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Abstract—In this paper, a novel analysis method based on
Wave Digital (WD) principles is presented. The method is em-
ployed for modeling and efficiently simulating large PhotoVoltaic
(PV) arrays under partial shading conditions. The WD method
allows rapid exploration of the current-voltage curve at the load
of the PV array, given: the irradiation pattern, the nonlinear
PV unit model (e.g. exponential junction model with bypass
diode) and the corresponding parameters. The Maximum Power
Point can therefore easily be deduced. The main features of
the proposed method are the use of a scattering matrix that
is able to incorporate any PV array topology and the adoption
of independent one-dimensional nonlinear solvers to handle the
constitutive equations of PV units. It is shown that the WD
method can be considered as an iterative relaxation method
that always converges to the PV array solution. Rigorous proof
of convergence and results about the speed of convergence
are provided. Compared to standard Spice-like simulators, the
WD method results to be 35 times faster for PV arrays made
of some thousands elements. This paves the way to possible
implementations of the method in specialized hardware/software
for the real time control and optimization of complex PV plants.

Index Terms—nonlinear circuits, wave digital filters, PV mod-
eling, scattering, network topology.

I. INTRODUCTION

PhotoVoltaic (PV) power systems are among the most
promising renewable energy technologies [1], as they are
almost pollution-free and particularly suitable for distributed
energy generation [2], [3], e.g. through interconnection on the
grid [4]. However, it is well known that the actual perfor-
mance of large PV systems, in terms of generated energy,
system reliability and robustness, critically depends on many
design factors and working conditions [5]. Very frequently,
the energy that is actually harvested by PV plants is smaller
than the expected one. This is in part due to the fact that
PV plants are complex systems realized by interconnecting,
in a modular fashion, a huge number of simple PV units
(e.g. solar cells, PV modules or panels) [6]–[8] whose I-V
characteristic is nonlinear and critically affected by numerous
electrical parameters (e.g. series and parallel resistances [9])
and working conditions (e.g. solar irradiance [10] and local
temperature [11]). Furthermore, such working conditions can
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be nonuniform over the PV units giving rise to a great
number of different possible operating scenarios that should
be predicted and considered during the design phase. It is well
known, for instance, that nonuniform solar irradiance, due to
partial shading conditions, can heavily deteriorate the system
performance with a final impact that indeed depends on how
PV units are interconnected [12]. In order to make PV systems
more resilient to partial shading conditions, bypass diodes
are commonly adopted [13], but this tends to complicate
the electrical behavior of the PV systems whose global I-
V characteristic, at the load of the PV array, can exhibit
multiple local maxima [14]. Not only do these facts make an
accurate and fast modeling of PV arrays difficult, but they also
significantly complicate the design and testing of Maximum
Power Point Tracking algorithms [15]–[17].

The efficient exploration of the I-V characteristic of com-
plex PV systems, while considering the many possible sce-
narios, requires versatile modeling and effective simulation
tools that are currently missing. In fact, general purpose
simulators, such as Spice-like simulators, reveal to be in-
effective when used to simulate large PV systems. This is
because such simulators employ the standard Modified Nodal
Analysis (MNA) method to formulate the system equations
and the multidimensional Newton-Raphson (NR) algorithm as
the nonlinear solver. This way, the modular structure of PV
systems is not exploited in any way and the nonlinear solver
works on all of the equations and unknown variables (i.e.
nodal voltages) simultaneously, resulting in slow convergence
or even convergence failures. Some simulation techniques
specialized for PV systems with particular topologies have
been proposed in the literature. For instance in [18], a method
for breaking the PV equations into many one-dimensional
NR problems has been described; however, its applicability
is limited to the simple case where PV units are all connected
in series or in parallel. In this paper, instead, an innovative
technique is presented for the simulation of large PV systems,
which works for whatever type of array topology, and enables
the rapid derivation of the I-V characteristic. The presented
method relies on Wave Digital (WD) principles [19], as
it applies the following transformation to each port of the
reference circuit

a = v + Zi b = v − Zi , (1)

where v is the port voltage, i is the port current, Z is a real
positive free parameter called reference port resistance, while
a and b are the so-called incident and reflected wave variables.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, X 20XX 2

The inverse mapping of (1) is

v =
a+ b

2
i =

a− b
2Z

. (2)

Using the simple linear transformation of port variables (1)
we are able to separate the constitutive equations of the single
PV units (i.e. the I-V characteristic of a solar cell) from the
relationships that describe the array interconnection topology.
An important contribution of this paper is that of showing how
the proposed simulation method corresponds to an iterative
relaxation scheme that combines the evaluation of a WD
scattering matrix, describing the topology, with a robust and
extremely efficient one-dimensional solution of the constitutive
equation of PV units. We prove that, for the types of nonlin-
earities occurring in PV models, the proposed iterative method
always converges to the solution. We also show how numerical
convergence can be significantly accelerated by dynamically
changing some parameters of the WD model.

It is worth noticing that various previous attempts to ap-
ply WD method to electrical simulations are available in
the literature [20], [21]. Such techniques commonly tend
to break the network into small sets of elements coupled
through topological junctions called adaptors [22]–[26], and
are applied when the network is mainly linear with a few
nonlinear elements [27]–[40]. By contrast, our technique has
been especially developed for successfully handling the critical
case where the majority of elements of the network (at limit
all of them) are nonlinear, as it is indeed the case of PV
arrays. This ability can be attributed to the use of a topological
junction extended to all the elements of the network, as well as
by the capability of dynamically changing the free parameters
according to the previously found operating point.

The paper is organized as follows. Section II reports some
basic concepts about graph representation of circuit network
topology. In Section III, the scattering matrix embedding the
topological information for an arbitrary PV array is derived,
while in Section IV the WD equations of the PV array
units and their solution by means of the one-dimensional NR
algorithm are presented. Section V describes in detail the novel
relaxation technique, referred to as Scattering Iterative Method
(SIM), for finding the operating point of the PV array and
provides the relative convergence analysis. Section VI presents
the overall algorithm for the determination of I-V and P -V
curves. Section VII reports some significant numerical results
obtained from the application of the algorithm described in
Section VI to non-uniformly shaded PV arrays characterized
by different topologies and provides efficiency comparisons
with Spice-like simulations. Section VIII concludes this paper.

Finally, important implementation details and the proof
of the Theorem used for the SIM convergence analysis are
described in the Appendix A and Appendix B, respectively.
These results, that for the sake of readability are reported in
the Appendixes, are among the crucial contributions of this
manuscript, both from an implementation point of view and a
theoretical perspective.

II. BACKGROUND

Let us consider a network composed of N−1 nonlinear two-
terminal PV units and a load resistor interconnected according

to an arbitrary topology; Fig. 1(a) shows an example of the
sort. Let us define v = [v1, . . . , vN ]t as the vector of port
voltages across the elements and i = [i1, . . . , iN ]t as the vector
of port currents through the elements. The sign conventions
of port variables are always chosen as shown in Fig. 1(a) for
the PV unit 1; the polarity of v1 is indicated by the signs
+ and −, while the polarity of i1 is indicated by an arrow.
The network topology is commonly described by an oriented
graph as shown in Fig. 1(b) [41]. Given the graph of the PV
array network, the edges are partitioned in two groups: a set of
branches (edges of a tree) and a set of links (edges which are
not part of the tree) [41]. Then, according to loop and cut-set
analysis, the Kirchhoff laws can be written in vectorial form
as

i = BT il v = QTvt (3)

where B is the fundamental loop matrix, Q is the fundamental
cut-set matrix and the superscript T denotes transposition [42].
In (3) vt is the vector of voltages across branches and il is
the vector of currents through links.

Notice that, if t is the number of branches and l is the
number of links, B is a l × N matrix, while Q is a t × N
matrix. Moreover, the relation N = t+ l holds.

III. MODELING THE TOPOLOGY

In this Section, a general method is described that, ex-
ploiting the graph representation illustrated in the previous
Section II, allows one to derive a scattering matrix which
embeds all the topological information. This will enable
modeling the elements of the network (i.e. the PV units and
the load resistance) as separated input/output blocks connected
to a topological junction characterized by the aforementioned
scattering matrix, as shown in Fig. 2.

A. Wave Digital Scattering Matrix Derivation

A linear transformation of the port variables is defined as
follows

a = v + Zi b = v − Zi , (4)

where a = [a1, . . . , aN ]T and b = [b1, . . . , bN ]T are vectors
of auxiliary variables called incident and reflected waves,
respectively, while Z = diag[Z1, . . . , ZN ] is a diagonal matrix,
whose non-zero entries are the reference port resistances.

In [43], [44], it is proved that the scattering matrix S such
that

b = Sa (5)

can be computed using one of the two following (equivalently
valid) dual formulas:

S = 2QTKt − IN , (6)

S = IN − 2KlB , (7)

where IN is the N × N identity matrix, B and Q are
the fundamental loop matrix and fundamental cut-set matrix,
respectively, previously defined in (3) [42]. Kt is a t × N
matrix such that (

QGQT
)
Kt = QG , (8)
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(a) Electrical Circuit
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(b) Graph
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(c) Branches and Links Partition

Fig. 1. Total-Cross-Tied 6× 4 PV Array Topology. In the oriented graph in Fig. 1(c) continuous edges are branches and dotted edges are links.

where G = Z−1, and Kl is a N × l matrix such that

Kl

(
BZBT

)
= ZBT . (9)

It follows that for finding Kt a linear matrix equation in the
form (8) with a t × t coefficient matrix T = QGQT needs
to be solved. Similarly, finding Kl requires solving a linear
matrix equation in the form (9) with a l× l coefficient matrix
C = BZBT . It can be verified that the matrices T and C
are symmetric, positive definite and full rank by construction.
Furthermore, in general, the following inequalities hold{

1 ≤ min [t, l] ≤ N/2 , if N is even
1 ≤ min [t, l] ≤ (N − 1) /2 , if N is odd .

(10)

Consequently, although there are two valid formulas for de-
riving S, i.e. (6) and (7), one of them is often far cheaper
in terms of computational cost. In fact, if t < l, (6) is
computationally cheaper than (7); conversely, if l < t, the
opposite holds true. These facts will be clarified by two
examples in Subsection III-B.

As far as the properties of S are concerned, it can be proven
that S is a self-inverse (or involutory) matrix [19], [43]–[45],
i.e. SS = IN . As a consequence, (5) can equivalently be
written as

a = Sb . (11)

It follows that all the eigenvalues of S have unitary modulus.
Moreover, the property STG = GS holds true; therefore, the
N -port scattering junction is said to be reciprocal [45].

B. Examples of Applications: TCT and SP Topologies

Fig. 1(a) shows a PV array with Total-Cross-Tied (TCT)
topology [12]. The corresponding oriented graph is represented
in Fig. 1(b), where the orientation of the arrows on the edges
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Fig. 2. Wave Digital representation of an arbitrary PV Array. The N -port
topological junction embeds all the topological information of the PV array,
while the elements, i.e. the PV units (PVU) and the load resistance (RL), are
represented as separated blocks communicating with the junctions through
incident and reflected wave signals.

indicates the polarity of the port currents i. The first 24 edges
are numbered following the numeration of the PV units and
edge 25 corresponds to the load resistance RL. Fig. 1(c) shows
the same graph of Fig. 1(b) and highlights a possible partition
of its edges in branches and links; in fact, the subgraph made
of continuous edges is a possible tree and the dotted edges
are the corresponding links. Note that t < l, as t = 6 and
l = 19; therefore, using (6) is computationally cheaper than
using (7) for deriving S. In particular, if vt = [v1, . . . , v6]T

is the vector of port voltages relative to the branches (i.e. the
numbered edges in Fig. 1(c)) and v = [vt

T , v7, . . . , v25]T , the
fundamental cut-set matrix Q = QTCT, such that v = QTCTvt,
can be easily derived by inspection, obtaining:

QTCT = [It, It, It, It,1t] ,
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where It is the t× t identity matrix and 1t is a t× 1 vector
of ones. Let us notice that a generalization of the structure
of QTCT for describing a PV array with TCT topology of
whichever size is straightforward.

As an alternative example, let us now consider the PV array
in Fig. 3(a), characterized by a Series-Parallel (SP) topology.
The corresponding oriented graph is represented in Fig. 3(b).
Fig. 1(c) shows the same graph of Fig. 1(b) and highlights a
possible partition of its edges in branches and links. We notice
that t > l, as t = 21 and l = 4; therefore, this time, using (7)
is computationally cheaper than using (6) for deriving S. In
particular, if il = [i1, . . . , i4]T is the vector of port currents
relative to the links (i.e. the numbered edges in Fig. 3(c))
and i = [il, i5 . . . , i25]T , the fundamental loop matrix B =
BSP, such that i = BT

SPil, can be easily derived by inspection,
obtaining:

BSP = [Il, Il, Il,−1l] (12)

where Il is the l × l identity matrix and 1l is a l × 1 vector
of ones. Let us notice that a generalization of the structure of
BSP for describing a PV array with SP topology of whichever
size is straightforward.

Plugging (III-B) in (6) and (12) in (7) the scattering matrices
can be derived. The scattering matrices also depend on the port
resistances contained in matrices Z and G; in Section VI, we
will discuss how to conveniently set such free parameters.

IV. MODELING THE ELEMENTS

In this Section, the models of the PV array elements,
i.e. load resistance and PV units, are presented. First, the
constitutive equations of the elements in terms of Kirchhoff
port variables i and v are defined. Second, the corresponding
scattering relations involving the WD port variables a and b
are deduced.

A. Load Resistance

The constitutive equation of the load resistance is simply
v = RLi and, applying transformation (2), we obtain the
scattering relation

b =
RL − Z
RL + Z

a . (13)

Let us notice that, if we set Z = RL, we obtain b = 0 for
whichever value of a. The elimination of the dependency of
b from a is called adaptation in WDF theory [19] and the
resistor RL is said to be adapted.

B. PV Units

Various nonlinear models of PV units have been presented
in the literature. The single-diode model with series and
parallel resistances [46], shown in Fig. 4, is probably the
most widespread; therefore, in this manuscript, we decided
to focus on it and on an extension, shown in Fig. 5, which
also includes a bypass diode. However, the approach presented
in this subsection can be used with no restrictions, also for
accommodating alternative PV unit models (such as the two-
diode model [47] or the multi-exponential junction model
[48]).

The PV unit model in Fig. 4 is governed by the following
implicit relationship

fJ (v, i) = IsJ

(
e(v−RSi)/(ηJVt) − 1

)
+
v −RSi

RP
− i− Iph = 0

(14)
where v is the PV unit voltage, i is the PV unit current, Iph is
the photo-generated current, IsJ is the dark saturation current,
RS is the series resistance, RP is the parallel resistance, Vt is
the thermal voltage and ηJ is the ideality factor. Notice that, if
the PV unit is a PV module, ηJ is proportional to the number
of cells in the module connected in series.

As (14) is a transcendental function, finding a scattering
relation similar to (13) is not straightforward. A possible ap-
proach for finding a closed formula could be using the Lambert
Function as discussed in [32], [49]. Another approach would
be simply tabulating the nonlinearity or exploiting canonical
PWL representations of single-valued functions [50].

However, here an approach based on the NR method is
presented. In fact, NR method is known to be very efficient,
especially in the one-dimensional case. To this aim, relation-
ships between port variables (1) and (2) are rewritten in the
following way [32],

i =
a− v
Z

, (15)

b = 2v − a . (16)

For a given value a = a(k) of the incident wave at the PV
unit, replacing (15) into (14), we are led to a scalar nonlinear
equation hJ (v) = 0 for the v variable. The expressions of
hJ (v) and of its derivative with respect to v, h

′

J (v) are reported
in Table I. Such a nonlinear equation can be solved efficiently
with the one-dimensional iterative NR algorithm described by
the following updating rule

v(j) = v(j−1) −
hJ
(
v(j−1)

)
h

′
J

(
v(j−1)

) (17)

where j ≥ 1 and the superscript between brackets is the
iteration index.

NR solver is stopped when the convergence condition
|v(j) − v(j−1)| < ε is satisfied, with ε being a small tolerance
(e.g. ε = 10−10). Once convergence condition is met, the port
voltage is set to v = v(j) and the reflected wave b is computed
by means of (16).

It is worth noting here how the one-dimensional solver (17)
is in general much more robust than multi-dimensional NR
solvers used in general-purpose simulators since reasonable
bounds on the values that v can assume can be enforced, thus
avoiding overflows or divergences.

Finally, the PV unit model can also be extended so as to
include a bypass diode as shown in Fig. 5. In this case, the
PV unit can be described by using the function [13]

fB (v, i) = fJ (v, i)− IsB

(
e−v/(ηBVt) − 1

)
= 0 (18)

where IsB and ηB are the saturation current and the ideality
factor of the bypass diode, respectively. Similarly to what has
been done for the previous model, the function hB (v) and its
derivative h

′

B (v) are derived, as shown in Table I, and used
by the NR solver. Also in this case, when NR convergence
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Fig. 3. Series-Parallel 6× 4 PV Array Topology. In the oriented graph in Fig. 3(c) continuous edges are branches and dotted edges are links.
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Fig. 4. Single-diode PV unit model with series resistance and parallel
resistance.
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Fig. 5. Single-diode PV unit model with series resistance, parallel resistance
and by-pass diode.

condition is satisfied, the reflected wave b is computed using
(16).

V. COMPUTING THE OPERATING POINT

This Section describes the iterative method, later on referred
to as Scattering Iterative Method (SIM), for computing the
operating point of a PV array, i.e the solution of the PV array
for a given value of the load resistance. We will prove that the
convergence of SIM, when applied to the proposed PV array
models, is always guaranteed while the speed of convergence
depends on the free parameters Z1, . . . , ZN .

SIM algorithm is based on the concepts of scattering matrix
and one-dimensional PV solvers provided in Section III and in
Section IV, respectively. Please note that the waves incident to
the elements are the waves reflected from the junction and vice

versa. In this Section a denotes the vector of waves incident
to the elements (or, equally, reflected from the junction), while
b denotes the vector of waves reflected from the elements (or,
equally, incident to the junction).

A. Scattering Iterative Method (SIM) Description

The SIM algorithm consists of two main stages, that we
will refer to as Local Scattering Stage and Global Scattering
Stage. The output of the first Stage is used as the input for
the second Stage and vice versa, iteratively, until convergence
is achieved. After that, SIM returns the wave vectors a and b
from which the desired port voltages and port currents can be
deduced by means of (2). SIM is implemented as follows.

1) Initialization: vectors a and v are set to initial guesses
a(0) and v(0), respectively (in Section VI we will discuss how
to choose a(0) and v(0)).

2) Local Scattering Stage: the wave reflected from the
nth element, for 1 ≤ n ≤ N , is computed with the one-
dimensional NR solver and accordingly to (16). More pre-
cisely,

b(k)n = 2v(k)n − a(k−1)
n (19)

where k ≥ 1, the superscript between brackets is the iteration
index and v

(k)
n is the voltage returned by a one-dimensional

NR solver, in the cases in which the nth element is a PV
unit, or simply v(k)n = a

(k−1)
n /2, in the case in which the nth

element is the load resistance. The initial guesses of the NR
solvers are set as v(k,j=1)

n = v
(k−1)
n . Notice that the workload

of this stage is embarrassingly parallelizable; in fact, each
b
(k)
n can, in principle, be computed by a separate thread of

execution.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, X 20XX 6

TABLE I
PV UNIT FUNCTIONS USED BY THE NR SOLVERS

Single-diode model with series resistance and parallel resistance

hJ (v) = IsJ

(
e(v(Z+RS)−aRS)/(ηJVtZ) − 1

)
+ v

(
RS +RP + Z

RPZ

)
− a

(
1

Z
+

RS

ZRP

)
− Iph

h
′
J (v) =

∂hJ (v)

∂v
=
IsJ (RS + Z)

ηJVtZ
e(v(Z+RS)−aRS)/(ηJVtZ) +

RS +RP + Z

RPZ

Single-diode model with series resistance, parallel resistance and by-pass diode

hB (v) = hJ (v)− IsB

(
e−v/(ηBVt) − 1

)
h
′
B (v) =

∂hB (v)

∂v
= h

′
J (v) +

IsB

ηBVt
e−v/(ηBVt)

3) Global Scattering Stage: being b(k) = [b
(k)
1 , . . . , b

(k)
N ]T ,

the vector a(k) = [a
(k)
1 , . . . , a

(k)
N ]T is evaluated accordingly to

a(k) = Sb(k) . (20)

It is worth noticing that: the implementation of formal expres-
sion (20) does not need the explicit formation of matrix S as
it is explained in Appendix A.

4) Convergence check: convergence is reached when∥∥a(k) − a(k−1)
∥∥
2∥∥a(k)∥∥

2

< ξ (21)

where the threshold ξ is a small tolerance, e.g. ξ = 10−8.

B. SIM Convergence Analysis

In general, the nth element (linear or nonlinear) of the PV
array is characterized by an implicit relationship between in
and vn in the form

fn (vn, in) = 0 . (22)

At kth iteration of NR solver, the relationship (22) is linearized
around the current i

(k)
n , v(k)n values. Such a linearization

corresponds to a Thévenin equivalent circuit with equation

v(k)n − V
(k)

Gn −R
(k)
Gn i

(k)
n = 0 , (23)

where V (k)
Gn denotes the equivalent source and R(k)

Gn the series
resistance. Fig. 6 shows the NR linearization of the PV
characteristic and the resulting Thévenin equivalent circuit.
In particular, the series resistance R(k)

Gn can be defined as the
implicit derivative of fn (vn, in) with respect to in evaluated
at the point with coordinates v(k)n and i(k)n

R
(k)
Gn =

d

din

[
fn

(
v(k)n , i(k)n

)]
= −

∂fn

(
v
(k)
n , i

(k)
n

)
/∂in

∂fn

(
v
(k)
n , i

(k)
n

)
/∂vn

.

(24)
It follows that the equivalent voltage source can be expressed
as V (k)

Gn = v
(k)
n − R(k)

Gn i
(k)
n . According to (19), we also have

that

v(k)n =
a
(k−1)
n + b

(k)
n

2
, i(k)n =

a
(k−1)
n − b(k)n

2Zn
.

(25)
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Fig. 6. NR linearization of the PV characteristic at operating point
(i

(k)
n , v

(k)
n ) and the resulting Thévenin equivalent circuit.

The linearized constitutive equations (23) can be recast in
terms of waves variables by substituting (25) into (23). In
matrix form, the linearized WD scattering relations result

b(k) = D(k)a(k−1) + E(k)VG
(k) , (26)

where D(k) = diag[c
(k)
1 , . . . , c

(k)
N ]T is a diagonal matrix,

whose nonzero entries are the reflection coefficients

c(k)n =
R

(k)
Gn − Zn

R
(k)
Gn + Zn

, (27)

E(k) = diag[e
(k)
1 , . . . , e

(k)
N ]T is a diagonal matrix, whose

nonzero entries are the weights

e(k)n =
2Zn

R
(k)
Gn + Zn

, (28)

and VG
(k) = [V

(k)
G1 , . . . , V

(k)
GN ]T . Then, combining (26) and

(20), we obtain

a(k) = SD(k)a(k−1) + SE(k)VG
(k) , (29)

which shows how the SIM algorithm, combined with the local
linearization of NR solver, results in an iterative solver having
iteration matrices SD(k). A sufficient condition for SIM to
converge is thus given by

ρ

(
K∏
k=1

SD(k)

)
< 1 (30)
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, for any index K ≥ 1, where

ρ

(
K∏
k=1

SD(k)

)
= max{|λ1|, . . . , |λN |}

is the spectral radius of matrix
∏K
k=1 SD

(k) and |λn| with
1 ≤ n ≤ N is the absolute value of the nth eigenvalue of the
same matrix

∏K
k=1 SD

(k).
In Appendix B, we prove the following theorem:
Theorem 5.1: Let S be a N ×N scattering matrix based on

the voltage wave definition (4), and let
{
D(1), . . . ,D(K)

}
be

a set of K ≥ 1 diagonal matrices with dimensions N × N .
The following inequality always holds true

ρ

(
K∏
k=1

SD(k)

)
≤

K∏
k=1

ρ
(
D(k)

)
(31)

where ρ
(∏K

k=1 SD
(k)
)

and ρ
(
D(k)

)
are the spectral radii of∏K

k=1 SD
(k) and D(k), respectively.

According to (31), if

max{|c(k)1 |, . . . , |c
(k)
N |} < 1 (32)

for each k, convergence of SIM is guaranteed, as ρ
(
D(k)

)
=

max{|c(k)1 |, . . . , |c
(k)
N |} and the condition

∏K
k=1 ρ

(
D(k)

)
< 1

surely holds true. Finally, remembering that the free parame-
ters Zn, for any n, are selected to be positive, Zn > 0, (32)
reduces to

R
(k)
Gn > 0 (33)

where R(k)
Gn are defined in (24).

In the light of the above, the convergence proof of SIM
algorithm when applied to PV arrays, reduces to prove that
the implicit derivative of PV unit constitutive equation f (v, i)
w.r.t. i is always positive for each element.

In the case of the load resistance, the derivative of f (v, i) =
RLi−v w.r.t. i is always positive and equal to RL. Let us now
consider f (v, i) = fJ (v, i); in this case, we have

d

di
[fJ (v, i)] =

1 +RS/RP + (IsJRS/ (ηJVt)) e
(v−RSi)/(ηJVt)

1/RP + (IsJ/ (ηJVt)) e(v−RSi)/(ηJVt)

(34)
which is always positive since PV unit physical parameters
are positive. Let us then consider f (v, i) = fB (v, i); in this
case we have

d

di
[fB (v, i)] =

−∂fJ (v, i) /∂i

∂fJ (v, i) /∂v + (IsB/ (ηBVt)) e−v/(ηBVt)

(35)
which, again, is always positive.

C. SIM Convergence Speed

It has been shown that SIM converges for any initial guess;
however, its convergence speed depends on the magnitude of
the nonzero entries of D(k) (30). Let us notice that the closer
Zn is to R(k)

Gn , the smaller is the spectral radius of SD(k) (31)
and the faster is SIM, up to the ideal case of full adaptation
in which Zn = R

(k)
Gn holds at each port n, the spectral radius

of SD(k) reduces to zero and only one iteration is needed.

VI. COMPUTING THE LOAD I-V AND P-V
CHARACTERISTICS

In this Section, more details about Algorithm 1 are pro-
vided. The algorithm enables efficient computation of the load
current-voltage and power-voltage characteristics for large PV
arrays under partial shading conditions. The method works
for whichever type of PV array configuration, PV model
parameters and for arbitrary shading patterns. The algorithm
is based on the application of the iterative method, SIM,
described in Section V over a wide set of different load
resistance values. Such values are decided by sweeping in
a logarithmic fashion a range of load which goes from the
highest chosen value, e.g. RL1 = 103 Ω, to the lowest one,
e.g. RLM = 10−3 Ω, and that are ordered in the vector
RL = [RL1, . . . , RLM ], where M is the total number of chosen
values. The SIM algorithm computes all of the currents and
voltages in the PV array for each load resistance in RL. The
currents and voltages at the load resistance are organized in the
vectors iL = [iL1, . . . , iLM ] and vL = [vL1, . . . , vLM ], respec-
tively, and determine the operating points over the load I-V
characteristic. Similarly, the vector of the load powers is easily
derived as wL = [wL1, . . . , wLM ] = [iL1vL1, . . . , iLMvLM ].

As the first step, all of the PV units parameters, e.g. the
assumed irradiance levels and patterns, temperature, ideality
factors and shunt or series resistances are set. Then, the
port resistances, which are free parameters, of the PV units
are initialized to admissible slope values of the PV implicit
relationship fn (vn, in) = 0, e.g. values Zn ∈ (0.1, 1) Ω can
be selected for n = 1, . . . N − 1, while the port resistance
of the load is adapted, i.e. ZN = RL1, as explained in
Subsection IV-A.

The unknown vectors of incident waves and port voltages
are initialized to arbitrary low values, e.g. a(0)n = 0 and
v
(0)
n = 0.2. Hence, for each load resistance in RL, the

PV array is solved iteratively by means of a sequence of
Local Scattering Stage and Global Scattering Stage evaluations
explained in Subsection V-A. These stages consist in one-
dimensional NR solvers, i.e. SOLVE routine in Algorithm 1,
and scattering matrix evaluation, accordingly to the efficient
procedure described in Appendix A. Once SIM has reached
convergence, the implicit derivatives (34) or (35) (depending
on the used PV unit models), evaluated at the current operating
point are employed to set the free parameters Zn to be used at
subsequent operating point solution. Similarly, the port vari-
able values a and v, determined at the current operating point,
are used as initial values a(0) and v(0) for the NR solver at the
next operating point. Since, the Thévenin equivalents of the PV
units at two successive operating points on the current-voltage
curve are expected to be very close, the above initialization and
dynamic change of the free parameters dramatically increases
SIM convergence speed, as highlighted in Subsection V-C.

VII. NUMERICAL RESULTS

In this Section, some application examples of the algorithm
presented in Section VI are illustrated. In the first example, the
proposed WD algorithm is employed to efficiently calculate
the load characteristics of PV arrays formed by 24 units,
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Algorithm 1 Load Current-Voltage Curve Computation
1: Initialization:
2: fill load resistance vector RL
3: ξ ← 10−8

4: for n = 1 to N − 1 do
5: set nth PV unit parameters Iphn, RSn, ηJn, etc . . .
6: Zn ← 0.2; a(0)n ← 0; v(0)n ← 0.2

7: bN ← 0
8: partition the N graph edges into t branches and l links
9: if t ≥ l then

10: form matrix Q
11: else
12: form matrix B
13: Loop:
14: for r ← 1, length[RL] do
15: ZN ← RL(r)
16: if t ≥ l then
17: G← diag [1/Z1, . . . , 1/ZN ]
18: else
19: Z← diag [Z1, . . . , ZN ]

20: k ← 0
21: while condition (21) is false do
22: k ← k + 1
23: for n← 1, N − 1 do
24: [b

(k)
n , v

(k)
n , R

(k)
Gn ]←SOLVE(a(k−1)

n , v
(k−1)
n , Zn)

25: compute a(k)1 , . . . , a
(k)
N as explained in Appendix A

26: iLr ← aN/ (2ZN ); vLr ← aN/2; wLr ← iLrvLr

27: for n← 1, N − 1 do Zn ← R
(k)
Gn

28:
29: function SOLVE(an, vguess, Zn)
30: j ← 0; v(j)n ← vguess; v

(j−1)
n ← vguess + 1; ε← 10−10

31: while |v(j)n − v(j−1)
n | > ε do

32: j ← j + 1
33: apply update rule (17) using equations in Table I
34: vn ← v

(j)
n

35: in ← (an − vn) /Zn
36: compute RGn using (24)
37: bn ← 2vn − an
38: return [bn, vn, RGn]

interconnected accordingly to four different topologies widely
used in practical applications and working under partial shad-
ing condition. This first example shows how the WD method
works for arbitrary array topologies, providing simulation
results that match accurately with those obtained via Spice-like
simulations but with a 7× simulation time speed-up factor. As
the Spice-like simulator we adopt Cadence Spectre [51]. The
second example, is used to compare the computational time
required by the WD method with that of Spectre simulations
when the size of the PV arrays is increased.

A. Analysis of different PV Array Topologies

In this first example, we consider arrays made of 6 × 4
PV units having the four topologies shown in Figs. 1(a),
3(a), 7 and 8. The formation of fundamental loop and
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17 18 19 20

21 22 23 24
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Fig. 7. Bridge-Link 6× 4 PV Array Topology.
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Fig. 8. Honey-Comb 6× 4 PV Array Topology.

cut-set matrix for the TCT and SP topologies in Figs. 1(a)
and 3(a) have already being explained in Subsection III-B.
The array topologies shown in Figs. 7 and 8 instead are
characterized by the so called Bridge-Link (BL) and Honey-
Comb (HC) topologies, respectively. Even though these latter
two topologies are more complex than the ones described in
Subsection III-B, as they are no more simple combinations of
parallel and/or series interconnections, the process for deriving
their fundamental loop or cut-set matrix remains the same. In
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(b) Shading Pattern 2

Fig. 9. Examples of possible shading patterns for 6×4 PV arrays as the ones
in Fig. 1(a), 3(a), 7 and 8. Each entry of the shading pattern matrices contains
the value of irradiance in ampere for the PV unit placed at the corresponding
position.

particular the edges of the graph associated to the BL topology
in Fig. 7 are partitioned into 12 branches and 13 links, while
the edges of the graph associated to the HC topology in Fig. 7
are partitioned into 13 branches and 12 links.

The models of the PV units is that shown in Fig. 5 with the
following parameter values: Vt = 26 × 10−3 V, Is = 10−10

A, IsB = 10−11 A, ηJ = 1, ηB = 1, RS = 0.0043 Ω and
RP = 140 Ω.

Then, the partial shading pattern shown in Fig. 9(a) is
imposed on the arrays, where the entries of the shading pattern
matrix are the values of the photo-generated currents Iphn
(measured in ampere) in the nth PV unit.
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Fig. 10. Load Current-Voltage curve of the PV array with TCT topology in
Fig. 1(a) shaded by the shading pattern in Fig. 9(a).

Figs. 10, 12, 14 and 16 reported the profiles of the load
current-voltage curves for the four PV arrays with TCT, SP,
BL and HC topologies, respectively, as computed by the WD
method and Spice-like simulation. Similarly, Figs. 11, 13, 15
and 17 show the corresponding power-current curves.

It can be seen how the results of the WD method match
very well those of the Spice-like simulation. In fact, the
difference between the curves provided by the two methods
are less than 10−6 ampere for currents and 10−6 watt for
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Fig. 11. Load Power-Voltage curve of the PV array with TCT topology in
Fig. 1(a) shaded by the shading pattern in Fig. 9(a).
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Fig. 12. Load Current-Voltage curve of the PV array with SP topology in
Fig. 3(a) shaded by the shading pattern in Fig. 9(a).

powers. In the presence of partial shading, the load P -V
characteristic exhibits a complex shape with many hills and
valleys thus requiring a great number of simulation points for a
reliable description. The proposed WD method allows detailed
exploration of such a characteristic in very short simulation
times (i.e. less than 0.1 s for the considered arrays simulated
on a standard quad-core computer). In the light of the above
considerations, the described WD algorithm can be used in real
time applications for finding the load condition that tracks the
Maximum Power Point or to identify the best interconnection
topology in the case of reconfigurable PV arrays.

Comparing the power curves in Figs. 11, 13 and 15, it
is evident how the TCT topology outperforms SP and BL
topologies both in terms of maximum supplied power and
load voltage figures of merit. From Figs. 11 and 17, instead,
it is seen that TCT and HC topologies give comparable
performance with TCT exhibiting a slightly higher maximum
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Fig. 13. Load Power-Voltage curve of the PV array with SP topology in
Fig. 3(a) shaded by the shading pattern in Fig. 9(a).
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Fig. 14. Load Current-Voltage curve of the PV array with BL topology in
Fig. 7 shaded by the shading pattern in Fig. 9(a).

power. As a further quantitative investigation, we exploit the
WD method in connection with Monte Carlo simulation to
perform variability analysis of the maximum supplied power
by considering a large number of possible shading patterns.
At each Monte Carlo realization, a randomly selected number
of PV units, ranging from 1 to 10, and with randomly
selected positions within the array are fully shaded and P -V
characteristic recomputed. Fig. 18 reports the distributions (for
1000 realizations) of the maximum power supplied by TCT,
HC, BL and SP topologies. The mean values of the maximum
supplied power are: 6.9, 5.9, 5.9 and 5.2 watt for TCT, HC,
BL and SP, respectively.

B. Comparison to Spice-like Software Performance

In this second example, the performance of WD algorithm
is compared to that of MNA-based Spice-like codes when
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Fig. 15. Load Power-Voltage curve of the PV array with BL topology in
Fig. 7 shaded by the shading pattern in Fig. 9(a).
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Fig. 16. Load Current-Voltage curve of the PV array with HC topology in
Fig. 8 shaded by the shading pattern in Fig. 9(a).

simulating PV arrays of large size. In doing that, we focus
on TCT topology with growing number of PV units.

The parameters of the PV units are the same provided in
Subsection VII-A. The PV arrays are assumed to be subjected
to scaled versions of the shading pattern shown in Fig. 9(b).
Table II reports the computation times for WD algorithm
and Spice-like simulations performed on the same quad-core
processor. Is is apparent how the WD method outperforms
the MNA-based method and its benefit in terms of efficiency
becomes more pronounced for larger PV arrays. For the case
with 6000 PV units, the WD method results ≈ 33× faster
than Spice-like simulation. The computational efficiency of
WD method over Spice-like simulations is mainly due to the
smaller number and smaller size of the linear systems that the
WD method requires solving. With MNA used in Spice-like
simulation, the solution at each operating point needs several
iterations of the Newton-Raphson algorithm with each iteration
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Fig. 17. Load Power-Voltage curve of the PV array with HC topology in
Fig. 8 shaded by the shading pattern in Fig. 9(a).
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Fig. 18. Maximum power distributions (number of realizations versus
maximum power) for TCT, HC, BL and SP topological configurations.

requiring the solution of a linear system. If N denotes the
number of PV units, the linear systems of MNA have size
≈ 3×N (i.e. the number of nodes). By contrast, according to
the efficient implementation described in the Appendix A, the
WD method, at each operating point, requires solving a single
linear system. The size of such systems is always ≤ N/2.
When N gets large, the linear system solution dominates the
computational task thus resulting in the simulation speed up
shown in Fig. 19.

Another important issue when dealing with large PV sys-
tems is simulation robustness. In Spice-like simulations of
large arrays with N > 2000 we were forced to properly set
some simulation parameters (e.g. the damping factor) to avoid
convergence failures. By contrast, the proposed WD method
based on the one-dimensional NR solver always converges to
the final correct solution.

The superior numerical efficiency and robustness of the
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Fig. 19. Efficiency comparison between the proposed Wave Digital method
and the MNA-based method. Precise values of the coordinates of the points
in this plot are reported in Table II.

TABLE II
COMPUTATION TIME FOR PV ARRAYS OF DIFFERENT SIZES

Number of PV Units 24 100 625 2500 6400
CPU Time MNA-based
Method in seconds

0.68 1.8 30.75 465 4125

CPU Time Wave Digital
Method in seconds

0.1 0.25 2 18.7 123

WD method enable possible implementations for the real time
control and configuration optimization of large PV plants.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an innovative and ef-
ficient technique for the modeling and simulation of large
networks of nonlinear PV units. The method relies on the
usage of Wave Digital (WD) variables and on a scattering-
matrix-based description of the network topology. In this way,
the working point of the nonlinear PV units can be found
by means of efficient and robust one-dimensional Newton-
Raphson (NR) solutions. We have shown how the combination
of the proposed scattering matrix description and NR solvers
results in an iterative relaxation method that always converges
to the PV array solution. More in general, the method pro-
posed in this paper converges for all nonlinear networks that
satisfy condition (33). The presented approach is applicable
to whichever network topology and handles the critical case
where the majority of the elements of the network have a
nonlinear characteristic.

The method has been employed to calculate the load
characteristics of PV arrays with different topologies under
partial shading condition. We have shown how it allows fast
exploration of the array power-voltage characteristic with the
identification of the Maximum Power Point and of the best
array configuration in very short simulation times. The speed-
up gain compared to standard Spice-like simulation in fact
ranges from 7× for small-size PV arrays to 35× for large
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arrays made of some thousands elements. This enables real
time implementations of the WD method.

Further improvements of the WD algorithm are possible
by exploiting the fact that the proposed computational flow
is suitable for parallel implementations that can increase even
more the already significant numerical efficiency. In addition,
the method can also be extended to those cases where the PV
units are described by experimental-based models via look-up
tables or non-analytical models.

Another possible development would be applying the same
approach presented in this manuscript, using alternative defi-
nitions of waves [52].

APPENDIX A
GLOBAL SCATTERING STAGE IMPLEMENTATION DETAILS

The calculation of (20) in the Global Scattering Stage of the
proposed SIM algorithm does not need the explicit formation
of the scattering matrix S. In this appendix, we prove this
result by referring to the scattering matrix formula (6) based
on fundamental cut-set matrix. The dual result can be obtained
starting from formula (7) based on fundamental loop matrix.

In fact, by replacing (6) into (20), we derive:

a(k) = Sb(k) = 2QTu(k) − b(k) (36)

where u(k) = Ktb
(k) is a t× 1 vector.

Hence, multiplying both sides of (8) by b(k), we find the
linear system (

QGQT
)
u(k) = r(k), (37)

with the right-hand-side vector r(k) = QGb(k) of size t× 1.
The system matrix

(
QGQT

)
is symmetric and positive-

definite and thus it can be efficiently decomposed in the
form LLT with Cholesky factorization, with L being a
lower triangular matrix. Once factorization is available, at kth
iteration of the SIM algorithm and for a given vector b(k),
the evaluation of the associated a(k) only requires forming
the right-hand-side vector r(k), calculating the vector u(k) via
two backward substitutions and finally evaluating (36). All
these calculations only entail vector operations or triangular
matrices backsubstitution thus resulting in an almost linear
growth of the computational burden as the size of the problem
is increased.

APPENDIX B
BOUNDNESS OF THE SPECTRAL RADIUS

In this Appendix we provide the proof of Theorem 5.1.

Proof Let us start from the property GS = STG, mentioned
in Subsection III-A, that can be rewritten as GSZ = ST or
equivalently G1/2G1/2SZ1/2Z1/2 = ST , where G = Z−1 is
the inverse of the diagonal matrix of the free parameters Z. It
follows that we can define a matrix P such that

P = G1/2SZ1/2 = Z1/2STG1/2 (38)

therefore, P is symmetric. P is also involutory, as it can be
easily verified that PP = IN , as SS = IN and G1/2Z1/2 =
IN . It follows that matrix P is orthogonal.

Let λ and v be an eigenvalue and an eigenvector of matrix∏K
k=1 SD

(k) so that we can write(
K∏
k=1

SD(k)

)
v = λv .

Let us then consider another vector u, such that v = Z1/2u.
We can write

G1/2

(
K∏
k=1

SD(k)

)
Z1/2u = λu . (39)

Exploiting the following two matrix equalities, which can be
derived from equation (38),

G1/2S = PG1/2 , SZ1/2 = Z1/2P

and the fact that the diagonal matrices Z1/2, G1/2, D(k) with
1 ≤ k ≤ K, are commuting matrices, (39) can be equivalently
written as (

K∏
k=1

PD(k)

)
u = λu

Assuming λ to be the largest eigenvalue of
∏K
k=1 SD

(k),
i.e. λ = λmax, and applying the 2-norm operator ‖.‖2 we have∥∥∥∥∥
(

K∏
k=1

PD(k)

)
u

∥∥∥∥∥
2

= |λmax| ‖u‖2 = ρ

(
K∏
k=1

SD(k)

)
‖u‖2

and, being the 2-norm a submultiplicative norm,∥∥∥∥∥
(

K∏
k=1

PD(k)

)
u

∥∥∥∥∥
2

≤
K∏
k=1

ρ
(
D(k)

)
‖u‖2 ,

as
∥∥D(k)

∥∥
2

= ρ
(
D(k)

)
for each k and ‖P‖2 = 1. Equiva-

lently, as |λmax| = ρ
(∏K

k=1 SD
(k)
)

, we can write

ρ

(
K∏
k=1

SD(k)

)
‖u‖2 ≤

K∏
k=1

ρ
(
D(k)

)
‖u‖2 ,

hence

ρ

(
K∏
k=1

SD(k)

)
≤

K∏
k=1

ρ
(
D(k)

)
.

This completes the proof.
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