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Supporting the Momentum Training
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Abstract— Despite the increasing popularity of deep neural
networks (DNNs), they cannot be trained efficiently on existing
platforms, and efforts have thus been devoted to designing
dedicated hardware for DNNs. In our recent work, we have
provided direct support for the stochastic gradient descent (SGD)
training algorithm by constructing the basic element of neural
networks, the synapse, using emerging technologies, namely
memristors. Due to the limited performance of SGD, optimization
algorithms are commonly employed in DNN training. Therefore,
DNN accelerators that only support SGD might not meet DNN
training requirements. In this paper, we present a memristor-
based synapse that supports the commonly used momentum
algorithm. Momentum significantly improves the convergence of
SGD and facilitates the DNN training stage. We propose two
design approaches to support momentum: 1) a hardware friendly
modification of the momentum algorithm using memory external
to the synapse structure, and 2) updating each synapse with a
built-in memory. Our simulations show that the proposed DNN
training solutions are as accurate as training on a GPU platform
while speeding up the performance by 886× and decreasing
energy consumption by 7×, on average.

Index Terms— Memristor, deep neural networks, training,
momentum, synapse, stochastic gradient descent, hardware,
VTEAM.

I. INTRODUCTION

ARTIFICIAL Neural Networks, and especially Deep
Neural Networks (DNNs) and Convolutional Neural

Networks (CNN), achieve state-of-the-art results for differ-
ent tasks. Therefore, these algorithms have gained increas-
ing interest from the scientific community and are widely
used in a broad range of applications, such as image and
speech recognition, natural language processing, automotive
and finance [1]–[3].
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DNN architecture is structured by layers of neurons con-
nected by synapses. Each synapse is weighted, and the
functionality of the network is set by supplying different
values to those weights. To find the values suitable for a
specific task, machine learning algorithms are used to train
the network. After the training is complete, the network is
provided with new data and it infers the result based on its
training; this stage is called the inference stage. One of the
most common DNN training algorithms is stochastic gradient
descent (SGD) [4]–[7]. The SGD algorithm minimizes a
defined cost function, which represents the error value of
the network output. However, the simplest form of SGD
(sometimes called vanilla SGD) does not guarantee a good
convergence rate or convergence to the global minimum [8].
Different optimization algorithms have thus been proposed
to improve SGD performance; examples include Momentum,
Adagrad, and Adam [9]–[11].

Both the training and inference stages in DNNs are usually
executed by commodity hardware (mostly FPGA and GPU
platforms), as they are compute and memory intensive. Yet
the intensive data movement required as a result of the
separation of memory and processing units in such hard-
ware poses significant limitations on the performance and
energy efficiency of those systems. Many studies have thus
been devoted to developing dedicated hardware, optimized
for executing DNN tasks. One approach is to move the
computation closer to the memory [12]. Another approach
is to accelerate the performance of the NN by improving
the performance of the matrix-vector multiplication, which is
known to be computation-intensive for CMOS logic circuits.
Therefore, in recent years several works have proposed analog
implementations of the matrix-vector multiplication, based on
the new emerging memristor technologies [13], [14]. The
memristor is used to implement the synapse, and it stores the
weight as well as computes the matrix-vector multiplication in
the synapse array. Such solutions accelerate only the inference
stage, and the network must be trained beforehand.

Providing hardware support for the DNN training stage is
more complex than supporting only the inference stage. The
training includes differential derivative calculations, updating
the weights, and propagating the result through the network.
Previous designs that attempted to support the DNN training
stage support only SGD or simpler modifications of it [12],
[15], [16]. We previously proposed a synapse circuit based
on two CMOS transistors and a single memristor to support
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vanilla SGD [17], [18]. In this paper, we propose to modify the
synapse circuit to support the momentum algorithm, a common
optimization algorithm which accelerates the convergence of
SGD. We propose two circuit-level designs. The first design is
a hardware friendly modification of the momentum algorithm
that employs memory external to the synapse array. The sec-
ond design supports the original momentum algorithm and
adds memory to the synapse circuit. The proposed designs and
the principles presented in this paper can be integrated into full
architecture solutions such as Pipelayer [19] and TIME [20].

Both solutions have been designed using the VTEAM
model [21] for the memristor and 180nm CMOS process.
The area overhead incurred by the synapse modification is
compared between the two solutions, and the accuracy of the
training algorithms is validated using the standard software
implementation. The two solutions are evaluated and compared
to a GPU platform in terms of power and run time. Our
simulations show that training a DNN with the momentum
algorithm using our design can improve over GPU runtime by
886× on average.

The rest of the paper is organized as follows. In Section II,
background on DNNs and memristor-based hardware for
DNNs is given. In Section III, the proposed synapse circuits
are described and qualitatively compared. In Section IV,
the proposed circuits are evaluated for their compatibility to
the momentum algorithm, their run time, and their energy
consumption. Conclusions and future research directions are
given in Section V.

II. HARDWARE-BASED DNN

This section provides the required background on deep
neural networks. First, we describe the topology of DNN algo-
rithms (Section II-A) and the SGD algorithm (Section II-B).
Then, previous hardware designs of DNNs using memristors
are described (Section II-C), including our previously pro-
posed synapse that supports vanilla SGD, which is the basis
for this paper (Section II-D).

A. Deep Neural Networks

The basic computation element in a DNN is the neuron.
DNNs are constructed from layers of neurons, each of which
determines its own value from a set of inputs connected to
the neuron through a weighted connection called a synapse.
Therefore, the value of the output is given by the weighted
sum of the input,

rn =
M∑

m=1

wnm xm, (1)

where M , xm , wmn , and rn are, respectively, the total number
of input neurons, the value of input neuron m, the connection
weights (synapse weights) between neuron n and neuron m,
and output n. The structure of a single neuron layer is shown
in Figure 1. In the general case, each connection has its own
weight, and thus the output vector #»r is determined by a
matrix-vector multiplication,

#»r = W #»x , (2)

Fig. 1. Single layer in an Artificial Neural Network. Each neuron in the
input neuron vector #»x l ∈ IR4 is connected to an output neuron in the output
neuron vector #»x l+1 ∈ IR3 by a synapse. Each synapse has its own weight
Wl

nm , Wl ∈ IR4x3. By feeding the weighted sum into an activation function,
the output neuron value is determined.

where the elements of matrix W are the synapse weights and #»x
is the input neuron vector. The neuron vector of the next layer
#»x l+1is calculated by passing the output vector of the previous
layer #»r l through an activation function, which is some non-
linear function σ(·). Hence,

#»x (l+1) = σ(W (l) #»x (l)) = σ( #»r (l)). (3)

The network is therefore constructed by cascading matrices of
synapses and activation function layers. Each time a neuron
input vector is fed to the layer, the output neuron vector is
determined. For simplicity, the discussion in this paper will
focus on fully connected layers, where all the input neurons
are connected to each output neuron and the weights are not
shared among synapses.

B. Stochastic Gradient Descent

In supervised learning, the network is trained to find the set
of synapse weights that approximates the desired functionality.
In the training stage, sets of pairs

{
#»x ,

#»
d

}
are provided to the

network, where #»x is the input vector of the network and
#»
d

is the desired output. To define the performance of the DNN,
a measure of quality is defined: the cost function C(

#»
d , #»z ),

where #»z is the output of the network. The goal of the learning
algorithm is to minimize the value of C(

#»
d , #»z ) with respect to

the weights of the network. The training process is iterative:
for iteration k, the error is determined for the given

{
#»x k,

#»
d k

}

pair. Using SGD, the weights are updated in the opposite
direction to the cost function derivative with respect to each
weight:

w(l)
nm = w(l)

nm − η
∂C(d, z)

∂w
(l)
nm

, (4)

where l is the synapse layer, nm is the weight location at that
layer (connecting input neuron m to output neuron n), w

(l)
nm is

the value of the weight and η is the learning rate. For DNNs
with a cost function such as mean square error (MSE) or cross-
entropy, the update rule is

w(l)
nm = w(l)

nm + ηx (l)
m y(l)

n , (5)
#»y (l) �= ((W (l+1))T #»y (l+1)) · σ ′( #»r (l)), (6)
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Fig. 2. Using momentum helps SGD to converge faster around ravines.
(a) Convergence is slow because of oscillations, while (b) adding momentum
lead to a drift of the current update in the common direction of the previous
updates, thus helping to speed up the convergence. (c) SGD vs. momentum
convergence. C(Wx , Wy) is the cost function, the blue line is the SGD cost
and green line is the momentum cost during training. SGD updates the weights
according to the current gradient. Therefore, when reaching a “valley” it
might be trapped at the local minimum. By considering the previous update
directions, SGD with momentum helps to avoid the local minimum.

where #»y (l) represents the error of layer l. As can be seen from
(5) and (6), the error is determined at the output layer of the
network and then back-propagated into the network.

SGD performs poorly in areas of shallow ravines, where
the curve of the cost function surface is steeper in one
dimension than in the other [22], [23]. In these cases, oscilla-
tions will occur, slowing down the convergence, as illustrated
in Figure 2. To improve the convergence of SGD, optimization
algorithms such as the momentum algorithm [9] are commonly
employed. The momentum algorithm helps navigate the update
values and directions, at shallow ravine areas, by adding
a fraction γ of the previous updates (the history) to the
current update. Thus, the current update takes into account
the direction trend from the previous updates and reduces the
oscillations, as illustrated in Figure 2. The update rule using
momentum is

v
(l)
t,nm = γ v

(l)
t−1,nm + η

∂C(d, z)

∂w
(l)
nm

, (7)

w(l)
nm = w(l)

nm − v
(l)
t,nm , (8)

where γ is the momentum value. The weights of the synapses
are updated according to vt , which is comprised of all previous
vt values and the current gradient value. Therefore, using

Fig. 3. Memristor-based synapse array. The input vector x ∈ IR1xM is
converted to the corresponding voltage value per column U ∈ IR1xM. The
current per row is the sum of currents flowing through the matching synapse
cells of the array.

momentum and (5), the weight update rule at iteration k is

�wk
nm = η

k−1∑

j=1

γ k− j x ( j )
m y( j )

n + ηx (k)
m y(k)

n . (9)

The motivation for using the momentum algorithm is well
established by dedicated DNN research and this algorithm is
widely used to train DNNs [1], [24]–[26]. However, train-
ing with momentum causes a hardware overhead, which is
addressed in section IV-C.

C. Hardware DNN Using Memristors

The emergence of memristors has enabled combining data
storage and computation using the same physical entities.
Hence, it is possible to compute the multiplication between
the input neuron vector and the synaptic weight matrix in-
place and with analog computation. In recent years, different
design approaches for memristor-based synapses have been
investigated [13]–[17]. In all of these approaches, the memris-
tors are organized in a crossbar array and are used to store the
weights of the synapses. Figure 3 illustrates the structure of
a neural network layer, where each cross-section represents
a memristive synapse. This structure leverages the analog
nature of these devices, thus improving the power consumption
and latency of synapse related computation. Using an analog
regime, the input neuron vector is represented by the voltage
drops over the columns um , and the weight of the synapse is
represented by the conductance of the memristor Gnm . The
current of each synapse is thus given by Ohm’s law,

Inm = Gnmum = wnm xm, (10)

and, using KCL, the current through each row is

In =
∑

m

wnm xm . (11)

Hence, by simply applying a voltage over the columns and
summing the currents per row, a highly parallel multiply-
accumulate (MAC) operation is computed, which is a funda-
mental operation of DNN. This analog computation eliminates
the need to read the weight values outside of the arrays and
the use of special MAC circuits; thus, reduces the power
consumption and latency of the MAC operation.
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Fig. 4. Baseline synapse. (a) Synaptic grid structure. Each ωnm node
is implemented by the memristor-based synapse circuit and represents its
weight at location (n, m). Each column receives voltage level um and ūm ,
which represent the neuron input value scaled to the corresponding voltage
level. Each row receives control signal en . (b) The baseline memristor-based
synapse. Each synapse circuit contains two transistors and a single memristor.
The control signal en selects the input voltage and controls the effective write
duration for training.

In this manner, the feed-forward phase — propagating the
input data toward the output — occurs naturally due to the
structure of the memristor-based synapse array. Nonetheless,
the back propagation phase — propagating the error back-
wards into the network and updating the weights accordingly
— is not so simple. Thus, different approaches for updating the
weights have been proposed [15]–[17]. However, due to the
complexity involved in supporting full SGD, those approaches
implemented only vanilla SGD or even a simple modification
of it.

D. Baseline Synapse to Support SGD

We have recently proposed a memristive synapse that can
support SGD training [17], [18]. In [17] the analysis was done
for the mean squared error (MSE). However, the proposed
circuits can be used with any cost function when training with
the backpropagation algorithm [27]. In this topology, synapses
consist of two transistors and a single memristor, shown
in Figure 4b, and structured in a synaptic grid as illustrated
in Figure 4a. The weight of the synapse is represented by a
single memristor, so the weight is a function, w(s), of the
memristor internal state s (0 ≤ s ≤ 1). To achieve negative
weight values, the synapse zero weight is defined for s = 0.5,
so w(s = 0.5) = 0. This is done by adding a reference
resistor, Rre f = Rmem(s = 0.5) [18]. Therefore, the value
of the weight is

wnm = 1

Rmem
− 1

Rre f
. (12)

To support negative weights, the reference resistors are added
to each row, as suggested in [18] and shown in Figure 5.
Each resistor is connected to a voltage source that matches
the negative input voltage source of the corresponding synapse.

Fig. 5. Single row of a synapse array with M synapse. Each synapse has a
reference resistors connected to the negative input source ūi of the matching
synapse.

Thus, resistor i is connected to vi = ūi . Therefore, the current
summed through the row is

Iout,n =
M∑

i=1

( 1

Rmem,i
− 1

Rre f

)
ui =

N∑

i=1

wni ui . (13)

Assume the state of the memristor s(t) is restricted to rela-
tively small changes around an operation point s∗. By lineariz-
ing the conductivity of the memristor around s∗, the conduc-
tivity of the memristor is

G(s(t)) = ḡ + ĝ · s(t), (14)

where ḡ = G(s∗) − ĝ · s∗ and ĝ = [dG(s)/ds]s=s∗. In
this circuit, #»u ,

#»
ū ∈ IR1xM are the input voltages, shared

among all the synapses in the same column. A control signal
#»e ∈ IR1xN is shared among all the synapses in the same
row. If en = 0, the current through the memristor is I = 0.
If en = ±VD D, the voltage drop across the memristor is
approximately ±u, assuming that the transistor conductivity
is significantly higher than the conductivity of the memristor.
To support DNN functionality, the synapse circuits support
two operation modes: read and write.

1) Read Mode: To perform the matrix-vector multiplication
during inference, the input vector x is encoded to voltage
as follows: um = −ūm = axm, von < axm < vo f f , where
von and vo f f are the threshold voltages of the memristor
and a is a normalization factor controlled by the digital-to-
analog conversion process. Thus, the read procedure is non-
destructive. The current through all synapses in the same row
is summed according to (11). By defining

wnm = acĝsnm , (15)

the current output at each row is

rn = acĝ
∑

m

snm xm, (16)

where c is a constant converting the results to a unit-less
number, rn , controlled by the analog-to-digital conversion
process. Thus,

#»r = W #»x . (17)

2) Write Mode (Update Weights/Training): In this mode,
the inputs hold the same value as in the read mode, the control
signal en changes so the value of um is selected to match
sign(yn)xm , and the duration of the write interval matches
b|yn|, where b is a constant, in the order of magnitude of
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Trd/wr , converting |yn| to time units. Therefore, the update
rule of the memristor state is

�snm =
∫ Trd +b|yn |

Trd

(asign(yn)xm)dt = abxm yn. (18)

Using (15), the update value per synapse is

�W = η #»y #»x T , (19)

which matches the vanilla SGD as determined in (5) for
η = a2bcĝ.

III. MOMENTUM HARDWARE SUPPORT SCHEMES

As described in Section II-B, the momentum algorithm adds
a fraction of the past updates to the current update vector.
Thus, in order to support this algorithm, the previous updates
(i.e., the history) must be preserved in some form of memory.
In this section, two circuits for supporting the momentum
algorithm are proposed. The designs are built upon the baseline
synapse circuit [17]. For simplicity, the analysis shown in this
section assumes a linear memristor model. In Section IV-B,
we evaluate the proposed circuits using VTEAM, a realistic
memristor model [21].

A. Supporting Momentum With Baseline Synapse Circuit

Keeping the history value in any form of memory will
require at least the same number of memory cells as the
number of synapses. Serial read-write operations will also
be required to update the synapse value according to the
momentum value. Thus, for a synapse layer of size n × m,
n · m memory cells and m read and write operations will
be needed. Rather than keeping the value of the momentum
for each synapse, we suggest keeping the value of the vector
pair { #»x , #»y }: the input and error vectors, for each layer
and iteration as determined by (9). Although keeping all of
the { #»x , #»y } pairs for each layer from all of the previous
updates is impractical, storing only the pairs from the recent
iterations may be sufficient. Since the momentum algorithm
adds a fraction, γ < 1, of the past updates to the current
update vector, the contribution of the gradients from previous
computations decays with each iteration. Assume that the
contribution of the previous updates becomes negligible after
the following h iterations. Under this assumption, we can
ignore the contribution of the sum elements that are multiplied
by factor γ n < γ h to the total update sum. With that in mind,
we propose to store only the pairs from the last h iterations that
contribute to the momentum value. For the rest of the paper,
we refer to this solution as the “Limited History” solution.
Thus, (9) can be written as

�wnm,history(k − 1) ≈ η

k∑

j=k−h

γ k− j x ( j )
m y( j )

n . (20)

For this solution, we use a system architecture composed
of tiles, each containing several synapse grids, an SRAM-
based memory (referred to as external memory), and a digital
computation unit, as shown in Figure 6. A single DNN layer
can be stored in one or more synapse grids. The activation of

Fig. 6. Limited history solution. External memory is used to store the history
of the updates in order to support the momentum algorithm. Several synaptic
grids are used to store the different DNN layers. The neuron computation unit
is used to compute the values of the neurons from the synaptic grid data. The
neuron values are passed between two synaptic grids through the computation
unit.

each layer is computed in the computation unit and then sent
to the synapse grid, which stores the following layer.

While the read mode remains unchanged from vanilla
SGD, the write mode requires a new algorithm, described in
Algorithm 1. The h pairs of { #»x , #»y } are read sequentially from
the external memory, one pair at a time, from the newest to
the oldest. For iteration i , the #»y values are multiplied by γ i .
The { #»x , γ i #»y } data is mapped into the matching synapse grids,
so #»x is mapped to the grid’s column interface and #»y to the row
interface. Then the weights are updated based on the vanilla
SGD algorithm as in Section II-D.2. Thus,

�W = ηγ i #»y #»x T , (21)

and after h iterations,

�W = η

k∑

j=k−h

γ k− j #»y ( j )( #»x ( j ))T . (22)

After h iterations, the gradient value is updated. The memory
arrays that hold the { #»x , #»y } pair are shifted left so that the
oldest pair is removed and the current { #»x , #»y } pair is stored
in the memory.

This solution uses a simple synapse circuit and can be
supported by any memristor-based solution for DNNs that
contains a memory structure sufficiently large to store all
the momentum algorithm history data. The drawback of this
solution is the need to modify the momentum algorithm,
add external memory, and move data between the synaptic
array and the memory, which might lead to greater energy
consumption and higher latency. The solution is also sensitive
to the γ value: for γ closer to 1, the number of pairs that have
to be stored increases. The effect of the modified algorithm
on the network performance is investigated in Section IV.
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Algorithm 1 Limited History. h Pairs of { #»x , #»y } Are Stored
in Memory Arrays {X, Y } External to the Synapse Array
1: Gradient update, according to Section II-D.2
2: for i = 1,2...,h do
3: Read

#»
X (i), γ i #»

Y (i) pair from external memory
4: Map { #»

X (i), γ i #»
Y (i)} to column and row interface

5: Update synapse weights, as described in Section II-D.2.
6: Multiply γ i−1 #»

Y (i − 1) with γ at the computation unit
7: end for
8: Remove “oldest” { #»

X , γ h #»
Y } pair and store new { #»

X , γ
#»
Y }

pair in external memory arrays

Fig. 7. Internal memory solution. The synapse holds an additional memristor
as an internal memory to store the accumulative history of the previous
updates.

Fig. 8. Schematic of the Sample and Hold circuit [28].

B. Supporting Momentum With a Dedicated Synapse Circuit

The momentum information is the weighted sum of all
the previous updates, as described in (9). Rather than using
an “external” memory, we investigate adding more memory
capabilities to the synapse circuit, such that the accumulative
value is stored by an additional memristor. Thus, each synapse
is constructed from two memristors, marked as Rmem and Rhis ,
as shown in Figure 7. While Rmem holds w, the current value
of the weight, Rhis holds wh , the sum value from (9) and acts
as a private memory of the synapse. Thus, a simple sample
and hold (S&H) circuit is added in order to read and keep
the stored data from Rhis [28]. The S&H circuit is shown
in Figure 8. Additionally, two transistors and a reference
resistor Rre f are added to control the new functionality of
the synapse. As mentioned in Section II-D, the conductivity
is assumed to be linearized around s∗ and the weight of the
synapse is equal to zero for s∗. Therefore, another reference
resistor Rre f is added to the new memristor path to subtract
the operation point when the momentum value is read from
Rhis [18]. Since the weight is stored in Rmem , read and

Algorithm 2 Write Operation for the Internal Memory
Solution
1: Read wh , feed into the Sample and Hold unit

e1 =‘1’, e2 = ‘0’, e3 = ‘0’
u = Vmom

Inm = a(ḡ + ĝsnm)Vmom

Ih,nm = aĝsnm Vmom

Vh,nm = Rout Ih,nm = RVmomwh,nm = γ̄ wh,nm

2: Reset wh = 0:

u =
{

Vreset t0 ≤= t ≤= t1
Vset t1 < t ≤= t2

e1 = ‘1’, e2 = ‘0’, e3 = ‘0’
�snm = ∫ t1

t0
Vreset dt ⇒ s = 0

�snm = ∫ t2
t1

Vset dt ⇒ s = 0.5
3: Accumulate w and wh by γwh

e1 = ‘0’

e2 = e3 =
{

‘1’ t2 < t ≤ t2 + γ̂
‘0’ t2 + γ̂ < t ≤ t3

�snm = ∫ t2+γ̂
t2

γ̄ wh,nmdt = γ̂ γ̄ wh,nm

�wnm = acγ̂ γ̄ wh,nm = γwh,nm

4: Write gradient to w and wh e1 = e2 = ‘1’, e3 = ‘0’
�snm = ∫ Trd +b|yn |

Trd
(asign(yn)xm)dt = abxm yn

�W = a2bcĝyxT = η #»y #»x T

write operations are performed with respect to Rmem . The
working modes of the synapse deviate from the description
in Section II-D as follows:

1) Read Mode: Setting e2 = ‘1’ and e3 = ‘0’ to avoid
affecting Rhis during the read operation.

2) Write Mode (Update Weights): The write mode is
described in Algorithm 2. Before updating the weights,
the value of wh is read and stored in the S&H circuit. The
input voltage per column is set to u = Vmom , where Vmom is
a constant voltage level that is used while reading wh . Thus,
the current that passes through wh,nm is

Inm = a(ḡ + ĝsnm)Vmom. (23)

After subtracting the operation point, the current value is

Ih,nm = aĝsnm Vmom. (24)

Using the output resistor Rout , the current Ih value is converted
to voltage. Hence, by defining γ̄ = Rout Vmom , the voltage
value stored in the S&H is

Vh,nm = γ̄ wh,nm . (25)

From (25), Vh holds the value of the history multiplied by
factor γ̄ . Before the update stage, wh is set back to zero,
as can be seen in step 2 of Algorithm 2. The next step is to
update both w and wh with γwh . This is done in a manner
similar to the write mode described in Section II-D.2, although
now the voltage source is connected to Vh , meaning that e1 =
‘0’, e2 = e3 = ‘1’. The duration of the update phase is set by
γ̂ . Therefore,

�snm =
∫ t2+γ̂

t2
γ̄ wh,nmdt = γ̂ γ̄ wh,nm (26)
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and

�wnm = acĝγ̂ γ̄ wh,nm = γwh,nm , (27)

where γ = acĝγ̂ γ̄ . Thus, we obtain that

wh,nm = γwh,nm,

wnm = wnm + γwh,nm . (28)

The last step is performed on the gradient value,
as described in Section II-D.2, except that both w and wh

need to be updated. Using the updated value given by (19),
we obtain that

wh,nm = ηxm yn + γwh,nm ,

wnm = w + ηxm yn + γwh,nm . (29)

So,

Wh = η #»y #»x T + γ Wh ,

W = W + η #»y #»x T + γ Wh , (30)

where Wh is the synapse history matrix.
The use of internal memory allows the maximum informa-

tion used by the momentum algorithm to be kept; it allows
each synapse to track the full update history by saving the
value of the sum of updates. The data is kept per synapse,
thus reducing data movement out of the synapse, which should
reduce latency and energy. The cost of this solution is the
addition of read and write cycles to the update phase and the
S&H energy consumption. Furthermore, the internal memory
requires extra area and a more complex controller.

C. Qualitative Comparison of the Proposed Solutions

We performed a qualitative comparison of the accuracy,
latency, power, and area of the two proposed solutions.

1) Accuracy: The “Limited History” solution modifies the
momentum algorithm by changing the update rule. Therefore,
the convergence behavior and the classification accuracy rates
are expected to be less than the rates of the “internal memory”
counterpart solution.

2) Latency and Power: The use of external memory results
in a longer weight-update stage as compared to the internal
memory solution, due to sequential access to this memory.
However, in the second solution, more energy is consumed
per synapse access due to the circuit complexity. Therefore,
the optimal solution depends on the history depth h, and on
the neuron precision.

3) Area: The synapse cell area limits the number of synapse
cells per synaptic grid. Thus, it defines the number of synapse
grids needed to match the DNN layer.

a) Limited history: This solution uses the baseline
synapse. Thus, the synapse contains only two transistors.
However, as described in Section III-A, an external memory
is used to hold h pairs of input-error vectors per layer.
Therefore, the memory area overhead must be considered as
well. Consider the following simplified example, assuming
that the area per memory cell is similar for both solutions.
The internal memory solution holds extra memory circuits per
synapse. Thus, for n×m synapse matrix, n ·m memory circuits

are required. For the same matrix dimensions, the external
memory solution requires h(n + m) memory circuits. There-
fore, for large layers and a given h whose value is h < nm

n+m ,
the area overhead of the external memory solution is lower.

b) Internal memory: Our design uses a simple S&H cir-
cuit for the internal memory. S&H circuits, even the simplest
one, will use sense amplifiers and complex circuit elements.
Thus, this approach will significantly increase the synapse
circuit area and reduce the capacity of the synapse array.

IV. EVALUATION

In this section, we verify the compatibility of the pro-
posed circuits to the momentum algorithm, and evaluate their
computation runtime and energy consumption. To validate
that our designs are compatible with the original momentum
algorithm, we compare the performance (i.e., accuracy) of
the modified momentum algorithm to the original momentum
algorithm implemented in software. Additionally, we compare
the training performance of the memristor-based designs to
the performance of the software implementation. We extract
the energy and latency of the proposed circuits and compare
their total runtime and energy consumption to the runtime and
energy required when training on a GPU.

A. Circuit Evaluation

1) Methodology: The system described in Section III-A is
used to simulate and evaluate the proposed solutions. The
analog values of the weights for each NN layer are stored in a
single synaptic grid. To move the synapse and neuron values
from and to the synaptic grid, 16-bit ADCs and DACs are used.
Hence, the neurons are represented by 16-bit resolution while
the weights keep their full resolution. The neuron activation
is determined by the computation unit. For the limited history
solution, SRAM is used to store the h history pairs of all
layers. The simulated system is non-pipelined and at each
iteration a single input is computed.

To extract the power and operation latency of the two
proposed circuits, both solutions were designed and evaluated
using Cadence Virtuoso in 180nm CMOS process. To fit
the GPU platform technology and allow a fair comparison,
we scaled down the results to 16nm using the model proposed
in [29], which fits polynomial equations to accurately evaluate
the scaling factor. To simulate the memristor we used the
VTEAM model [21]. The parameters of the VTEAM device
were selected to simulate a symmetric, non-linear memristor
with high Rof f /Ron ratio. Due to the short write intervals,
the non-linearity is important for significant transitions of the
memristor state. Memristors are back-end-of-line (BEOL) to
the CMOS process, and as such they can be modeled inde-
pendently of the CMOS node. Thus, the memristor model was
not affected by the process scaling. The circuit parameters are
listed in Table I. For the peripheral ADC and DAC, 1.55 GSps
ADC converters were used [30] with power consumption of
3.83mW. The DAC operates at the same frequency as the ADC
with power consumption of 2.92mW [31]. For the internal
memory solution, the S&H circuit was implemented in Ver-
ilogA, with power consumption of 4nW and area consumption
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TABLE I

CIRCUIT PARAMETERS FOR SPICE SIMULATIONS FOR 180nm CMOS PROCESS

TABLE II

SRAM CONFIGURATION USED BY THE LIMITED HISTORY SOLUTION.
EACH NN ARCHITECTURE HAS ITS OWN SRAM, FITTED TO THE

DIMENSIONS OF THE LAYERS

of 0.016μm2 as in [28]. The additional S&H circuit has little
effect on the circuit transient response and delay due to the
relatively long time intervals of the synapse circuit and the
low capacitance. The time intervals used in this work are long
enough to guarantee that the circuit parasitics will have little
effect. For future work, further optimization and performance
can be gained by increasing the frequency, when the circuit
parasitic becomes dominant. For the limited history solution,
each neural network had its own SRAM-based memory, best
suited to its layers and history size. The configuration of the
SRAM-based memory per NN is listed in Table II and was
modeled using NVSim [32].

2) Area Overhead: The area overhead was compared for
three DNN architectures listed in Table III. To compare the
area overhead of both solutions, we focus on the area overhead
of the synaptic grid and SRAM. We do not consider the
area of the ADC and DAC, which are identical for both
solutions. We assume h = 10, which provides promising
results, as shown later in Section IV-B. The S&H circuit
added 0.0163μm2 to each synapse of the internal memory
solution. For the limited history solution, the SRAM area
is listed in Table II. The minimum required area overhead
of both solutions as compared to the baseline synapse is
shown in Figure 9. The extra S&H circuit added to each
synapse in the internal memory solution increases the area
of the synaptic array by 9.45×. In contrast, the relative area
overhead of the limited history solution can reach two orders
of magnitude over the baseline synapse due to the SRAM
area. This overhead substantially decreases for large networks,
as discussed in Section III-C.3.a and shown in Figure 10.

B. Verifying the “Limited History” Momentum Algorithm

To verify that the accuracy of the modified momentum
algorithm is sufficient, we trained two DNN architectures

TABLE III

DNN ARCHITECTURES. EACH NUMBER REPRESENTS
THE NUMBER OF NEURONS PER LAYER

Fig. 9. Area overhead of the momentum algorithm circuits as compared to
the baseline synapse area.

implemented in PyTorch on the MNIST data-sets: MNIST2
(Table III) and PyMNIST [33]. In addition, we trained
the Resnet 18 [26] and ResNext [34] architectures on the
CIFER10 and CIFER100 data-sets [35]. All the networks were
trained with momentum and γ = 0.9. Table IV shows the
performance of the limited history algorithm as compared to
the original algorithm and training without momentum. As
expected, the accuracy of the nets is higher when trained
with momentum. The limited history algorithm with h = 10
reached similar results as compared to the original momentum
algorithm.

The convergence is defined as the iteration after which the
cost function does not exceed 0.3, which corresponds to a
probability greater than 0.5 for a correct output by the SoftMax
function. The error rate — the percentage of inference errors
in the test phase — and convergence of the limited history
approach depend on the length of the history kept for each
layer, i.e., the value of h. Figure 11 shows the number of
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TABLE IV

ACCURACY OF LIMITED HISTORY MOMENTUM AS COMPARED TO THE ORIGINAL MOMENTUM ALGORITHM. FOR THE MNIST2 NET, THE NUMBER OF
ITERATIONS UNTIL CONVERGENCE (WHEN THE COST FUNCTION IS LOWER THAN 0.5) IS LISTED IN BRACKETS, AND IT IS HIGHER FOR THE

LIMITED HISTORY. FOR DEEPER NETWORKS, THE LIMITED HISTORY OBTAINS RESULTS SIMILAR

TO THOSE OF THE ORIGINAL ALGORITHM

Fig. 10. Area overhead of the limited history circuit for different layer
dimensions. The overhead is lower for larger layers. The layer dimensions
are taken from the AlexNet, VGG Net, MNIST2, and MNIST3 (Table III)
architectures. For each layer, the best suited SRAM size is used. The area was
modeled using NVSim [32]. In practice, the SRAM can be shared between
several layers, thus further reducing the area overhead.

iterations until convergence and the testing error rate for
the MNIST2 network for different history values. For longer
history, the performance of the network approaches the classic
momentum performance with regard to convergence and error.
This can also be seen in Table IV for ResNext trained on the
CIFER100 dataset. Nevertheless, the history length determines
the number of write operations per weight update and the
size of the memory needed to support the algorithm. Thus,
the weight update period increases for a longer history.

Note that like the RRAM-based accelerators, CMOS-based
accelerators have limited memory capacity; thus, CMOS-based
accelerators and commodity hardware platforms can also use
the limited history principle.

C. DNN Hardware Simulations

To evaluate the proposed hardware solutions, we designed
the DNN and simulated the training in MATLAB, using
circuit parameters extracted from SPICE simulations. We eval-
uated the accuracy of the circuits and their compatibility to
the original momentum algorithm. Although numerous DNN
hardware solutions have been proposed in recent years (e.g.,
DaDianNao [12], PipeLayer [19] and TIME [20]), these ASIC-
based solutions lack the computational capabilities to execute
training with momentum. Therefore, to evaluate the potential
of the proposed circuits, we compare their performance to that
of GPU, which can support momentum training.

Fig. 11. Limited history momentum algorithm performance (error rate) and
the number of samples until convergence for MNIST2 with different history
values h.

Methodology: The simulations were conducted using the
Intel Xeon E5-2683 2GHz processor [36] and the MATLAB
2017a environment. Three DNNs were designed using the
MNIST data-set [37], as listed in Table III. The MNIST
data-set includes 60000 examples for training and 10000
examples for testing. The ReLU activation function was used
by the hidden layers, SoftMax at the output layer, and cross-
entropy as the cost function. The DNNs were trained over
several epochs — one iteration over the training data-set —
as shown in Table V, after which the performance does not
change significantly. For each DNN architecture simulation,
the error rate was compared to the error rate of the soft-
ware implementation of the original momentum algorithm for
the same networks. The power consumption and runtime of
the training stage were evaluated using the results extracted
from the circuit evaluation. Both energy and computation
runtime were evaluated with a focus on the synapse-related
computation and compared to the same computation on the
Nvidia GeForce GTX 1080 Ti GPU, 1.6GHz. To evaluate the
GPU performance, the three DNNs were implemented using
PyTorch [33], and their energy consumption and runtime were
computed using Python’s time counters and the nvidia-smi tool
provided by NVIDIA CUDA [38].

1) Compatibility With the Momentum Algorithm: The met-
rics used for comparison are convergence and error rate.
Figure 12 shows the convergence of MNIST1 training for all
implementations. The convergence trend is similar for all the
implementations, and the inset shows that they all converged
to similar values. Table V lists the testing phase error, where
both hardware designs show surprisingly better results than
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Fig. 12. Training stage cost function value for the three implementations of
MNIST2 – internal memory, limited history, and software. The cost function
value was averaged over a set of 100 iterations for training. For smaller values
of the cost function, the probability given to the correct output increases. When
the cost function does not exceed the dashed line, we consider the network
as converged.

TABLE V

TEST PHASE AVERAGE ERROR FOR THE SOFTWARE IMPLEMENTATION

AND THE TWO PROPOSED HARDWARE SOLUTIONS

the software implementation. The differences in the results
between the software and hardware implementations are due
to the dependency of the values of η and γ on the memristor
state, which changes during the training phase [18]. This
dependency causes the η and γ values of each individual
memristor to decay when the |w| value increases [18]. The
behavior described above resembles that of training meth-
ods such as ADAM and NADAM, which use the adaptive
learning rate and adaptive momentum, and are known to
improve performance [8], [11], [39]. The limited history is a
simplified version of the momentum algorithm; nevertheless,
it shows good training performance, which surpasses, for the
MNIST2 and MNIST3 architectures, the performance of the
internal memory solution.

2) Computation Runtime: Figure 13 shows the computation
runtime speedup versus the GPU runtime for both hardware
solutions. The limited history runtime is approximately 325×
faster than GPU execution, where the internal memory solution
exhibits greater speedup (886×). The performance speedup of
the proposed solutions is attributed to their high parallelism
and the proximity of the new momentum data to the synaptic
grid. The proposed solutions are less sensitive to the size of
the neural network layers.

3) Energy Consumption: The energy consumption for each
hardware solution normalized to the GPU energy consumption
is shown in Figure 14. For both solutions, the ADC and
DAC accesses are major energy consumers, as illustrated
in Figure 15, for the MNIST3 architecture. For the limited

Fig. 13. Computation runtime speedup of the synaptic grid normalized to
GPU runtime.

Fig. 14. Dynamic energy consumption of each DNN architecture using the
proposed synapse circuits vs. GPU energy consumption.

history solution, the energy consumption of the synaptic grid
and SRAM accesses is negligible as compared to that of the
ADC and DAC. However, the low activity of the SRAM
makes it a significant consumer of static energy. As shown
in Figure 15, the SRAM static energy is approximately 64% of
the total energy consumption. A careful design of the memory
hierarchy is required to reduce the static energy. For example,
we might consider replacing the SRAM with RRAM or other
emerging memory technologies such as MRAM [40]. Thus, for
larger layers and shallow history depth, the energy efficiency
of the internal memory solution is lower than the external
memory solution.

4) Process Variation: The limited memory solution uses
the baseline synapse, which demonstrated high robustness to
process variation [17], [18]. The internal memory synapse is
more complex than the baseline solution; therefore, we eval-
uate its robustness to process variations. As mentioned in
section IV-A, the S&H circuit and the transistors have little
effect on the circuit response; therefore, we focused the
evaluation on the memristor parameters.

a) Memristor process variation: To evaluate the robust-
ness of the internal memory approach in the presence of
process variations, we simulated training with variations
of the memristor device. The average error rate of the
MNIST1 network was evaluated over one epoch, for several
Gaussian distributions with different Coefficients of Variation
(CV= (standard deviation)/mean). We considered variations in
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Fig. 15. Energy breakdown for MNIST3. The DAC (Lim. his.) represents
the energy consumed by the data conversions of the h X, Y pairs stored in
SRAM.

Fig. 16. MNIST1 error rate for variation of the memristor parameters.

the device resistance (Rof f/on), threshold voltages (Vof f/on),
and the device dynamic response (αo f f/on and Kof f/on).
Each iteration the memristor parameters were sampled from
Gaussian distribution with the same CV. Figure 16 shows the
average error rate for different values of CV. The training
performance is relatively robust to process variations by up to
CV= 15%, when most of the sensitivity is due to variations in
the threshold voltages of the memristor. For large variations of
the threshold voltage (over 20%), there are many memristors
which are active even for a zero voltage drop, causing their
state to change. Additionally, there are many memristors with
a high threshold voltage, so their state will not change for low
voltage drop.

b) Environmental parameters variation: A non-ideal
power grid might lead to variability in the voltage source.
A serially connected resistor models this variability. Figure 17
shows the training performance for range of source resistances,
which is robust against changes in the source variations. Also,
Figure 17 shows that the accuracy improves for higher source
resistances. When the resistance is higher, the voltage drop
on the memristor decreases and leads to a smaller change in
the memristor state (smaller update steps). This behavior can
be looked at as a learning rate, where in this case smaller
learning rate improves the results. However, in other DNN
architectures, lower learning rate might lead to suboptimal
results. Variation in the temperature changes the Rof f and
Ron resistance. At high temperature, Rof f decreases and
Ron increases, while the change of Rof f is more significant
than of the change of Ron [41]. Furthermore, the memristor

Fig. 17. The effect of variations in the voltage source on MNIST1 error rate.

TABLE VI

THE TEMPERATURE EFFECT ON MNIST1 ERROR RATE. THE VALUES IN

THE TABLE SIMULATES THE THEORETICAL BEHAVIOR. THE ROOM

TEMPERATURE COLUMN IS THE BASELINE
AND GIVEN IN THE BOLD

dynamics depends on the temperature. In the VTEAM model,
this change is expressed by Kof f/on, which increases for
high temperature. We illustrated the temperature effect on the
training performance. Table VI lists the training performance
for values which simulate the projected behavior. The training
is sensitive to temperature variation, and the performance
might degrade due to large variations. Therefore, the RRAM
temperature response is a critical consideration for selecting
a RRAM device for training. This response varies among
different RRAM devices and need to be characterized and
optimized for training.

5) Comparison to Baseline Synapse: The baseline synapse
supports momentum using the limited history method.
As shown in Figure 15, the limited history algorithm con-
tributes approximately 71% of the total energy consumption.
When considering only the dynamic energy, the limited history
algorithm contributes only 7%. Executing training using the
memory solution consumes on average 0.46× lower energy
than the limited history solution. The internal memory solution
is approximately 3× faster than the limited history solu-
tion. The latency of the limited solution can be reduced by
designing a pipelined system which hides the memory access
time. Although our design is based on [17], the proposed
circuits can be adopted with minor modifications for use
in other memristor-based circuits, such as the one in [15].
Therefore, we expect similar results from other memristive-
based solutions.

6) Momentum Hardware Overhead: The added momentum
hardware leads to higher power consumption and longer run-
time. In Figure 18, the overhead of executing the momentum
algorithms is compared to the training with vanilla SGD
using the baseline synapse. As shown Figure 18a, for the
same number of epochs, executing the momentum algorithm



1582 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 4, APRIL 2019

Fig. 18. Momentum hardware performance compared to SGD hardware
performance. (a) Computation runtime speedup of the momentum algorithm
normalized to SGD runtime. (b) Dynamic energy consumption of the momen-
tum algorithms vs. SGD energy consumption.

increased the runtime over SGD. Similarly, Figure18b shows
the momentum energy consumption overhead over SGD. The
momentum algorithm executed with the internal memory
solution increases the run-time by approximately 2×, and
the energy consumption by approximately 4×. The momen-
tum algorithm executed with the limited history solution
increases the run-time by approximately 5×, and the energy
consumption by approximately 6.5×. The area overhead of
the momentum hardware compared to the SGD hardware
(baseline) is given in Figure 9. Although executing momentum
increases the area, power consumption and execution time,
this is the cost for improving training accuracy and acceler-
ating the convergence. Supporting the momentum algorithm
with accelerators such as DaDianNao [12], PipeLayer [19],
and TIME [20] requires keeping the momentum value for
each weight of the DNN (we refer to this solution as “Full
History”). Therefore, the memory capacity and the number
of memory accesses dramatically increase. To compare the
overhead of momentum with the full history approach to
that of the other momentum-based solutions presented in
this work, we considered an example network with a single
256 × 256 layer, a 64 byte SRAM cache line, 16-bit data
size, and a history depth of 16. (For the full history approach,
the momentum value is computed and stored in the SRAM).
Table VII lists the overhead for the solutions suggested in
this work compared to the full history. In this example,
the full history approach consumes 58× and 3.5× more

TABLE VII

QUALITATIVE COMPARISON TO OTHER NN HARDWARE SOLUTIONS

energy than the internal memory and limited history solutions,
respectively. Also, the full history update duration is 848×
and 6× longer than the internal memory and limited history
solutions, respectively.

V. CONCLUSIONS

Neural networks with memristor-based synapses pose chal-
lenges when supporting various training algorithms. In this
paper, support of the momentum algorithm was investigated.
Since memory abilities are necessary to support the momen-
tum algorithm, the basic memristor-based hardware synapse,
generally implemented within a crossbar, needs to be modified.
Two circuit solutions were suggested. The first is a hardware-
friendly modification of the momentum algorithm, which has
a negligible effect on the training accuracy. The second pro-
posed solution relies on an additional memory circuit within
the basic synapse circuit to support the original momentum
algorithm. Both solutions were shown to speed up the training
runtime (325× and 886× respectively) and improve the energy
consumption (4× and 7× respectively) as compared to GPU
execution.

Further research must be done to design synapses that are
more flexible and to define the working mode of memristor-
based DNN accelerators. In future work, we intend to support
widely used state-of-the-art training algorithms. The synapse
circuit will be used as the foundation of future full system
architectures, dedicated to working with DNN workloads.
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