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Abstract—Polar codes have received increasing attention in the
past decade, and have been selected for the next generation of
wireless communication standard. Most research on polar codes
has focused on codes constructed from a 2×2 polarization matrix,
called binary kernel: codes constructed from binary kernels have
code lengths that are bound to powers of 2. A few recent works
have proposed construction methods based on multiple kernels of
different dimensions, not only binary ones, allowing code lengths
different from powers of 2. In this work, we design and implement
the first multi-kernel successive cancellation polar code decoder
in literature. It can decode any code constructed with binary
and ternary kernels: the architecture, sized for a maximum code
length Nmax, is fully flexible in terms of code length, code rate
and kernel sequence. The decoder can achieve frequency of more
than 1 GHz in 65 nm CMOS technology, and a throughput of 615
Mb/s. The area occupation ranges between 0.11 mm2 for Nmax =
256 and 2.01 mm2 for Nmax = 4096. Implementation results
show an unprecedented degree of flexibility: with Nmax = 4096,
up to 55 code lengths can be decoded with the same hardware,
along with any kernel sequence and code rate.

Index Terms—polar codes, multi-kernel, successive-
cancellation decoding, hardware implementation.

I. INTRODUCTION

Polar codes are capacity-achieving error correcting codes,

characterized by a low-complexity encoding and decoding

process [1]. They have been chosen to be adopted in the

fifth generation of wireless communication standards (5G) [2],

that foresees a variety of scenarios. Thus, coding schemes

targeting low latency, low power, and high performance must

be devised. Error correction performance and decoding speed

are heavily influenced by the polar code block length, and the

different scenarios demand a wide range of code lengths.

The majority of current research is focused on polar codes

recursively constructed from a 2× 2 polarization matrix, also

called a binary kernel [1]. The code lengths of polar codes

constructed from binary kernels are bound to powers of 2.

This is a strong limitation, that is currently overcome with rate-

matching schemes [3], [4], whose performance and optimality

is hard to evaluate a priori. A few recent works have proposed

construction methods based on multiple kernels of different

dimensions [5]–[7]. Multi-kernel polar codes can have block

lengths different from powers of 2, at the cost of more complex

decoding algorithm update rules. In [6], it has been shown that
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multi-kernel codes can outperform codes of the same length

obtained through the application of state-of-the-art puncturing

and shortening schemes. At a frame error rate (FER) of almost

10−3, multi-kernel codes yield gains ranging from 0.1 dB to

1.1 dB.

Polar code decoder architectures in literature focus mainly

on design-time flexibility [8]–[10], with parametrized designs

that can be implemented to decode a particular code. Some de-

coders guarantee code-rate online flexibility [11]–[14]: while

the decoder can decode a single code length, any code rate is

supported with the same hardware. The decoder architectures

presented in [15], [16] target binary kernels only, and are

online flexible in terms of both code rate and code length.

However, a different decoding program must be stored for

every considered combination of code length and rate, leading

to huge area occupation. The unrolled architecture presented

in [17] can decode a small set of binary nested code lengths

and rates.

In this work, we consider multi-kernel polar codes con-

structed from binary and ternary (3 × 3) kernels, and we

propose a flexible decoder architecture. The presented design

can decode any code constructed from any combination of

binary and ternary kernels, up to a maximum code length

defined at design time, and any code rate. It is the first multi-

kernel decoder in literature, yielding an unmatched degree

of flexibility, with up to 55 supported code lengths in the

considered case study. Implementation results in 65 nm CMOS

technology show an achievable frequency of more that 1 GHz

and 615 Mbps coded throughput.

The remainder of the paper is organized as follows. In Sec-

tion II, we introduce polar codes construction and decoding,

while in Section III we show the error-correction performance

of some multi-kernel codes. Section IV details the proposed

decoder architecture, while implementation results are given

in V, together with a comparison with the state of the art.

Conclusions are drawn in Section VI.

II. PRELIMINARIES

A. Polar Codes

A polar code P(N,K) is a linear block code of length N
and rate K/N , that relies on a phenomenon called channel

polarization [1]. When N tends to infinite, the symmetric

capacity of each bit-channel tends towards either 0 or 1, thus

identifying very reliable and very unreliable channels.

Let us assume N = 2n, where n ≥ 1, and let u =
(u0, u1, . . . , uN−1) be the N -bit vector input to the encoder.

http://arxiv.org/abs/1802.00580v1


2

u0

u1

u2

u3

u4

u5

u6

u7

Stage 3 P3 Stage 2 P2 Stage 1 P1

x0

x1

x2

x3

x4

x5

x6

x7

Fig. 1: Tanner graph for a N = 8 polar code.
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Fig. 2: (a) Decoding tree for a P(8, 4) polar code and (b)

binary node message passing.

The K information bits are assigned to the K most reliable

channels of u, while the remaining N − K are fixed to a

known value (usually 0), and are known as frozen bits. The

ensemble of their indices is the frozen set F .

The encoding process can be represented through the linear

transformation x = uG, where G = T2
⊗n is the generator

matrix, expressed through the n-th Kronecker product of the

matrix T2. The matrix T2 is a binary polarization matrix, or

kernel, defined as follows:

T2 =

[

1 0
1 1

]

.

From the definition of G, the recursive nature of the encoding

process can be noticed: a polar code of length N can in fact be

obtained as the concatenation of two N/2 polar codes. Polar

code encoding can also be portrayed through a Tanner graph,

as shown in Fig. 1 for an N = 8 code. Each stage depicts

a Kronecker product, and the dashed boxes represent each

T2 operation. Between neighbouring stages permutations are

inserted, in which the bit-indices of the inputs are cyclically

rotated to the right by one place [1].

B. Successive Cancellation Decoding

In [1] a first successive cancellation (SC) decoding algo-

rithm has been proposed. It can be represented as a binary

search tree where all the nodes must be explored, with priority

being given to left branches. An example of a P(8, 4) polar

code SC decoding tree is shown in Fig. 2a: the leaf nodes

at stage s = 0 can be either information bits (dark gray) or

frozen bits (light gray).

Let us call y = (y0, y1, . . . , yN−1) the vector of logarithmic

likelihood ratios (LLRs) obtained at the channel output, and

û the estimated vector output by the decoder. The decoding

starts from the root node, and at each node information is

passed from parent to child according to the scheme shown

in Fig. 2b. The LLR value α is received and used to compute

αl, then βl is obtained and used to compute αr. Once βr is

available, β can be computed. Once a leaf node is reached,

the value of ûi is estimated. If index i ∈ F , its value is set

to 0, otherwise a hard decision on the sign of α is performed.

Calling Ns the length of the polar code at stage s, we can

define ∀i ∈
(

0, 1, ..., Ns

2 − 1
)

:

αl
i = 2 arctanh

(

tanh
αi

2
· tanh

αi+Ns
2

2

)

≃ ϕ (αi)ϕ
(

αi+Ns
2

)

min
(

|αi| ,
∣

∣

∣
αi+Ns

2

∣

∣

∣

)

, (1)

αr
i =

(

1− 2βl
i

)

αi + αi+Ns
2

, (2)

[

βi, βi+Ns
2

]

=
[

βl
i ⊕ βr

i , β
r
i

]

, (3)

where ⊕ represents the XOR operation and ϕ() is a function

returning the sign of the argument. In (1), both the exact and

the approximate (hardware-friendly) computation, proposed in

[8], are shown. At leaf nodes, β is initialized as ûi (4), where

i is the index identifying the current leaf node.

ûi =

{

0 if α ≥ 0 or i ∈ F

1 otherwise
(4)

C. Multi-kernel construction

In [6] a generalized construction method for polar codes has

been presented: together with T2, larger kernels have been

investigated. Thus, the matrix G is composed of a series of

Kronecker products between kernels of different sizes. Ternary

kernels, i.e. kernels of dimensions 3×3, have been considered

in [6], where the proposed polarization matrix is

T3 =





1 1 1
1 0 1
0 1 1



 .

Fig. 3 portrays the Tanner graph for an N = 12 code

constructed with a kernel sequence T2 ⊗T3 ⊗T2. As in the

binary case, inter-stage permutations are required to reshuffle

indices. For each stage i > 1, the permutation matrix Pi can

be found as

Pi = (Qi|Qi+Ni+1|Qi+2Ni+1| . . . |Qi+(N/Ni+1)Ni+1) ,

where Qi is the so-called canonical permutation introduced in

[6], Ni =
∏i−1

j=1 nj , and nj × nj are the dimensions of the

j-th kernel of the Kronecker product. Finally, P1 is computed

in order to re-align output indices with those relative to the

encoder input, considering all the previous permutations.

Fig.4a shows the SC decoding tree for the same code,

and the message passing criterion in case of ternary nodes

is shown in Fig. 4b. Defining (1) as f b, (2) as gb, and (3)

as combb, for a ternary node at stage s the decoding rules

∀i ∈
(

0, 1, ..., Ns

3 − 1
)

are:
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Fig. 3: Tanner graph for a N = 12 polar code.
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Fig. 4: (a) Decoding tree for a P(12, 6) polar code and (b)

ternary node message passing.

αl
i = 2 arctanh

(

tanh
αi

2
· tanh

αi+Ns
3

2
· tanh

αi+ 2Ns
3

2

)

≃ ϕ (αi)ϕ
(

αi+Ns
3

)

ϕ
(

αi+ 2Ns
3

)

·

·min
(

|αi| ,
∣

∣

∣
αi+Ns

3

∣

∣

∣
,
∣

∣

∣
αi+ 2Ns

3

∣

∣

∣

)

(5)

αc
i =

(

1− 2βl
i

)

αi + f b
(

αi+Ns
3

, αi+ 2Ns
3

)

, (6)

αr
i =

(

1− 2βl
i

)

αi+Ns
3

+
(

1− 2βl
i ⊕ βc

i

)

αi+ 2Ns
3

, (7)

[

βi, βi+Ns
3

, βi+ 2Ns
3

]

=
[

βl
i ⊕ βc

i , β
l
i ⊕ βr

i , β
l
i ⊕ βc

i ⊕ βr
i

]

.

(8)

Similarly to the binary kernel case, we define (5), (6), (7) and

(8) as f t, gt1, gt2 and combt respectively.

III. MULTI-KERNEL CODES

The multi-kernel code construction method proposed in

[6] yields substantial error-correction performance gain with

respect to puncturing and shortening schemes. Table I reports

such gain when two multi-kernel codes are compared to codes

obtained with the puncturing method in [18] and the shortening

method in [19], for SC decoding and list SC (SCL) [20] with
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Fig. 5: Error-correction performance of binary-ternary mixed

polar codes.

a list size of 8. Depending on the target FER, the gain ranges

from 0.1 to 1.1 dB.

Using the construction method described in [6], multi-kernel

codes have been constructed. Their error-correction perfor-

mance has been simulated through a binary-input additive

white Gaussian noise (AWGN) channel with binary phase-shift

keying modulation. The bit error rate (BER) and FER curves

are shown in Fig. 5, obtained with SC decoding and LLRs

represented in double-precision floating-point format. As dis-

cussed in [6], [7], the Kronecker product is not commutative,

and different kernel orders will results in different codes.

However, there is currently no theoretical way to identify

the best kernel multiplication order: thus, the different kernel

orders need to be simulated to identify the one that gives

the best error-correction performance. In the remainder of our

work, we considered the following codes and kernel orders,

obtained with the method described in [7]:
• P(48, 24) with G = T3 ⊗T2 ⊗T2 ⊗T2 ⊗T2

• P(96, 48) with G = T2 ⊗T2 ⊗T2 ⊗T3 ⊗T2 ⊗T2

• P(192, 96) with G = T3 ⊗T2 ⊗T2 ⊗T2 ⊗T2 ⊗T2 ⊗T2

• P(384, 192) with G = T3 ⊗T2 ⊗T2 ⊗T2 ⊗T2 ⊗T2 ⊗T2⊗

⊗T2

• P(768, 384) with G = T2 ⊗T2 ⊗T3 ⊗T2 ⊗T2 ⊗T2 ⊗T2⊗

⊗T2 ⊗T2

• P(1536, 768) with G = T3 ⊗T2 ⊗T2 ⊗T2 ⊗T2 ⊗T2⊗

⊗T2 ⊗T2 ⊗T2

IV. DECODER ARCHITECTURE

We propose a multi-code semi-parallel SC decoder which

supports purely-binary, purely-ternary and binary-ternary

mixed construction polar codes. The architecture is sized with

a maximum code length Nmax, and can support any code

length N ≥ 2 that can be expressed as a combination of binary

and ternary kernels, and any code rate. For mixed polar codes,

the architecture can decode codes constructed with any kernel

order, without knowledge of the code structure at design time.

The overall decoder architecture is shown in Figure 6. It

relies on P processing elements (PEs) implementing (1)-(8),
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TABLE I: Coding gain for multi-kernel codes with respect to

shortening and puncturing schemes.

N = 72

SC SCL

FER 10−2 4 · 10−3 10−2 2 · 10−3

[6] VS puncturing [18] 0.20 dB 0.45 dB 0.20 dB 0.25 dB

[6] VS shortening [19] 0.45 dB 0.70 dB 0.65 dB 1.10 dB

N = 48

SC SCL

FER 10−2 2 · 10−3 10−2 2 · 10−3

[6] VS puncturing [18] 0.10 dB 0.25 dB 0.35 dB 0.50 dB

[6] VS shortening [19] 0.15 dB 0.35 dB 0.75 dB 0.80 dB
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Fig. 6: Datapath of the implemented architecture.

and dedicated memories for channel and internal LLRs, β
values and candidate codeword. Both channel and internal

LLRs are represented on Q bits, Qf of which are assigned

to the fractional part.

Together with the code length, the decoder receives as inputs

the following parameters:

• information about binary and ternary stages;

• memory address offsets for both LLRs and β values,

relative to the current code length;

• number of steps required by each stage to process all

inputs given the number P of PEs. This is due to the

fact that the decoder has a semi-parallel architecture and,

for stages where Ns > 2P , the number of PEs is not

sufficient to elaborate all data in a single clock cycle.

In order to simplify and reduce both memory accesses and

routing, the architecture has been designed for bit-reversed

polar codes [8]. This approach allows to dramatically simplify

the memory accesses.

A. Data flow

The channel output y is initially stored in the Channel LLR

RAM, while the frozen set F and the code parameters listed in

the previous section are uploaded to their dedicated memories,

respectively the Frozen Pattern RAM and a set of registers. For

operations involving soft values, the Processing Unit receives

as input either the channel or the internal LLRs, according to

the current stage of the decoding tree. For comb operations

(3)-(8), data read from the Internal β RAM are used. Results

are stored either in the Internal LLR RAM or in the Internal β
RAM, according to the performed operation. When a leaf node

is reached and a hard decision (HD) is performed to decide

the value of a bit (4), the result is stored in the Codeword

RAM. The decoding phase ends when the bit associated to the

rightmost leaf node is estimated: the decoded codeword û is

thus output.

B. Processing Unit

The Processing Unit (PU) is the computational core of the

decoder, where all the operations are performed: f b (1), gb (2),

combb (3), f t (5), gt1 (6), gt2 (7) and combt (8). It contains

P processing elements (PEs) and P combine blocks (CBs)

organized as follows:

•
2
3P = P b/t binary-ternary mixed PEs, each of them

able to compute any f or g operations, both binary and

ternary;

•
1
3P binary PEs, which support only f b and gb;

•
2
3P = P b/t binary-ternary mixed CBs which perform

both combb and combt;
•

1
3P binary CBs, which support only combb.

Since it has been observed that between binary and ternary

operations there are common computations, mixed PEs are

used to increase resource sharing, at the cost of a multiplexing

operation; additional purely-binary PEs are used to align the

number of used inputs both for binary and ternary operations.

Thus the maximum number of elaborated soft inputs is fixed

to 2P = 3P b/t, while the results are either P or P b/t

LLRs: in fact it can be noticed that the number of operations

simultaneously performed is P in the binary case and P b/t in

the ternary one. For binary operations each i-th PE elaborates

the 2i-th and (2i + 1)-th LLR inputs, while for ternary ones

each i-th mixed PE uses LLRs corresponding to indices 3i,
3i + 1 and 3i + 2. The same holds for CBs. From the last

considerations P must be a multiple of 3; an example of PU

with P = 3 is shown in Fig. 7.

Although there are situations in which not all PEs are

performing useful computations, 2P inputs are nevertheless

elaborated and stored in the corresponding memory. Unnec-

essary data are subsequently ignored in the final estimation:

this happens for stages s where Ns is not a multiple of

2P . The impact of two different LLR representations on the

implementation cost of the PU has been evaluated: we have

in fact designed PEs with both 2’s complement and sign

and magnitude representations. FPGA synthesis results have

shown that the sign and magnitude binary PE has 14% lower

resource requirements and 20% shorter critical path than the

2’s complement one, while the sign and magnitude mixed PE

has similar resource requirements and 23% shorter critical path

than the 2’s complement one. Thus, all LLRs in the proposed

decoder are represented with sign and magnitude.

1) Binary Processing Elements: The architecture of binary

PEs is the one proposed in [8]. Let us call αa and αb the input
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Fig. 7: Example of Processing Unit with P = 3.

LLRs. For the hardware-friendly version of f b (1) operation

the result computation is straightforward:

ϕ(αb
f ) = ϕ(αa)⊕ ϕ(αb) , (9)

|αb
f | = min(|αa|, |αb|) , (10)

where αb
f is the f b operation result. Analyzing the complete

truth table both for sign ϕ(αb
g) and magnitude |αb

g| of gb (2),

its resulting equations are:

ϕ(αb
g) = γab · ϕ(αb) + γab · (u0 ⊕ ϕ(αa)) , (11)

|αb
g| = max(|αa|, |αb|) + (−1)χmin(|αa|, |αb|) , (12)

where

γab =

{

1 if |αa| > |αb| ,

0 otherwise ,
(13)

χ = u0 ⊕ ϕ(αa)⊕ ϕ(αb) . (14)

This architecture is shown in Figure 8 . Adders and subtrac-

tors saturate their result if outside the available range.

2) Binary-ternary mixed Processing Elements: An analysis

analogous to the binary case has been conducted on f t (5), gt1
(6) and gt2 (7). The resulting equations are the following:

ϕ(αt
f ) = ϕ(αa)⊕ ϕ(αb)⊕ ϕ(αc) , (15)

|αt
f | = min(|αa|, |αb|, |αc|) , (16)

-

|ab|

|aa|

-

|aa|

|ab|

+

|aa|

|ab|

1

0

|aa|
|ab|

0

1
1

0

1
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MSB

φ(aa)
u0

φ(ab) φ(af
b)

1

0

φ(ag
b)

sel

|af
b|

|ag
b|

Fig. 8: Datapath of a binary PE.

ϕ(αt
g1 ) = γg1 · (ϕ(αb)⊕ϕ(αc)) + γg1 · (u0 ⊕ϕ(αa)) , (17)

|αt
g1 | = max(|αa|,min(|αb|, |αc|))+

+ (−1)χg1 min(|αa|,min(|αb|, αc|)) , (18)

ϕ(αt
g2 ) = γg2 · (u0⊕u1⊕ϕ(αc)) + γg2 · (u0⊕ϕ(αb)) , (19)

|αt
g2 | = max(|αb|, |αc|) + (−1)χg2 min(|αb|, |αc|) , (20)

where

γg1 =

{

1 if |αa| > min(|αb|, |αc|)

0 otherwise
, (21)

χg1 = u0 ⊕ ϕ(αa)⊕ ϕ(αb)⊕ ϕ(αc) , (22)

γg2 =

{

1 if |αb| > |αc|

0 otherwise
, (23)

χg2 = u1 ⊕ ϕ(αb)⊕ ϕ(αc) . (24)

The circuit implementing these operations is shown in

Figure 9, where again adders and subtractors can saturate the

result. The M block is a combination of pruned multiplexers

selecting the minimum absolute value according to the already

computed selection signals, which correspond to the most

significant bits of the output of the subtractors.

Mixed PEs perform both binary and ternary operations, and

need to select their input accordingly. Thus, LLR multiplexing

logic is inserted at their input. This logic consists of two Q-bit

multiplexers for each mixed PE.

3) Combine blocks: Both binary and binary-ternary mixed

CBs are composed of XOR gates implementing combb and

(combb)sel + (combt)sel respectively, where sel is the bi-

nary/ternary selector.
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Fig. 9: Datapath of a binary-ternary mixed PE.

C. Memory system

While efficient in terms of resource usage, register-based

approaches like [11] lead to excessive area occupation. Thus,

this design foresees the usage of SRAM banks. The width of

these memories is different from that of memories in a purely-

binary decoder design, since they have to accommodate ternary

operations and their concurrent input and output volume. Addi-

tionally, for Internal LLR RAM a three-bank solution has been

implemented, since ternary-kernel functions are supported: for

purely-binary decoders two banks would have been sufficient.

1) Channel LLR RAM: This memory stores the LLRs

coming from the channel. Each memory word is 2P ·Q long,

since for each operation involving LLRs 2P of them are

required by the PU. Its depth is DLLRch =
⌈

Nmax

2P

⌉

. This

memory uses two separate ports, one for reading and one for

writing.

2) Internal LLR RAM: It contains the partial results of f
and g operations. Similarly to the Channel LLR RAM, the

parallelism must be 2P · Q. The computation of the depth

DLLR int takes into account that for each decoding stage only

one LLR vector must be stored: once the node which took

as input the computed LLR has generated its output β, that

soft value will be no longer used and can be overwritten. In

addition, for stage s = 0 it is not needed to memorize the

result since the hard decision is performed in the same clock

cycle.

The memory depth is computed as:

DLLR int =

log
2
(Nmax)−1
∑

s=1

⌈

Nmax

2s · 2P

⌉

.

Also for this memory two separate ports for reading and

writing are required.

It is possible to rearrange the Internal LLR RAM with

a bank structure. However, due to the variable number of

data that needs to be written, depending on the stage being

binary or ternary, four banks with two different widths should

be implemented. This would incur significant control and

addressing overhead, with no tangible advantage with respect

to the proposed structure. More details on the handling of

different result sizes are given in Section IV-D.

3) Internal β RAM: This memory stores all β values

computed inside the decoding tree; it is organized in three

banks, which share the same input writing bus:

• BANK0 for β0: it is equal to βl in both binary and ternary

cases;

• BANK1 for β1: it is equal to βr for binary stages, while

for ternary ones it represents βc;

• BANK2 for β2: it corresponds to the ternary stages βr.

The bank organization is fundamental for parallel data

reading in gt2, combb and combt operations. Each bank has

a width of 2P since results of comb operations are on 2P
bits, while their depths Dβ int are equal to:

Dβ int =

log
2
(Nmax)−1
∑

s=0

⌈

Nmax

2s · 2P

⌉

.

4) Codeword RAM: It is used to store the decoder output û,

composed by the HDs performed at the leaf nodes. Its width

Wcod is a design choice independent from all other parameters,

while the depth is

Dcod =

⌈

Nmax

Wcod

⌉

.

5) Frozen Pattern RAM: It stores the frozen set, where each

of Nmax bits identifies if the corresponding bit-channel is

frozen or not. The memory width Wfrozen is an independent

design choice, while the depth can be expressed as

Dfrozen =

⌈

Nmax

Wfrozen

⌉

.

Table II reports the breakdown of the memory requirements

for the proposed decoder with various Nmax, P and Q
combinations. To correctly evaluate the memory overhead

brought by the multi-kernel approach, the memory sizes for

purely binary polar decoders with similar parameters have

been detailed as well. It can be seen that most of the additional

memory bits can be found in the internal β memory.

D. Memory interfaces

Two interfacing modules are required to adapt the inherent

parallelism of the memories to that of the PU.

1) Internal LLR memory interface: Fig. 10 shows the inter-

face circuit. It is tasked with choosing, during write operations,

which part of the memorized word has to be overwritten. In

fact, the results of f and g operations are P or P b/t LLR, for

binary and ternary cases respectively, while the width of the

LLR memories is 2P = 3P b/t. Each memory location takes

two or three clock cycles to be overwritten with useful data.

So, at tree stages where Ns > 2P and the PU takes more

than one clock cycle to process them, the following steps are

performed:

• For binary stages:
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TABLE II: Memory requirements for various decoder parame-

ters, considering both a multi-kernel (MK) and a purely binary

(PB) approach.

MK PB MK PB MK PB

Nmax 4096 4096 1024 1024 256 256

P 120 128 60 64 18 16

Q 7 7 6 6 5 5

[bit] [bit] [bit] [bit] [bit] [bit]

Channel LLR RAM 30240 28672 6480 6144 1440 1280

Internal LLR RAM 43680 39424 11520 9984 1980 1760

Internal β RAM 31680 19456 9000 5376 2052 1216

Codeword RAM 4096 4096 1024 1024 256 256

Frozen Pattern RAM 4096 4096 1024 1024 256 256

Total 113792 95744 29048 23552 5984 4768

LLR bin out

LLR Bypass
Register output

”0”

2PQ

2PQ

2PQ

LLR tern out
”0”

”0”

PQ

P b/tQ

2P b/tQ

PQ

P b/tQ

PQ

2P b/tQ

P b/t

2PQ

Fig. 10: Internal LLR RAM interface circuit.

1) The 2i-th operation result (P LLRs) is stored in the

memory together with QP b appended zeros;

2) The (2i+1)-th operation result is stored after the P
most significant bits of the previously written word,

so that the padding zeros are overwritten and the

new stored word contains the P results of both the

2i-th and (2i+ 1)-th operations.

• For ternary stages:

1) The 3i-th operation result (P b/t LLRs) is stored in

the memory together with 2QP b/t appended zeros.

2) The (3i + 1)-th operation result is stored after the

QP b/t most significant bits of the previously written

word. The new word contains the P b/t results of

both the 3i-th and (3i+ 1)-th operations;

3) The (3i + 2)-th operation result is stored after

the previously written 2QP b/t bits, completing the

3P b/t = 2P LLR word.

To overwrite only parts of the previously written word, the

bypass buffer output is used. When Ns ≤ 2P , the results are

stored in the first part of the word as usual; the remaining bits

are not considered in subsequent operations.

2) β memory interface: Figure 11 shows the interface

architecture. It is used both for reading and writing from the

Internal β RAM:

• Reading: operations involving β values need either P or

P b/t bits per bank as input, while each word is composed

of 2P bits. Thus, the relevant word parts are selected

according to the actual number of elaborated LLRs for

that node.

Internal β RAM

β buffer out 2P

r_data_0

2P

P P b/t

”0”
P − P b/t

β0

P

r_data_1

2P

P P b/t

”0”
P − P b/t

β1

P

r_data_3

2P

β2

P b/t

βbin
out β

tern
out HD

frozen bit2P 2P

codeword
mem w data

”0”

2P -1

w_data

2P

PU

Fig. 11: β memory interface circuit, where r_data_0,

r_data_1 and r_data_2 are the outputs of bank0,

bank1 and bank2 respectively.

• Writing: the data is selected between the CB results and

the HD for the leaf nodes.

E. Bypass registers

Two bypass registers must be used since the memory system

is RAM-based and, if a result is computed and ready to be

stored at the j-th clock cycle, it can be correctly read only from

the (j + 2)-th cycle onwards, to avoid incurring conflicts. So,

for all the nodes at stage s ≤ log2 2P , bypass registers allow

reading newly computed data already at the following clock

cycle. A 2QP -bit register is used for the Internal LLR RAM,

while a second 2P -bit register is necessary for the Internal β
RAM.

F. Control Unit

The Control Unit provides all the memory addresses to

the memories and control signals to the datapath. It has

been designed as several hierarchically controlled finite state

machines. The decoding process follows the same approach

of the tree exploration by means of different counters, which

keep track of the status and of the number of visited leafs.

The decoding process ends when a number of leafs equal to

the code length has been visited.

G. Multi-code support

Memories are sized for a maximum code length Nmax, but

any code length N ≤ Nmax, with N a multiple of 2 or 3
is supported. Memory requirements are upper bounded by the

largest combination of T2 kernels leading to Nmax, since a

higher number of stages are present in the decoding tree than

in a mixed-kernel polar code with similar code length. The

input code parameters allow to know when the leaf node stage

is reached, and thus when the tree ascension has to start. The

status counter in the CU uses foreknowledge of the number

of kernels and their dimension to schedule the right operation

at each stage: thus, any code rate and kernel order can be

decoded without any change to the hardware. The total amount

of bits required to store the code parameters for a code of

length N is ⌈log2 N⌉ + sm
(

2 + 2
⌈

log2
N
2P

⌉)

, where sm is

the number of kernel composing the code. The PU has been

designed independently of the code length.
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Fig. 12: Error-correction performance of a P(4096, 2048) with

various Q and Qf values.

V. IMPLEMENTATION RESULTS

The decoder architecture illustrated in the previous Section

has been described in VHDL, verified with ModelSim, and

synthesized with Cadence RTL Compiler on TSMC 65nm

CMOS technology node.

The choice of the number of LLR quantization bits Q
influences a substantial part of the computational hardware and

memory width. In Figure 12 the error-correcting performance

of a P(4096, 2048) polar code is shown: between Q = 7
and Q = 8 curves there is not a significant difference, while

choosing Q = 6 leads to larger error figures with respect to

floating point precision. Although the number of fractional bits

Qf does not influence the hardware architecture, a high Qf

requires a higher Q. In Figure 12 we can notice that Qf = 3
yields only minor FER degradation. Thus, for Nmax = 4096
we chose Q = 7 and Qf = 3. Similar studies were performed

in case of Nmax = 1024 and Nmax = 256, leading to Q = 6,

Qf = 3 in the first case and to Q = 5, Qf = 2 in the second.

Table III reports synthesis results for three sets of decoder

parameters. Along with the parameters, the number of sup-

ported code lengths N and the maximum achievable frequency

fmax are shown. All implementations can run at more than one

GHz. The Areg is the area occupation when all memories are

synthesized as registers, while in ARAM all the memories are

implemented as SRAM. For both estimations the logic and

memory cells area percentages are shown.

The latency of the decoding phase depends on the number P
of PEs, on the number of kernels sm, on the kernels dimension

and their order.

The decoding latency, measured in clock cycles (CCs) can

be computed as:

L =

sm
∑

s=1

⌈

Ns

2P

⌉(

(ns + 1)
N

Ns
− 1

)

. (25)

In Table IV some polar code timing performance are shown,

where L is the decoding latency, f is the achievable frequency,

TABLE III: ASIC implementation results for TSMC 65nm

CMOS technology, with number of supported code lengths

N , maximum frequency fmax, register-based area occupation

Areg and RAM-based area occupation ARAM.

Nmax 4096 1024 256

P 120 60 18

Q 7 6 5

N 55 40 27

fmax [GHz] 1.06 1.11 1.23

Areg [mm2] 2.63 0.62 0.14

Combinational [%] 45.0 38.9 40.3

Sequential [%] 55.0 61.1 59.7

ARAM [mm2] 2.01 0.46 0.11

Combinational [%] 58.9 56.7 55.2

Registers [%] 28.6 28.9 31.2

RAM [%] 12.5 14.4 13.6

TABLE IV: Latency L and coded throughput T of various

polar codes with three different decoder implementations.

CODE DECODER L f T T

PARAMETERS PARAMETERS [CCs] [GHz] [bpc] [Mbps]

{2,3,2,2,2,3,3,3,3} Nmax = 4096
7965 1.06 0.49 519.4

N = 3888 P=120 Q=7

{2,3,3,2,3,3,3,3} Nmax = 4096
5953 1.06 0.49 519.4

N = 2916 P=120 Q=7

{2,2,2,2,2,2,3,3,3} Nmax = 4096
3548 1.06 0.49 519.4

N = 1728 P=120 Q=7

{3,2,2,2,2,2,2,2,2,2} Nmax = 4096
4663 1.06 0.33 350.6

N = 1536 P=120 Q=7

{2,2,3,2,2,2,2,2,2} Nmax = 1024
2326 1.11 0.33 366.5

N = 768 P=60 Q=6

{2,2,2,2,2,2,3,3} Nmax = 1024
1234 1.11 0.47 521.7

N = 576 P=60 Q=6

{3,2,2,2,2,2,2,2} Nmax = 1024
1156 1.11 0.33 368.7

N = 384 P=60 Q=6

{2,2,3,3,3,3} Nmax = 1024
652 1.11 0.50 555.0

N = 324 P=60 Q=6

{3,3,3,3,3} Nmax = 256
519 1.23 0.47 578.1

N = 243 P=18 Q=5

{3,2,2,2,2,2,2} Nmax = 256
587 1.23 0.32 402.3

N = 192 P=18 Q=5

{2,2,2,3,2,2} Nmax = 256
272 1.23 0.35 434.1

N = 96 P=18 Q=5

{3,3,3,3} Nmax = 256
162 1.23 0.50 615.0

N = 81 P=18 Q=5

{3,2,2,2,2} Nmax = 256
137 1.23 0.35 430.9

N = 48 P=18 Q=5

and T the coded throughput. They consider a wide range of

code parameters over three different decoder implementations.

Since the kernel order impacts the decoding latency, dimension

of each kernel has been reported, from left to right as in the

Kronecker product. It is possible to see that the achievable

frequency is consistently above 1 GHz, and that the coded

throughput ranges from 350 to 615 Mbps.

In Table V the implementation results of the proposed

decoder have been compared to rate-flexible purely binary

decoders in the state of the art, since to the best of our
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knowledge this is the first multi-kernel decoder in literature.

All decoders have been implemented with 65 nm CMOS

technology, and target a code with N = 1024, that for

our work corresponds to Nmax as well. Both in [8] and

[10] semi-parallel architectures are proposed, supporting the

SC algorithm and a single fixed code length. The reported

results for [10] refer to their best devised architecture, called

folded high performance partial sum network. It limits the

number of processing elements by folding highly parallel

operations and performing them in several clock cycles, thus

increasing hardware utilization. Observing the bit-per-cycle

(bpc) throughput in Table V, it can be noticed that both [8]

and [10] outperform the proposed decoder for the considered

purely binary codes. The reason can be found in the additional

clock cycles required for comb operations in our architecture:

since different kernel orders are supported, the sequence of

(3) and (8) is not always the same. Thus, it is not possible to

hardwire an XOR tree to compute the comb at all stages in one

clock cycle, like in decoders supporting only binary kernels:

separate clock cycles are spent to perform the comb operations

according to the correct kernel order. On the other hand, [8]

and [10] consider only binary kernels and, implementing a tree

of comb operations and eventually selecting a partial result, β
values are computed in the same clock cycle immediately after

the g. This is not affecting the critical path in a significant way

since only few XOR gates are added. As shown in Table IV,

codes constructed with higher-dimension kernels yield a higher

throughput. When decoding a ternary node, due to the higher

utilization factor of the PEs and the higher number of useful

computations in each clock cycle, the number of clock cycles

needed to decode a codeword is lower. Moreover, latency-

reduction techniques like the ones presented in [9], [21] can

be easily adapted to the proposed architecture.

The proposed decoder yields a higher area occupation than

both [8] and [10]. This is mainly due to the higher quantization

parameter Q and to the support to ternary functions. Mixed

PEs require ×2.57 LUTs on FPGA and ×2.10 area occupation

with respect to the purely binary ones. However, our decoder is

completely code-length flexible and supports multiple kernel

sizes, any code rate and any kernel order. Moreover, it can

achieve the highest frequency among the considered works,

and a higher throughput in Mbps than [8].

Semi-parallel SC-based decoders in literature, while sup-

porting only binary kernels and often being designed targeting

a single code, share the basic multi-PE structure of our work.

For the sake of completeness, in Table V we consider also [13]

and [17]. These architectures are very different from semi-

parallel decoders, but guarantee a certain degree of flexibility.

The decoder in [17] can decode a fixed set of combinations of

code lengths and code rates, while the architecture proposed

in [13] is rate-flexible. Both architectures are able to achieve

a higher throughput than the proposed decoder, at the cost of

larger area occupation and a lower degree of flexibility.

VI. CONCLUSION

In this work, we have proposed the first polar code decoder

architecture supporting kernels of different sizes. It imple-

ments the successive cancellation algorithm, and can support

TABLE V: Comparison with the state of the art, N = 1024
polar codes, coded throughput T , area A.

DECODER P Q
f T T A

[GHz] [bpc] [mm2]

This work 60 6 1.11 0.33 361.98 Mbps 0.46

[8] 64 5 0.50 0.49 246.10 Mbps 0.31

[10] 64 5 1.01 0.49 497.28 Mbps 0.07

[13] – 5 0.0025 1418 3.54 Gbps 1.68

[17] – 5 0.65 39.4 25.60 Gbps 1.44

any code rate, any sequence of binary and ternary kernels

and any code length N ≤ Nmax that can be expressed as

a combination of binary and ternary kernels. The decoder

can achieve a frequency of more than a GHz in 65 nm

CMOS technology, and a throughput of 615 Mb/s. The area

occupation ranges between 0.11 mm2 for Nmax = 256 and

2.01 mm2 for Nmax = 4096. Implementation results show an

unprecedented degree of flexibility: with Nmax = 4096, up

to 55 code lengths can be decoded with the same hardware,

along with any kernel sequence and code rate.
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