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Abstract—In this work, the designs of both non-iterative 

and iterative approximate logarithmic multipliers (LMs) 

are studied to further reduce power consumption and 

improve performance. Non-iterative approximate LMs 

(ALMs) that use three inexact mantissa adders, are 

presented. The proposed iterative approximate logarithmic 

multipliers (IALMs) use a set-one adder in both mantissa 

adders during an iteration; they also use lower-part-or 

adders and approximate mirror adders for the final 

addition. Error analysis and simulation results are also 

provided; it is found that the proposed approximate LMs 

with an appropriate number of inexact bits achieve a higher 

accuracy and lower power consumption than conventional 

LMs using exact units. Compared with conventional LMs 

with exact units, the normalized mean error distance 

(NMED) of 16-bit approximate LMs is decreased by up to 

18% and the power-delay product (PDP) has a reduction of 

up to 37%. The proposed approximate LMs are also 

compared with previous approximate multipliers; it is 

found that the proposed approximate LMs are best suitable 

for applications allowing larger errors, but requiring lower 

energy consumption and low power. Approximate Booth 

multipliers fit applications with less stringent power 

requirements, but also requiring smaller errors. Case 

studies for error-tolerant computing applications are 

provided. 
Index Terms—Approximate computing, logarithmic multiplier, 

inexact adder, low Power, error-tolerant applications. 

I. INTRODUCTION 

OMPUTING systems are encountering substantial 

difficulties to further improve performance at current 

 
 

power consumption levels; on-chip power consumption has 

become prohibitively high for efficient computation in today’s 

integrated circuits. Approximate (or inexact) computing [1] is a 

promising approach to possibly resolve power issues; exactness 

is not so strict for increasing popular cognitive applications 

related to human perception, such as multimedia signal 

processing, machine learning and pattern recognition [2]. 

Therefore, power consumption and IC performance can be 

further improved by relaxing the requirement of a strict 

accuracy; approximate computing generates good enough 

results that do not require full accuracy and correctness. 

Approximate techniques have been applied at several levels 

including circuits, architectures and algorithm/software [3-4]. 

At circuit level, the design of approximate arithmetic units has 

received a significant research interest due to its importance in 

many computing applications; typical applications, such as 

DSP and machine learning algorithms, have an extensive 

number of arithmetic processing involving addition (or 

accumulation) and multiplication.  

As basic operations of an arithmetic processor, addition and 

multiplication are very important for achieving high 

performance; therefore, they have been extensively studied for 

approximate computing and reducing power consumption. 

Error metrics including the error rate (ER), error distance (ED), 

mean error distance (MED), normalized mean error distance 

(NMED) [5], and the worst case error (WCE) [6] have been 

proposed for evaluating the designs of approximate arithmetic 

circuits.  

Approximate adders have been extensively studied in the 

technical literature to attain reduction in power consumption 

and delay [7]. Approximate adder designs mainly include 

speculative adders [8-11] and non-speculative transistor-level 

full adders [12-13]; an approximate floating-point adder has 

also been studied [14]. 

The operation of multiplication is more complex than 

addition. Approximate design techniques can be applied to 

different parts of a conventional multiplier, such as operands 

[15-20], partial product (PP) generation [21-24], PP tree [25-30] 

and compressors [31-34]. Currently, artificial intelligence 

related methods have been proposed for approximate 

multiplication such as those using genetic programming [6] 
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[35]. Multipliers using a logarithmic transformation (that 

converts multiplication into addition) show inherent 

approximate characteristics. The logarithmic multiplier (LM) 

has been first proposed by Mitchell [15]; it performs 

multiplication using shifts and addition only and by converting 

the operands to approximate logarithmic numbers. As the 

logarithmic transformation is approximate, an inherent error is 

unavoidable in the results. However, the area, delay and power 

are usually improved significantly at the cost of precision. 

State-of-the-art designs of LMs improve accuracy using either 

a fine piecewise linear approximation [16-18], or an iterative 

technique [19, 36].  

However, no investigation has been conducted on the design 

of LMs using inexact parts and in particular, two interesting 

questions remain unanswered:  

 How is the performance of a logarithmic multiplier affected 

if inexact units are used in the design? 

 Are approximate logarithmic multipliers (ALMs) or 

approximate normal binary multipliers better in terms of 

different performance metrics?  

In this work, inexact adders are used to compute the least 

significant bits of the mantissa adder in the logarithmic 

multipliers so that performance and power can be further 

improved. The iterative technique is also applied in the ALMs 

to improve the accuracy. Error analysis and evaluation are 

presented to validate the proposed ALM designs. Case studies 

for image processing and pattern recognition (i.e., k-means 

clustering) are also investigated.  

This paper has been extended significantly from the previous 

conference version [37]; the main differences are summarized 

as follows: 

 The designs of the proposed ALMs are detailed  and further 

explained; 

 The error probability density distributions (PDDs) of ALMs 

are provided to explain the error analysis results; 

 The relationships between M1, M2 and M3 for IALM are 

studied and discussed; 

 Comparison is provided for both 8-bit and 16-bit designs with 

previous approximate multipliers; 

 Two case studies including image processing and k-means 

clustering are presented to show the validity of the proposed 

designs. 

The rest of the paper is organized as follows. Section II 

reviews conventional non-iterative and iterative logarithmic 

multipliers. The design of an approximate logarithmic 

multiplier is presented in Section III. The design of iterative 

approximate logarithmic multipliers is also presented in this 

section. Error analysis and simulation results of the 

approximate logarithmic multipliers are given in Section IV. 

The proposed approximate LMs are also compared with 

previous approximate multipliers in this section. The 

applications of approximate LMs to digital image processing 

and k-means clustering are presented in Section V. Section VI 

concludes this paper. 

II. REVIEW 

Both the conventional Mitchell logarithmic multiplier and 

the iterative logarithmic multiplier are briefly reviewed in this 

section.  

A. Non-Iterative Logarithmic Multiplier 

Mitchell’s algorithm [15] is referred to as a non-iterative 

logarithmic multiplier in this work. Assume A and B are two 

fixed-point operands of the logarithmic multiplier; they can be 

expressed as follows [15]: 

𝐴 = 2𝑘1(1 + 𝑥1), 0 ≤ 𝑥1 < 1            (1) 

𝐵 = 2𝑘2(1 + 𝑥2), 0 ≤ 𝑥2 < 1            (2) 

where, the values of 𝑘1  and 𝑘2  are referred to as the 

characteristics of A and B, respectively, and they are the 

position of the leading one in its unsigned binary representation, 

i.e., they represent the most significant operand bits [36]. 𝑥1 

and 𝑥2  are the fractional parts of the resultant logarithmic 

approximation and in the range of [0, 1).  The values of the 

characteristic and the fractional part uniquely determine a 

binary logarithm of the two operands as follows: 

𝑙𝑜𝑔2(𝐴) = 𝑘1 + 𝑙𝑜𝑔2(1 + 𝑥1)           (3) 

𝑙𝑜𝑔2(𝐵) = 𝑘2 + 𝑙𝑜𝑔2(1 + 𝑥2)           (4) 

The logarithm of a product, i.e., P, is equal to the sum of the 

logarithms of the multiplier and the multiplicand, so 

𝑃 = A × B = 2𝑘1+𝑘2(1 + 𝑥1) × (1 + 𝑥2)       (5) 

𝑙𝑜𝑔2(𝑃) = 𝑘1 + 𝑘2 + 𝑙𝑜𝑔2(1 + 𝑥1) + 𝑙𝑜𝑔2(1 + 𝑥2)    (6) 

As 𝑙𝑜𝑔2(1 + 𝑥) ≈ 𝑥 when 0 ≤ x < 1 , the approximate 

product can be calculated as follows: 

𝑙𝑜𝑔2(𝑃) ≈ 𝑘1 + 𝑘2 + 𝑥1 + 𝑥2            (7) 

which can be calculated by adders. 

An 8-bit example of Mitchell’s algorithm is shown in Fig. 1, 

where 102 × 160 ≈ 15,140 (=16,320). Note that Mitchell 

logarithmic multiplier always underestimates the correct value 

[15]. 

Fig. 1. An 8-bit example of Mitchell’s algorithm. 

Mitchell logarithmic multiplier mainly includes four steps: 

leading one detection, binary to logarithm conversion, mantissa 

addition and logarithm to binary conversion. The structure of a 

16-bit Mitchell multiplier is shown in Fig. 2.  

The leading one detector (LOD) finds the left-most one bit; 

then the binary-logarithm converter (BLC) produces the 

logarithms of the original operand numbers. The multiplication 

is then performed by the mantissa addition in the logarithmic 
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domain. The results are then decoded by the logarithm-binary 

converter (LBC) into binary numbers as final product. 

 
Fig. 2. A 16-bit non-iterative logarithmic multiplier [37]. 

B. Iterative Logarithmic Multiplier 

Iterative approaches have been proposed to improve the 

accuracy at the cost of duplicated hardware [36]. As mentioned 

previously, the product of a LM is approximate. Errors are 

introduced by ignoring the correction parts. The exact product 

can be rewritten as follows [15]: 

𝑃 = 2𝑘1+𝑘2(1 + 𝑥1 + 𝑥2) + 2𝑘1+𝑘2(𝑥1 × 𝑥2), 𝑥1 + 𝑥2 < 1 (8) 

𝑃 = 21+𝑘1+𝑘2(𝑥1 + 𝑥2) + 2𝑘1+𝑘2(1 − 𝑥1) × (1 − 𝑥2), 𝑥1 +
𝑥2 ≥ 1                     (9) 

where, 2𝑘1+𝑘2(𝑥1 × 𝑥2)  and 2𝑘1+𝑘2(1 − 𝑥1) × (1 − 𝑥2)  are 

the correction parts. Let U and V be defined as follows: 

𝑈 = 2𝑘1𝑥1, 𝑉 = 2𝑘2𝑥2, 𝑥1 + 𝑥2 < 1         

 (10) 

𝑈 = 2𝑘1(1 − 𝑥1), 𝑉 = 2𝑘2(1 − 𝑥2), 𝑥1 + 𝑥2 ≥ 1    (11) 

The correction parts can be calculated as follows: 

P𝐿 = 𝑈 × 𝑉                   (12) 

which can be calculated using the same LM design as shown in 

Fig. 2. P𝐿 is then added to the original LM product (i.e., P𝐻 =
𝐴 × 𝐵) to increase the accuracy of the final product. 

III. APPROXIMATE LOGARITHMIC MULTIPLIERS 

The performance and power consumption of logarithmic 

multipliers are further improved by using inexact units during 

the mantissa addition; three inexact adders, namely, lower-part-

or adder (LOA) [12], approximate mirror adder-A3 (MAA3) 

[13] and set-one adder (SOA) are used. The SOA is proposed 

with truncated BLC in this work for approximate LMs. Both 

non-iterative and iterative approximate LMs are then proposed 

based on these inexact adders.  

LOA and MAA3 are selected due to their performance when 

considering both accuracy and hardware metrics as reported in 

[7]. SOA is proposed in this work to achieve a symmetric error 

distribution. These adders have very small complexity, which 

are best suitable for implementation of low power approximate 

logarithmic multipliers. 

A. Non-Iterative Approximate Logarithmic Multipliers 

1) ALM Using LOA (ALM-LOA) 

ALM-LOA uses the lower-part-or adder (LOA) [12] in the 

mantissa adder. An n-bit LOA consists of two parts, i.e., an m-

bit inexact adder and an (n-m)-bit exact adder (EA) (Fig. 3). The 

(n-m)-bit adder is used for the (n-m) most significant bits of the 

sum, while the m-bit adder consists of OR gates to compute the 

addition of the least significant m bits (i.e., the lower m-bit 

adder is an array of m 2-input OR gates). The logic expressions 

for the lower m-bit adder are as follows: 

𝑆𝑢𝑚[𝑚 − 1: 0] = 𝑎[𝑚 − 1: 0] + 𝑏[𝑚 − 1: 0]     

 (13) 

𝐶𝑖𝑛 = 𝑎[𝑚 − 1]𝑏[𝑚 − 1]                                  (14) 

As the inexact adder only uses an OR-gate, its complexity 

and critical path are reduced significantly, leading to 

significantly lower power consumption. This is achieved at the 

cost of a lower accuracy. The ER, MED and WCE are as 

follows: 

𝐸𝑅 = 1 − (
3

4
)
𝑚

                 (15) 

𝑀𝐸𝐷 = 3 × 2𝑚−4 −
1

8
               (16) 

𝑊𝐶𝐸 = 2𝑚−1                  (17) 

The LOD and BLC are very important computational steps 

to guarantee the correctness of the converted logarithmic 

operands. Therefore, accurate LOD and BLC designs are used 

in ALM-LOA to avoid large errors. The error characteristics of 

the approximate LMs are further studied in the next section. 

…

a[0] b[0] a[m-1]b[m-1]a[m-1] b[m-1]… a[m]b[m] … a[n-1] b[n-1]

s[n-1:m]s[m-1:0] Cin Cout

E A

 

Fig. 3. LOA with m inexact bits (modified from [37]). 

2) ALM Using MAA3 (ALM-MAA3) 

ALM-MAA3 uses the approximate mirror adder (MAA3) 

[13] in the mantissa adder. An n-bit MAA3 also consists of two 

parts, i.e., an m-bit inexact adder and an (n-m)-bit exact adder 

(Fig. 4). The (n-m)-bit adder is used for the (n-m) most 

significant bits of the sum; while the sum of the m-bit adder is 

actually one of its input. The logic expressions for the lower m-

bit adder are as follows: 

𝑆𝑢𝑚[𝑚 − 1: 0] = 𝑏[𝑚 − 1: 0]           

 (18) 

𝐶𝑖𝑛 = 𝑎[𝑚 − 1]                                   (19) 

For the same reason as mentioned above, accurate LOD and 

BLC designs are used in ALM-MAA3. Its complexity and 

critical path are reduced significantly and smaller than ALM-

LOA. This also leads to lower power consumption. The ER, 

MED and WCE of LM-MAA3 are as follows: 

𝐸𝑅 = 1 − (
1

2
)
𝑚

                 (20) 

𝑀𝐸𝐷 = 2𝑚−2                  (21) 

𝑊𝐶𝐸 = 2𝑚−1                  (22) 
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…

b[0] b[m-1] a[m-1]… a[m] b[m] … a[n-1] b[n-1]

s[n-1:m]s[m-1:0] Cin Cout

E A

 
Fig. 4. MAA3 with m inexact bits (modified from [37]). 

3) ALM Using SOA (ALM-SOA) 

ALM-SOA uses both the set-one adder as mantissa adder and 

a truncated BLC (TBLC). An n-bit SOA consists of two parts, 

i.e., an m-bit inexact adder and an (n-m)-bit exact adder (Fig. 5). 

The sum of the m-bit adder is set to logic one. The logic 

expressions for the lower m-bit adder are as follows: 

𝑆𝑢𝑚[𝑚 − 1: 0] = 1               

 (23) 

𝐶𝑖𝑛 = 𝑎[𝑚 − 1]𝑏[𝑚 − 1]                                  (24) 

The SOA is first proposed for the approximate LM in this 

paper. As the product from LM is always smaller than its exact 

counterpart, SOA is employed to compensate the negative 

errors. The ER, MED and WCE of LM-SOA are as follows: 

𝐸𝑅 = 1 − (
1

2
)
𝑚

                 (25) 

𝑀𝐸𝐷 =
2𝑚

3
−

1

3×2𝑚
                (26) 

WCE = 2𝑚−1                  (27) 

As the lower significant sum bits of SOA are set to one 

already, it is not necessary to perform an exact binary-logarithm 

conversion; therefore, TBLC is used in the ALM-SOA to 

further reduce its complexity. The number of truncated bits is 

the same as the number of inexact bits in SOA, i.e., m. However, 

for LOA and MAA3 based ALMs, as the lower significant bits 

are still processed with approximate adders, a truncated BLC 

cannot be used. 

…

1b’1 … a[m] b[m] … a[n-1] b[n-1]

s[n-1:m]s[m-1:0] Cin Cout

E A

a[m-1]b[m-1]1b’1

 
 Fig. 5. SOA with m inexact bits (modified from [37]). 

An example of a 16-bit ALM using SOA is given in Fig. 6,  

in which the operation is given by 12,237×1,597≈17,825,280 

(=19,542,489). The number of inexact bits of this multiplier are 

11 out of the 32 bits of a conventional multiplier, i.e., M=11. As 

shown in Fig. 6, the location of the leading one is found and 

then it is considered as the integer part of the logarithmic 

number, so the remaining part of the original binary number is 

regarded as the fractional part. In ALM-SOA, the fractional part 

is truncated and the sum is set to one directly so ultimately 

reducing the power consumption. 

 
Fig. 6. A 16-bit example of ALM-SOA (M=11) with A=12,237 and B=1,597. 
AP: approximate product. EP: exact product. 

B. Iterative Approximate LMs (IALMs) 

As shown in the last section, the accuracy of ALM is affected 

by applying different number of inexact bits in the mantissa 

adder to achieve an even more efficient design compared with 

conventional LMs. However, the error of ALMs in general, is 

large. In this section, three iterative ALMs (IALMs), namely, 

IALM-S (IALM using SOA and Exact Adder3), IALM-SL 

(IALM using SOA and LOA) and IALM-SM (IALM using 

SOA and MAA3), are proposed to improve the accuracy of 

ALM. The proposed design of an iterative logarithmic 

multiplier is shown in Fig. 7, where Adder1, Adder2 and 

Adder3 can be designed approximately. For all IALMs, the 

numbers of inexact bits of Adder1, Adder2 and Adder3 are 

denoted as M1, M2 and M3, respectively. As Adder2 is used for 

the correction parts, M2 can be generally larger than M1 as the 

corresponding bits of the original product are already 

approximate. The relationship between these three Ms is further 

studied in the next section. In Fig. 7, the Estimator is an 

approximate unit that is used to record the carry-in bit from 

Adder1 and to choose the correct correction part. If cin=0, 𝑥1 

and 𝑥2 can be used. If cin=1, the one’s complement of 𝑥1 and 

𝑥2  are used instead. The inexact parts include BLC, Adder1, 

Adder2, Adder3 and Estimator, which are highlighted as shaded 

blocks (units) in Fig. 7. 

Fig. 7. The proposed 16-bit IALM [37]. 

1) IALM Using SOA and Exact Adder3 (IALM-S) 

IALM-SL is shown in Fig. 7. As SOA has the least 

complexity compared with the other two inexact adders, both 

exact Adder1 and Adder2 are replaced with SOA with M1 and 

M2, respectively. TBLCs are used for both binary to logarithm 

conversions before Adder1 and Adder2. The numbers of the 

truncated bits of TBLCs are also M1 and M2, respectively. As 

the error is sensitive to the operation of Adder3, an exact 

Adder3 is used in IALM-S (M3=0 in this case). 
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2) IALM Using SOA and LOA (IALM-SL) 

IALM-SL is similar to IALM-S, SOAs and TBLCs are used 

for Adder1 and Adder2. The numbers of truncated bits of 

TBLCs are the same as the number of inexact bits of SOA. The 

difference is in Adder3; in this case, it uses LOA with different 

M3; so as Adder3 is sensitive to errors, SOA is not utilized. 

3) IALM Using SOA and MAA3 (IALM-SM) 

In IALM-SM, Adder1 and Adder2 are the same as IALM-SL, 

where they are replaced with SOAs and TBLCs. TBLCs are 

used for the binary to logarithm conversion. However, Adder3 

uses a MAA3 instead of LOA. SOA is also not utilized in 

Adder3 due to its low accuracy. The accuracy and power 

consumption of both IALM-SL and IALM-SM are mostly 

dependent on M1, M2 and M3. The tradeoff between error and 

the power-delay product is further studied in the next section. 

IV. EVALUATION AND ANALYSIS 

A. Error Analysis 

For approximate designs, several metrics have been proposed 

to measure the error of approximate adders and multipliers 

including the mean error distance (MED), the relative error 

distance (RED), the normalization of MED (NMED) [5] and the 

worst case error (WCE) [6]. NMED and RED are defined as 

follows. 

 The NMED is defined as the normalized MED by the 

maximum output of the accurate design.  

 RED is defined as the ED over the absolute accurate result. 
TABLE I  

ERROR CHARACTERISTICS OF 8-BIT NON-ITERATIVE ALMS WITH DIFFERENT 

MS USING BOTH EXHAUSTIVE AND MONTE CARLO SIMULATION 

Design M 

Exhaustive Simulation Monte Carlo Simulation 

NMED 

(10-2) 

MRED 

(10-2) 

PRED 

(%) 

ER 

(%) 

WCE 

 

NMED 

(10-2) 

MRED 

(10-2) 

PRED 

(%) 

ER 

(%) 

WCE 

 

LM 0 0.93 3.76 36.59 93.09 4096 0.93 3.77 36.47 92.23 4096 

ALM-

LOA 

1 0.91 3.73 37.00 93.09 4096 0.91 3.74 36.25 93.35 4020 

2 0.90 3.68 37.94 93.09 4225 0.90 3.67 37.27 92.55 4029 

3 0.92 3.68 38.16 93.09 4605 0.90 3.63 38.28 93.03 4410 

4 1.01 3.91 32.23 93.09 5369 1.01 3.93 32.35 92.95 5241 

5 1.32 4.94 24.40 93.09 6897 1.34 5.00 23.78 93.38 6897 

6 2.16 7.88 16.26 93.09 9953 2.18 7.94 16.35 93.03 9762 

7 4.11 14.42 13.47 93.09 16320 4.09 14.47 13.27 92.81 16198 

ALM-

MAA3 

1 0.88 3.65 38.21 93.87 4096 0.87 3.62 38.52 93.80 3968 

2 0.87 3.58 39.64 94.65 4288 0.88 3.60 39.57 95.10 4232 

3 0.90 3.61 39.24 95.24 4672 0.91 3.62 39.17 95.43 4584 

4 1.01 3.96 31.96 95.63 5440 1.02 3.99 32.17 95.87 5223 

5 1.33 5.21 23.33 95.88 6976 1.32 5.21 23.20 95.93 6706 

6 2.22 8.77 13.78 96.02 10048 2.22 8.79 13.88 96.11 10015 

7 4.15 16.79 8.17 96.11 16320 4.09 16.50 8.42 96.32 15939 

ALM-

SOA 

1 0.87 3.50 40.54 96.61 4032 0.85 3.50 40.77 96.27 4026 

2 0.81 3.23 45.54 97.43 4223 0.81 3.20 46.33 97.10 4223 

3 0.78 3.06 44.42 98.06 4605 0.79 3.09 44.28 98.27 4573 

4 0.85 3.44 35.62 98.42 5369 0.86 3.42 35.87 98.48 5369 

5 1.31 5.53 22.43 98.80 7680 1.33 5.44 22.68 98.78 7680 

6 2.61 11.16 11.89 98.96 15104 2.61 11.31 11.68 98.82 14880 

7 5.46 23.28 6.35 99.01 28416 5.49 23.44 6.27 99.22 28032 

Mean RED (MRED) and PRED are usually used to evaluate 

the error distribution of approximate multipliers. PRED is the 

probability of obtaining a RED smaller than a specific 

percentage value, which is 2% in this work. 

The error results of 8-bit ALMs are obtained by exhaustive 

simulation. However, an exhaustive simulation for 16-bit 

multipliers is infeasible and a Monte Carlo simulation with an 

uniform input distribution is usually utilized. As for the 

effectiveness of the Monte Carlo method, 8-bit ALMs using 

6,000 input vectors (out of 65,536 all possible inputs) are 

considered for comparison with exhaustive simulation. As 

shown in Table I, the relative errors between exhaustive 

simulation and Monte Carlo simulation are less than 5%. The 

NMEDs have been obtained by simulation using both of these 

two methods and are shown in Figs. 8-10. Monte Carlo 

simulation generates results that are very close to exhaustive 

simulation; therefore, the error analysis of 16-bit multipliers is 

pursued by using Monte Carlo simulation (400,000,000 

simulation runs out of 4,294,967,296). 

 
Fig. 8. NMED of 8-bit ALM-LOAs from both exhaustive and Monte Carlo 

simulations.  

 
Fig. 9. NMED of 8-bit ALM-MAA3s from both exhaustive and Monte Carlo 

simulations. 

 
Fig. 10. NMED of 8-bit ALM-SOAs from both exhaustive and Monte Carlo 

simulations. 

1) Error Analysis of ALMs 

The error metrics of the proposed non-iterative approximate 

logarithmic multipliers are provided in Table II for 8-bit and 

16-bit designs. Table II shows that with an increase of the 

number of inexact bits (i.e., M) in 8-bit designs, the accuracy of 

all three ALMs generally decreases (i.e., NMED, MRED, ER 

and WCE increase, while PRED decreases). However, when M<4 
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for 8-bit designs, the errors of all three designs are smaller than 

the LM using exact units, as also found in Fig. 11 for the NMED 

of 8-bit ALMs with M from 1 to 5.  

For 16-bit designs, when M<9, all three ALMs have smaller 

errors compared with an exact LM. A 16-bit ALM-SOA has a 

smaller error compared with an exact LM when M<12; and it 

has the smallest NMED and MRED when M=11. ALM-SOA 

with M=11 reduces the NMED and MRED by up to 12% and 

13%, respectively, compared with a LM made of exact units. 

As shown in Fig. 12 for 16-bit designs with M in a range from 

1 to 12, both ALM-LOA and ALM-MAA3 have similar error 

characteristics. They have a larger error when M>9 compared 

with a conventional LM. ALM-SOA has significantly smaller 

errors compared with all other LMs, especially when 6<M<12. 

This result clearly shows that ALMs using approximate parts 

can be even more accurate than a LM using exact parts. 

The error probability density distributions (PDD) of LM, 

ALM-LOA, ALM-MAA3 and ALM-SOA are shown in Figs. 

13-16. ALM-LOA and ALM-MAA3 are studied with M=2 and 

ALM-SOA is studied with M=3, as these designs have small 

errors (Table II). A conventional LM has a unidirectional error 

PDD, i.e., all errors are negative. The errors produced by ALMs 

can be either negative or positive; however, their ALM-LOA 

and ALM-MAA3 have significantly more negative errors than 

positive errors. By using SOA, more positive errors are 

introduced in ALM-SOA; the largest positive error distance 

(ED) of ALM-LOA and ALM-MAA3 with M=2 is 510, while 

ALM-SOA with M=3 has a largest positive ED of 1776. This is 

the reason by which the ALM-LOA and ALM-MAA3 

introduce a significantly smaller (positive) ED than ALM-SOA. 

 
Fig. 11. NMED of the proposed 8-bit approximate LMs. 

 
Fig. 12. NMED of the proposed 16-bit approximate LMs. 

 

Fig. 13. Error PDD of 8-bit LM. 

 

Fig. 14. Error PDD of 8-bit ALM-LOA (M=2). 

TABLE II  

ERROR CHARACTERISTICS OF 8-BIT AND 16-BIT NON-ITERATIVE 

APPROXIMATE LOGARITHMIC MULTIPLIERS WITH DIFFERENT NUMBER 

OF INEXACT BITS (M) 

LMs M 

8-bit LMs 16-bit LMs 

NMED 

(10
-2

) 

MRED 

(10
-2

) 

PRED 

(%) 

ER 

(%) 

WCE 

 

NMED 

(10
-3

) 

MRED 

(10
-2

) 

PRED 

 (%) 

ER 

(%) 

WCE 

(10
6
) 

LM 0 0.93 3.76 36.59 93.09 4096 9.256 3.85 35.17 99.77 268.44 

ALM- 

LOA 

2 0.90 3.68 37.94 93.09 4225 9.256 3.85 35.17 99.77 268.47 

4 1.01 3.91 32.23 93.09 5369 9.253 3.84 35.19 99.77 268.71 

6 2.16 7.88 16.26 93.09 9953 9.250 3.84 35.22 99.77 269.86 

7 4.11 14.42 13.47 93.09 16320 9.250 3.84 35.24 99.77 271.38 

8 - - - - - 9.255 3.84 35.25 99.77 274.50 

9 - - - - - 9.277 3.85 35.21 99.77 280.89 

10 - - - - - 9.357 3.88 35.02 99.77 293.47 

11 - - - - - 9.640 3.98 33.65 99.77 318.63 

13 - - - - - 13.634 5.43 18.84 99.77 469.45 

15 - - - - - 41.636 15.10 8.15 99.77 1073.73 

ALM- 

MAA3 

2 0.87 3.58 39.64 94.65 4288 9.253 3.85 35.18 99.80 268.45 

4 1.01 3.96 31.96 95.63 5440 9.251 3.84 35.20 99.83 268.74 

6 2.22 8.77 13.78 96.02 10048 9.248 3.84 35.24 99.85 269.93 

7 4.15 16.79 8.17 96.11 16320 9.247 3.84 35.26 99.86 271.45 

8 - - - - - 9.253 3.84 35.26 99.86 274.60 

9 - - - - - 9.276 3.85 35.21 99.86 280.89 

10 - - - - - 9.360 3.88 34.89 99.87 293.45 

11 - - - - - 9.650 3.99 33.20 99.87 318.64 

13 - - - - - 13.704 5.56 20.89 99.87 469.63 

15 - - - - - 41.652 16.98 6.04 99.87 1073.77 

ALM- 

SOA 

2 0.81 3.23 45.54 97.43 4223 9.248 3.84 35.23 99.95 268.47 

3 0.78 3.06 44.42 98.06 4605 9.240 3.84 35.28 99.96 268.56 

4 0.85 3.43 35.62 98.42 5369 9.226 3.83 35.36 99.97 268.74 

6 2.61 11.16 11.89 98.96 15104 9.160 3.80 35.77 99.97 269.86 

7 5.46 23.28 6.34 99.01 28416 9.083 3.77 36.24 99.97 271.47 

8 - - - - - 8.942 3.71 37.13 99.97 274.58 

9 - - - - - 8.701 3.61 38.76 99.97 280.76 

10 - - - - - 8.347 3.46 41.54 99.97 293.44 

11 - - - - - 8.055 3.33 41.92 99.97 318.65 

13 - - - - - 13.186 5.36 22.06 99.97 520.03 

15 - - - - - 54.596 22.43 5.57 99.97 1878.98 
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Fig. 15. Error PDD of 8-bit ALM-MAA3 (M=2). 

 
Fig. 16. Error PDD of 8-bit ALM-SOA (M=3). 

The bidirectional error PDD of ALM-SOA is nearly 

symmetric for both negative and positive errors; the total error 

can be now reduced because negative and positive errors cancel 

each other during computation. Therefore, ALM-SOA shows 

lower values in error when M is between 6 and 12 compared 

with all other LMs. The highest probability occurs when ED=0, 

so correct results still have a very high probability for both a 

conventional exact LM and approximate LMs. 

2) Error Analysis of IALMs 

The error metrics of the proposed iterative approximate 

logarithmic multipliers are reported in Table III for 16-bit 

designs. To evaluate the errors of IALM-S, an exact Adder2 

(M2=0) is considered first. As for IALM-S (M2=0) in Table III, 

the accuracy is improved when M1<8; moreover, when M1=5 

and 6 it has the smallest error. Therefore, for IALM-S (M1=5) 

and IALM-S (M1=6), M2 is changed with these two fixed M1 

values. When M1=5 and M2=11, IALM-S has the smallest 

NMED; the error of IALM with an exact Adder2 is significantly 

larger than IALM with an inexact Adder2 using SOA. This is 

consistent with the error analysis as discussed previously that 

IALMs using approximate parts have more accurate results than 

ILMs using all exact units. 

The error metrics of IALM-SL and IALM-SM are assessed 

at M1=5 and M2=11 by varying M3 (Table IV). Using the 

iterative technique, the accuracy has been significantly 

increased compared with non-iterative LMs; their PRED are all 

larger than 98% when M3<24, while the PRED of ALMs are all 

less than 50%. When M3 <18, the NMEDs of both IALM-SL 

and IALM-SM are similar to IALM-S with M1=5 and M2=11. 

The smallest NMED is achieved around M3=16. The IALM-SL 

with M1=5, M2=11 and M3=16 reduces the NMED by up to 18% 

compared with an ILM made of exact units. Therefore, IALM-

SL and IALM-SM with M3=15, 16 and 17 are studied by 

additional simulation in Section IV-B. 

TABLE IV 
ERROR CHARACTERISTICS OF 16-BIT IALM-SL AND IALM-SM WITH M1=5 

AND M2=11 

The relationships between M1, M2 and M3 are shown in 

Figs. 17-18; M1, M2 and M3 have different error effects on the 

IALMs. As M2 increases from 0 to 11, the NMED decreases and 

the most precise results are obtained when M1=5, M2=11 and 

M3=16.  

IALM-SL IALM-SM 

M3 
NMED 

(10
-4

) 

MRED 

(10
-4

) 

PRED 

(%) 

ER 

(%) 

WCE 

(10
6
) 

M3 
NMED 

(10
-4

) 

MRED 

(10
-4

) 

PRED 

(%) 

ER 

(%) 

WCE 

(10
6
) 

0 2.881 12.08 99.98 99.997 20.83 0 2.881 12.08 99.98 99.997 20.83 

4 2.882 12.08 99.98 99.996 20.98 4 2.881 12.07 99.98 99.994 20.83 

8 2.882 12.08 99.98 99.996 20.96 8 2.881 12.08 99.98 99.992 20.83 

12 2.880 12.11 99.98 99.996 20.98 12 2.881 12.12 99.98 99.992 20.83 

15 2.871 12.59 99.92 99.997 20.80 15 2.881 12.59 99.92 99.992 20.83 

16 2.869 13.16 99.85 99.997 20.95 16 2.881 13.12 99.86 99.992 20.98 

17 2.873 14.24 99.72 99.997 20.80 17 2.884 14.14 99.74 99.993 20.9 

18 2.885 16.17 99.48 99.997 20.90 18 2.895 16.00 99.51 99.993 20.98 

19 2.927 19.54 99.05 99.997 20.89 19 2.934 19.31 99.10 99.994 20.95 

20 3.062 25.27 98.29 99.997 20.89 20 3.058 25.08 98.35 99.995 20.95 

24 12.154 102.96 85.75 99.998 28.96 24 10.165 110.80 84.66 99.997 29.37 

TABLE III 

ERROR CHARACTERISTICS OF 16-BIT IALM-S 

IALM-S 

(M2=0) 

M1 
NMED 

(10-4) 

MRED 

(10-4) 

PRED 

(%) 

ER 

(%) 

WCE 

(106) 

0 3.50 14.93 99.98 99.158 16.84 

3 3.36 14.27 99.98 99.980 16.99 

5 3.21 13.50 99.98 99.992 17.72 

6 3.21 13.38 99.98 99.993 18.78 

7 3.50 14.47 99.98 99.996 20.82 

8 4.71 19.28 99.99 99.997 24.93 

9 8.22 33.38 99.99 99.998 33.49 

12 77.85 289.13 44.96 99.999 4261.28 

IALM-S 

(M1=5) 

M2 
NMED 

(10-4) 

MRED 

(10-4) 

PRED 

(%) 

ER 

(%) 

WCE 

(106) 

0 3.21 13.50 99.98 99.992 17.72 

3 3.20 13.46 99.98 99.996 17.69 

6 3.17 13.31 99.98 99.996 17.69 

8 3.11 13.01 99.98 99.996 17.61 

9 3.04 12.70 99.98 99.996 18.12 

10 2.94 12.29 99.98 99.997 17.69 

11 2.88 12.08 99.98 99.997 17.97 

12 3.21 13.51 99.98 99.997 24.43 

IALM-S 

(M1=6) 

M2 
NMED 

(10-4) 

MRED 

(10-4) 

PRED 

(%) 

ER 

(%) 

WCE 

(106) 

0 3.21 13.38 99.98 99.993 18.78 

3 3.20 13.35 99.98 99.997 18.77 

6 3.17 13.23 99.98 99.997 18.60 

8 3.12 13.00 99.98 99.998 18.53 

9 3.06 12.74 99.98 99.998 18.60 

10 2.98 12.43 99.98 99.998 18.53 

11 2.96 12.39 99.98 99.998 18.63 

12 3.35 14.09 99.98 99.998 24.63 
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M1 plays the most important role, while M2 is second to M1 

and M3 has the smallest impact on the error results.M2 in Adder2 

is used to compensate the errors, so it can be larger than M1. In 

Adder3, the lower bits are already approximate; so it is not 

necessary to perform an accurate calculation. As Adder3 is a 

32-bit adder, the number of inexact bits can be significantly 

larger than M1 and M2. Generally, the IALMs can be designed 

with M1<M2<M3 to achieve more accurate results. 

 
Fig. 17. NMED of 16-bit IALM-SL. M3 is selected for the most accurate result 

for each pair of M1 and M2. 

 
Fig. 18. NMED of 16-bit IALM-SM. M3 is selected for the most accurate result 

for each pair of M1 and M2. 

B. Hardware Evaluation 

The proposed ALMs including IALMs are described at gate-

level in Verilog HDL and verified by Synopsys VCS. Both 

designs are then synthesized by the Synopsys Design Compiler 

using the NanGate 45 nm Open Cell Library. The average 

power consumption is found using the Synopsys Power 

Compiler with a back annotated switching activity file 

generated from the random input vectors. 

1) Results for ALMs 

The critical path delay, area, power consumption and PDP 

are reported in Table V for 8-bit and 16-bit ALMs with different 

values of M. Hardware evaluation of both the exact multiplier 

(EM) from DesignWare and the exact Booth multiplier (EBM) 

is also provided; note that EBM performs signed multiplication, 

while an LM (approximate or exact) computes unsigned 

multiplication. This signed multiplication scheme is included 

for completeness in comparison. With an increase of M, the 

power consumption and PDP of all three designs for both 8-bit 

and 16-bit decrease, i.e., the PDPs of approximate designs are 

significantly lower than a conventional LM and the exact 

multipliers. The critical path delay is also reduced, so leading 

to an overall better performance. The PDPs of ALM-SOA are 

significantly better than for ALM-LOA and ALM-MAA3. As 

the NMED of ALM-SOA is the smallest when M=11, this 

specific design shows the best tradeoff between error and power 

consumption for non-iterative ALMs. 

Note that the PDPs of 16-bit ALM-SOA (M>10) are less than 

half of the PDP of the conventional LM. Therefore, this also 

TABLE V  

HARDWARE RESULTS OF 8-BIT AND 16-BIT NON-ITERATIVE ALMS WITH 

DIFFERENT NUMBER OF INEXACT BITS (MS) 

Designs M 

8-bit multipliers 16-bit multipliers 

Power 

(μW) 

Delay 

(ns) 

Area 

(μm2) 

PDP 

(fJ) 

Power 

(μW) 

Delay 

(ns) 

Area 

(μm2) 

PDP 

(fJ) 

EM 0 115.40 0.80 350.85 92.30 641.28 1.51 1376.82 968.33 

EBM [38] 0 188.00 0.70 788.4 131.60 634.00 1.02 2645.00 646.68 

LM 0 70.05 0.68 331.44 59.06 168.12 1.00 781.24 168.12 

ALM- 

LOA 

2 68.55 0.68 316.81 46.61 183.32 0.95 848.00 174.15 

4 62.75 0.65 315.48 40.79 162.60 0.98 772.20 159.35 

6 56.67 0.60 286.75 34.00 153.18 1.01 720.59 154.71 

7 49.63 0.62 269.72 30.77 148.08 0.98 721.66 145.12 

8 - - - - 147.55 0.96 701.71 141.65 

9 - - - - 148.23 0.91 751.45 134.89 

10 - - - - 149.32 0.88 757.03 131.40 

11 - - - - 139.74 0.90 733.63 125.77 

13 - - - - 139.13 0.85 738.15 118.26 

15 - - - - 138.51 0.79 733.89 109.42 

ALM- 

MAA3 

2 67.79 0.67 321.59 45.42 164.08 1.02 759.43 167.36 

4 63.24 0.66 319.20 41.74 175.12 0.99 840.83 173.37 

6 50.09 0.59 258.55 29.55 161.89 0.95 786.56 153.80 

7 42.00 0.55 218.12 23.10 158.75 0.93 779.38 147.64 

8 - - - - 157.51 0.92 780.98 144.91 

9 - - - - 148.68 0.96 746.40 142.73 

10 - - - - 149.63 0.92 747.99 137.66 

11 - - - - 133.00 0.90 680.16 119.70 

13 - - - - 137.36 0.88 720.59 120.88 

15 - - - - 107.36 0.76 557.54 81.59 

ALM- 

SOA 

2 58.65 0.71 287.28 41.64 172.51 0.96 826.20 165.61 

4 46.39 0.60 239.13 27.83 145.86 0.97 703.57 141.48 

6 31.75 0.51 185.40 16.19 134.97 0.95 660.21 128.22 

7 16.09 0.39 108.79 6.28 122.76 0.91 636.80 111.71 

8 - - - - 114.54 0.90 601.96 103.09 

9 - - - - 103.64 0.90 558.33 93.28 

10 - - - - 97.15 0.90 535.46 87.44 

11 - - - - 89.03 0.81 515.24 72.11 

13 - - - - 69.44 0.75 427.46 52.08 

15 - - - - 32.14 0.52 231.42 16.71 

 
TABLE VI  

HARDWARE RESULTS OF 16-BIT IALMS. 

Designs M1 M2 M3 
Power 

(𝛍W) 

Delay 

(ns) 

Area 

(𝛍m2) 

PDP 

(fJ) 

ILM 0 0 0 469.31 2.04 2089.70 957.39 

IALM-

SL 

5 11 15 333.01 1.82 1538.28 606.08 

5 11 16 328.61 1.83 1529.23 601.36 

5 11 17 332.99 1.85 1543.86 616.03 

IALM-

SM 

5 11 15 345.79 1.83 1602.65 632.80 

5 11 16 334.65 1.84 1534.82 615.76 

5 11 17 329.78 1.86 1525.24 613.39 
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confirms that the mantissa adder plays a very important role in 

the overall complexity of the logarithmic multiplier. 

2) Results for IALMs 

According to the error analysis of Section IV-A, the IALMs 

with M1=5, M2=11, and 14<M3<18 show good error 

characteristics. These IALM designs are evaluated by 

simulation (Table VI). 

The power, delay and area of both IALM-SL and IALM-SM 

are smaller than conventional iterative LMs made of exact units. 

When considering the error characteristics, both the NMEDs 

and PDPs of approximate iterative LMs with a truncated BLC, 

inexact Adder1, Adder2 and Adder3 are better than 

conventional iterative LMs with exact units. So, approximate 

design techniques can improve both performance and accuracy 

of iterative logarithmic multipliers. The design of IALM-SL 

with M3=16 is the most efficient design in terms of PDP; it 

reduces the PDP up to 37% compared with an ILM made of 

exact units. These approximate logarithmic multipliers are 

further compared with approximate Booth multipliers in the 

next subsection. 

C. Comparison 

Both 8-bit and 16-bit approximate multipliers are compared 

in this section. 

For the 8-bit designs, ALM-SOA with M=3 achieves a good 

tradeoff between power consumption and accuracy; so it is 

selected for comparison with previous approximate designs 

including R4ABM04 [25], R4ABM11 [28], R4ABM12 [29], 

R4ABM1 and R4ABM2 (both with an approximate factor of 8) 

[24], R8ABM1, R8ABM2-C5 [23],  DRUM (K=6) [20], 8-bit 

approximate multipliers designed using artificial intelligence 

methods (mul8x8_444，mul8x8_188 and mul8x8_198) [6]. 

For 16-bit designs, the 16-bit ALM-SOA with M=10 and 11 

show a good tradeoff between power consumption and 

accuracy, so they are selected along with 16-bit IALM-SLs with 

M1=5, M2=11, and 14<M3<17 for comparison with previous 

approximate multiplier designs. R4ABM1 and R4ABM2 (both 

with an approximate factor of 14) [24], R8ABM2-C15 [23],  

DRUM (k=6) [20], mul16x16_12, mul16x16_24 and 

mul16x16_43 [35] designed from artificial intelligence 

methods are selected and compared.  

R4ABM04, R4ABM11, and R4ABM12 are fixed-width 

truncated Booth multipliers with simple error compensation. 

R4ABM1 and R4ABM2 are two latest radix-4 approximate 

Booth multipliers with an accuracy that can be adjusted by 

approximate factor, i.e., p. R8ABM1 and R8ABM2 are radix-8 

approximate Booth multipliers. DRUM is a multiplier based on 

an approximate operand, namely, the dynamic range unbiased 

multiplier. DRUM (K=6) is selected, in which 6 bits following 

the first 1 (to include the first one) are utilized in the 

multiplication;  mul8x8_444，mul8x8_188 and mul8x8_198 for 

8-bit comparison, and mul16x16_12, mul16x16_24 and 

mul16x16_43 for 16-bit comparison are chosen for their similar 

NMED as other approximate multipliers for comparison 

purposes. Both the exact multiplier (EM) from DesignWare and 

the exact Booth multiplier (EBM) are included for comparison. 

 In these cases, all designs are described in Verilog and 

synthesized by the Synopsys Design Compiler using the 

NanGate 45 nm Open Cell Library. The power consumption, 

delay, area, PDP, NMED, PRED and WCE of 8-bit and 16-bit 

multipliers are reported in Table VII and Table VIII 

respectively. Fig. 19 and Fig. 20 show the comparison with both 

NMED and PDP. Both unsigned and signed multipliers have 

the same dynamic range and the signed design can be 

converted rather easily to its unsigned version [39]. 

Therefore, the signed multiplication schemes are also included 

for completeness in comparison.  

 
Fig. 19. The NMEDs and PDPs of 8-bit approximate multipliers. 

For 8-bit multipliers, all approximate designs improve PDP 

significantly compared with exact multipliers. As shown in 

Table VII and Fig. 19, the ALM-SOA with M=3 has the 

smallest PDP among multipliers except mul8x8_198 [6]. 

However, mul8x8_198 is significantly more inaccurate. The 

truncated Booth multipliers, i.e., R4ABM04, R4ABM11, and 

R4ABM12, show a good tradeoff between PDP and NMED. 

The best design is R8ABM2-C5; in general, approximate Booth 

TABLE VII  
COMPARATIVE PERFORMANCES OF 8-BIT APPROXIMATE MULTIPLIERS. 

Unsigned 

Designs 

Power 

(𝛍W) 

Delay 

(ns) 

Area 

(𝛍m2) 

PDP 

(fJ) 

NMED 

(10-3) 

PRED 

(%) 

WCE 

 

Exact  Multiplier 115.4 0.80 350.85 92.30 0 100 0 

LM (M=0) 70.1 0.68 331.44 59.06 9.25 36.59 4096 

ALM-SOA 

(M=3) 
45.0 0.66 224.78 29.70 7.77 44.42 4605 

DRUM(K=6) [20] 108.6 0.98 571.10 106.43 3.20 84.56 2000 

mul8x8_444 [6] 62.0 1.24 319.20 76.88 1.30 79.35 541 

mul8x8_188 [6] 44.8 1.25 245.25 56.00 3.52 57.24 1304 

mul8x8_198 [6] 40.0 0.53 217.32 21.2 8.78 30.68 2882 

Signed  

Designs 

Power 

(𝛍W) 

Delay 

(ns) 

Area 

(𝛍m2) 

PDP 

(fJ) 

NMED 

(10-3) 

PRED 

(%) 
WCE 

Exact Booth 

Multiplier [38] 
188.0 0.70 788.40 131.60 0 100 0 

R4ABM04 [25] 125.4 0.66 612.07 82.76 1.54 59.71 192 

R4ABM11 [28] 118.6 0.64 603.02 75.90 1.76 57.23 256 

R4ABM12 [29] 124.1 0.65 608.34 80.67 1.98 53.68 320 

R8ABM1 [23] 106.0 0.63 462.84 66.78 0.30 92.74 144 

R8ABM2-C5 [23] 97.3 0.59 408.84 57.41 1.04 67.82 82 

R4ABM1 

 (p=8) [24] 
138.0 0.58 581.70 80.04 4.27 40.30 1003 

R4ABM2 

 (p=8) [24] 
127.4 0.58 538.60 73.89 4.09 37.16 1003 
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multipliers are more accurate than ALMs. DRUM is not 

attractive for 8-bit designs due to the cost of converting the 

operands.  

As shown in Table VIII and Fig. 20, for 16-bit designs, the 

non-iterative ALMs in general have significantly lower power 

consumption than all other approximate multipliers. ALM-

SOA with M=11 has the smallest PDP and is also the fastest 

approximate multiplier. DRUM is more accurate than ALM-

SOA; however, its PDP is larger. mul16x16_43 is close to 

ALM-SOA while IALMs significantly improve the accuracy 

compared with ALMs, DRUM and mul16x16_43. Although the 

PDPs of IALMs are similar to the approximate Booth 

multipliers, the NMEDs of IALMs are much larger. However, 

IALMs have the best PRED, which are all larger than 99.85%. 

Generally, IALMs have moderate NMED and PDP. 

Approximate Booth multipliers have in general the smallest 

NMED and good PRED. 16-bit R4ABM2 has the smallest 

NMED of 6× 10−6  among all compared 16-bit approximate 

multipliers. Generally, the NMED of non-iterative ALMs is one 

order larger than iterative ALMs and two orders larger than 

approximate Booth multipliers.  

By comparing 8-bit and 16-bit designs, for applications 

allowing a large error and a small power consumption, non-

iterative approximate LMs are the best choice; for applications 

requiring more accuracy and a larger power consumption, 

approximate multipliers (based on accurate binary multipliers) 

should be used. Although IALMs show significant 

improvement in terms of accuracy over non-iterative LMs, their 

large PDPs make them less attractive compared with 

approximate Booth multipliers. 

 

Fig. 20. The NMEDs and PDPs of 16-bit approximate multipliers. 

V. CASE STUDIES 

The proposed approximate logarithmic multipliers can be 

applied to error-tolerant applications such as multimedia/signal 

processing, data mining and analysis, machine learning and 

patter recognition. In this section, two case studies into image 

processing and K-means clustering are provided to validate the 

proposed designs. 

A. Image Processing 

The 8-bit ALMs are applied to image processing to assess 

their validity; two identical images are multiplied on a pixel-by-

pixel basis to blend them into one single output image. The 

quality of the output image is described by the peak signal-to-

noise ratio (PSNR). The images processed by using the 8-bit 

ALMs are shown in Figs. 21-22; the resulting PSNRs are 

reported in Table IX. 

Fig. 21. The multiplied images using the 8-bit ALM-LOA and ALM-MAA3 

with different Ms. 

Fig. 22. The multiplied images using the 8-bit ALM-SOA with different Ms. 

The most accurate result is produced by ALM-LOA and 8-

bit ALM-MAA3 with M=2 and by ALM-SOA with M=4. This 

is consistent with the error analysis results provided in Table I. 

For smaller values of M, ALM-SOA produces results that are 

more accurate; however, for larger values of M, ALM-LOA and 

TABLE VIII  
COMPARATIVE PERFORMANCES OF 16-BIT APPROXIMATE MULTIPLIERS. 

Unsigned  

Designs 

Power 

(𝛍W) 

Delay 

(ns) 

Area 

(𝛍m2) 

PDP 

(fJ) 

NMED 

(10-4) 

PRED 

(%) 

WCE 

(106) 

EM 641.3 1.51 1377 968 0 100 0 

LM (M=0) 168.1 1.00 781 168 92.56 35.17 268.44 

ALM-SOA (M=10) 97.2 0.90 535 88 83.47 41.54 293.44 

ALM-SOA (M=11) 89.0 0.81 515 72 80.55 41.92 318.65 

ILM (0,0,0) 469.3 2.04 2090 957 3.50 99.98 16.84 

IALM-SL (5,11,15) 333.0 1.82 1538 606 2.87 99.92 20.80 

IALM-SL (5,11,16) 328.6 1.83 1529 601 2.87 99.85 20.95 

IALM-SM (5,11,15) 345.8 1.83 1603 633 2.88 99.92 20.83 

IALM-SM (5,11,16) 334.7 1.84 1535 616 2.88 99.86 20.98 

DRUM(K=6) [20] 124.7 1.19 858 148 35.29 70.89 132.71 

mul16x16_12 928.6 0.91 1641 845 0.26 99.08 0.41 

mul16x16_24 476.7 0.82 864 391 2.54 91.59 4.20 

mul16x16_43 [35] 122.3 0.62 326 76 71.25 36.30 84.31 

Signed  

Designs 

Power 

(𝛍W) 

Delay 

(ns) 

Area 

(𝛍m2) 

PDP 

(fJ) 

NMED 

(10-4) 

PRED 

(%) 

WCE 

(106) 

EBM [38] 634.0 1.02 2645 647 0 100 0 

R4ABM04 [25] 427.3 0.95 1939 406 0.53 97.72 0.23 

R4ABM11 [28] 404.4 0.94 1859 380 0.22 99.17 0.13 

R4ABM12 [29] 394.6 0.95 1808 374 0.23 99.10 0.14 

R8ABM1 [23] 376.7 1.23 1516 463 0.19 99.77 0.32 

R8ABM2-C15 [23] 217.3 1.18 912 256 0.57 98.79 0.73 

R4ABM1 

 (p=14) [24] 
516.6 0.95 2169 490 0.09 95.89 0.11 

R4ABM2 

 (p=14) [24] 
479.7 0.92 2004 441 0.06 93.44 0.11 

 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 11 

ALM-MAA3 provide better results. 

The quality of the processed image does not decrease 

significantly when M<5. From Figs. 21-22, detection of the 

differences when M<5 is hard, so showing the validity of the 

proposed designs for image processing. 

Note that the PSNR for the exact multiplier is infinite, as the 

PSNR is computed by dividing the mean-squared error (MSE). 

Generally, when the PSNR has a value larger than 30dB then it 

is considered to be acceptable for 8-bit image applications. 

B. K-means Clustering 

K-means clustering is a method for cluster analysis in data 

mining; it partitions n observations into k clusters with the 

nearest mean [40]. In the k-means clustering, the proposed 16-

bit ALMs are applied to calculate the squared deviation 

between points belonging to different clusters. The F-measure 

value [41] is used as metric to evaluate the clustering results. It 

considers both the precision and the recall of the test; so, the F-

measure score can be interpreted as a weighted average of the 

precision and recall. The best value of the F-measure score is 1 

and its worst value is 0. Each F-measure value is the average of 

50 experiments for each data set. In this work, several 

University of California Irvine (UCI) benchmark datasets [42] 

are selected to test the k-means clustering using ALMs. The F-

measure results are listed in Table X; the ALMs are chosen with 

small NMED as found in Table II (ALM-LOA/MAA3 with 

M=6, 7, 8 and ALM-SOA with M=9, 10, 11).  

For the first dataset Statlog (Heart), all LMs produce better 

results compared to exact multipliers; the proposed ALM-SOA 

provides the best results. For the second dataset Wholesales 

customers, ALM-LOA and ALM-MAA3 provide similar 

results as LM, so significantly better than results generated by 

exact multipliers. However, ALM-SOA does not provide as 

good results as other LMs. For the third dataset Balance Scale, 

ALM-SOA provides the best results than the exact multiplier 

and other LMs. For this dataset, the conventional LMs and 

ALM-LOA/ALM-MAA3 produce the worst results. For the 

fourth dataset Iris, the proposed ALMs generate more accurate 

results than conventional LM, although the results are worse 

than the exact multiplier. These results show that the proposed 

ALMs can provide better results than exact multipliers. 

However, this is also dependent on specific applications; 

different approximate LMs may be suitable for different 

applications. 

TABLE X 

F-MEASURE OF K-MEANS CLUSTERING USING 16-BIT ALMS WITH DIFFERENT 

NUMBER OF INEXACT BITS (M) 

16-bit 

Designs 
M 

Dataset 

Stat log 

(Heart) 

Wholesale 

customers 

Balance 

Scale 

Iris 

Exact Multiplier - 0.5373 0.5813 0.5418 0.8276 

LM 0 0.6407 0.7170 0.4367 0.4820 

ALM-LOA and 

ALM-MAA3 

6 0.6407 0.7170 0.4711 0.4820 

7 0.6407 0.7170 0.4803 0.4820 

8 0.6407 0.7171 0.4353 0.4820 

ALM-SOA 

9 0.6577 0.6495 0.5687 0.5375 

10 0.6479 0.5640 0.5687 0.5384 

11 0.6727 0.4955 0.5687 0.5384 

VI. CONCLUSION 

New designs of both non-iterative and iterative approximate 

logarithmic multipliers have been proposed and analyzed in this 

paper. Three types of inexact adder are used in the mantissa 

addition in the non-iterative approximate LMs, denoted as 

ALM-LOA, ALM-MAA3 and ALM-SOA. In the design of 

ALM-SOA, the truncated binary-logarithm converter (TBLC) 

has been applied with no loss of accuracy. To further improve 

the accuracy of approximate LMs, an iterative technique has 

been used; so both Adder1 and Adder2 use TBLC and SOA, 

while Adder3 uses either LOA or MAA3. All approximate LMs 

have been analyzed using different error metrics. It has been 

first found that approximate LMs, i.e., ALMs and IALMs using 

an appropriate number of inexact bits, are more accurate than 

conventional LMs and ILMs made of exact units. The proposed 

IALMs with an approximate number of inexact bits can 

improve both the NMED (up to 12%) and the PDP (up to 37%) 

over conventional designs. 

The proposed designs have also been compared with 

approximate multipliers (that are based on accurate binary 

Booth multipliers). The comparison results addressed the 

interesting concern of selecting the type of approximate designs 

by a designer. This paper has shown that based on the 

comparison results for applications allowing a large error but 

requiring a small power consumption, non-iterative 

approximate LMs are the best choice; for applications requiring 

more accuracy while allowing a larger power consumption, 

approximate multipliers based on accurate binary multipliers 

should be used. 

As the errors for the LMs and ALMs are large, compensation 

is required for many error-sensitive applications. The iterative 

approach is a first step to achieve the goal; however, the 

extensive hardware resources by the IALM make it less 

attractive. Therefore, we believe the results for the IALM can 

be useful for finding more efficient error compensation 

methods as future works. 

TABLE IX 

PSNR OF THE OUTPUT IMAGES OF 8-BIT ALMS WITH DIFFERENT 

NUMBER OF INEXACT BITS (M) 

Design M PSNR(dB) Designs M PSNR(dB) 

8-bit ALM-

LOA and 

ALM-MAA3 

0 32.6555 

8-bit ALM-

SOA 

0 32.6555 

1 33.0601 1 33.5270 

2 33.0699 2 34.1488 

3 32.9066 3 35.1394 

4 32.3358 4 35.5746 

5 30.6913 5 31.0756 

6 27.4286 6 23.6532 

7 21.3979 7 16.1922 

8 15.3423 8 7.2628 
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