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Abstract— Implantable systems are nowadays being used to
interface the human brain with external devices, in order to
understand and potentially treat neurological disorders. The most
predominant design constraints are the system’s area and power.
In this paper, we implement and combine advanced compres-
sive sampling algorithms to reduce the power requirements of
wireless telemetry. Moreover, we apply variable compression,
to dynamically modify the device performance, based on the
actual signal need. This paper presents an area-efficient adap-
tive system for wireless implantable devices, which dynamically
reduces the power requirements yielding compression rates from
8x to 64x, with a high reconstruction performance, as qual-
itatively demonstrated on a human data set. Two different
versions of the encoder have been designed and tested, one with
and the second without the adaptive compression, requiring an
area of 230x235 pum and 200 x 190 um, respectively, while
consuming only 0.47 uW at 0.8 V. The system is powered by
a 4-coil inductive link with measured power transmission effi-
ciency of 36 %, while the distance between the external and inter-
nal coils is 10 mm. Wireless data communication is established
by an OOK modulated narrowband and an IR-UWB transmitter,
while consuming 124.2 pJ/bit and 45.2 pJ/pulse, respectively.

Index Terms—Implantable integrated circuit, area-efficient,
low-power, compressive sensing, neural signals, learning-based
digital signal processing, signal recovery.

I. INTRODUCTION

N MOBILE applications, the power budget is defined by
the battery limits, which, unfortunately, does not improve
from one node to the following one, as the amount of logic
gates does in the IC, as defined by the well-known Moor’s
law [1]. Table I gives an overview of battery power budget in
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some of the current electronic devices used for general daily
life applications.

Among all the autonomous sensing applications, one of
the most critical and challenging field is medical monitoring,
in which various biological signals have to be processed with
a relatively high accuracy, in order to extract reliable medical
information for disease diagnosis or therapy.

For many decades, scientists have tried to understand
the brain activity. Since the 1990s, clinicians have been
able to implant devices capable of monitoring the neuronal
activity [2]. Micro/Nano fabrication of electromechanical
systems (M(N)EMS) industry is currently improving the capa-
bility to interface with the human brain. A multitude of
applications are related to these systems, from research exper-
iments to personal health monitoring and in-house treatments.
In particular, electrodes and micro fabricated electrodes have
enabled efficient electrical or optical links, enhancing the
functionality of the neuronal interfaces. Since 1997, the usage
of prostheses has been approved as an alternative treatment
for some brain diseases, such as Parkinson and Epilepsy, and
more recently, for depression [3]. Over 5% of the population
worldwide experience at least one epileptic seizure during
lifetime and around 50 million people are diagnosed with
epilepsy [4], [5]. Moreover, in 30% of the cases, patients
suffer from pharmaco-resistant epilepsy, where medications
are not sufficient to treat seizures. Currently, the only available
solution (when applicable) requires a long term hospitaliza-
tion in order to record and localize the source of epileptic
seizures, using a bulky system connected with cables trough
the skull, and placed over the cortex. After localization of
the epileptic foci an invasive surgery procedure is required,
with the aim of physically removing the brain tissue where
the stroke seizures originate. This would suggest the design
of autonomous monitoring devices with minimal invasiveness.
According to the vision of Body Area Network (BAN), such
bio-electrical devices attached to the human body can either
serve to carry out information to a medical host or to provide
some feedback as first aid treatment.

The goal of this work is to optimize the information
extraction from neural signals, merging new mathematical
theory and computational methods in hardware, to reduce
the power and area, outperforming the current state-of-the-
art compression techniques. Our contention is to reduce the
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TABLE I
POWER BUDGET FOR DIFFERENT APPLICATIONS

. Wireless Power Battery

Application Sensors . o
Interfaces Consumption Lifetime

Pacemaker Pacing leads Inductive link 10 pW Several Years
Human bod ECG, heart rate,

an bocy 900 MHz ISM 1-8 mW Several Hours
monitoring Temperature

. Bluetooth, WiFi, GSM,

Smartphone Multiple sensors 1w Few Hours

HSDPA, LTE

amount of required data, still allowing high signal recon-
struction quality, leveraging both theory and practice through
learning. As a result, power and time required for edge-data
computation can be drastically reduced. This paper extends
our previous work [6], by analyzing and implementing the
fully integrated system, from the analog to digital conversion
of neural signal to the wireless transmission of compressed
data. Furthermore, we provide two different implementations
of the data compression encoding system.

The paper is organized as follows. In Section II the sys-
tem level choices are described. Compressive Sensing and
Learning Based Compressive Subsampling are introduced in
Section III. In Section IV the system architecture and circuits
implementation are described, followed by numerical experi-
ments. Section V presents the electrical measurements, while
Section VI provides a discussion on results and concludes the

paper.

II. SYSTEM LEVEL ANALYSIS

A high level view of the System-on-Chip (SoC) integrated
on the implanted chip is depicted on the top left side of Fig. 1.
The SoC is wirelessly connected to an external base station
(on the right side of Fig. 1), where the compressed data is
reconstructed for medical monitoring and storage.

The implanted SoC is composed by of neural amplifier,
which collects the neural signals recorded by the electrodes,
placed in contact with the brain surface. An Analog to Digital
Converter (ADC), samples and digitises the amplified neural
signals; the ADC output is processed by the Digital Signal
Processor (DSP), aiming to reduce the amount of information
sent by the wireless RF transmitter. Indeed, the transmitter
power budget in typical wireless monitoring systems is usually
one order of magnitude higher than any other system on the
chip [7], [8]. In this Section, we discuss the system level design
aspects and details of each block in the proposed SoC.

A. Macro and Micro-Electrodes for iEEG Recording

Bio-compatible electrodes are employed to collect the
neural signal and act as an interface between the silicon
microelectronics and the neurons. The electrode geometry is
typically set according to the application; e.g., for measuring
the single neuron activity, the size of electrodes is in the order
of micrometers, while for studying the behaviour of population
of neurons, the size may be larger. The micro electrodes and
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Fig. 1. Block diagram of the implantable integrated system (on the left side),
wirelessly linked with an external base station (on the right), where the data
is reconstructed for medical monitoring and stored. No battery is used in the
implanted system.

their electronic read-out circuits have evolved according to
the implant positioning and target neural activity. Needle-
shaped micro electrodes are preferred for high-precision Brain-
Computer Interfaces (BCI) [9], while flat electrodes are
employed for cortical surface recordings [10]. Moreover, active
electrodes are preferred to increase the quality neural data, and,
consequently, power supply for the neural probes is provided.
Wireless monitoring of brain activity would allow patients with
implanted cortical system to safely leave the hospital during a
monitoring period, that could potentially extend over several
months.

Recordings from micro-electrodes of diameter less than
100 um in the epileptic human hippocampus and neo-
cortex have enabled the identification of several classes
of electrographic activity localized to sub-millimeter-scale
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Fig. 2. Hybrid electrodes grid containing macro and microelectrode
arrays (a) for iEEG signal recordings, reprinted from [12]. Signals recorded
from micro and macro electrodes in (b), with an highlight on micro
electrode 27 that records a seizure onset seconds before the macros.

tissue volumes, inaccessible to standard iEEG technology with
macro-electrodes [11]. Moreover, Stead and colleagues [12]
have observed that epileptic seizures identified on the macro-
electrodes are often preceded by seizure-like activity on the
micro-electrodes, depicted in Fig. 2. In particular, some of
the micro-electrodes record an ongoing microperiodic epilep-
tiform discharge, which starts minutes before the onset of
the seizure itself [12], as highlighted on micro-electrode
27 shown in Fig. 2(b). Furthermore, the same researchers
have also found that the signals recorded by adjacent micro-
electrodes can be uncorrelated, despite their spatial vicin-
ity. Furthermore, the sub-millimeter scale of high frequency
oscillations involved in seizure generation motivate the wide-
band recording of iEEG using micro-electrodes for precise
monitoring of epileptic patients.

In this work, we consider neural signals collected and
processed from every micro-electrode node, in order to accu-
rately estimate the seizure onset using an implantable monitor-
ing device. The focus of this work is on compressive sampling
and wireless telemetry, while discussions on seizure detection
algorithm are beyond the scope of this paper.

B. Data Processing

For each sampling electrode, the recorded signal is boosted
by a Low-Noise Amplifier (LNA) (not described in this work).
Then, the ADC, samples and digitises the analog neural
signal. To meet the stringent area and power constraints of
the proposed SoC, we have designed and implemented a
Successive Approximation Register (SAR) ADC, which yields
medium resolution and low-power data conversion.

Before data transmission, the digitized data is
processed in order to reduce the power requirements of
wireless TX. In many recently proposed implantable systems
(e.g., [7], [13]-[15] and references therein), Compressive
Sampling (CS) [16], [17] has been exploited to drastically
reduce the amount of transmitted data, while still allowing
robust, but complex, off-line reconstruction of original signal.

CS stems from the fact that often, the information content of
natural signals is much lower than the raw data content.

Given a training set of fully sampled signals, a novel Learn-
ing Based Compressive Subsampling (LBCS) [18] algorithm
selects, from a representation basis like Wavelet or Hadamard,
a fixed set of coefficients that capture, on average, most of the
signals’ energy. Only these coefficients will then be processed
for new signals. Moreover, LBCS allows for very efficient
linear encoders and decoders, reducing the time and power
costs both on sampling and reconstruction, thus improving
the conventional CS, where non-linear decoding (e.g. basis
pursuit) is required for reliable signal reconstruction.

In the proposed work, we implement a fully digital encoder
to compress the neural signal, which adaptively chooses the
coefficients to sample, depending on the required signal qual-
ity during sampling. This process is enabled by a dynamic
on-chip generation of the transformation coefficients, avoiding
the large memory required to store all the transformation
matrix entries [6]. Subsection IV-A addresses the analog
to compressed data conversion, discussing the design and
trade-offs in detail.

C. Wireless Data Telemetry

In addition to the neural data acquisition and processing,
a communication channel from the implant to an external base
station, namely uplink communication, is required to transmit
digitized neural data to an external device. A downlink commu-
nication is needed for data transfer from external base station
to the implant in order to configure sensor and processing
parameters, such as sampling coefficient selections.

The proposed epilepsy monitoring system in this project
implements both uplink and downlink communications. Since
the downlink communication is only used for setting the
system parameters, there is no need for a high data rate
communication. Thus, it is sufficient a downlink receiver
at the implanted SoC, which communicates at a data rate
of 10 kbps. However, for the uplink communication, very
high data rate communication is required, since the number of
monitoring channels and their sampling rate is high. For the
neural monitoring application with tens of electrodes, uplink
communication should at least provide a data rate in the order
of 10 Mbps. Accordingly, design of an uplink transmitter
is challenging in such applications. The minimum distance
for both communication types is the average human skull
thickness of about 10mm. The wireless data telemetry is
further addressed in Subsection IV-C.

D. Wireless Powering

While in several biomedical applications such as hearing
aids and pacemakers, batteries can occupy a significant vol-
ume, the area allocated to a neural implant is very small.
Moreover, the neural recording systems consume higher
amount of power and this would potentially reduce the dura-
tion of operation on battery. Considering the power demand of
a neural implant aiming for continuous data transmission and
the estimated power budget, current ambient energy harvesters
are insufficient to fulfill this task. Wireless power transfer
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based on inductive coupling is a proper choice, since the
distance between the implant and external unit can be in the
order of millimeters (human scalp thickness &~ 10 mm), and
sending the required power to the implant is accessible with
current inductive coupling technology.

In this work, we propose a near field remote powering
method, composed of four coils, an active half-wave rectifier,
and a low drop-out voltage regulator, as further discussed
in Subsection I'V-D.

III. LEARNING-BASED SIGNAL SAMPLING

In this section, we first introduce the basics of Compressive
Sensing, reviewing three recent approaches applied to neural
signals. We then discuss non-linear structured recovery, before
discussing Learning-Based Compressive Subsampling.

A. Compressive Sensing

Given an input signal x € RY which has K non-zero
coefficients, Compressive Sensing (CS) states that x can be
robustly recovered from a signal y € R containing fewer
samples than dictated by the Shannon-Nyquist theorem, with
M = O(K log %). The compressed version of the input
signal x can be expressed as

y=Ax+w, (1)

where A is a linear operator that either satisfies the Restricted
Isometry Property (RIP) or is incoherent [19], and w represents
the measurement noise. If the input signal x is not sparse in the
given domain, an ortho-normal basis ® has to be used to get a
sparser representation of the original signal x. Natural signals
are often characterized by sparse and structured representa-
tions in time-frequency (or space-frequency) domains, such as
wavelets [20]. On the theoretical point of view, the matrix A
can be generated with random coefficients, since i.i.d. sub-
Gaussian matrices are incoherent and also satisfy the RIP
condition. Moreover, they are universal, i.e., the RIP or the
incoherence of A® is the same as of the original A [19],
where matrix @ is used to form a sparser representation of
the signal x. However, sub-Gaussian matrices are prohibitively
expensive to use in practice, since they require O(MN)
space and time. Transmitting the fewer compressed samples y
allows to save on-chip storage and telemetry power. However,
the reconstruction process needed to recover x from y requires
to solve non-linear optimization problems that increase both
time and power requirements on the recovery node.

Bernoulli (BERN) described in [7], Multi-Channel Sam-
pling (MCS) [14] and Structured Hadamard Sampling (SHS)
presented in [21] are randomized sampling approaches
recently proposed for the compression of neural signals.
These three architectures are very efficient on the sampling
side, but require solving non-linear optimization problems to
reconstruct the original signals.

As described in [22] and references therein, a reduced
number of samples is required for stable recovery, considering
additional structures in the signal x, such as interdependen-
cies between its non-zero coefficients or constraints on its
support during the recovery process. As discussed in [21],
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the Hierarchical Group Lasso (HGL) approach achieves the
best performance over three different structured-sparsity recov-
ery methods. This approach has been used to compare the
reconstructed iEEG signals sampled through BERN, MCS and
SHS methods.

B. Learning-Based Compressive Subsampling

The compression method used in this work is based on
the LBCS approach [18], which requires both linear encoding
and decoding with respect to a given orthonormal basis.
Such method allows to simplify both the sampling and signal
restoring steps, compared to standard CS approaches. In a
nutshell, LBCS can be summarized considering the following
compression model

y = PoV¥x, )

where W € RV*N s an orthonormal basis and Pg € RM*V jg
a subsampling matrix, whose rows are canonical basis vectors.
The effect of applying P to Wx is to return a M-dimensional
vector containing only the components of ¥x indexed by the
set Q, also known as the subsampling map. The vectory € RM
is the compressed version of x, with a nominal compression
rate (CR) of % The signal x is then approximately recovered
via the fast linear decoder

X = W*PLy. 3)

where W* is the conjugate-transpose of ¥ and ng constructs
a N-dimensional vector of zeros, placing the components of y
in the positions indexed by Q.

The learning process is dictated by a training set
D = {x1,...,Xy} of m fully sampled signals of unit norm.
The optimal subsampling map € is learnt by choosing the
indices that capture most of the average energy in the trans-
form domain:

. 1 <
Q = arg max —ZZH'ﬁi,Xjﬂz, (4)

— m
QQA=M T i_iicq

where ¥; is the i-th row of W. Q can be exactly found by
selecting the M indices whose values of % Z'}':l (¥, x j)|2
are the largest [18]. The learnt sampling scheme is then used
to directly sample only those transform coefficients indexed
by Q for all signals x.

Walsh-Hadamard based transformation has been used in
recent publications [6], [23] because of its hardware friendly
implementation, since each transformation coefficient requires
one bit resolution, resulting in simple computations. In par-
ticular, Hosseini-Nejad et al. [23] propose a threshold-based
Walsh-Hadamard compression, to sample the Action Poten-
tials (AP) for brain machine interfaces. The authors apply a
butterfly scheme to transform the input signal samples into
the Hadamard domain. However, such butterfly-based method
can be performed on very few number of consecutive samples
(8 samples in [23]), limiting any kind of learning approach
due to the low signal statistic. Therefore, it is used for
AP signal detection, with limited application in continuous
medical monitoring for diseases like epilepsy, where the whole
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signal behavior is required by clinicians. Majidzadeh et al. [24]
propose the generation of the full Hadamard matrix ¥ €
R16x16 for a parallel neural recording system. However, such
implementation does not apply any compression mechanism,
resulting in a high power consumption. The circuit imple-
mentation of LBCS technique with DCT-based transform
has been proposed in [25]. Even though its implementation
shows a great signal reconstruction performance, the actual
hardware implementation, which requires relatively larger area
and power consumption with respect to its LBCS-Hadamard
counterpart, makes it more suitable for different application,
such as image processing. In [6], LBCS is exploited using the
Hadamard transformation matrix, where the whole Hadamard
matrix is stored in static memories requiring more than 2/3
of the actual encoding area.

In this work, we propose an LBCS based compression
algorithm, which performs the transformation from temporal
to Hadamard domain, through on-the-fly generated Hadamard
coefficients. In this implementation, only the selected rows
of the Hadamard matrix (defined by Q) are generated and
used for the embedded compression, resulting in a dynamic
generation of the coefficients that are used to apply the LBCS
approach. Such technique drastically reduces the encoder
memory requirements needed by previous LBCS-Hadamard
implementation, while the signal reconstruction quality is
preserved within a low power chip implementation.

C. Walsh-Hadamard Transformation

The Hadamard transform is particularly suited for hardware
implementation since each coefficient can be computed by
performing only simple additions or subtractions.

The reduction of hardware area in the Had-based LBCS
described in [6] is possible by replacing the SRAM dedicated
to store the Hadamard coefficients, with a direct computation
of each matrix entry [24]. Such computation is feasible due
to the intrinsic structure of the Hadamard matrix, which is
summarized as follows. The non-normalized Hadamard trans-
formation matrix H, € (=1, DNXN of size n, with N = 2" is
expressed as a recursive Kronecker product of two matrices

I -1

Each matrix coefficient indexes k and j, can be expressed in
binary representation

n—1 '
k= k',
i=0

Each Hadamard entry Ay ; can then be expressed as

ﬁn = I:Il ® I:I,,,l, where 1:11 e |:1 ! :| 5)

n—1
j=>_ji2" with, ki, j; € 0, 1).  (6)
i=0

hij = (_I)Zf’;ol kiji — (_l)modz(Z?;& liji) (7
In particular, mapping the (1, -1) to (0, 1), each Hadamard
entry can be derived by
n—1
hij = mody (D 1 ji). ®)
i=0
Such expression can be efficiently implemented in hardware,
through logic AND gates to perform /; j;, while the module-2

sum is derived by a logic XOR. Thus, the circuit implementa-
tion takes the row and column indexes k and j and computes
the Hadamard coefficient in the binary map (0, 1).

D. Dataset Details and Experimental Protocol

The iEEG.org portal contains several datasets of intracranial
EEG data which are manually annotated by expert clinicians.
The dataset /001-P034-DO01 has been used for the development
of this research [6], [21]. It consists of approximately 1 day,
8 hours and 10 minutes of recordings at 5 kHz, or approxi-
mately 6 x 108 samples of intracranial EEG data. In order to
reduce the dataset size, we use samples from the 12th and
13th seizures, and an equal number of samples before the
seizure onset, for training and testing, respectively. More in
details, we have used 207k samples before and after the seizure
for the training signal, while for the test set we have used
153k samples.

The training set of the dataset is used to learn the sampling
pattern for the LBCS approach and also to tune the variable
density parameters for the SHS method. Once the sampling
pattern is fixed, LBCS uses it to compress all the signal
windows in the test set. The reconstruction is then performed
with the linear decoder (3). For the randomized methods of
MCS, BERN and SHS, we draw 20 different sampling patterns
from the relative distributions for each signal window (with
length N = 256) in the test and reconstruct using the tree-
based HGL norm, which yields the best results [21].

IV. IMPLANTABLE ARCHITECTURE

The implantable chip architecture is described in this
Section. The SoC designed in this work consists of the analog
to digital converter, followed by the encoder which compresses
the sampled data, implementing the Learning-based CS algo-
rithm described in Section III-B. The compressed bit stream is
then serialized and wirelessly sent out by the RF transmitter.
The circuit can be powered wirelessly through an inductive
link between the implant and a power delivery unit.

A. Analog to Compressed Data Stream

The neural signal digitization is realized by a Successive
Approximation Analog to Digital Converter (SAR ADC).
In such ADC topology, just one comparator is required and
the design is based on a charge redistribution DAC, thus
this implementation results to be energy efficient. However,
the SAR ADC will require N + 1 comparison periods to
prepare the final decision. Hence, the SAR ADC is expected to
allow the lowest power dissipation, but also it is defined by a
moderate sampling rate. The ADC design results in a compact
and low-power implementation, which matches the stringent
area and power constraints of our implantable SoC. The SAR
ADC has 8 bit resolution and a sampling rate of 45 kHz,
in order to match the 5 kS/s rate of the input signal from
iEEG dataset. A compact ADC implementation is achieved
by a binary-weighted capacitive array, with attenuation capac-
itor [14]. Since the neural signal bandwidth is relatively low,
the compression computations are completed at the DSP,
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Fig. 3.  One channel block diagram showing the LBCS encoder and the
matrix sequence generation logic.

with the same frequency defined by the ADC. In particular,
the ADC requires 9 cycles to complete the digitization of the
input signal (at 5 kHz), thus running at 45 kHz. The DSP
core frequency runs at the same speed, performing the data
compression.

The Hadamard-based LBCS encoder block diagram is
depicted in Fig. 3, where is shown the input data path from
the Analog to Digital Converter (ADC), through the LBCS
Digital Signal Processor (DSP) to the encoded data transmitter.
The Finite State Machine (FSM) of the DSP drives the Had-
block and the main DSP core, where the encoding process is
executed. The Had-block generates the Hadamard bit streams
and replaces the SRAM used in previous implementation [6],
reducing the encoder area. The Had-block is mainly composed
by the Row-Index Look up Table (LuT), and the Hadamard
bit generator. The Row-Index LuT is meant to store the
learnt indices of the sub-sampling matrix Pgq, described in
subsection III-B. Assuming that only M rows of the full
Hadamard matrix H € RV*V have to be used to apply
the LBCS-based compression, then we can define a mapping
function w(k) =€ [0 N — 1], where k € [0 M — 1] is the
index of the output value, and we define A, ; = hy ), ;. Then,
the LuT implements such mapping function w (k).

The LuT coefficients, driven by the FSM, are sent to the
Hadamard-bit generator, which produces the transformation
entries /iy j, following the description in subsection III-C.
Fig. 4 shows the block diagram of the Hadamard bit gen-
erator, highlighting the logic gates used to generate the Ay ;
entries [24]. During a calibration phase, the learnt Hadamard
row indices, defined by the RowIDX input ({log(N) bit wide,
to code all the possible Hadamard matrix indexes) are loaded
in the LuT. As soon as the program enable (Pr_en) is active,
the initialization starts and the FSM programs the M indexes
into the LuT, following the RowIDX and the k signals used
to correctly address the register. The FSM also generates and
programs the enable and reset commands sent to the DSP,
to correctly synchronize the encoding procedure, and to reset
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the accumulator registers (Accum in Fig. 3) at the end of each
encoding window.

The encoder input signal x;, digitized by the ADC with
B; bit resolution, is summed or subtracted from the previous
accumulator register values, at each sampling instant j in the
sampling window of length N. The LBCS-DSP block performs
the embedded compression, defined as

N
=D hijxj, ke{l,... .M}, )
j=I
where hy ; is the (k, j)-entry of Ho = PoH; the Hadamard
matrix H (=W described in subsection III-B), requires a single
bit per entry, minimizing the computation costs in the transfor-
mation process. The encoder processing frequency is M times
faster than the input signal frequency, in order to update
each of the accumulator registers, where the transformation
coefficients are stored. As analysed in [6], a DSP that for
each sampling window performs the full-compression (with
no CS or learning-based CS) would require higher power and
area requirements. In particular, the area and power overhead
would be higher than CRx [6].

The previous Hadamard based LBCS implementation shown
in [6], has been designed for sampling window of 256 samples
(N = 256), with a fixed CR of 16x. In this work, we propose
the hardware implementation with an on-the-fly Hadamard
generation, with a sampling window length of N = 64 and
compression rate of CR = 8. The same dataset as in [6] has
been taken into account, to validate the proposed hardware
implementation. The N = 64 and CR = 8 combination allows
to get similar average reconstruction quality, while the LBCS
encoder frequency f; is halved, resulting in a lower power
consumption. Indeed, since M is defined as N/CR, the larger
is the number of the Hadamard rows M, the higher is the
core LBCS clock frequency, which might become a limiting
factor. On the other hand, a further reduction on the number
of samples N, would degrade the signal statistics over which
the learning approach is based on.
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Fig. 5. Variable CR block diagram, defined by the threshold level (Thr).

B. Variable Hadamard Compression

The simulation results shown in Fig. 6-(a), depict the
energy content of the N samples in the Hadamard domain,
for a particular sampling window. As described in Sec. III,
the Learning-based algorithm allows to define the coefficients
that, in average, have the most energy contribution. However,
depending on the signal evolution in the sampling window,
the coefficients defined by the learning process might have
a low energy content. This analysis is useful to define the
system’s trade-off and a variable compression rate, which
adapts from window to window, depending on the energy
levels defined by the neural signal evolution in time. On the
system level implementation, for a window length of N = 64,
a maximum compression rate of 8 has been defined, in order
to allow relatively high SNR after the signal reconstruction.
Since in the % = 8 Hadamard coefficients the energy might
be below a certain level, a threshold is also defined during the
learning process, in order to transmit only the most relevant
coefficients, enabling a dynamic compression. The dynamic
detection of the Hadamard coefficients results in an easy
hardware implementation, and allows a variable CR from
window to window. Fig. 5 shows the block diagram of the
variable CR implementation, depicting how, the energy content
of the coefficient value yg is transmitted or substituted with
a Bp bit stream by means of a multiplexer, mathematically
resumed as:

0, |vk| < Threshold

Yk, otherwise. (10)

/
Yk =

In such a design implementation, the SoC features a com-
pression which varies from CR = 8 to CR = 64, and allows
the TX to transmit fewer coefficients, thus drastically reducing
its power consumption. Fig. 6-(b) shows the trade-off between
the mean signal reconstruction SNR and the mean CR over the
whole dataset, as the threshold varies. In particular, Fig. 6-(c)
and Fig. 6-(d), show respectively the mean signal recovery
quality and the mean window compression rates, with respect
to the threshold levels. In particular, it is worth highlighting
how a relatively small threshold (e.g., below 100) allows to
reduce the number of coefficients transmitted (thus, higher CR
level), while the SNR is still relatively high (above 28 dB).
In particular, it is worth noticing that such SNR value is around
18 dB higher than the minimum SNR value that is acceptable
to successfully allow the seizure detection [14].

32
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Fig. 6. SNR analysis for adaptive approach.

C. Wireless Data Transmitter

Two different wireless transmitters are designed and imple-
mented with different data rates, operating frequency, and
transmission distance, in order to cover different applications.
The narrowband transmitter which operates in the MedRadio
band at 416 MHz is designed for low data rate and indoor com-
munication. The other transmitter is based on impulse-radio
ultra-wideband (IR-UWB) in the 3.1-10.6 GHz frequency
range and utilized for high data rate and very short distance
transmission. The two transmitters provide the flexibility of
sending compressed or raw data.

1) Narrowband Transmitter: The proposed on-off key-
ing (OOK) modulated narrowband transmitter is based on
the turning on and off a voltage controlled oscillator (VCO).
The VCO which is shown in Fig. 7 is composed of NMOS
and PMOS cross-coupled pairs and data is applied to the
bias current for modulation. Reuse of the current by PMOS
and NMOS pairs provides higher transconductance and higher
voltage swing on the inductor. For setting the resonance
frequency of the VCO, a bank of three capacitors are utilized
for discrete tuning and varactors are used for fine tuning.
An off-chip loop antenna is connected to the differential output
of the VCO to transmit the signal and create the required
inductance for LC tank [26].

2) Ultra-Wideband Transmitter: IR-UWB is a promising
technique based on transmission of short pulses and it is
very efficient for low range applications which requires high
data-rate. In 2002, the Federal Communications Commission
(FCC) approved and limited the maximum effective isotropic
radiated power (EIRP) to -41.3 dbm/MHz for bandwidth
between 3.1 and 10.6 GHz [27].

In this work, in addition to the narrowband transmitter,
we present a high data-rate, energy and area efficient, and low
complexity IR-UWB transmitter. Fig. 8 shows the schematic
block diagram of the IR-UWB transmitter. The small num-
ber of circuit elements make the design simpler and area
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Fig. 8. Schematic of the IR-UWB transmitter.

occupation minimal. The core of the transmitter is based on
the current starved ring oscillator (RO) which generates output
in the range of 3.5-4.5 GHz frequency. The control voltage
provides flexibility in selecting the oscillation frequency of
the ring oscillator by adjusting the bias current. The pulse
generator (PG) block creates short pulses at the rising edges
of the data signal. The output of the RO and PG is mixed
with cascode connected transistors. The drain of the transistor
driven by the RO is connected to external resonator circuit
formed by an inductor and a capacitor. Before the 50 Q UWB
antenna, a band-pass filter (BPF) centered at 4 GHz is used
in order to satisfy the FCC regulation. For the transmission
of the generated IR-UWB pulses, miniaturized, flexible and
polarization-diverse UWB antenna presented in [28] can be
adopted.

D. Wireless Power Transfer

To design an implantable system, wireless power trans-
fer (WPT) method is chosen since batteries increase the total

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS

TABLE 11
DESIGN PARAMETERS OF INDUCTIVE LINK COILS

External Coils Implanted Coils

Outer Inner Outer  Inner
Inner diameter (mm) 29 13 6.9 1.9
Outer diameter (mm) 43 24 13.5 5.5
Width & Spacing (mm) 1 0.5 0.3 0.2
Number of turns 4 6 6 5

weight and dimensions of device. Considering the required
power of the implant and the power transmission distance,
which is in the order of millimeters, an inductive link is
selected for power transmission. The losses due to remote
powering are a critical concern that can cause a temperature
elevation, which may damage the tissue. Hence, a power
efficient transmission link composed of 4-coils, an active half-
wave rectifier, and a low drop-out voltage regulator is designed
and represented in Fig. 9.

Different approaches are used for various applications, but
the average power consumptions of the implants are consid-
ered nearly constant in system parameters. However, in some
applications such as neural monitoring with a variable number
of active electrodes, the power consumption of the implant is
not always the same. Hence, the power efficiency of WPT
and the dimensions of the implanted coil become the major
limitations in designing the coils for remote powering. In the
fundamental approach with two coupled coils, there is a direct
relation between the delivered power to the load and the
efficiency. The variation in the load power requires an addi-
tional approach for keeping power transfer efficiency (PTE)
maximum for different activity rates. A modified version of
inductive link with 4-coil instead of 2-coil has been introduced
for 2 meters remote powering [29], and the structure was
adapted for implant powering applications [30]. The results
show a significant improvement in the efficiency. The low
coupling coefficient and the low quality factor of the coils in
2-coil link are compensated by the introduced two high quality
factor coils between them [31]. Moreover, the introduced coils
transform different load impedances to the optimal impedance
at the input of the inductive link and efficiency does not signif-
icantly change with load power. Therefore, a 4-coil inductive
link is implemented to take the advantage of high PTE and
tolerance for variable load power. The selected geometrical
parameters for 4-coil inductive link are represented in Table II.

The operation frequency of chosen 4-coil inductive link has
a significant impact on the PTE and safety of the implanted
system. Absorbed power by the tissue decreases the PTE
and creates a temperature increase in the surrounding. The
maximum temperature elevation is limited to 1 °C by the regu-
lations for body implants [32]. To comply with the regulations,
low MHz range (1-20 MHz) operation frequency is usually
chosen since the absorption of the cortical tissue is minimum
in this range [33]. In addition to the absorbed energy, the power
consumption of the implanted circuitry causes a temperature



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

APRILE et al.: ADAPTIVE LEARNING-BASED COMPRESSIVE SAMPLING FOR LOW-POWER WIRELESS IMPLANTS 9

A-coil Inductive Link | Active Half-Wave Rectifier LDO........
< |Pass transistori

| T #1{ & dynamic
i bulk biasing

T: .............. [

Signal Timing &
Generator Decision []Comparator
T T
Fig. 9. Block diagram of the proposed implanted electronics for wireless power transmission.

increase in the tissue. Another study shows the limits of
the maximum allowable power dissipations depending on
the power dissipation level, chip size, and location of the
implant [34]. In this work, the operation frequency of 8 MHz
is chosen to minimize the tissue absorption and implanted
system is designed for the low power consumption to limit
the temperature elevation.

The induced AC voltage by the 4-coil inductive link requires
to be rectified to a DC voltage. To achieve high conversion
efficiency, an active half-wave rectifier is selected at the price
of the losses in the comparison and decision blocks in Fig. 9.
In this study, the half-wave rectifier is designed based on the
work published in [35]. Pass transistor with dynamic bulk
biasing constitutes the core of the rectification. To prevent
the leakage from the capacitor to the input, the n-well of
the two PMOS transistors are dynamically biased. Hence,
the transistor conducts current only when the input voltage
is higher than the voltage at the accesses of the capacitor. The
comparator decides the condition of the PMOS pass transistor
by comparing the input voltage and the charged voltage on
the capacitance. Timing and control block applies the decision
given in the comparator with an optimum switching time
such that it is fast enough compared to operation frequency
and minimizes the switching power losses. The low drop-
out voltage regulator eliminates the ripples at the output of
the rectifier and generated clean voltage supply for the other
circuits in the implant. The capacitors at the output of the
rectifier and regulator are implemented externally.

V. MEASUREMENT RESULTS
The chip, fabricated in UMC 180 nm I1P6M MM/RF
process technology, has been packaged and bonded to a
dedicated PCB. A Xilinx development board, providing a
Virtex 5 FPGA [36], is linked to the PCB trough rigid headers,
as shown in Fig. 11. The board is used to set and program the
SoC blocks with a PC station.

A. Sampling and Data Compression

Each block of the SoC has been independently connected to
dedicated pads on the chip, in order to validate each design.

Fig. 10.
chip.

Layout (on the left) and micrograph (on the right) of the tested

Xilinx Develop Board

P ckaged ASIC

Fig. 11. Measurement setup, highlighting the FPGA and PCB link.

The analog input of ADC and the DSP digital bit streams
are connected to ESD protection circuits, to reduce any
possible damage due to electrostatic discharges during the
measurements.

As shown in Fig. 10-left, the ADC and the two encoder
versions (the variable CR on top and the non-variable version
on the right side of the ASIC) do not share the power-grids,
in order to separate the analog and digital domains. The
power-grid has been designed in a very dense manner, with
capacitors that surround the SoC blocks, stabilizing the VDD
to ground fluctuations. Fig. 10-right shows the micrograph of
the tested chip.
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Fig. 12.  Measured compressed values with low threshold (on the left) and
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The 8 bit resolution SAR-ADC with a sampling rate
of 45 kHz requires an area of 230um x 150um, with a power
consumption of 0.46 u'W. The low power requirements of the
ADC is mainly dictated by the medium resolution of 8 bits,
and the low sampling frequency of the neural signals.

A Verilog code, implemented on Xilinx ISE tool, has been
developed to program the encoder registers, to provide the
clock at 45 kHz to the SoC, and to send the input bit stream
to the encoders through the FPGA. The compressed data
sequences at the output of the DSPs are collected as input
to the FPGA, and analyzed with Xilinx ChipScope tool. The
measurement setup is shown in Fig. 11.

The measured compressed bit streams have been plotted
by an oscilloscope and are highlighted in Fig. 12. Both plots
have been generated with the variable CR encoder version,
in order to show, on the same plot, the dynamic generation
of the transformation coefficients, and the different outputs
due to low threshold (on Fig. 12 top-left) and high threshold
(on Fig. 12 top-right) settings. The reconstructed signal versus
the original data is plotted for 4 sampling windows, at the
bottom of Fig. 12.

Table IIT reports the numerical results of the recovered
signal, for the different compression methods discussed in this
work, with fixed compression rates. In particular, this table
shows how the LBCS-based signal recovery (the only method
which applies a learning-based compression technique)
performs better than Bernoulli [7], Multi-channel [14] or
Structured Hadamard Sampling [21]. The comparison of
reconstruction performance has been done considering
N = 256 and an ADC resolution B; = 10, for the iEEG
dataset described in Subsection III-D. Furthermore, the LBCS
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TABLE III

RECOVERY PERFORMANCE COMPARISON WITH
PUBLISHED WORK (N = 256, B; = 10)

Compression rate
Method g 6T o
LBCS 33.27 | 2848 | 23.27 | 18.06
SHS HGL 23.89 | 20.26 18.53 14.49
BERN HGL 20.49 16.87 13.53 11.15
MCS HGL 20.92 17.48 n.a. n.a.

Only LBCS approach applies a learning-based com-
pression scheme.

TABLE IV

RECOVERY PERFORMANCE SUMMARY FOR
THIS WORK (N = 64, B; = 8)

Compression rate®
Method ———T6 T 32 [ &
LBCS | 304 | 295 | 261 | 157

% Average compression rate over the whole
dataset.

TABLE V
COMPRESSION HARDWARE COMPARISON WITH PUBLISHED WORK

This

Parameter [71 [14] Work

Compression Method BERN MCS LBCS

Compression Rate 10 16 Variable CR from 64°to 8°

Technology [p«m CMOS] 0.09 0.18 0.18

. 1.9 17.83% 0.47
Compression Power [uW] | o'y | 12V at 0.8 V

Compression Area [mm?] 0.090 0.090 0.059

& Compression power cost over 16 channels.
b Average compression rate over the whole dataset.

signal recovery requires the linear decoder (3), which yields
the reconstructions at a fraction of the computational cost of
the other methods [6].

Since the actual hardware implementation of this work has
been developed with N = 64 and B; = §, Table IV summarizes
the recovery performances for the variable encoder design,
for different fixed energy thresholds (the reported CR are in
average over the whole dataset). For this reason, Table IV gives
an energy content based comparison, while Table III reports
a CR-based comparison.

The Learning-based compression algorithm with dynamic
generation of the transformation coefficients requires an area
of 230um x 330um. A comparable area of 230um x 365um
is required for the adaptive DSP design, which only consumes
0.47 W at 0.8 V. Table V reports the hardware comparison
with respect to other published works.

During the measurement, each subsystem has been tested
independently. The output data stream from the DSP has been
serialized in a shift register of size M x Bp, in a MSB
first order. The serialized data is then directly transmitted by
the RF block.

B. Wireless Power Transfer

The resonance frequency of each LC tank in the 4-coil
inductive link is fixed at 8 MHz. Power transfer efficiency
of 55% is obtained for the inductive link when the separation
between the coils and the load is 10 mm and 10 mW,
respectively. The performance of the rectifier and the regulator
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Fig. 13.  Spectrum of the LC cross-coupled voltage controlled oscillator.
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Fig. 14. Transient pulses of the IR-UWB transmitter at 250 Mpps.

is also characterized for 10 mW load and their efficiency reach
to 82% and 78%, respectively. As a result, wireless power
transmission beginning from the signal generator to implant
load is achieved at 36% efficiency.

C. Narrowband Transmitter

The VCO is supplied with internally generated 1.8 V and
the measured average power consumption during operation
is 248.4 u'W. Thanks to the discrete and fine tuning capacitors,
VCO covers the two MedRadio bands (401-406 MHz and
413-419 MHz). Fig. 13 shows the frequency spectrum of the
OOK transmitter with the highest data rate of 2 Mbps. During
the measurement of the spectrum, the distance between the
transmitter antenna and the receiver antenna (Taoglas Limited-
TI.10.0112), which was directly connected to the spectrum
analyzer, is fixed to 60 cm. A custom made OOK receiver
board based on discrete components is used to demodulate
the transmitted data.

D. Ultra-Wideband Transmitter

The proposed IR-UWB transmitter is fabricated and it
occupies a 60 um x 30 um area. Fig. 14 shows the measured
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Fig. 15. Power spectral density of the IR-UWB transmitter.

output waveform of the implemented IR-UWB transmitter
with 250 MHz pulse repetition rate. The maximum peak-to-
peak amplitude of the measured pulse is 111 mV while its
duration is 2.2 ns. Fig. 15 depicts the measured power spectral
density of the transmitter and FCC regulation. The triangular
envelope of the output waveform suppress the side-lobes and
measured spectrum fully meets the FCC mask. When the
pulse repetition frequency is 250 Mpps, the complete IR-UWB
transmitter consumes 11.3 mW power which corresponds to
45.2 pl/pulse. High throughput of the IR-UWB transmitter
makes it possible to buffer the raw data and transmit it in
several bursts.

VI. CONCLUSION

This work proposes a novel LBCS-based SoC for recording
neural signals in implantable devices. The proposed encoding
solution enables dynamic generation of the transformation
coefficients, allowing on-the-fly compression with faster and
improved off-line signal recovery than Random Bernoulli [7],
Multi-channel [14] or Structured Hadamard Sampling [21].
Moreover, a variable compression rate is achieved by energy
based threshold method. The proposed data compression
reduces the amount of bit stream transmitted wirelessly, thus
lowers the TX and implantable system’s power requirements.

In the proposed design, the threshold is set during the
off-line learning process. A further development of the current
chip implementation can include an on-chip calibration, which
sets the threshold level of the encoder in the implanted device.
Moreover, in the multichannel implementation, the design
should take into account the synchronization of the data from
the different electrodes.
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