Generalized Analysis of High-Order Switch-RC N-Path Mixers/Filters Using the Adjoint Network

Shanthi Pavan ${ }^{(0)}$ and Eric Klumperink

Abstract

This paper presents a systematic method to analyze N-path mixers and filters consisting of periodically switched $R C$ networks of arbitrary order. It is assumed that each capacitor periodically exchanges charge with the rest of the network during the on-phase of the switching clock, then samples its charge, and holds it perfectly until the next on-phase. This assumption allows for using the adjoint network for simplified analysis of the harmonic transfer functions that describe the signal transfer and folding. Moreover, harmonic transfer cancellations due to the N-path implementation with N equal capacitors switched by N non-overlapping clocks are systematically analyzed. The method is applied to a recently published N-path filter-mixer combination and verified by simulations.

Index Terms-Linear periodically time varying (LPTV), bandpass filter, switch, RC network, tunable, adjoint, N-path.

I. Introduction

THE development of integrated, widely tunable, narrowband, linear, low-noise bandpass filters has been the holygrail of radio-frequency engineering. As the dynamic range of radios is high, linear filtering is crucial; this is the reason to use only passive components, i.e., mostly R-C circuits (with possibly a few inductors at RF, where they can have reasonable size and quality factor). The traditional approach to bandpass filter design has been to transform a prototype lowpass network using a frequency transformation [1]. The basic idea behind this approach is illustrated using Fig. 1. Part (a) of the figure shows a lowpass passive RC network where the capacitors (the memory elements) are shown explicitly. The impulse response and $3-\mathrm{dB}$ bandwidth of the lowpass filter are denoted by $h_{l p}(t)$ and f_{b} respectively. The memoryless part of the network is assumed to consist only of resistors. To realize a bandpass transfer function with a center frequency f_{s} and RF bandwidth f_{b}, where $f_{s} \gg f_{b}$, appropriately chosen inductors are placed in parallel with each of the capacitors, as shown in Fig. 1(b). It can be shown (see for instance, [1]) that the inductance values needed are given by

$$
\begin{equation*}
L_{m}=\frac{1}{4 \pi^{2} f_{s}^{2} C_{m}}=\frac{1}{\omega_{s}^{2} C_{m}} . \tag{1}
\end{equation*}
$$

Manuscript received October 23, 2017; revised February 13, 2018; accepted March 13, 2018. Date of publication April 12, 2018; date of current version August 30, 2018. This paper was recommended by Associate Editor Z. Wang. (Corresponding author: Shanthi Pavan.)
S. Pavan is with the Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India (e-mail: shanthi@ee.iitm.ac.in).
E. Klumperink is with IC Design Group, University of Twente, 7500 Enschede, The Netherlands.
Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCSI.2018.2816342

Fig. 1. (a) An RC lowpass network with impulse response $h_{l p}(t)$. (b) Converting it into a bandpass network using the lowpass-to-bandpass transformation. (c) Example magnitude responses of the lowpass and bandpass filters.

All the parallel LC tanks in Fig. 1(b) resonate at f_{s}. Representative frequency responses of the lowpass and bandpass networks are shown in Fig. 1(c). Note that the baseband bandwidth and the RF bandwidth are the same if $f_{s} \gg f_{b}$. If f_{s} is very high, the values of the inductors are small enough that they can be implemented on an integrated circuit. However, apart from being bulky, inductors are lossy, introduce parasitics, and are not tunable.

Another form of the lowpass-to-bandpass transformation becomes possible if we allow the network to become periodically time varying. A passive RC implementation with periodic switching allows for narrow bandwidth, high linearity and low noise. As the switching frequency becomes the filter center-frequency, a digitally programmable second-order filter suitable for software defined radio results. This is the approach underlying N-path filters, which have been the subject of intense recent work [2]-[16]. Many of these prior works have analyzed N-path filters in the frequency domain [6]-[8], [17]. The key conclusion is that an N-path bank of switched capacitors behaves like a tuned LC network in the vicinity of the switching frequency. [10] uses this intuition to describe high-order N-path filters. This approach, while being useful, does not predict frequency translation effects from integer multiples of the center frequency.

One of the triggers of this work is the wish to analyze the circuit in [18], which combines N-path filtering and N-path mixing using a second-order switch-RC network. The aim
of this work, therefore, is to address high-order switch-RC kernels of arbitrary complexity, where multiple capacitors interact. A systematic approach is necessary to address this complexity. Rather than work in the frequency domain like in prior work (see for instance [2], [10], [13], [15]), we use a time-domain approach that exploits the ideas of reciprocity and the adjoint network, extending and generalizing the work in [16]. A state-space formulation in conjunction with the adjoint-network technique yields the harmonic transfer functions of the system. We are thus able to not only determine the desired transfer function but also the effects of folding from out-of-band frequencies. The expressions we derive are immediately relatable to those derived in the firstorder case [2], [13], [16]. The analysis forms the subject of the rest of the paper, which is organized as follows. In Section II, we first summarize some important properties of sampled LPTV networks central to our work. We then present a first-principles development of a linear periodically timevarying (LPTV) network approach to the lowpass-to-bandpass transformation. The passive-mixer and N-path filter modes of operation are discussed. Section III presents a generalized analysis of high-order switch-RC N -path circuits, based on the adjoint approach. The general analysis of such high-order networks using prior methods [2], [13], [19], [20] is bound to be algebraically involved. We leverage our recent work on the unified analysis of the first-order switched-RC network [16] along with state-space methods. Thanks to this, the results we obtain are in the same simple form obtained for the first-order switched-RC network. In Section IV, we give the signal-flow graph for the complete output waveforms in switch-RC N-path networks, and simplified graphs for operation in the passivemixer and N-path filter modes. Section V applies the theory developed in this paper to a recently reported 4-path mixer-first receiver [18]. We show that the network can be derived from a prototype second-order lowpass RC filter. We then apply our theory to derive expressions for the mixer's conversion gain. Conclusions are given in Section VI.

II. Evolution of Switched-RC N-Path Filters

Fig. 2(a) shows an LPTV network. The switch is periodically operated at a frequency f_{s}. Determining the complete output $v_{o}(t)$ for an arbitrary input is difficult, since the evaluation of tedious convolution integrals is involved (even for this simple circuit). Suppose, however, that we are only interested in determining one sample of the output per period; namely $v_{o}\left(l T_{S}\right)$ (l is an integer). Determining the complete output first and then sampling it is inefficient, as we first solve tedious integral equations to find the full waveform and then throw away most of that information. It seems reasonable that a simpler technique can be found. This is where the properties of sampled LPTV networks [21] come in handy. We summarize them below, using the network of Fig. 2(a) as an example.

The switched-RC network of Fig. 2(a) is an LPTV network varying at a frequency f_{s} and is excited by a voltage input $v_{i}(t)$. The output is the capacitor voltage $v_{o}(t)$.
a. The sampled sequence $v_{o}\left(l T_{s}\right)$ can be thought of as being obtained by sampling the output of an appropriately

Fig. 2. (a) Original network. The output $v_{o}(t)$ sampled at $t=l T_{S}$, where l is an integer, is of interest. (b) Determining the impulse response of the equivalent LTI filter using the adjoint network. (c) $i_{\text {out }}(t)=h_{\text {eq }}(t)$ waveform.
chosen linear time-invariant (LTI) system excited by $v_{i}(t)$. The LTI filter's impulse response is denoted by $h_{e q}(t)$.
b. $h_{e q}(t)$ can be determined using the adjoint network, as elaborated below.
The adjoint network is derived using the following rules.

1. A resistive or capacitive branch in the original network remains unchanged in the adjoint.
2. A periodically operated switch in the original network, controlled by a waveform $\phi(t)$, is replaced in the adjoint by a switch that is controlled by $\phi(-t)$.
The adjoint of the network of Fig. 2(a) is shown in part (b) of the figure. To find $h_{e q}(t)$, a current impulse excites the output node of the adjoint network, and the current $i_{\text {out }}(t)=$ $h_{e q}(t)$ in the input branch is recorded.

Why is the adjoint-network technique simple to use? In this method, we excite the network at the output only once (as opposed to a sinusoidal excitation on the original network as in prior work that uses frequency-domain analysis [2], [13]), at a moment that corresponds to the sampling instant (after the time-reversal action). In Fig. 2(b), this corresponds to injecting a current impulse across C at $t=0$ (since the output is being sampled at $\left.l T_{s}\right)$. The resulting current during the first time period $\left(0 \leq t<T_{S}\right)$, which we denote by $p(t)$, provides all the necessary information that we are after. This is due to the following. The adjoint network, being periodically timevarying, essentially responds in the same way in subsequent time-periods, except for a difference in its initial conditions. Referring to Fig. 2(b) and (c), $i_{\text {out }}$, which is initially $1 / R C$ (where the 1 represents 1 Coloumb), decays with a timeconstant $R C$ for a duration τ, and is zero for the rest of the period. At $t=T_{s}+$, the capacitor voltage is $\beta=\exp (-\tau / R C)$ times the voltage at $t=0+$. It must thus follow that $i_{\text {out }}$ in the second period must be $\beta p\left(t-T_{s}\right)$. It is thus possible to determine $h_{e q}(t)$ from the adjoint network using

Fig. 3. (a) The lowpass network of Fig. 1(a) excited by an impulse current at its output port. (b) The current in the input port. (c) A switch, controlled by $\hat{\phi}_{1}$, is inserted in series with every capacitor, resulting in an LPTV system. (d) Impulse response of the equivalent LTI filter relating the input to the sampled output of the adjoint of the LPTV network.
recursion [16], [22]. In Fig. 2(b), it is seen that $i_{\text {out }}(t)=h_{\text {eq }}(t)$ is given by the recursive relation

$$
\begin{equation*}
h_{e q}(t)=p(t)+\beta h_{e q}\left(t-T_{s}\right) \tag{2}
\end{equation*}
$$

which in the frequency domain is expressed as

$$
\begin{equation*}
H_{e q}(f)=\frac{P(f)}{1-\beta e^{-j 2 \pi f T_{s}}} \tag{3}
\end{equation*}
$$

From the discussion above, we see that the adjoint impulseresponse technique enables us to determine the sampled output of the LPTV system in a simple manner. Fortunately, in the class of circuits analyzed in this paper (which also happen to be of practical importance), the sampled outputs play a central role in determining the various transfer functions of interest. As seen in the rest of the paper, the use of the adjoint network also greatly simplifies the analysis of high-order switched-RC networks. State-space techniques are used to derive compact relations for various transfer functions. These relations are immediately relatable to those obtained in [2], [13], and [16] in the first-order example of Fig. 2(a).

Consider again our high-order RC lowpass network of Fig. 1(a), with an impulse response $h_{l p}(t)$. By reciprocity, the same impulse response is obtained at the input port by exciting the output port with an impulse current, as shown in Fig. 3(a). An example impulse response $h_{l p}(t)$ is shown in part (b) of the figure. Let us now examine the network of Fig. 3(c), which is the same as that of Fig. 3(a), except that every capacitor has in series with it a periodically operated switch, controlled by the waveform $\hat{\phi}_{1}$. The resulting network is now an LPTV one. $\delta(t)$ is injected into the output port. The resulting current waveform in the input port is denoted by $h_{b p}(t)$. One might wonder how $h_{b p}(t)$ is related to $h_{l p}(t)$.

Fig. 4. (a) Comparison of $h_{l p}(t), h_{l p}(t / N)$ and $h_{b p}(t)$. (b) Example magnitude responses $\left|H_{l p}(f)\right|$ and $\left|H_{b p}(f)\right|$. (c) Network of Fig. 3(c), with the locations of the excitation and response interchanged.

For $0 \leq t<\tau$, the switches are closed; in this interval, therefore, $h_{b p}(t)=h_{l p}(t)$. At $t=\tau$, the switches are opened. Since all the sources of charge are now isolated from the resistive network, the currents in all the network branches are zero. Thus, $h_{b p}(t)=0$ for $\tau \leq t<T_{s}$. Further, all capacitor voltages are "frozen" due to the hold operation until the switches turn on again at $t=T_{s}$. At this juncture, the network resumes from "where it left off"; so $h_{b p}\left(T_{s}\right)=h_{l p}(\tau)$, as shown in Fig. 3(b). In the time interval $T_{s} \leq t<T_{s}+\tau$, $h_{b p}(t)=h_{l p}\left(\tau+\left(t-T_{s}\right)\right)$. In general, it is easy to see that

$$
h_{b p}\left(l T_{s}+t_{1}\right)= \begin{cases}h_{l p}\left(l \tau+t_{1}\right), & \text { for } 0 \leq t_{1}<\tau \\ 0, & \text { for } \tau \leq t_{1}<T_{s}\end{cases}
$$

for all integers l. Moreover, since the capacitors hold their state when the switches are off, it follows that ${ }^{1}$

$$
\begin{equation*}
h_{b p}\left(l T_{s}+\right)=h_{l p}(l \tau) \tag{4}
\end{equation*}
$$

In practice, $h_{l p}(t)$ "lasts" for many clock periods, since the bandwidth of the lowpass transfer function is much smaller than f_{s}. Thus, from the discussion above, and Figs. 3(b) and (d), it is apparent that the envelop of $h_{b p}(t)$ is approximately a time-stretched version of $h_{l p}(t)$, as shown in Fig. 4(a) ${ }^{2}$. Such filters have also been studied as "stop-go"

[^0]N-path filters in the literature [20], [23], [24]. However, those approaches either use multidimensional time or frequency domain methods.
$h_{b p}(t)$ may be interpreted as the product of a rectangular pulse train $\hat{w}(t)$ with period T_{s} and duty cycle τ / T_{s}, and $h_{l p}(t / N)$. We have
\[

$$
\begin{equation*}
h_{b p}(t) \approx h_{l p}(t / N) \cdot \hat{w}(t) \tag{5}
\end{equation*}
$$

\]

where

$$
\hat{w}(t)= \begin{cases}1, & \text { for } l T_{s} \leq t<l T_{s}+\tau \tag{6}\\ 0, & \text { otherwise }\end{cases}
$$

Since multiplication by $\hat{w}(t)$ in the time domain corresponds to convolution in the frequency domain, we have

$$
\begin{equation*}
H_{b p}(f) \approx N \sum_{k=-\infty}^{\infty} a_{k} H_{l p}\left(\left(f-k f_{s}\right) N\right) \tag{7}
\end{equation*}
$$

where the a_{k} are the coefficients of the Fourier expansion of $\hat{w}(t)$. As (7) shows, $H_{b p}(f)$ is related to $H_{l p}(f)$ as follows:
a. $H_{l p}$ is frequency shifted to around multiples of $k f_{s}$.
b. The "offset frequency" $\left(f-k f_{s}\right)$ is scaled by a factor $1 / N$.
As shown in Fig. 4(b), $H_{b p}(f)$ has passbands at multiples of f_{s}. The shape of each passband mimics that of the lowpass prototype whose frequency response has been frequencyscaled by $1 / N$. Although this is some form of lowpass to bandpass conversion, note that the RF bandwidth is not equal to the baseband bandwidth, but is scaled by a factor $1 / N$. This makes intuitive sense - since the capacitors are "in contact" with the resistors with a duty-cycle of $1 / N$, they will take N -times more time to be discharged.

Consider now the network of Fig. 4(c), which is the same as the network of Fig. 3(c), except that the control signals of the switches are time-reversed, and the locations of the excitation and response interchanged. The reader will immediately recognize that the networks of Fig. 4(c) and Fig. 3(c) are adjoints of each other. From the properties of sampled LPTV networks and the adjoint discussed earlier in this section, it must follow that the impulse response of the equivalent LTI filter relating the input voltage v_{i} in Fig. 4(c) to the sampled output $\left(v_{o 1}\left[l T_{s}\right]\right)$ is given by $h_{b p}(t)$ of Fig. 3(d), which in the frequency domain corresponds to a response that has multiple passbands as shown in Fig. 4(d). There are several possibilities of "tapping" the output voltage, as described below.

A. Passive-Mixer Mode

In this mode of operation, the entire voltage waveform across the capacitor C_{o} in Fig. 4(c) is of interest. As shown in Fig. 5(a), $v_{o 1}\left[l T_{s}\right]$, which is the voltage sampled on C_{o} at the falling edge of ϕ_{1} in the $l^{t h}$ clock cycle, is held for a duration $\left(T_{s}-\tau\right)\left(\right.$ from $\left.l T_{s} \leq t<(l+1) T_{s}-\tau\right)$, since C_{o} is effectively disconnected from the network. When ϕ_{1} goes high again at $t=(l+1) T_{s}-\tau, C_{o}$ (dis)charges slowly, since the timeconstants are much larger than T_{s}. Thus, the continuous-time waveform $v_{o 1}(t)$ can be thought of as being the zero-orderhold (ZOH) version of $v_{o 1}\left[l T_{s}\right]$.

Fig. 5. (a) Output of interest in the passive-mixer mode. (b) Approximate equivalent circuit. (c) Using N paths to address folding from harmonics of f_{S}. ($N=4$ in this example).

The approximate block diagram relating $v_{i}(t)$ to $v_{o 1}(t)$ is shown in Fig. 5(b). The RF input is first filtered by a continuous-time bandpass filter with impulse response $h_{b p}(t)$, and sampled by multiplying with a periodic Dirac impulse train. The resulting modulated impulse train excites a ZOH that holds for a complete clock period. Since the ZOH is a lowpass operation with transmission zeros at multiples of f_{s}, the output $v_{o 1}(t)$ can be thought of as being a lowpass filtered version of the impulse sequence $\sum_{l} v_{o 1}\left[l T_{s}\right] \delta\left(t-l T_{s}\right)$. Thus, the circuit of Fig. 4(c) can be thought of as a receiver with down-conversion mixing. The names "mixing region" [2] and "passive-mixer" mode [13] are thus justified. The passbandlocations of the RF bandpass filter are accurately set by the clock frequency, and are easily tunable. The shape of the passband is determined by the frequency response of the lowpass prototype. This way, precise control of the center frequency and independent control of the bandwidth and shape are obtained. Unfortunately, however, the bandpass filter has passbands around all integer multiples of f_{s}, while the desired input signal is centered around f_{s}. This can be problematic, as described below.

The $k^{t h}$ harmonic transfer function of this system of Fig. 5(a), which quantifies the gain from an input frequency f to an output frequency $\left(f+k f_{s}\right)$ can be calculated as follows. When $v_{i}=e^{j 2 \pi f t}$, the sampled output sequence is given by

$$
\begin{equation*}
v_{o 1}\left[l T_{s}\right]=H_{b p}(f) e^{j 2 \pi f l T_{s}} \tag{8}
\end{equation*}
$$

$v_{o 1}(t)$ is the ZOH version of $v_{o 1}\left[l T_{s}\right] . H_{k}(f)$ is thus seen to be

$$
\begin{equation*}
H_{k}(f)=H_{b p}(f) \operatorname{sinc}\left(\left(f+k f_{s}\right) T_{s}\right) \tag{9}
\end{equation*}
$$

where sinc refers to the normalized function $\operatorname{sinc}(x)=\sin (\pi x) /(\pi x)$. Let $v_{i}(t)$ consist of a desired tone at f_{s} with amplitude A_{1} and an interfering tone at $2 f_{s}$ with amplitude A_{2}. The output of the passive mixer will be $A_{1} H_{-1}\left(f_{s}\right)+A_{2} H_{-2}\left(2 f_{s}\right)=A_{1} H_{b p}\left(f_{s}\right)+A_{2} H_{b p}\left(2 f_{s}\right)$. Since the bandpass filter has passbands around integer multiples of $f_{s},\left|H_{b p}\left(f_{s}\right)\right|$ and $\left|H_{b p}\left(2 f_{s}\right)\right|$ are comparable, indicating that interferers from $2 f_{s}$ are demodulated to baseband with very little attenuation. Reasoning in a similar manner, we conclude that unwanted signals around integer multiples of f_{s} are downconverted to low frequency. This can be avoided by using N-path techniques, as described below.

Consider the system of Fig. 5(c), where v_{i} excites N instances of the network of Fig. 4(c), except that the switches are controlled by clocks $\phi_{1}, \phi_{2}, \ldots, \phi_{N}$, each advanced in time by $\tau=T_{s} / N$ with respect to the other. The harmonic transfer functions when the switches are controlled by ϕ_{1} are denoted by H_{k}. Thus, in Fig. $5(\mathrm{c})$, with $v_{i}(t)=e^{j 2 \pi f t}$,

$$
\begin{equation*}
v_{o 1}(t)=\sum_{k} H_{k}(f) e^{j 2 \pi\left(f+k f_{s}\right) t} \tag{10}
\end{equation*}
$$

When the timing control signal is advanced by $\tau=T_{s} / N$, the harmonic transfer functions are $H_{k} e^{j 2 \pi k / N}$. Referring to Fig. 5(c) we have

$$
\begin{align*}
v_{o 2}(t) & =\sum_{k} e^{\frac{j 2 \pi}{N} k} H_{k}(f) e^{j 2 \pi\left(f+k f_{s}\right) t} \\
\vdots & =\vdots \\
v_{o N}(t) & =\sum_{k} e^{\frac{j 2 \pi}{N}(N-1) k} H_{k}(f) e^{j 2 \pi\left(f+k f_{s}\right) t} \tag{11}
\end{align*}
$$

Weighted addition of $v_{O, 1}, \ldots, v_{o, N}$ by the complex coefficients $1 / N,(1 / N) e^{-\frac{j 2 \pi}{N}}, \ldots,(1 / N) e^{-\frac{j 2 \pi(N-1)}{N}}$ yields the complex baseband signal

$$
\begin{aligned}
v_{o}(t)= & \frac{1}{N}\left(v_{o 1}(t)+e^{-\frac{j 2 \pi}{N}} v_{o 2}(t)+\cdots+e^{-\frac{j 2 \pi(N-1)}{N}} v_{o N}(t)\right) \\
= & \cdots+H_{-1}(f) e^{j 2 \pi\left(f-f_{s}\right) t} \\
& +H_{-(N+1)}(f) e^{j 2 \pi\left(f-(N+1) f_{s}\right) t}+\cdots
\end{aligned}
$$

From the equation above, we see that weighted addition of the outputs of N paths eliminates downconversion from frequencies of the form $f+2 f_{s}, f+3 f_{s}, \ldots, f+N f_{s}$ etc. Even though the system of Fig. 5(c) is LPTV with a frequency f_{s}, many of the harmonic transfer functions from v_{i} to $v_{o}(t)$ are zero since the contributions from the N paths cancel. Thus, Fig. 5(c) represents a downconversion mixer that has a bandpass filter up-front, whose passbands are centered around $f_{s},(N+1) f_{s}, \ldots,(2 N+1) f_{s}$ etc. (as opposed to $f_{s}, 2 f_{s}, 3 f_{s}, \cdots$ etc. for the system of Fig. 5(a)). Thanks to N-path operation, a simple passive filter that rejects interferers around $(N+1) f_{s}$ is all that is needed to prevent spurious tones from being downconverted to baseband.

Fig. 6. (a) The relevant output for the N-path filter mode is $v_{o 1}(t) \cdot \phi_{1}$. (b) Approximate equivalent signal-flow diagram. (c) Operating N switched circuits with phase-shifted clocks to obtain N-path filtering. Adding $v_{o 1}, \ldots, v_{o N}$ results in harmonic rejection.

B. N-Path Filter Mode

An alternative way of operation is the N-path filter mode, whose basic idea is described using Fig. 6. Part (a) of the figure shows the network of Fig. 4(c). The voltage across C_{o}, namely $v_{o}(t)$, is conceptually multiplied by the clock waveform ϕ_{1}, yielding an output voltage $v_{o}(t) \cdot \phi_{1}$, that is nonzero only when $(l+1) T_{s}-\tau \leq t<(l+1) T_{s}$. As in the passivemixer case, the voltage held on the capacitor at the falling edge of ϕ_{1} plays a key role in the output waveform. Since network time-constants are much larger than T_{S}, the output during the l th clock cycle can be (approximately) thought of as holding $v_{o}\left(l T_{s}\right)$ for a duration τ and delaying the result by $\left(T_{s}-\tau\right)$. The approximate model relating $v_{i}(t)$ to $v_{o}(t) \cdot \phi_{1}$ is thus given by Fig. 6(b). When $v_{i}(t)=e^{j 2 \pi f t}, v_{o}(t) \cdot \phi_{1}$ consists of components whose frequencies are of the form $f+k f_{s}$ (due to LPTV operation).

$$
\begin{equation*}
v_{o}(t)=\sum_{k} H_{k}(f) e^{j 2 \pi\left(f+k f_{s}\right) t} \tag{12}
\end{equation*}
$$

Analysis of Fig. 6(b) shows that

$$
\begin{equation*}
\left|H_{k}(f)\right|=\frac{1}{N}\left|H_{b p}(f) \operatorname{sinc}\left(\frac{\left(f+k f_{s}\right) T_{s}}{N}\right)\right| . \tag{13}
\end{equation*}
$$

From the equation above, and recalling that $H_{b p}(f)$ has passbands around integer multiples of f_{s}, we see that spurious

Fig. 7. Equivalent realization of the N instances of the lowpass prototype in Figs. 5(c) and 6(c). The N-path filter output can be realized as the voltage across the capacitor bank, and is marked by v_{o}.
inputs around $k f_{s}$ could get translated to f_{s} at the filter output. As in the passive-mixer mode, this can be largely addressed using an N-path structure, as shown in Fig. 6(c). N copies of the networks of the type in Fig. 4(c) are operated with phase-shifted clocks $\phi_{1}, \ldots, \phi_{N}$ and their their outputs are multiplied by $\phi_{1}, \ldots, \phi_{N}$ respectively. The outputs are then added to yield $v_{o}(t)$. Analysis of Fig. 6(c) indicates that only harmonic transfer functions whose order is an integer multiple of N are non-zero; those of other orders are canceled due to N-path operation. Thus, a gentle filter can be used up front to eliminate spurious tones that would otherwise alias on to the desired frequency f. Thus, the N-path structure of Fig. 6(c) represents a tunable narrow-band filter without the use of inductors.

Observing Figs. 5(c) and 6(c), we see that both systems are essentially N copies of the switched lowpass prototype; and appropriately-weighted addition of the voltages across C_{o} yield the final output. Referring to the network of Fig. 5(a) (and 6(a)), we see that the resistive part is essentially idle when the switches are off. Since $\phi_{1}, \ldots, \phi_{N}$ do not overlap, the resistive network can be shared by the N copies [23] - the result is shown in Fig. 7. If operation as an N-path filter is desired, the voltage across the capacitor bank, marked v_{o}, is used. this makes sense, since simply tapping the voltage across the capacitor bank implicitly implements the multiplication by ϕ_{k} and addition, as shown in Fig. 7(c). If operation in the passive-mixer mode is desired, the voltages across individual capacitors in the bank are sensed and combined in a weighted manner, as in Fig. 5(c).

III. Generalized Analysis of N-Path Circuits

In the previous section, we gave an intuitive development of switched-RC N-path circuits. While the intuition is important, it is just as crucial to develop a systematic method of analysis. The end result is the development of a signal-flow graph of a high-order switch-RC filter based on a low-pass RC prototype, valid for arbitrary bandwidth of the low-pass filter. When the bandwidth of the low-pass filter is much smaller than the clock rate, the intuitive expectation of (5) is satisfied. However,

Fig. 8. The switched 4-path example, based on a second order prototype kernel.

Fig. 9. The kernel corresponding to the network of Fig. 8. (b) Equivalent system relating the input to the sampled outputs.
a more elaborate analysis is needed if the results are to be valid for arbitrary low-pass filter bandwidths. This is addressed below, and the sections to follow.

We will develop our analysis using a 4-path switched network shown in Fig. 8. It is derived from a second-order RC lowpass filter prototype by inserting periodically operated switches in series with each capacitor, as described in the previous section. The choice of this example circuit does not lead to any loss of generality - while it is sufficiently simple to explain the steps of our analysis, it is not so simple as to be trivial. Observing Fig. 8, we see that while the individual capacitors within each bank (C_{1} and C_{2}) do not interact, that particular set of capacitors in the banks C_{1} and C_{2} switched on during the same phase are coupled through R_{1}. Thus, the switched N-path network can be analyzed using the "independent-kernel" approach.

Fig. 9 shows the kernel corresponding to the network of Fig. 8. Once the kernel's harmonic transfer functions have been evaluated, rotational symmetry can be used to determine the corresponding transfer functions for the N-path structures (mixer and filter). The voltage waveforms across C_{1} and C_{2} are denoted by $v_{o 1}(t)$ and $v_{o 2}(t)$ respectively. We denote by $\mathbf{v}_{\mathbf{o}}(t)$ the column vector of capacitor voltages, as shown below.

$$
\mathbf{v}_{\mathbf{o}}(t)=\left[\begin{array}{l}
v_{o 1}(t) \tag{14}\\
v_{o 2}(t)
\end{array}\right]
$$

For a general kernel with m states, $\mathbf{v}_{\mathbf{0}}(t)$ will be an m-dimensional vector. We are interested in determining $\mathbf{v}_{\mathbf{0}}(t)$,

Fig. 10. (a) The adjoint network corresponding to the kernel of Fig. 9. (b) $h_{\text {eq } 1}(t)=i_{\text {out }}(t)$ (c) $v_{1}(t)$ (d) $v_{2}(t)$.
which can be separated into two parts; $\mathbf{v}_{\text {off }}(t)$ which occurs when the switches are off, and $\mathbf{v}_{\mathbf{o n}}(t)$, when the switches are turned on. When the switches are off, the capacitors simply hold their states. To determine $\mathbf{v}_{\text {off }}(t)$, therefore, we would like to know the voltages sampled on the capacitors at the falling edges of the clock waveform (i.e., at $\mathbf{v}_{\mathbf{0}}\left(l T_{s}\right)$).

The kernel is an LPTV network varying at a frequency f_{s}. We are interested in determining $\mathbf{v}_{\mathbf{o}}\left(l T_{s}\right)$, which contains all capacitor voltages sampled at the same frequency at which the network is varying. From [21], we know that $\mathbf{v}_{\mathbf{0}}\left(l T_{s}\right)$ can be thought of as being the sampled outputs of linear timeinvariant (LTI) filters, driven by $v_{i}(t)$, as shown in Fig. 9(b). The vector of impulse responses is denoted by $\mathbf{h}_{\mathbf{e q}}(t)$. Thus,

$$
\mathbf{h}_{\mathbf{e q}}(t)=\left[\begin{array}{l}
h_{e q 1}(t) \tag{15}\\
h_{e q 2}(t)
\end{array}\right] .
$$

In the general case (with m state variables), $\mathbf{h}_{\mathbf{e q}}(t)$ will be an m-dimensional vector. [21] shows that $\mathbf{h}_{\mathbf{e q}}(t)$, can be readily obtained from the adjoint (or inter-reciprocal) network. The adjoint network used to determine $h_{e q 1}(t)$ is shown in Fig. 10(a). Note that the switch-control signals in the original network are reversed in time in the adjoint. The voltages in the original LPTV network are sampled at zero timing-offset from $l T_{s}$, meaning that we are interested in $\mathbf{v}_{\mathbf{o}}(t)$ at $\left(l T_{s}+\right)$. Thus, to determine $h_{e q 1}(t)$, the "output" port of the adjoint is excited by an impulsive current at $t=0$, and the current waveform through the input port is recorded.

Referring to Fig. 10(c), the current impulse causes $v_{1}(0+)=1 / C_{1}{ }^{3} \cdot v_{2}(0+)$, on the other hand is zero. For

[^1]$0<t<\tau, C_{1}$ discharges through the rest of the network. During this process, C_{2} gets charged, as shown in Fig. 10(d). $i_{\text {out }}(t)$ during this interval, is given by $\left(1 / R_{2}\right) v_{2}(t)$. When the switches are opened at $t=\tau$, the charge on the capacitors is trapped; as a result, v_{1} and v_{2} do not change during the timeinterval $\tau \leq t<T_{s}$. Thus, during $\tau \leq t<T_{s}, v_{1}(t)=v_{1}(\tau-)$ and $v_{2}(t)=v_{2}(\tau-)$. Further, since the switches are open, $i_{\text {out }}=h_{\text {eq } 1}(t)=0$. We denote $i_{\text {out }}$ for $0 \leq t<T_{s}$ by $p_{1}(t)$, as shown in red in Fig. 10(b).

How are $v_{1}(\tau-)$ and $v_{2}(\tau-)$ related to $v_{1}(0+)$ and $v_{2}(0+)$? We denote the capacitor voltages v_{1} and v_{2} in the adjoint by

$$
\mathbf{v}(t)=\left[\begin{array}{l}
v_{1}(t) \tag{16}\\
v_{2}(t)
\end{array}\right]
$$

When the switches are closed, the network is linear and timeinvariant and can be described using the state-space form. With a zero input, the capacitor voltages evolve [25] according to $\dot{\mathbf{v}}=\mathbf{A v}$, where \mathbf{A} denotes the " A "-matrix of the state-space representation. Thus,

$$
\begin{equation*}
\mathbf{v}(\tau-)=e^{\mathbf{A} \tau} \mathbf{v}(0+) \tag{17}
\end{equation*}
$$

Since only one output is excited, only the corresponding row of $\mathbf{v}(0+)$ contains a non-zero value. In our example, $\mathbf{v}(\tau-)$ is simply the first column of $e^{\mathbf{A} \tau}$, scaled by $1 / C_{1}$.

At $t=T_{s}+$, the switches are closed again, and C_{1} and C_{2} continue to discharge, with initial conditions $v_{1}(\tau-)$ and $v_{2}(\tau-)$ respectively. Note that $h_{\text {eq } 1}(t)=i_{\text {out }}(t)$ is the response to a voltage $\left(1 / C_{1}\right)$ on C_{1} at $t=0+$, with $v_{2}(0+)=0$. Similarly, $h_{e q 2}(t)$ is the response to a voltage $\left(1 / C_{2}\right)$ on C_{2} at $t=0+$, with $v_{1}(0+)=0$. After the first cycle, both capacitors contain charge, and the response to capacitor voltages $v_{1}(\tau-)$ and $v_{2}(\tau-)$ at $t=T_{S}+$ is $\frac{v_{1}(\tau-)}{1 / C_{1}} h_{e q 1}\left(t-T_{s}\right)+\frac{v_{2}(\tau-)}{1 / C_{2}} h_{e q 2}\left(t-T_{s}\right)$. This is a consequence of linearity and the periodically time-varying nature of the network. Thus, $i_{\text {out }}(t)=h_{\text {eq } 1}(t)$ can be expressed as

$$
\begin{align*}
h_{e q 1}(t)=p_{1}(t)+\frac{v_{1}(\tau-)}{1 / C_{1}} h_{e q 1}(& \left.t-T_{s}\right) \\
& +\frac{v_{2}(\tau-)}{1 / C_{2}} h_{e q 2}\left(t-T_{s}\right) . \tag{18}
\end{align*}
$$

Using (17) and $v_{1}(0+)=1 / C_{1}$, the equation above can be written as

$$
h_{e q 1}(t)=p_{1}(t)+\left[\begin{array}{ll}
\frac{1}{C_{1}} & 0
\end{array}\right] e^{\mathbf{A}^{T} \tau}\left[\begin{array}{cc}
C_{1} & 0 \tag{19}\\
0 & C_{2}
\end{array}\right] \mathbf{h}_{\mathbf{e q}}\left(t-T_{s}\right)
$$

To determine $h_{e q 2}(t)$, a current impulse should be injected across C_{2} in the adjoint network of Fig. 10(a), and the resulting $i_{\text {out }}$ has to be determined. Proceeding along lines similar to the determination of $h_{\text {eq } 1}(t)$, we obtain

$$
h_{e q 2}(t)=p_{2}(t)+\left[\begin{array}{cc}
0 & \frac{1}{C_{2}}
\end{array}\right] e^{\mathbf{A}^{T} \tau}\left[\begin{array}{cc}
C_{1} & 0 \tag{20}\\
0 & C_{2}
\end{array}\right] \mathbf{h}_{\mathbf{e q}}\left(t-T_{s}\right)
$$

Combining (19) and (20), we have

$$
\mathbf{h}_{\mathbf{e q}}(t)=\mathbf{p}(t)+\underbrace{\left[\begin{array}{cc}
\frac{1}{C_{1}} & 0 \tag{21}\\
0 & \frac{1}{C_{2}}
\end{array}\right] e^{\mathbf{A}^{T} \tau}\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]}_{e^{\mathbf{A} \tau}} \mathbf{h}_{\mathbf{e q}}\left(t-T_{s}\right) .
$$

Fig. 11. Network used to determine $\mathbf{p}(t)$ for the time interval $0<t<\tau$ using reciprocity in the passive network when ϕ_{1} is high.

It turns out, as shown in Appendix A, that the term atop the brace in (21) reduces to $e^{\mathbf{A} \tau}$. Thus,

$$
\begin{equation*}
\mathbf{h}_{\mathbf{e q}}(t)=\mathbf{p}(t)+e^{\mathbf{A} \tau} \mathbf{h}_{\mathbf{e q}}\left(t-T_{S}\right) . \tag{22}
\end{equation*}
$$

Applying the Fourier transform to both sides of (22) yields

$$
\begin{equation*}
\mathbf{H}_{\mathbf{e q}}(f)=\left(\mathbf{I}-e^{\mathbf{A} \tau} e^{-j 2 \pi f T_{s}}\right)^{-1} \mathbf{P}(f) \tag{23}
\end{equation*}
$$

Note that the equation above is similar to (3), except that it is in matrix form.

A. Determining $\mathbf{p}(t)$

Earlier in this section, $p_{1}(t)$ and $p_{2}(t)$ were determined by injecting current impulses into C_{1} and C_{2} respectively, when the switches were on. This necessitated two evaluations of the adjoint network of Fig. 10 in the time interval $0 \leq t<\tau$, i.e., when the switches were closed. During this time interval, the network is linear and time-invariant. This means that rather than evaluating $p_{1}(t)$ and $p_{2}(t)$ separately, they can be obtained in one shot invoking reciprocity [26]. As shown in Fig. 11, both the components of $\mathbf{p}(t)$ can be found to be the voltage waveforms across C_{1} and C_{2} respectively, in the time interval $0 \leq t<\tau$, when the network is excited with a voltage impulse.

The capacitor voltages are related to v_{i} as $\dot{\mathbf{v}}=\mathbf{A v}+\mathbf{B} v_{i} . \mathbf{p}(t)$ can be written as the difference between two decaying exponentials as follows. For $0 \leq t<\tau, \mathbf{p}(t)=e^{\mathbf{A} t} \mathbf{B} u(t)$, where $u(t)$ denotes the unit-step function. At $t=\tau$, the capacitor voltages will be $e^{\mathbf{A} \tau} \mathbf{B} u(t)$, and for $t>\tau$, would evolve as $e^{\mathbf{A}(t-\tau)} e^{\mathbf{A} \tau} \mathbf{B} u(t-\tau) . \mathbf{p}(t)$, therefore, can be expressed as

$$
\begin{equation*}
\mathbf{p}(t)=e^{\mathbf{A} t} \mathbf{B} u(t)-e^{\mathbf{A} \tau} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(t-\tau) . \tag{24}
\end{equation*}
$$

In the frequency domain, this corresponds to

$$
\begin{equation*}
\mathbf{P}(f)=\left(\mathbf{I}-e^{\mathbf{A} \tau} e^{-j 2 \pi f \tau}\right)(j 2 \pi f \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \tag{25}
\end{equation*}
$$

Combining (23) and (25), we have the following expression for $\mathbf{H}_{\mathbf{e q}}(f)$.

$$
\begin{align*}
\mathbf{H}_{\mathbf{e q}}(f)=\left(\mathbf{I}-\mathbf{e}^{\mathbf{A} \tau} e^{-j 2 \pi f T_{s}}\right)^{-1} & \left(\mathbf{I}-\mathbf{e}^{\mathbf{A} \tau} e^{-j 2 \pi f \tau}\right) \\
& \times(j 2 \pi f \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} . \tag{26}
\end{align*}
$$

It is instructive to observe the form taken by (26) for the special case of the switched-RC N-path filter. In this case, the

Fig. 12. Comparison of (26) and simulations of $\left|H_{e q 1}(f)\right|$ and $\left|H_{e q 2}(f)\right|$ for $R_{1}=200 \Omega, R_{2}=50 \Omega, C_{1}=10 \mathrm{pF}, C_{2}=2.5 \mathrm{pF}$.
kernel is a first-order system, with $\mathbf{A}=-1 / R C, \mathbf{B}=1 / R C$, and $e^{\mathbf{A} \tau}=e^{-\tau / R C}$. Denoting $e^{-\tau / R C} \equiv \beta$, we obtain

$$
H_{e q}(f)=\underbrace{\frac{1}{1-\beta e^{-j 2 \pi f T_{s}}}}_{\left(\mathbf{I}-e^{\mathbf{A} \tau} e^{-j 2 \pi f T_{s}}\right)^{-1}} \overbrace{\left(1-\beta e^{-j 2 \pi f \tau}\right)}^{\mathbf{I}-\mathbf{e}^{\mathbf{A} \tau} e^{-j 2 \pi f \tau}} \frac{1}{\underbrace{(1+j 2 \pi f R C)}_{(j 2 \pi f \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}}}
$$

which is identical to the results obtained in [2], [13], and [16].
Fig. 12(a) and (b) compare $\left|H_{e q 1}(f)\right|$ and $\left|H_{e q 2}(f)\right|$ obtained using (26) with those from sampled PXF simulations in Spectre, for the 4-path network of Fig. 8, with $f_{s}=1 \mathrm{GHz}$, $R_{1}=200 \Omega, R_{2}=50 \Omega, C_{1}=10 \mathrm{pF}, C_{2}=2.5 \mathrm{pF} .^{4}$ Excellent agreement is seen.

IV. Complete Signal-Flow Graph and Operation in the Passive-Mixer and N-Path Filter Modes

Fig. 13 shows the signal-flow graph of the capacitor waveforms of the kernel. It is a generalized version of that used in [16], and results from reasoning as in [16, Section 4]. The capacitor voltages can be expressed as the sum of two waveforms: $\mathbf{v}_{\text {off }}(t)$ that is non-zero when the switches are open, i.e., the time intervals $l T_{s} \leq t<(l+1) T_{s}-\tau$, and $\mathbf{v}_{\mathbf{o n}}(t)$, which is non-zero when the switches are closed, i.e., the intervals $(l+1) T_{s}-\tau \leq t<(l+1) T_{s}$. The sum of paths (a) and (b) yields $\mathbf{v}_{\mathbf{o n}}(t) . w(t)$ is 1 when ϕ_{1} is high and 0 otherwise. Fig. 13 immediately relatable to [16, Fig. 7], where $\beta, h(t)$ and $(1 / R C) h(t)$ are replaced by $e^{\mathbf{A} \tau}, e^{\mathbf{A} t} u(t)$ and $e^{\mathbf{A} t} \mathbf{B} u(t)$ respectively. The signal-flow can be simplified for operation in the passive-mixer and N-path filter modes, as discussed below.

A. Passive-Mixer Mode

In the passive-mixer ($\mathrm{P}-\mathrm{M}$) mode, $f_{\text {in }} \approx f_{s}+\Delta f$. Further, the input frequency is much higher than the bandwidth of

[^2]

Fig. 13. Signal flow graph relating the input and the complete output of the switched-RC kernel.

Fig. 14. Simplified signal-flow graph in the passive-mixer mode.
the prototype filter. Under these circumstances, the output voltage of Fig. 13 can then be simplified by recognizing the following. The output of path (b) is very small, since the input frequency is very large in relation to the bandwidth of the filter. Further, $e^{\mathbf{A} t} u(t)$ is almost a unit-step function, since all time-constants are much larger than T_{s}. As a result, $e^{\mathbf{A} t} u(t)$ and the subsequent block in path (a) can be approximated by a ZOH, with initial delay of $\left(T_{s}-\tau\right)$ and width τ. Together with the ZOH that models $\mathbf{v}_{\mathbf{o f f}}(t), \mathbf{v}_{\mathbf{0}}(t)$ can be approximated as a single ZOH with width T_{s}. Fig. 14 shows the simplified model of the kernel in the P-M mode. Thus, as concluded in [13] and [16] for the simple RC case, the performance in the P-M mode is dependent mostly on the sampled capacitor voltages.

B. N-Path Filter Mode

An important application of the switched-RC network is its use as an N-path filter. Our example of Fig. 8 (where $N=4$) is based on a second-order kernel. The switches are controlled by non-overlapping clocks of width $\tau=T_{s} / N$. In N-path operation, the voltage waveforms at $v_{x 1}$ and $v_{x 2}$ are relevant. They depend on $\mathbf{v}_{\mathbf{o n}}(t)$ of the kernel. Referring to Fig. 13, this is seen to be the sum of paths (a) and (b). Further, notice that the contributions of the paths with gain $e^{\mathbf{A} \tau}$ cancel at the output. Thus, $\mathbf{v}_{\mathbf{o n}}(t)$ can be simplified as shown in Fig. 15.

The zeroth order harmonic transfer functions of the kernel can be found from Fig. 15 by using $v_{i}(t)=e^{j 2 \pi f t}$,

Fig. 15. Signal-flow graph for operation as an N-path filter.

Fig. 16. Analytical and simulated harmonic transfer functions $H_{0,1}$ and $H_{0,2}$ in the N-path filter mode, for the network of Fig. 8. $R_{1}=200 \Omega$, $R_{2}=50 \Omega, C_{1}=10 \mathrm{pF}, C_{2}=2.5 \mathrm{pF}$.
and determining the components $\mathbf{v}_{\mathbf{o n}}(t)$ at the frequency f. The corresponding transfer function $\mathbf{H}_{0}(f)$ of the N-path filter is N times that of the kernel. Analysis of the signal-flow graph of Fig. 15 shows that

$$
\begin{align*}
& \mathbf{H}_{0}(f)=-\frac{N}{T_{s}}(j 2 \pi f \mathbf{I}-\mathbf{A})^{-1} \mathbf{H}_{\mathbf{e q}}(f)\left(1-e^{-j 2 \pi f\left(T_{s}-\tau\right)}\right) \\
&+(j 2 \pi f \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \tag{27}
\end{align*}
$$

The expression above makes sense due to the following. The input, after being filtered by $\mathbf{H}_{\mathbf{e q}}(f)$, is sampled yielding a modulated impulse train. The frequency component of this at f, when filtered by the time-invariant transfer function that comprises the upper arm of the signal-flow graph of Fig. 15, and multiplied by N yields the first term of $\mathbf{H}_{0}(f)$. The lower arm, whose zeroth order transfer function is $(1 / N)(j 2 \pi f \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}$, yields the second term. As expected, (27) reduces to [16, eq. (18)] when a firstorder RC lowpass prototype is used. Fig. 16 compares the analytically calculated zeroth order HTFs for the voltages across the capacitors, with those obtained from simulation. Excellent agreement is seen.

Thanks to N-path operation, only the $N^{t h}$ order HTFs (and their multiples) are relevant. Since the width of $w(t)$ is T_{S} / N, its $N^{t h}$ order Fourier coefficients are all zero. Thus, the lower path in Fig. 15 does not contribute to higher order HTFs. If v_{i} is $e^{j 2 \pi f_{i} t}$, the output at a frequency $\left(f_{i}+k N f_{s}\right) \equiv f_{o}$ is given by $\mathbf{H}_{k N}\left(f_{i}\right) e^{j 2 \pi f_{o} t}$ for $k \neq 0$, where
$\mathbf{H}_{k N}\left(f_{i}\right)=-\frac{N}{T_{s}}\left(j 2 \pi f_{o} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{H}_{\mathbf{e q}}\left(f_{i}\right)\left(1-e^{-j 2 \pi f_{o}\left(T_{s}-\tau\right)}\right)$.

Fig. 17. Analytical and simulated fourth order harmonic transfer functions in the N-path filter mode, for the network of Fig. 8. $R_{1}=200 \Omega, R_{2}=$ $50 \Omega, C_{1}=10 \mathrm{pF}, C_{2}=2.5 \mathrm{pF}$.

Fig. 18. The in-phase portion of the 4-path mixer-first receiver of Lien et al. [18].

Fig. 17 compares the analytically calculated \mathbf{H}_{-4} for the voltages across the capacitors, with those obtained from simulation. From the discussion above, we see that the sampled capacitor voltages play a crucial role in determining the downconversion of signal from around multiples of $N f_{s}$ into the signal band.

V. Analysis of an N-Path Mixer-First Receiver With Fourth-Order RF Filtering

One of the motivations for the generalized development in this paper was the work in [18], which combines N-path filtering and N-path mixing using a second-order switch-RC network. The simplified schematic of the in-phase path of the receiver is shown in Fig. 18. The OTA is assumed to be ideal. The intuition behind the operation of this circuit is as follows. The switched C_{1} bank behaves like a parallel $L C$ tank - as a result, the voltage at node v_{x} has a bandpass response centered at f_{s}. The roll-off of the bandpass characteristic around f_{s} is of first order.
v_{x} is down-converted to a baseband current by the switched resistor feeding into the virtual ground of the OTA. The switched- C_{2} path behaves like a notch filter centered at f_{s}. The currents in these paths are subtracted at the virtual ground of the OTA. A better understanding of the operation of the filter

Fig. 19. (a) Single-ended portion of the input circuit of Fig. 18. (b) The lowpass prototype on which the N-path circuit is based.
can be gained by analyzing the single-ended equivalent of the input circuit, shown in Fig. 19(a). v_{x} is bandpass filtered due to the switched- $C_{1} . i_{1}$ is the down-converted version of v_{x}. It not only consists of current due to the desired signal, but also that due to out-of-band interferers, which have been (somewhat) attenuated by bandpass filtering at v_{x}. To attenuate out-of-band interference even more before entering active amplifier stages (which are lot less linear), another stage of passive N-path filtering is desirable. This is possible by subtracting the current due to out-of-band components by processing v_{x} through a notch filter formed by R in series with the switched- C_{2} path. i_{2}, therefore, consists predominantly of current due to out-ofband interferers [18]. As a result, $\left(i_{1}-i_{2}\right)$ is largely free of interferers, resulting in enhanced receiver linearity. Thanks to subtracting the current through the notch filter, second-order filtering around f_{s} is obtained; one order of filtering due to the switched C_{1}, and another order due to the subtraction of the notch filter output.

The output of interest is $\left(i_{1}-i_{2}\right)$. From Fig. 19(a) and using $G=1 / R$, we see that

$$
i_{1}(t)=G v_{1, \text { on }}(t), \quad i_{2}(t)=G\left(v_{1, \text { on }}(t)-v_{2, \text { on }}(t)\right)
$$

which results in $i_{1}(t)-i_{2}(t)=G v_{2, \text { on }}(t)$. Thus, subtracting i_{2} from i_{1} is equivalent to sensing the voltage across C_{2} (and multiplied by G) in the phase when the switches are on. If the feedback resistor in the opamp (Fig. 18) is $R=1 / G$, the output of the kernel is simply the "on=phase" voltage waveform across C_{2}.

Perhaps an even simpler way of understanding the circuit operation is to consider the lowpass prototype on which the N -path filter is based, as shown in Fig. 19(b). Straightforward circuit analysis shows that

$$
\frac{V_{2}(s)}{V_{i}(s)}=\frac{R /\left(R+R_{s}\right)}{1+s R\left(C_{2}+\left(C_{1}+C_{2}\right) \frac{R_{s}}{R_{s}+R}\right)+s^{2} C_{1} C_{2} R^{2} \frac{R_{s}}{R_{s}+R}} .
$$

Since the prototype transfer function is a second-order lowpass filter, it follows that the N-path filter of Fig. 19(a) will have a fourth-order bandpass response centered around f_{s}, with a second-order roll-off around f_{s}. Since the passive prototype consists only of resistors and capacitors, its poles lie on the negative-real axis. As a result, the transfer function can only achieve a limited "sharpness", and the same limitation applies to the bandpass characteristic of the N-path structure.

Fig. 20. Simulated and calculated downconversion gain of Lien's circuit, with $N=4, C_{1}=C_{2}=50 \mathrm{pF}, R=R_{S}=50 \Omega$.

Referring to Fig. 19(a), we are interested in determining v_{2} when the switch is on, since $\left(i_{1}(t)-i_{2}(t)\right)=G v_{2, o n}(t)$. Inspection of Fig. 19(b) yields

$$
\mathbf{A}=-\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]^{-1}\left[\begin{array}{cc}
\left(G_{s}+2 G\right) & -G \\
-G & G
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
G_{s} / C_{1} \\
0
\end{array}\right]
$$

Since we are interested in the operation of Fig. 18 as a down-conversion mixer, the $(-1)^{\text {th }}$ harmonic transfer function needs to be determined. Let $v_{i}=e^{j 2 \pi f_{i} t}$: then, the output frequency of interest is $f_{o} \equiv f_{i}-f_{s}$.

We use the signal-flow graph of Fig. 15 to determine $\mathbf{v}_{\mathbf{o n}}$. The analysis proceeds in much the same manner as that used to derive (27).

The desired HTF is given by

$$
\begin{align*}
& \mathbf{H}_{-1}\left(f_{i}\right)=\frac{1}{T_{s}} \mathbf{H}_{\mathbf{e q}}\left(f_{i}\right)\left(j 2 \pi f_{o} \mathbf{I}-\mathbf{A}\right)^{-1}\left(e^{-j 2 \pi f_{o}\left(T_{s}-\tau\right)}-1\right) \\
& +\underbrace{\frac{1}{N} \operatorname{sinc}\left(\frac{1}{N}\right) e^{-j \frac{\pi}{N}}\left(j 2 \pi f_{o} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B} .}_{\begin{array}{c}
\text { Coefficient of } e^{-j 2 \pi f_{s} t} \\
\text { inthe Fourien } \\
\text { expansion of } w(t)
\end{array}} \tag{29}
\end{align*}
$$

Note that the lower path in the signal-flow graph of Fig. 15 yields the second term in the equation above.

Fig. 20 compares the simulated and calculated downconversion gain of Lien's circuit, with $N=4, C_{1}=C_{2}=50 \mathrm{pF}$, $R=R_{S}=50 \Omega$. Excellent agreement is seen.

Fig. 21 shows a log-log plot of $\left|H_{-1}\left(f_{i}\right)\right|$ plotted as a function of the output frequency f_{o}. The frequency-scaled response of the lowpass prototype is also shown for comparison. We see that for "low" frequencies, the downconversion gain follows that of the lowpass prototype. This makes sense, since the sampled voltage on the capacitor dominates the direct contribution of the input at low frequencies.

VI. CONCLUSIONS

We developed a systematic analysis of switch-RC N-path passive-mixers and filters. Our work is able to exactly predict frequency conversion effects even in high-order filters. Our techniques also yield simple expressions, immediately relatable to those encountered during the analysis of the firstorder switched-RC network. This is possible thanks to the

Fig. 21. Log-log plot of $\left|H_{-1}\left(f_{i}\right)\right|$ plotted as a function of f_{o}. The transfer function of the frequency-scaled lowpass prototype is also shown for comparison. $N=4, C_{1}=C_{2}=50 \mathrm{pF}, R=R_{S}=50 \Omega$.
use of the adjoint impulse response method, and the statespace formulation to describe the prototype lowpass network. Simplified models for operation in the passive-mixer and N-path filter modes are given. Finally, we applied our theory to a recently reported mixer-first receiver. Excellent agreement was seen with simulation.

Appendix

The MNA equations for the network can be written as

$$
\begin{equation*}
\mathbf{C} \dot{\mathbf{v}}+\mathbf{G} \mathbf{v}=\mathbf{J} v_{i} \tag{30}
\end{equation*}
$$

where \mathbf{C} and \mathbf{G} are the capacitance and conductance matrices. \mathbf{J} denotes the excitation matrix. \mathbf{C} is a diagonal matrix, and as the network does not contain controlled sources, \mathbf{G} is symmetric. The equation above can be recast in state-space form as

$$
\begin{equation*}
\dot{\mathbf{v}}=\underbrace{-\mathbf{C}^{-1} \mathbf{G} \mathbf{v}}_{\mathbf{A}}+\underbrace{\mathbf{C}^{-1} \mathbf{J}}_{\mathbf{B}} v_{i} \tag{31}
\end{equation*}
$$

In our second-order example (which is easily generalized),

$$
\mathbf{C}=\left[\begin{array}{cc}
C_{1} & 0 \tag{32}\\
0 & C_{2}
\end{array}\right] \text { and } \mathbf{C}^{-1}=\left[\begin{array}{cc}
\frac{1}{C_{1}} & 0 \\
0 & \frac{1}{C_{2}}
\end{array}\right] .
$$

Since \mathbf{G} and \mathbf{C} are symmetric, $\mathbf{A}^{T}=-\mathbf{G} \mathbf{C}^{-1}$. The term $\mathbf{C}^{-1} e^{\mathbf{A}^{T} \tau} \mathbf{C}$ in (21) can be simplified by expanding $e^{\mathbf{A}^{T} \tau}$ in a Taylor series as follows.

$$
\begin{align*}
& \mathbf{C}^{-1} e^{\mathbf{A}^{T} \tau} \mathbf{C} \\
&=\mathbf{C}^{-1}\left(\mathbf{I}-\mathbf{G} \mathbf{C}^{-1} \tau+\frac{1}{2} \mathbf{G} \mathbf{C}^{-1} \mathbf{G} \mathbf{C}^{-1} \tau^{2}-\cdots\right) \mathbf{C} \\
&=\mathbf{I}-\mathbf{C}^{-1} \mathbf{G} \tau+\frac{1}{2} \mathbf{C}^{-1} \mathbf{G} \mathbf{C}^{-1} \mathbf{G} \tau^{2}-\cdots \\
&=e^{-\mathbf{C}^{-1} \mathbf{G} \tau}=e^{\mathbf{A} \tau} \tag{33}
\end{align*}
$$

References

[1] M. E. Van Valkenburg, Analog Filter Design. New York, NY, USA: Holt, Rinehart, and Winston, 1982.
[2] M. C. Soer, E. A. Klumperink, P.-T. De Boer, F. E. Van Vliet, and B. Nauta, "Unified frequency-domain analysis of switched-series- $R C$ passive mixers and samplers," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2618-2631, Oct. 2010.
[3] C. Andrews and A. C. Molnar, "A passive mixer-first receiver with digitally controlled and widely tunable RF interface," IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2696-2708, Dec. 2010.
[4] C. Andrews and A. C. Molnar, "Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 12, pp. 3092-3103, Dec. 2010.
[5] A. Mirzaei, H. Darabi, and D. Murphy, "Architectural evolution of integrated M-phase high-Q bandpass filters," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 1, pp. 52-65, Jan. 2012.
[6] A. Ghaffari, E. A. M. Klumperink, M. C. M. Soer, and B. Nauta, "Tunable high-Q N-path band-pass filters: Modeling and verification," IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 998-1010, May 2011.
[7] A. Ghaffari, E. A. M. Klumperink, and B. Nauta, "Tunable N-path notch filters for blocker suppression: Modeling and verification," IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1370-1382, Jun. 2013.
[8] L. Duipmans, R. E. Struiksma, E. A. M. Klumperink, B. Nauta, and F. E. V. Vliet, "Analysis of the signal transfer and folding in N-path filters with a series inductance," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 263-272, Jan. 2015.
[9] M. Darvishi, R. van der Zee, E. A. Klumperink, and B. Nauta, "Widely tunable 4th order switched $G_{m}-C$ band-pass filter based on N-path filters," IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3105-3119, Dec. 2012.
[10] M. Darvishi, R. van der Zee, and B. Nauta, "Design of active N-path filters," IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 2962-2976, Dec. 2013.
[11] Z. Lin, P.-I. Mak, and R. P. Martins, "Analysis and modeling of a gainboosted N-path switched-capacitor bandpass filter," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 9, pp. 2560-2568, Sep. 2014.
[12] N. Reiskarimian, J. Zhou, T.-H. Chuang, and H. Krishnaswamy, "Analysis and design of two-port N-path bandpass filters with embedded phase shifting," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 8, pp. 728-732, Aug. 2016.
[13] T. Iizuka and A. A. Abidi, "FET-RC circuits: A unified treatmentPart I: Signal transfer characteristics of a single-path," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1325-1336, Sep. 2016.
[14] T. Iizuka and A. A. Abidi, "FET-RC circuits: A unified treatmentPart II: Extension to multi-paths, noise figure, and driving-point impedance," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1337-1348, Sep. 2016.
[15] E. S. Atalla, F. Zhang, P. T. Balsara, A. Bellaouar, S. Ba, and K. Kiasaleh, "Time-domain analysis of passive mixer impedance: A switched-capacitor approach," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 2, pp. 347-359, Feb. 2017.
[16] S. Pavan and E. Klumperink, "Simplified unified analysis of switchedRC samplers, mixers and N-path filters using the adjoint network," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 10, pp. 2714-2725, Oct. 2017.
[17] A. Mirzaei and H. Darabi, "Analysis of imperfections on performance of 4-phase passive-mixer-based high-Q bandpass filters in SAW-less receivers," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 879-892, May 2011.
[18] Y. Lien, E. Klumperink, B. Tenbroek, J. Strange, and B. Nauta, "A high-linearity CMOS receiver achieving +44 dBm IIP3 and +13 dBm 1 dB for SAW-less LTE radio," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 412-413.
[19] T. Strom and S. Signell, "Analysis of periodically switched linear circuits," IEEE Trans. Circuits Syst., vol. 24, no. 10, pp. 531-541, Oct. 1977.
[20] A. Fettweis, "Theory of stop-go N-path filters," Arch. Elektron. Ubertragungstechnik, vol. 25, no. 4, p. 173, 1971.
[21] S. Pavan and R. S. Rajan, "Interreciprocity in linear periodically timevarying networks with sampled outputs," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 9, pp. 686-690, Sep. 2014.
[22] S. Pavan and E. Klumperink, "Analysis of the effect of source capacitance and inductance on N-path mixers and filters," IEEE Trans. Circuits Syst. I, Reg. Papers, to be published, doi: 10.1109/TCSI.2017.2754342.
[23] A. Fettweis and H. Wupper, "A solution to the balancing problem in N-path filters," IEEE Trans. Circuit Theory, vol. CT-18, no. 3, pp. 403-405, May 1971.
[24] H. Patangia and M. Blostein, "A digitally controlled tunable N-path filter," IEEE Trans. Circuits Syst., vol. CS-25, no. 3, pp. 135-144, Mar. 1978.
[25] C.-T. Chen, Linear System Theory and Design. London, U.K.: Oxford Univ. Press, 1995.
[26] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits. New York, NY, USA: McGraw-Hill, 1987.

Shanthi Pavan obtained the B.Tech degree in Electronics and Communication Eng from the Indian Institute of Technology, Madras in 1995 and the M.S and Sc.D degrees from Columbia University, New York in 1997 and 1999 respectively. From 1997 to 2000, he was with Texas Instruments in Warren, New Jersey, where he worked on high speed analog filters and data converters. From 2000 to June 2002, he worked on microwave ICs for data communication at Bigbear Networks in Sunnyvale, California. Since July 2002, he has been with the Indian Institute of Technology-Madras, where he is now a Professor of Electrical Engineering. His research interests are in the areas of high speed analog circuit design and signal processing.
Dr. Pavan is the recipient of the IEEE Circuits and Systems Society Darlington Best Paper Award (2009), the Shanti Swarup Bhatnagar Award (2012) and the Swarnajayanthi Fellowship (2009) (from the Government of India), the Mid-career Research Excellence Award and the Young Faculty Recognition Award from IIT Madras (for excellence in teaching), the Technomentor Award from the India Semiconductor Association and the Young Engineer Award from the Indian National Academy of Engineering (2006). He is the author of Understanding Delta-Sigma Data Converters (second edition), with Richard Schreier and Gabor Temes). Dr. Pavan has served as the Editor-inChief of the IEEE Transactions on Circuits and Systems: Part I - Regular Papers, and on the editorial boards of both parts of the IEEE Transactions on Circuits and Systems. He has served on the technical program committee of the International Solid State Circuits Conference, and been a Distinguished Lecturer of the Solid-State Circuits Society. He is a fellow of the Indian National Academy of Engineering (INAE), Distinguished Lecturer of the IEEE Circuits and Systems Society, and a fellow of the IEEE.

Eric Klumperink was born on April 4th, 1960, in Lichtenvoorde, The Netherlands. He received the B.Sc. degree from HTS, Enschede (1982), worked in industry on digital hardware and software, and then joined the University of Twente in 1984, shifting focus to analog CMOS circuit research. This resulted in several publications and his Ph.D. thesis "Transconductance Based CMOS Circuits" (1997). In 1998, Eric started as Assistant Professor at the ICDesign Laboratory in Twente and shifted research focus to RF CMOS circuits (e.g. sabbatical at the Ruhr Universitaet in Bochum, Germany). Since 2006, he is an Associate Professor, teaching Analog \& RF IC Electronics and guiding PhD and MSc projects related to RF CMOS circuit design with focus on Software Defined Radio, Cognitive Radio and Beamforming. He served as an Associate Editor for the IEEE TCAS-II (2006-2007), IEEE TCAS-I (2008-2009) and the IEEE JSSC (2010-2014), as IEEE SSC Distinguished Lecturer (2014/2015), and as member of the technical program committees of ISSCC (2011-2016) and the IEEE RFIC Symposium (2011-..). He holds several patents, authored and co-authored 150+ internationally refereed journal and conference papers, and was recognized as 20+ ISSCC paper contributor over 1954-2013. He is a corecipient of the ISSCC 2002 and the ISSCC 2009 "Van Vessem Outstanding Paper Award."

[^0]: ${ }^{1}$ Throughout this paper, $t-$ and $t+$ denote the time instants just before and just after t respectively.
 ${ }^{2}$ The reader would have noticed the significant deviation between the envelop of $h_{b p}(t)$ and $h_{l p}(t / N)$ for small t. This is because the ratio of the bandwidth of the lowpass network to f_{s} is not very small in Fig. 4 (for clarity). In practice, $h_{l p}(t)$ will be much slower, greatly reducing the difference between the two.

[^1]: ${ }^{3}$ The $1 / C_{1}$ actually has dimensions of voltage, since the 1 stands for 1 Coulomb.

[^2]: ${ }^{4}$ These values are chosen arbitrarily, since our analysis is valid for all component values.

