(δi = 0, δi−1 = F )

}
(36)

Similarly, the false-alarm (false positive) term at the last stage
is given as follows.

RK,A =

∫
p(dy1:K)

{
CA(1− πK(y1:K))

I(δK = 1, δK−1 = F )
} (37)
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An important step in solving Problem (10) is the following
expansion of the expected resource cost in (11). By the law
of total probability,

D1 = D1

{
P(δ1 = 0) +

K−1∑
i=2

P(δi = 0, δi−1 = F )+

P(δK = 0, δK−1 = F ) + P(δK = 1, δK−1 = F )
} (38)

and

Di+1P(δi = F ) = Di+1

{ K−1∑
j=i+1

P(δj = 0, δj−1 = F )+

P(δK = 0, δK−1 = F ) + P(δK = 1, δK−1 = F )
}
,

i = 1, . . . ,K − 1
(39)

Similar expansions can be done for di, i = 2, . . . ,K.
Putting everything back into (10) yields a dynamic program-

ming structure, with the state variable being the posteriors πi
defined in Section III-A. Minimizing (10) can thus be achieved
efficiently using the following backward procedure.

VK(πK) , min
δK

I(δK = 0)CMπK + I(δK = 1)CA(1− πK)

Vi(πi) , min
δi

I(δi = 0) [CMπi + λdi+1] +

I(δi = F ) {λDi+1 + E[Vi+1(πi+1(Yi+1, πi))]}
i = 1, . . . ,K − 1

V0(π0) , λD1 + E[V1(π1(Y1, π0))]
(40)

where the expectation is taken with respect to the evidence
probabilities (see Section III-A) and Vi is the value function
at stage i. From the first and second expressions of (40), the
minimizers for the system can be obtained by setting

δ∗K(πK) =

{
0, πK < CA/(CA + CM )

1, else
(41)

and

δ∗i (πi) =

{
0, Vi(πi) = CMπi + λdi+1

F, Vi(πi) < CMπi + λdi+1

,

i = 1, . . . ,K − 1

(42)

The expression in (42) can be further simplified into (12) using
Lemmas 1.1 and 1.3.

Lemma 1.1. E[Vi+1(πi+1(Yi+1, π))], i = 0, . . . ,K − 1 and
Vi(π), i = 1, . . . ,K are concave7.

Proof. VK(π) is concave. Hence, by Lemma 1.2,
E[VK(πK(YK , π))] is concave.

Assume that Vi+1(π) is concave, thus
E[Vi+1(πi+1(Yi+1, π))] is concave by Lemma 1.2, then

Vi(π) = min{(π), λDi+1 + E[Vi+1(πi+1(Yi+1, π))] (43)

is also concave. Again, by Lemma 1.2, E[Vi(πi(Yi, π))] is
concave.

7Moreover, Vi(π), i = 1, . . . ,K can be shown to be piece-wise linear
and concave, which was first observed and proven (by induction) in [30,
Smallwood and Sondik].

Lemma 1.2. E[Vi+1(πi+1(Yi+1, π))] is concave if Vi+1(π) is
concave.

Proof. See [31, p. 146].

Lemma 1.3. E[Vi+1(πi+1(Yi+1, 0))] = λdi+2, i =
0, . . . ,K − 2 and E[VK(πK(YK , 0))] = 0.

Proof. VK(0) = 0, then E[VK(πK(YK , 0))] = VK(0) = 0
and

VK−1(0) = λmin{dK , DK} = λdK (44)

Hence, E[VK−1(πK−1(YK−1, 0))] = VK−1(0) = λdK
Now assume that E[Vi+1(πi+1(Yi+1, 0))] = λdi+2, then

Vi(0) = λmin{di+1, Di+1 + di+2} = λdi+1. (45)

Hence, E[Vi(πi(Yi, 0))] = Vi(0) = λdi+1.

B. Proof of Proposition 2

Introducing (additional) early positive decisions to interme-
diate stages results in the following modification to the second
expression of (40).

Vi(πi) , min
δi

I(δi = 0) [CMπi + λdi+1] +

I(δi = 1) [CA(1− πi) + λdi+1] +

I(δi = F )
{
λDi+1 + E[Vi+1(πi+1(Yi+1, πi))]

}
i = 1, . . . ,K − 1

(46)

Therefore the positive decision is not chosen by the optimal
policy under the following circumstances.

δ∗i 6= 1 if Vi < CA(1− πi) + λdi+1,

i = 1, . . . ,K − 1
(47)

Since Vi is a concave function of πi, (47) is equivalent to

δ∗i 6= 1 if πi ≤ max{πi : Vi < CA(1− πi) + λdi+1},
i = 1, . . . ,K − 1

(48)

Hence if (20) holds then the positive decisions are never
chosen by the optimal policy, and therefore do not make any
difference in the system performance.

C. Proof of Proposition 3

Recall that the feature model used in the duty-cycling design
is the same as that of the cascade’s last stage, i.e. the best one.
The corresponding miss risk is then given by

Rdc,M ,
∫

p(dyK)CMπK(yK)I(δdc = 0)

=

∫
p(dy1:K)CMπK(y1:K)I(δdc = 0)

≥ R∗K,M

(49)

where δdc is the duty-cycling’s detection strategy. The second
line follows from the law of total probability and the third one
holds by definition. Similarly for the false-alarm risk, i.e.

Rdc,A ≥ R∗K,A (50)

From (21), the duty-cycling system risk is lower-bounded by

ρ(R∗K,M +R∗K,A + λDK) + (1− ρ)(CMπ0 + λdK) (51)
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assuming zero overhead for duty-cycling, i.e. Ddc = DK and
ddc = dK . Let ∆R denote the difference between (51) and the
cascade performance in (10). Notice that ∆R(ρ) is a linear
function of ρ. Hence, for the cascade design to outperform
the duty-cycling design uniformly (∆R(ρ) ≤ 0,∀ρ), then
∆R(0) ≤ 0 and ∆R(1) ≤ 0 must hold.

The inequality ∆R(0) ≤ 0 is equivalent to the following
trivial condition on the cascade design

R∗ ≤ CMπ0 + λdK (52)

which simply states that the minimal risk achievable by the
cascade design must be lower than that of doing nothing (the
right-hand side of (52)).

On the other hand, the inequality ∆R(1) ≤ 0 is equivalent
to the following non-trivial condition on the cascade design

λE∗ +

K−1∑
i=1

R∗i,M ≤ λDK (53)

Note that the optimal resource consumption E∗ is equal to the
resource budget e. Therefore, (53) is equivalent to (23). The
computation of

∑K−1
i=1 R∗i,M follows directly from Appendix

A.
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