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Analysis of Signals via Non-Maximally Decimated
Non-Uniform Filter Banks

Sandeep Patel, Ravindra Dhuli, and Brejesh Lall

Abstract—This paper addresses the important problem of
reconstructing a signal from multiple multirate observations. The
observations are modeled as the output of an analysis bank, and
time-domain analysis is carried out to design an optimal FIR
synthesis bank. We pose this as a minimizing the mean-square
problem and prove that at least one optimal solution is always
possible. A parametric form for all optimal solutions is obtained
for a non-maximally decimated filter bank. The necessary and
sufficient conditions for an optimal solution, that results in perfect
reconstruction (PR), are derived as time-domain pseudocirculant
conditions. This represents a novel theoretical contribution in
multirate filter bank theory. We explore PR in a more general
setting. This results in the ability to design a synthesis bank with
a particular delay in the reconstruction. Using this delay, one
can achieve PR in cases where it might not have been possible
otherwise. Further, we extend the design and analysis to non-
uniform filter banks and carry out simulations to verify the
derived results.

Index Terms—Matrix Wiener filter, Multirate filter bank,
Perfect reconstruction, Time-domain pseudocirculant conditions.

I. INTRODUCTION

MULTIRATE filter banks have been used extensively
for applications in the fields of image and video pro-

cessing [1–3], communications [4, 5], subband adaptive filter-
ing [6], radar systems [7], etc. The filter bank theory evolved
from the need to decompose a signal spectrum into multiple
frequency subbands in order to efficiently perform a number
of operations like compression, coding, noise cancellation, etc.
Initially, two channel quadrature mirror filter bank (QMF) was
proposed in the literature [8], and later, it was extended to
arbitrary M -channel case [9, 10]. To better exploit the signal
characteristics in a number of applications like audio coding,
spectral analysis, subband adaptive filtering, etc., non-uniform
filter banks (NUFBs) having different channel bandwidth were
introduced [11–13]. In [14], filter banks with different multi-
rate factors were used, to realize the filter transfer functions for
reducing the multiplicative complexity. NUFBs with rational
sampling factors were considered in [12, 15]. However, they
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were found to be equivalent to integer decimated NUFBs [16].
A number of design methods like direct method [15], recombi-
nation method [11], modulation based method [17], etc. exist
in the literature. Application specific design methods have also
been proposed in the literature. For example, in [18], an NUFB
was designed for acoustic echo-cancellation by maximizing
the signal-to-alias ratio. All these methods design both the
analysis and synthesis banks of an NUFB. The analysis and
synthesis filters in a filter bank can be IIR or FIR. FIR
filters have advantage over IIR in respect of stability and
linear-phase property. In the literature, various design meth-
ods using transform like Lapped Orthogonal Transform [19],
Generalized Lapped Orthogonal Transform [20], Extended
Lapped Transform [21], etc. have been proposed to design
a perfect reconstruction (PR) FIR maximally decimated uni-
form filter bank (UFB). A comprehensive analysis of FIR
perfect reconstruction filter banks can be found in [22]. It has
been shown that oversampled filter banks (OFBs) offer addi-
tional design freedom as compared to critically sampled filter
banks [23, 24]. The inbuilt redundancy present in them has
been exploited for a variety of applications [25–28]. A frame
theoretic analysis of OFBs can be found in [29]. Given an
oversampled analysis bank, a parameterization for all synthesis
banks resulting in PR was developed in [30]. Undersampled
filter banks which provide underdetermined representation of
signals have found application in compression of signals [31].
Despite the filter banks have been around for more than two
decades, they continue to be applied to new and emerging
areas. Graph signal processing is one such interesting area
where filter banks techniques find applications in solving
diverse problems [32].

The necessity in any scenario to estimate a signal or its
properties from its subband components can be addressed
well using the filter bank based processing. Expectedly, many
research problems appear posing such requirement. Synthesis
from subband components has been utilized in applications
like subband coding [33, 34], analog/digital conversion [35],
transmultiplexer [33], ultrawideband receiver [36], TV white
space transceiver [37], channel coding [38], etc. To get better
results, processing on subband components, rather than on full-
band signal, have been carried out in problems like speech
enhancement [39], ECG processing [40], subband adaptive fil-
tering [41], seismic signals processing [42], etc. The processed
subband signals are then combined using a synthesis bank
to get the final output. In multirate sensors networks, sensor
outputs are modeled as an analysis bank output, and these
outputs are fused to get a unified measurement [43]. In [44],
construction of a high-resolution signal from multiple low-
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resolution signals has been carried out. The problem of linear
prediction from multirate observations has been examined
in [45]. In many applications, rather than a signal, a property
of interest is to be estimated from multirate observations.
Time delay estimation from low rate samples is an example of
that, and it finds application in speech localization, processing
using microphone arrays, radar, underwater acoustics, wireless
communications and other areas [46, 47]. Direction of arrival
estimation is another example which finds application in wire-
less communications, medical imaging, seismology, etc. [48].
In [31], estimation of the spectrum of a signal from its low
resolution signals was carried out. This is required when a
signal can be observed only indirectly using low-rate sensors.

To address the problem of estimating a signal from its
subbands, various solutions using Wiener filtering, Kalman
filtering, H∞ filtering, compressive sensing, adaptive filtering,
etc. have been proposed in the literature. Wiener filtering based
methods require joint stationarity of the subband input and
desired signals along with the knowledge of second order
statistics of them. Kuchler and Therrien [49] used Wiener
filtering to estimate a signal from multiple multirate observa-
tions. Scrofani and Therrien [44] extended the analysis to two-
dimensional signals. Vaidyanathan and Chen [50] designed a
statistically optimal synthesis bank for a subband coder by
using the biorthogonal solution followed by a matrix Wiener
filter in the synthesis stage. In case of Kalman filtering, the
statistics of the input and noise signals are required to be
known even if that vary with time. Multirate Kalman filter
based methods can be found in [51–53]. H∞ optimization
based methods, on the other hand, do not require any statistical
assumption and perform worst-case design [54]. As H∞
solution is generally not unique, mixed H2/H∞ optimization
methods [55, 56] have also been proposed in the literature.
The complexity of H2 and H2/H∞ solutions are very high
since they are solved as linear matrix inequalities (LMIs) [56].
A least square based solution for the problem was presented
in [57]. However, the solution presented was for two channels
only. In [58], Li Chai et al. formulated the problem using
structural similarity criterion and obtained closed-form solu-
tion under certain assumptions like the filter length is equal
to the decimation factor, the mean of the source is zero,
etc. Compresive sensing based method was used in [59] to
estimate a signal from multirate observations. However, the
signal has to be sparse. In [60, 61], adaptive filters were used to
estimate a signal from two observation sequences. An adaptive
least square lattice filter was used in [62]. However, the filter
obtained was periodically time-varying. Statistical analysis of
the estimation from the subbands has been performed by a
number of authors. For example, in [63–65], power spectral
density of a signal was estimated from multiple observations.
In [66], a measure for information contained in a multirate
observations was defined.

A. Contribution

In this paper, the problem of synthesizing a signal from
its multirate observations is addressed by performing time-
domain analysis. This approach has led to some additional

novel contributions to the field which are now briefly pre-
sented. Under time-domain analysis, the matrix representation
for various operations like filtering, downsampling, upsam-
pling, etc. are developed and used to parameterize synthesis
bank solutions. This parameterization is consistent and at least
one optimum synthesis filter bank is guaranteed. We design
the synthesis bank for a more general set up in comparison to
existing methods [57–61]. The synthesis filter length can be
arbitrary but given. Further, we have used delay in the recon-
struction as a parameter to have flexibility in the synthesis filter
design, and using that, we obtain better reconstruction error
than possible with a zero delay design. Another advantage
of our analysis is that we obtain a linear time-invariant (LTI)
optimal matrix filter unlike the linear periodically time-varying
(LPTV) optimal filters obtained in earlier works [49, 62]. Our
method always results in a solution in comparison to LMI
based methods [55, 56] where a solution for an LMI may not
be feasible [67]. The necessary and sufficient condition on a
synthesis bank solution to result in PR is derived. Under this
condition, the polyphase matrices for the analysis and synthe-
sis banks satisfy the general pseudocirculant property [68, 69],
unlike the limited identity matrix condition in the earlier
works [23, 29]. The necessary and sufficient conditions on the
analysis bank and the delay for a PR synthesis bank solution
to exist are derived. This analysis forms an alternative to the
frame theory based approach in previous works [29, 30]. Time-
domain pseudocirculant result derived in this paper form an
important theoretical contribution to the multirate theory. The
derivation of a range of delay values for which PR is possible
is another contribution. We have also extended the design
methodology for any arbitrary NUFB. Under experimental
results, a number of experiments are presented to highlight
contributions and to show application of our work.

B. Organization

This paper is organized as follows: Section II discusses
the various matrix representations for time-domain signals and
operations. In Section III, we introduce the framework used
to design the synthesis filter for a given analysis bank. In
Section IV, we derive the pseudocirculant condition in time-
domain and present the necessary and sufficient conditions on
an analysis bank and on the delay to result in PR. We provide
the experimental results in Section V and finally, concluding
remarks are given in Section VI.

C. Notation

The (i, j)-th entry of a matrix B is given by Bi,j or
B(i, j). The transpose and conjugate-transpose of a matrix
or vector quantity are denoted by the superscripts (.)T and
(.)H , respectively. An identity matrix of size P is represented
by I when the size is implicit and by IP otherwise. The
pseudoinverse of a matrix A is denoted by A†. The superscript
(.)∗ stands for conjugation of a quantity. Convolution of two
sequences is denoted by ∗. The ceiling function is represented
by d.e.
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II. MATRIX REPRESENTATIONS

In this section, we develop the matrix representations for
various multirate operations, which are required for an effec-
tive time-domain analysis of multirate filter banks.

A. Time-domain Sequence Representation

A vector signal is developed from the given signal v(n) by
stacking the past P samples as:

v(n) =
[
v(n− P + 1) v(n− P + 2) . . . v(n)

]T
. (1)

It is termed as an observation vector for the signal v(n) [70].
Its flipped version or reversal can be obtained as

v(n) = JPv(n), (2)

where JP is a counter-identity or reverse-identity matrix. For
a matrix B, reversal operation results in reversing of order
along both rows and columns. Mathematically, the same can
be expressed as

B = JMBJN (3)

if the size of the matrix is M ×N . For two matrices A and
B whose product is defined, we have the following relation:

AB = AB. (4)

B. Decimation

Consider a system, as shown in Fig. 1, with a M -fold
decimator preceded by a time-advance by l. The input and
output of it are related as

y(n) = x(Mn + l). (5)

Such a system can be used to obtain polyphase components

x(n) y(n)
zl ↓ M

Fig. 1. A decimator preceded by time-advance

of a signal when l is in the range [0,M − 1]. Two matrix
representations are possible for a system. If an observation
vector

y =
[
y(0) y(1) . . . y(P − 1)

]T
(6)

for the output is to be evaluated, then the same can be done
as follows:


y(0)
y(1)

...
y(P−1)

 =


1 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . 1





x(l)
x(l+1)

...
x(M+l)

...
x(M(P−1)+l)


,

y = D0
P,M(P−1)+1x,

(7)

where D0
P,M(P−1)+1 is known as a decimation matrix. On the

other hand, if an input sample vector

x =
[
x(0) x(1) . . . x(P − 1)

]T
(8)

is given, then the corresponding output samples can be ob-
tained as

y = Dl
d P
M e,P

x, (9)

where the elements of the decimation matrix Dl
dP/Me,P are

given by

Dl
d P
M e,P

(i, j) =

{
1, if j = Mi + l

0, otherwise.
(10)

Here l is in the range 0 ≤ l ≤ M − 1. For l ≥ M , the same
matrix representations can be extended.

C. Expansion

If an input observation vector

x =
[
x(0) x(1) . . . x(P − 1)

]T
(11)

is available, then the output of a M -fold expander can be
obtained as

y = UM(P−1)+1,Px, (12)

where UM(P−1)+1,P is an expansion matrix. This matrix is
related to a decimation matrix as

UM(P−1)+1,P = (D0
P,M(P−1)+1)T . (13)

It can be easily verified that

D0
P,M(P−1)+1UM(P−1)+1,P = IP ,

UM(P−1)+1,PD0
P,M(P−1)+1 6= IM(P−1)+1.

(14)

D. Convolution

Consider a causal linear time-invariant (LTI) filter with
impulse response {h(0), h(1), . . . , h(Q − 1)}. Its input and
output are related as

y(n) =

Q−1∑
k=0

h(k)x(n− k). (15)

We present the matrix representations for the above relation
for two use cases. Under first case, consider an observation
vector

y(n) =
[
y(n− P + 1) y(n− P + 2) . . . y(n)

]T
(16)

for the output which needs to be evaluated. The same can be
achieved using

y(n) = Hx(n), (17)

where

x(n) =
[
x(n−P+2−Q) x(n−P+3−Q) . . . x(n)

]T
, (18)

and H is a convolution matrix given by

H =


h(Q−1) h(Q−2) . . . h(0) . . . 0

0 h(Q−1) . . . h(1) . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . h(0)

 . (19)

The second representation is obtained for a scenario where an
input observation vector is given, and the corresponding output



5

samples need to be evaluated. Consider an input observation
vector

x =
[
x(0) x(1) . . . x(P − 1)

]T
, (20)

then the complete output due to it can be expressed as

y(0)
y(1)

...
y(Q−1)

...
y(P+Q−2)


=



h(0) 0 . . . 0
h(1) h(0) . . . 0

...
...

. . .
...

h(Q−1) h(Q−2) . . . 0
...

...
. . .

...
0 0 . . . h(Q−1)




x(0)
x(1)

...
x(P−1)


(21)

or
y = H̃x. (22)

It is implicit in the above representation that x(n) = 0 for
n /∈ [0, P−1]. The utility of the representation is in evaluation
of convolution of two filters. The two convolution matrices,
so far obtained, are related with each other as:

H̃ = HT , (23)

where H denotes the reversal of the matrix.
In the following section, we address the design of a synthe-

sis filter bank using the time-domain representations discussed
so far.

III. DESIGN FRAMEWORK

We have multirate observations, derived from various sub
bands, and we aim to reconstruct or estimate the original
high resolution signal. Initially, we consider observations to
be at the same low rate and model them as output of a
uniform analysis bank. The case when the observations are at
different rates is addressed later in this paper. The subbands are
applied to a matrix synthesis filter, as shown in Fig. 2, where
reconstruction happens at a low rate to reduce computational
cost. The output of the synthesis filter is then unblocked [71] to
get the final high resolution signal. We model our problem of
designing the matrix synthesis filter bank in the framework
of Wiener filtering. The Wiener filter is an optimum filter
to minimize the mean-square error (MSE). For a multi-input
multi-output system, the solution is known as a matrix Wiener
filter. The details of the design setup are explained next.

Consider the filter bank shown in Fig. 2. A wide-sense
stationary (WSS) input signal u(n) passes through a given
analysis bank consisting of the filters {hi(n)}L−1i=0 . The analy-
sis filters are assumed to be FIR and causal. The output signals
{xi(n)}L−1i=0 of the analysis bank are uniformly decimated
by the factor M to obtain the subband signals {vi(n)}L−1i=0

which are then applied to a matrix synthesis filter A(n).
We choose the synthesis filter to be FIR and causal, and
formulate a Wiener filtering problem for a given length of the
synthesis filter. The desired signal for the problem is derived
from the input signal u(n) by adding a given delay d and
then performing blocking operation [71]. The delay is added
to compensate the time lag that appears in the input signal
when it passes through the filter bank. The blocking operation
ensures that the desired signal d(n) is jointly stationary with

the subband signal v(n) [72]—a necessary condition required
for application of Wiener filtering [73].

A. FIR Matrix Synthesis Filter Expression

In Appendix A, we obtain the following expression for an
FIR matrix Wiener filter with length P :

rdiv = aT
i Rvv, 0 ≤ i ≤M − 1, (24)

where Rvv is the auto-correlation matrix of the input signal
v(n) to the filter, rdiv is the cross-correlation vector between
the desired signal component di(n) and the signal v(n), and
ai is the i-th row of the filter. This expression can be simplified
in the context of the UFB given in Fig. 2. In order to do that,
a vector vs(n) is created by stacking the observation vectors
of the subband signals as

vs(n) =
[
vT
0 (n) vT

1 (n) . . . vT
L−1(n)

]T
, (25)

where vj(n) is an observation vector representing the j-th
input to the Wiener filter at time n and is given by

vj(n) =
[
vj(n−P+1) vj(n−P+2) . . . vj(n)

]T
. (26)

The quantities Rvv and rdiv can be expressed in terms of
vs(n) as

Rvv = E[vs(n)vH
s (n)],

rdiv = E[di(n)vH
s (n)].

(27)

To make use of the Wiener filter in (24), we derive an
expression of the vector vs(n) in terms of the input to the
filter bank. We can note from Fig. 2 that vj(n) = xj(Mn)
and this relationship can also be expressed in matrix form as

vj(n) = D0
P,M(P−1)+1xj(Mn), (28)

where

xj(Mn) =
[
xj(M(n−P+1)) xj(M(n−P+1)+1) . . . xj(Mn)

]T
.

(29)
Further, the vector xj(Mn) can be expressed in terms of the
input u(n). We start with an assumption that all the analysis
filters are causal and have equal length Q. It can be assured
by appropriate zero padding. Now we can obtain xj(Mn) as

xj(Mn) = Hju(Mn), (30)

where Hj is a convolution matrix. The entire input to the
Wiener filter can be expressed as follows:

vs(n)=


v0(n)
v1(n)

...
vL−1(n)

=


D0

P,M(P−1)+1H0

D0
P,M(P−1)+1H1

...
D0

P,M(P−1)+1HL−1

u(Mn),

=Ku(Mn),

(31)

where K is a matrix of size LP × [M(P − 1) + Q]. Using
this result, the auto-correlation matrix Rvv can be written as

Rvv = KE[u(Mn)uH(Mn)]KH ,

= KRuuKH .
(32)
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h0(n)

h1(n)

hL−1(n)

x1(n)

v0(n)

xL−1(n) yM−1(n)

x0(n)

v1(n)

↓ M

↓ M

↓ M

A(n)

y0(n)

y1(n)

vL−1(n)

↑ M

↑ M

↑ M

↓ M

↓ M

↓ M

z−1

z−1

z−1

z−1

z−1

z−1

u(n)

d1(n)

d0(n)

dM−1(n)

û(n)

δ(n− d)
d(n)

Fig. 2. Matrix Wiener filter based synthesis stage for a UFB

Similarly the cross-correlation vector rdiv becomes

rdiv = E[u(Mn− i− d)uH(Mn)]KH ,

= ri+d
uu KH ,

(33)

where ri+d
uu is a row vector given by

ri+d
uu =


ruu(−i−d)

ruu(−i−d+1)
...

ruu(−i−d+M(P−1)+Q−1)


T

. (34)

By substituting these results in (24), we obtain

ri+d
uu KH = aT

i KRuuKH , 0 ≤ i ≤M − 1. (35)

The resulting equation is of form

Aai = bi, (36)

where

A =
(
KRuuKH

)T
,

bi =
(
ri+d
uu KH

)T
.

(37)

If A is invertible, then we have a unique solution. Otherwise,
the existence of a solution depends on the nature of the system
of equations. If the same is consistent, then all solutions can
be expressed as

ai = A†bi +
(
I−A†A

)
w, (38)

where w is an arbitrary vector. In the next theorem, we prove
that the equation always results in a solution.

Theorem 1. For an FIR uniform analysis bank, there will be
at least one optimal synthesis bank solution that minimizes the
mean-square error.

Proof. We have to prove that the solution given by (38) is
always an exact solution of the equation. Substituting the
solution in the equation, we obtain

Aai = AA†bi + A
(
I−A†A

)
w,

= AA†bi.
(39)

The matrix A can be expressed as

A =
(
KUΛUHKH

)T
,

=
(
KUΛ1/2

)∗ (
KUΛ1/2

)T
,

= CCH ,

(40)

by performing eigendecomposition of the auto-correlation
matrix Ruu. With this,

Aai = CCH(CCH)†bi,

= CCH(CH)†C†bi.
(41)

Using the pseudoinverse identities [74], the equation reduces
to

Aai = CC†bi,

= (KUΛ1/2)∗
(

(KUΛ1/2)∗
)†

K∗(ri+d
uu )T .

(42)

The auto-correlation matrix Ruu is in general positive definite
but always positive semi-definite. We consider the solution of
equation under these two cases:

1) Case I: Positive Definite Correlation Matrix
In this case, the auto-correlation matrix is invertible, so
is the diagonal matrix Λ. Hence we can process the
equation as follows:

Aai = (KUΛ1/2)∗((KUΛ1/2)∗)†(KUΛ1/2)∗

·
(

(UΛ1/2)∗
)−1

(ri+d
uu )T ,

= (KUΛ1/2)∗
(

(UΛ1/2)∗
)−1

(ri+d
uu )T ,

= bi.

(43)

2) Case II: Positive Semi-Definite Correlation Matrix
The diagonal matrix Λ is not invertible under this case.
However we exploit the relation between the vector ri+d

uu

and the matrix Ruu. For (i+d) < (M(P −1)+Q), the
vector ri+d

uu is one of the row of the correlation matrix.
If (i + d) ≥ (M(P − 1) + Q), then the vector ri+d

uu can
still be expressed as a linear combination of the rows of
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the auto-correlation matrix [75]. Thus, we can always
express the vector ri+d

uu as

ri+d
uu =

∑
j

cjRuu(j, :) =
∑
j

cjU(j, :)ΛUH , (44)

where Ruu(j, :) is the j-th row of the correlation matrix.
With this,

Aai =(KUΛ1/2)∗
(
(KUΛ1/2)∗

)†
(KUΛ1/2)∗

·Λ1/2
(∑

j

cjU(j, :)
)T

,

=(KUΛ1/2)∗Λ1/2
(∑

j

cjU(j, :)
)T

,

=bi.

(45)

We can observe that we have

Aai = AA†bi = bi (46)

under both the cases and hence the solution given by (38) is
exact.

From the above theorem, we can conclude that if the matrix
A is non-invertible, we have infinite number of optimum
solutions possible. This gives an opportunity to optimize the
synthesis bank for a desired property.

1) Computational Complexity: The computational com-
plexity can be evaluated from various algebraic manipulations
required for the solution in (38). To start with, the matrix
A evaluation needs O

(
LP (M(P − 1) + Q)2

)
+ O

(
(LP )2

)
calculations and its pseudoinverse requires O

(
(LP )3

)
cal-

culations. The term (I − A†A) can then be evaluated with
O
(
(LP )3

)
cost. As the vector bi needs to be evaluated for

each i ∈ [0,M − 1], the total cost of obtaining bi’s is
O
(
MLP (M(P − 1) + Q)

)
. All the products A†bi and (I−

A†A)w can then be obtained with complexity O
(
M(LP )2

)
.

Therefore, the complexity is quadratic with respect to M and
Q, and cubic with respect to L and P .

Our synthesis filter is multiple-input multiple-output
(MIMO) FIR system, thus enabling the operations at the lowest
sampling rate. The MIMO implementation brings down the
complexity drastically, thereby for each reconstructed output
sample, the number of multiplication and additions required
are only LP and (LP − 1), respectively.

B. Extension to NUFB

The results developed so far for a UFB can be extended
for an NUFB case. Before applying Wiener filtering on an
NUFB, we convert it into an equivalent UFB with the help
of blocking operation. This conversion is needed as Wiener
filtering requires joint stationarity of the input and the desired
signals [72]. Each subband of the NUFB with a decimation
factor Mi is blocked with a factor

ki = M/Mi, 0 ≤ i < L (47)

where L is the number of subbands and M is the LCM of
all decimation factors. The process is shown in Fig. 3a. An
equivalent representation of the process, as shown in Fig. 3b,
can be derived using the noble identities [68, 72]. Thus with

blocking, the NUFB behaves like a UFB with decimation
factor equal to M and with analysis filters given by

h′i,l(n) = hi(n−lMi), 0 ≤ i < L; 0 ≤ l < ki. (48)

Now the Wiener synthesis filter for the NUFB can be obtained
using (38).

C. Minimum Mean-square Error

We now determine the MSE for a given length of the Wiener
filter. The result can be used to choose the length of the
synthesis filter based on the desired level of the error. The
MSE is defined as

J = E[eH(n)e(n)] =

M−1∑
i=0

E[e∗i (n)ei(n)]. (49)

Its minimum value is achieved using the Wiener filter and
is denoted by Jmin. Further, Jmin is the sum of channel-wise
MSEs which are given by

J i
min = E[e∗i (n)ei(n)],

= E[e∗i (n)di(n)]−E[e∗i (n)yi(n)].
(50)

Using the principle of orthogonality [76], the above equation
reduces to

J i
min = E[e∗i (n)di(n)],

= E[d∗i (n)di(n)]−E[y∗i (n)di(n)],

= ruu(0)−E[vH
s (n)a∗i di(n)],

= ruu(0)− rdiva
∗
i .

(51)

Substituting the expressions for rdiv and ai from (33) and (38),
respectively, we obtain

J i
min = ruu(0)−bT

i A†∗b∗i−
(
bi−AH(A†)Hbi

)T
w∗,

= ruu(0)−bT
i A†∗b∗i−

(
bi−AA†bi

)T
w∗.

(52)

The term with the arbitrary vector is zero due to (46) and the
equation reduces to

J i
min = ruu(0)− bT

i A†∗b∗i . (53)

This proves that all the solutions for the synthesis bank results
in the same MSE, which is intuitive.

1) Optimal Delay: The channel MSE J i
min depends on the

delay d. The same is also observed in our simulation results.
The exact form of the relation can be obtained from (37) as

J i
min = ruu(0)− ri+d

uu KH
(
KRuuKH

)†
K
(
ri+d
uu

)H
= ruu(0)− ri+d

uu B
(
ri+d
uu

)H (54)

J i
min can be observed as a quadratic form with the matrix B

being a Hermitian matrix. If we are interested to obtain an
optimal delay value, we can use the existing results [77, 78]
on the quadratic forms.

In the following section, we derive the necessary and
sufficient conditions on a filter bank for the MSE to be zero.
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↓ M

u(n)

↓ M v′i,0(n)

v′i,1(n)

v′i,ki−1(n)

(b) Equivalent representation

Fig. 3. Conversion of an NUFB into an equivalent UFB

IV. FIR PERFECT RECONSTRUCTION FILTER BANK

In the following analysis, we prove that the designed
synthesis bank can achieve PR provided that the analysis
bank satisfies certain condition. To justify PR property for any
arbitrary input signal on a strong analytical background, we
verify the pseudocirculant property [68, 69] for the solution.

A. Pseudocirculant Property

We evaluate the product P(z) = A(z)E(z) in time-domain
where A(z) and E(z) are the polyphase component matrices
for the synthesis bank and the analysis bank, respectively [69].
The matrix P(z) is designed as an identity matrix in previous
works [23, 29]. Our design approach is more general where
P(z) satisfies the pseudocirculant property. In time-domain,
we obtain the matrix P(z) from convolution of the two matrix
filters as

pi,j(n) =

L−1∑
r=0

ai,r(n) ∗ er,j(n), 0 ≤ i, j ≤M − 1. (55)

In the above equation, the filter er,j(n) can be obtained from
the analysis filters as [68]

er,j(n) = hr(Mn + j). (56)

As Q is the length of the analysis filters, the length of the
filter er,j(n) will be at max

T =

⌈
Q

M

⌉
. (57)

By zero padding, we ensure that all the constituent filters of
the polyphase filter E(n) have the same length T . With that,
the convolution given in (55) can be expressed in matrix form
using (22) as

pi,j =

L−1∑
r=0

Ẽr,jai,r, (58)

where Ẽr,j is a convolution matrix of size (P +T−1)×P . We
like to express this convolution matrix in terms of the analysis
filter hr(n). For that, we use a polyphase identity, as shown
in Fig. 4, obtained from the existing result [68] by finding the
0-th polyphase component of a time-advanced filter hr(n+j).
Using this identity, we obtain the following relation

Ẽr,j = Dj
P+T−1,M(P−1)+QH̃r(D0

P,M(P−1)+1)T ,

= Dj
P+T−1,M(P−1)+QHT

r (D0
P,M(P−1)+1)T ,

= Dj
P+T−1,M(P−1)+Q

(
D0

P,M(P−1)+1Hr

)T
.

(59)

It can be seen that Fig. 4b contains a combination of upsam-
pling, filtering, time-advance and downsampling. Even then
the matrix representations developed in this paper for various
multirate operations have been successfully applied to deal
with it. Continuing forward, we use the above relation in (58)
and obtain

pi,j = Dj
P+T−1,M(P−1)+Q

L−1∑
r=0

(
D0

P,M(P−1)+1Hr

)T
ai,r,

= Dj
P+T−1,M(P−1)+QKTai. (60)

Next we derive a necessary and sufficient condition, in the
form of a theorem, for the analysis and synthesis banks of a
filter bank to result in PR.

Theorem 2. An FIR uniform filter bank is PR if and only if

KTai = cei+d, (61)

where c is a non-zero constant and the column vector ei+d is
defined as follows:

ei+d(l) =

{
1, if l = i + d

0, otherwise.
(62)

Proof. The proof follows the Vaidyanathan’s well-known
pseudocirculant property. A PR filter bank must satisfies the
generalized pseudocirculant condition given by [68]

P(z) = cz−n0

[
0 IM−r

z−1Ir 0

]
. (63)

We have evaluated P(z) in time-domain and next we find
conditions for it to be pseudocirculant. Let KTai = si,
then (60) becomes

pi,j =
[
si(j) si(j+M) . . . si(j+M(P+T−2))

]T
. (64)

If the matrix filter P(z) is pseudocirculant, then the following
properties are true in time-domain:

1) Property 1: In a row, only one pi,j is non-zero i.e. only
one out of pi,0,pi,1, . . . ,pi,M−1 is non-zero.

2) Property 2: In a column, only one pi,j is non-zero i.e.
only one out of p0,j ,p1,j , . . . ,pM−1,j is non-zero.
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hr(Mn+ j)
x(n) y(n)

(a) A polyphase component

↑ M
x(n) y(n)

hr(n) δ(n+ j) ↓ M
xI(n) f(n)

(b) Equivalent multirate circuit

Fig. 4. The polyphase identity.

3) Property 3: For a vector pi,j , at most one entry is non-
zero.

4) Property 4: All the entries on upper-left to lower-right
diagonals are the same i.e.

pi+1,j+1 = pi,j , 0 ≤ i, j ≤M − 2. (65)

5) Property 5: The first column will have

pi+1,0(l) =

{
0, if l = 0

pi,M−1(l−1), otherwise
,

0 ≤ i ≤M−2.

(66)

The above properties will result in the following constraints
on the vector si:

1) Property 1 implies that only one vector

pi,j =
[
si(j) si(j+M) . . . si(j+M(P+T−2))

]T
,

0≤j<M
(67)

is non-zero in a row. Further, Property 3 means that only
one element of the non-zero vector is non-zero. Together
these two conditions imply that only one element of the
vector si is non-zero. Assume that pi,j 6= 0 for j = ji
and pi,ji(li) = si(ji + Mli) 6= 0, then we can express

si = cieji+Mli . (68)

2) Property 4 results in

si+1(Ml+j+1)=si(Ml+j), 0≤j≤M−2;

0≤ l≤P+T−2.
(69)

From the above equation, all the elements of the vector
si+1, except at indices that are multiples of M , can be
obtained from the vector si.

3) Property 5 implies

pi+1,0(0) = si+1(0) = 0, 0 ≤ i ≤M − 2. (70)

Another implication is that

si+1(Ml) = si(Ml − 1). (71)

Combining the two results (69) and (71), we get

si+1(l) =

{
0, l = 0,

si(l − 1), otherwise.
(72)

Thus the vector si+1 is just a shifted version of the
vector si.

The last constraint implies that all the vectors si can be
obtained from a single vector s0. If the vector s0 has form

s0 = ceMl0+j0 = ced0
, (73)

then all the vectors si can be expressed as

si = cei+d0
, 0 ≤ i ≤M − 1. (74)

Due to the above equation, we have

pi,j = cDj
P+T−1,M(P−1)+Qei+d0 . (75)

In z-domain, this means that

P(z) = cz−l0
[

0 IM−j0
z−1Ij0 0

]
(76)

and the reconstructed output is û(n) = cu(n− d0 −M + 1).
One can easily see that the variable d0 is the same as the delay
d in the desired signal path.

It is to be noted that the above theorem puts restriction
on both the analysis and synthesis banks. It may happen that
a solution may not exist for the synthesis bank to result in
PR. We will first obtain a parameterization of all PR solutions
for the synthesis bank and later derive necessary & sufficient
conditions for the same to exist.

B. Parametric Form for PR Solutions

In the previous subsection, we obtained the following con-
dition on the analysis and synthesis banks to have PR:

KTai = cei+d, 0 ≤ i < M. (77)

The above equation is of form

Aai = bi (78)

and thus represents a system of equations. If the same is
consistent, then all the PR solutions for the synthesis bank
are given by

ai = A†bi + (I−A†A)w,

= c(K†)Tei+d + (I−KK†)Tw,
(79)

where w is an arbitrary vector. We can observe that the
solutions have turned out to be independent of the input signal.

C. Necessary and Sufficient Conditions on Analysis Bank and
Delay

In order for a PR solution to exist, the analysis bank has to
satisfy certain condition. We present the same in the form of
a theorem about the matrix K which represents the analysis
bank.

Theorem 3. For an FIR uniform analysis bank, at least one
PR synthesis bank solution is possible if the matrix K satisfies
the relation

K†K=I+

 Bp×p 0p×r Cp×(q−p−r)
0r×p 0r×r 0r×(q−p−r)

CH
p×(q−p−r) 0(q−p−r)×r D(q−p−r)×(q−p−r)

 , (80)

where 0r×r is the largest zero sub-block possible with r ≥M ,
and Bp×p, D(q−p−r)×(q−p−r) and Cp×(q−p−r) are arbitrary
matrices with the first two being Hermitian.
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Proof. We require the system of linear equations given by

KTai = cei+d (81)

to be consistent to have an exact solution. In order to obtain
the condition for that, we substitute a PR solution in the above
equation and obtain

c
(
K†K

)T
ei+d +

(
K−KK†K

)T
w = cei+d. (82)

Using the fact that KK†K = K, the equation simplifies to((
K†K

)T − I
)

ei+d = 0, 0 ≤ i ≤M − 1. (83)

If the matrix K†K is of dimension q × q, then in order for
the above equation to be satisfied, we require(

K†K
)H

= I +
[
Xq×p 0q×r Yq×(q−p−r)

]
, (84)

where p ≤ d, r ≥M , and Xq×p and Yq×(q−p−r) are arbitrary
matrices of dimensions q×p and q× (q−p− r), respectively.
As K†K is a Hermitian matrix, we have

[
Xq×p 0q×r Yq×(q−p−r)

]
=

 XH
q×p

0r×q
YH

q×(q−p−r)

 . (85)

Thus the two matrices Xq×p and Yq×(q−p−r) have following
form:

Xq×p =

 Bp×p
0r×p

CH
p×(q−p−r)

 (86)

and

Yq×(q−p−r) =

 Cp×(q−p−r)
0r×(q−p−r)

D(q−p−r)×(q−p−r)

 , (87)

where matrices Bp×p and D(q−p−r)×(q−p−r) are Hermitian
matrices. Hence the condition on the matrix K becomes

K†K=I+

 Bp×p 0p×r Cp×(q−p−r)
0r×p 0r×r 0r×(q−p−r)

CH
p×(q−p−r) 0(q−p−r)×r D(q−p−r)×(q−p−r)

 . (88)

The PR requirement imposes the following condition on the
desired signal delay d.

Lemma 1. With an analysis bank matrix K satisfying the
above condition, PR is possible only when the delay d is in
the range:

p ≤ d ≤ p + r −M. (89)

Proof. The proof easily follows from the equations (83)
and (84).

The above lemma together with Theorem 3 constitute the
necessary and sufficient conditions for a PR synthesis solution
to exist. The lemma points that with suitable delay, PR
is achievable for an analysis bank which is otherwise not
possible. This way we have attempted to expand the space
of PR FIR filter banks. Further, we can have PR for a number
of delay values which gives an opportunity to use delay as an
optimization parameter, based on various design criterion like

Hermitian symmetry, time or frequency localization [23], cod-
ing gain [79], etc. For this, the number of channels required is
L > M and the channels should satisfy the PR condition given
by Theorem 3. For a fixed delay, it is an unconstrained problem
with respect to the arbitrary vector w [23, 30]. The required
optimized solution can be selected among the solutions for
various delays by imposing an additional constraint. Design
specific constraints and their solutions can be considered for
future work.

It can be seen that the matrix K easily satisfy the PR
condition if it has full column rank. The PR condition induces
certain restriction on its null space which is given by the
following lemma.

Lemma 2. For a PR UFB, the analysis bank matrix K has a
null space spanned by the following set of vectors:

z =
[
f1×p 01×r g1×(q−p−r)

]T
, (90)

where f1×p and g1×(q−p−r) are arbitrary vectors.

Proof. The matrix K represents the analysis bank of a filter
bank. Hence, when an input signal u(n) is applied to the
analysis bank, the resulting subband vector can be obtained
as

vs(n) = Kū(Mn). (91)

Consider a case where the vector ū(Mn) lies in the null space
of the matrix K. As a result, the vector vs(n) as well as the
output of the synthesis bank, both are zero. The reconstructed
signal is then

û(Mn + i) = yM−1−i(n) = 0, 0 ≤ i < M. (92)

For PR, we require

û(n) = u(n− d−M + 1). (93)

Combining the two, we get

û(Mn+i)=u(Mn+i−d−M+1)=0, 0≤ i≤M−1.
(94)

Thus the vector ū(Mn) should be of form

ū(Mn)=
[
u(Mn) u(Mn−1) . . . u(Mn−d+1) 01×M

u(Mn−d−M) . . . u(Mn−q+1)
]T

.
(95)

A basis vector for the null space of the matrix K should satisfy
the above condition for all possible values of d and hence
should have the form

z =
[
f1×p 01×r g1×(q−p−r)

]T
, (96)

where f1×p and g1×(q−p−r) are arbitrary vectors.

In this section, we presented various necessary and sufficient
conditions for a PR synthesis bank solution to exist. In the
next section, we present some experiments which validates
our results.
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Fig. 5. Experiment 1: Ensemble-averaged squared error for various delay values

V. EXPERIMENTAL RESULTS

In this section, we verify the derived results with a number
of experiments. These experiments are chosen to demonstrate
the wide scope of application of our design. In Experiment
1, we obtain the MSE for various delay values in the desired
signal and compare the results. We present the improvement
in reconstruction, in terms of the MSE, with addition of a
new subband in Experiment 2. We also examine the impact of
delay on PR. In Experiment 3, a PR non-uniform filter bank
obtained through our design is verified with a non-stationary
input signal.

A. Experiment 1

We consider a 2-channel maximally decimated uniform
analysis bank designed using fir1 routine of Matlab with the
following parameters: the analysis filter h0(n) is low-pass filter
with cut-off 0.6 and length 9, and h1(n) is high-pass filter
with cut-off 0.4 and length 10. The input to the filter bank is
a zero mean, unit variance second-order autoregressive(AR(2))
process with coefficients 0.7 and 0.1. We choose the length
of the constituent filters of the matrix synthesis filter to be
11 and design the filter for various delay values using (38).
We obtain ensembled-averages of the channel-wise squared
errors, shown in Figs. 5a and 5b, for these synthesis filters
by performing 200 independent runs. The corresponding the-
oretical values, obtained using (53), are provided in Table I. It
is to be mentioned here that the analysis bank does not satisfy
Theorem 3. We can see that the observed error values are
closer to the theoretical values for both channels. Further, we
can notice that the best result among the selected delay values,
in terms of the total MSE, is with delay 10. This shows that
a better reconstruction can be obtained if some delay in the
reconstructed output is acceptable.

B. Experiment 2

In this experiment, we examine the effect of number of
subbands on the MSE along with the role of delay in achieving
PR. We consider an Extended Lapped Transform (ELT) filter
bank with decimation factor M = 4 and overlapping factor

TABLE I
EXPERIMENT 1: MSE FOR VARIOUS DELAY VALUES

d J0
min(dB) J1

min(dB) Jmin(dB)

0 -0.8673 -1.3434 1.9115
5 -33.1717 -43.7244 -32.8052
9 -62.8689 -68.3970 -61.7967

10 -68.3970 -70.7269 -66.3972
11 -70.7269 -61.6691 -61.1606
15 -57.3320 -45.5881 -45.3068
20 -29.5288 -33.7826 -28.1442

K ′ = 2. The prototype filter for ELT is designed using
the optimized butterflies angles mentioned in [21]. The input
signal to the filter bank is a realization of an AR(1) process
with coefficient 0.95, zero mean and unit variance. The length
of the synthesis filter is 4 and the delay is 10. We vary
the number of subbands (L) available to the synthesis filter
and obtain the MSE for each channel. On analyzing the
obtained results, as given in Table II, we can conclude that for
number of subbands L < 4, there is a variation in the MSE
with subbands chosen. However independent of the choice of
subbands, if we add additional subband to the system, then
we always see an improvement in the total MSE as well as
in the channel-wise MSEs. This is possible since we have
exploited the correlation between the input signal components
while designing the matrix synthesis filter. With the number of
subbands L = 4, the analysis bank satisfies the PR condition
given by Theorem 3. We vary the delay and find out that PR
is possible only with d = 12. This is consistent with the range
of delay values provided by (89).

C. Experiment 3

In this experiment, we design a PR synthesis bank for a
non-uniform analysis bank and test it with a non-stationary
input signal. We have the following setup:

M0=2, h0(n)={−0.1295,−0.12, 0.3695, 0.5018,

0.3695,−0.12,−0.1295},
M1=3, h1(n)={0.1308, 0.1728,−0.3775, 0.2117,

0.2117,−0.3775, 0.1728, 0.1308},
M2=6, h2(n)={0.0717, 0.0749,−0.1148, 0.1659,
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TABLE II
EXPERIMENT 2: VARIATION IN MSE WITH NUMBER OF AVAILABLE SUBBANDS

L Available analysis filters d J0
min(dB) J1

min(dB) J2
min(dB) J3

min(dB) Jmin(dB)

1 h0(n) 10 -12.9106 -12.9711 -15.0069 -14.9634 -7.8231
1 h1(n) 10 -0.2141 -0.2360 -0.0490 -0.1161 5.8675
1 h2(n) 10 -0.0826 -0.0577 -0.1747 -0.0823 5.9215
1 h3(n) 10 -0.0865 -0.0499 -0.0612 -0.0241 5.9652
2 h0(n), h1(n) 10 -16.7631 -19.0161 -16.7292 -19.1518 -11.7388
2 h0(n), h2(n) 10 -14.3354 -13.1462 -18.6208 -15.8517 -9.0295
2 h0(n), h3(n) 10 -13.7442 -13.8427 -15.6931 -15.6224 -8.6055
2 h1(n), h2(n) 10 -0.2899 -0.2923 -0.2217 -0.2139 5.7663
2 h1(n), h3(n) 10 -0.3044 -0.2881 -0.1109 -0.1410 5.8104
2 h2(n), h3(n) 10 -0.1676 -0.1071 -0.2355 -0.1088 5.8662
3 h0(n), h1(n), h2(n) 10 -20.5040 -20.3481 -23.1342 -23.1368 -15.5518
3 h0(n), h1(n), h3(n) 10 -19.2065 -24.3326 -17.8184 -21.2263 -14.0058
3 h0(n), h2(n), h3(n) 10 -15.5108 -14.0397 -20.4628 -16.7167 -10.0944
3 h1(n), h2(n), h3(n) 10 -0.3786 -0.3432 -0.2834 -0.2416 5.7092
4 h0(n), h1(n), h2(n), h3(n) 10 -45.1648 -32.0844 -145.2323 -143.7481 -31.8758
4 h0(n), h1(n), h2(n), h3(n) 11 -32.0844 -145.2323 -143.7481 -143.5253 -32.0844
4 h0(n), h1(n), h2(n), h3(n) 12 -145.2323 -143.7481 -143.5253 -145.3962 -138.3732
4 h0(n), h1(n), h2(n), h3(n) 13 -143.7481 -143.5253 -145.3962 -30.2194 -30.2194

0 500 1000 1500 2000 2500 3000
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Fig. 6. Experiment 3: Error versus time curve.

−0.2069, 0.2224,−0.2069, 0.1659,−0.1148,

0.0749, 0.0717},
M3=6, h3(n)={0.0881, 0.1617,−0.1686,−0.1538,

0.1752, 0.1752,−0.1538,−0.1686,

0.1617, 0.0881}. (97)

The analysis filters are designed using Parks-McClellan algo-
rithm. We convert the NUFB into an equivalent UFB with the
help of blocking operation. The resulting UFB has decimation
factor equal to 6 and the following analysis filters:

g0(n)=h0(n), g1(n)=h0(n−2), g2(n)=h0(n−4),

g3(n)=h1(n), g4(n)=h1(n−3), g5(n)=h2(n),

g6(n)=h3(n). (98)

We choose the length of the synthesis filter to be 7 and delay
d = 0. The resulting matrix K satisfies the PR condition (80)
and using (79), we obtain a PR solution with w = 0. We apply
a non-stationary signal generated using randn(n) sin(0.1n2)
to the filter bank and evaluate the reconstruction error as (refer
Fig. 2):

e(n) = |û(n)− d(n−M + 1)|. (99)

Fig. 6 shows the resulting error versus time curve. The small
error which we obtain is due to finite precision in MATLAB.

A(n)

v(n)

L× 1

M × L

d(n)

M × 1

e(n)

M × 1

+y(n)

M × 1

Fig. 7. A general matrix Wiener filtering setup

VI. CONCLUSION

We have addressed an important problem of designing
an optimal FIR synthesis bank for a given non-maximally
decimated analysis bank. To design such a synthesis bank,
a framework was developed to apply matrix Wiener filtering
to the problem and solution is obtained for a given length
of synthesis filter and delay in the reconstructed output. We
experimentally showed that better MSE can be obtained in
some cases by adding appropriate delay in the reconstructed
output. We found that the reconstruction error keeps decreas-
ing as more and more multirate observations are added for a
signal. The matrix representation developed in this paper can
be utilized to carry out time-domain analysis of any multirate
circuit. The infinite number of PR or non-PR synthesis bank
solutions possible with our design can be optimized for a
desired property in a future work.

APPENDIX
FIR MATRIX WIENER FILTER DERIVATION

Consider an optimum matrix filtering problem as shown
in Fig. 7 where the vector signal v(n) is the input and the
signal d(n) is an estimate of the desired signal. In order to
obtain the Wiener solution, the input and desired signals are
assumed to be jointly stationary [73]. The Wiener solution can
be derived for either FIR or IIR case. Here we derive the FIR
Wiener solution for a matrix filter whose constituent filters are
causal and of length P . We begin by applying the principle
of orthogonality [76] to the setup and obtain

E[ei(n)v∗j (n−k)] = 0, 0 ≤ i < M ;

0 ≤ j < L; 0 ≤ k < P.
(100)
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The above equation can be written as

E[di(n)v∗j (n−k)] = E[yi(n)v∗j (n−k)]

=

L−1∑
r=0

P−1∑
l=0

ai,r(l)E[vr(n−l)v∗j (n−k)].

(101)

As the input and desired signals are jointly stationary, we can
write

rdivj (k) =

L−1∑
r=0

P−1∑
l=0

ai,r(l)rvrvj (k − l). (102)

The above equation can be expressed in matrix form as

rdivj =

L−1∑
r=0

aT
i,rRvrvj

, 0≤ i<M ; 0≤j<L, (103)

where

rdivj=
[
rdivj (0) rdivj (1) . . . rdivj (P−1)

]
,

ai,r=
[
ai,r(0) ai,r(1) . . . ai,r(P−1)

]T
,

Rvrvj=


rvrvj (0) rvrvj (1) . . . rvrvj (P−1)
rvrvj (−1) rvrvj (0) . . . rvrvj (P−2)

...
...

. . .
...

rvrvj (−P+1) rvrvj (−P+2) . . . rvrvj (0)

 .

(104)

A further compact form is

rdiv = aT
i Rvv, 0 ≤ i ≤M − 1, (105)

where

rdiv =
[
rdiv0 rdiv1 . . . rdivL−1

]
,

ai =
[
aT
i,0 aT

i,1 . . . aT
i,L−1

]T
,

Rvv =


Rv0v0 Rv0v1 . . . Rv0vL−1

Rv1v0 Rv1v1 . . . Rv1vL−1

...
...

. . .
...

RvL−1v0 RvL−1v1 . . . RvL−1vL−1

 . (106)

The obtained result is a system of equations containing LP
equations in terms of LP unknowns. These are the Wiener-
Hopf equations for the matrix Wiener filter. Using them, we
can determine the i-th row of the matrix Wiener filter.
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[59] E. M. Ekşioğlu, A. K. Tanc, and A. H. Kayran, “A
compressive sensing framework for multirate signal es-
timation,” in 10th ISSPA 2010, May 2010, pp. 716–719.

[60] A. Hawes and C. Therrien, “LMS adaptive filtering with
multirate observations,” in Conf. Rec. 37th Asilomar
Conf. Signals, Syst. Comput., vol. 1, Nov. 2003, pp. 567–
570.

[61] A. Delopoulos and S. Kollias, “Optimal filter banks for
signal reconstruction from noisy subband components,”
IEEE Trans. Signal Process., vol. 44, no. 2, pp. 212–224,
Feb. 1996.

[62] A. Tanc, E. Eksioglu, and A. Hamdi Kayran, “Adaptive
multirate signal estimation with lattice orthogonaliza-
tion,” in 16th ICECS 2009, Dec. 2009, pp. 117–119.

[63] O. S. Jahromi, B. A. Francis, and R. H. Kwong, “Spec-
trum estimation using multirate observations,” IEEE
Trans. Signal Process., vol. 52, no. 7, pp. 1878–1890,
July 2004.

[64] A. Tanc and A. Kayran, “Iterative maximum entropy
power spectrum estimation for multirate systems,” AEU-
Int. J. Electron. Commun., vol. 64, no. 2, pp. 93–98,
2010.

[65] A. Amini, M. Takyar, and T. Georgiou, “A homotopy
approach for multirate spectrum estimation,” in Proc.
IEEE ICASSP, 2006, vol. 3, May 2006, pp. 532–535.

[66] O. S. Jahromi, R. H. Kwong, and B. A. Francis, “Infor-
mation theory of multirate systems,” in Proc. IEEE ISIT,
2001, Washington, DC, June 2001.

[67] J. G. VanAntwerp and R. D. Braatz, “A tutorial on linear
and bilinear matrix inequalities,” J. Process Control,
vol. 10, no. 4, pp. 363–385, 2000.

[68] P. P. Vaidyanathan, Multirate Systems and Filter Banks.

Englewood Cliffs, NJ: Prentice-Hall, 1993.
[69] P. Vaidyanathan and S. Mitra, “Polyphase networks,

block digital filtering, LPTV systems, and alias-free
QMF banks: a unified approach based on pseudocir-
culants,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 36, no. 3, pp. 381–391, Mar. 1988.

[70] D. A. Koupatsiaris, “Analysis of multirate random sig-
nals,” Thesis for the M.S. and E.E. degree, Naval Post-
graduate School, Monterey, CA, Dec. 2000.

[71] R. Dhuli and B. Lall, “Cyclostationary signals in multi-
rate linear systems,” in Nat. Conf. Commun.(NCC), Jan.
2010, pp. 1–5.

[72] S. Patel, R. Dhuli, and B. Lall, “Design and analysis of
matrix wiener synthesis filter for multirate filter bank,”
Signal Process., vol. 102, no. 0, pp. 256–264, 2014.

[73] M. H. Hayes, Statistical Digital Signal Processing and
Modeling. John Wiley & Sons, Inc., 2002.

[74] J. Barata and M. Hussein, “The moore-penrose pseudoin-
verse: A tutorial review of the theory,” Brazilian Journal
of Physics, vol. 42, no. 1-2, pp. 146–165, 2012.

[75] K.-R. Koch, Parameter estimation and hypothesis testing
in linear models. Springer-Verlag, 1999.

[76] S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1996.

[77] T. Moon and W. Stirling, Mathematical Methods and
Algorithms for Signal Processing. Prentice Hall, 2000.

[78] C. A Floudas and V. Visweswaran, “Quadratic optimiza-
tion,” Handbook of Global Optimization, 1995.

[79] F. Labeau, “Synthesis filters design for coding gain in
oversampled filter banks,” IEEE Signal Process. Lett.,
vol. 12, no. 10, pp. 697–700, Oct. 2005.

Sandeep Patel received the B.Tech degree in
Electronics and Communications Engineering from
the Indian Institute of Technology, Roorkee, in
2007. After completing graduation, he joined Nvidia
Graphics and worked on video technologies till
June, 2008. From June, 2008 to July, 2010, he was
with Adobe Systems working in the flash media
server team. He received the MS(R) degree from the
Indian Insitute of Technology, Delhi in 2013. He is
currently pursuing his Ph.D. degree from the Bharti
School of Telecom Technology and Management,

Indian Institute of Technology, Delhi.

Ravindra Dhuli received the Ph.D. degree in signal
processing from the Department of Electrical En-
gineering, Indian Institute of Technology Delhi, in
2010. He is currently an Associate Professor with
the Department of Electronics and Communications
Engineering, Vellore Institute of Technology, Andhra
Pradesh, India. His research interests include multi-
rate signal processing, statistical signal processing,
image processing, and mathematical modeling.



16

Brejesh Lall (M’05) received the B.E. and M.E.
degrees in electronics and communications engi-
neering from Delhi College of Engineering, Delhi
University, in 1991 and 1992, respectively, and the
Ph.D. degree in the area of multirate signal pro-
cessing from the Indian Institute of Technology,
Delhi, in 1999. His research interests are in signal
processing with application to image processing and
communication systems. He has over 150 papers
in international journals and refereed conferences.
From September 1997 to June 2005, he worked

at Hughes Software Systems, in the digital signal processing group. Since
July 2005, he has been with the faculty of the Department of Electrical
Engineering, Indian Institute of Technology, Delhi, where he is currently
a Professor and head of the Bharti School of Telecom Technology and
Management. He is also the coordinator of Ericsson 5G Center of Excellence
at IIT Delhi.


	I Introduction
	I-A Contribution
	I-B Organization
	I-C Notation

	II Matrix Representations
	II-A Time-domain Sequence Representation
	II-B Decimation
	II-C Expansion
	II-D Convolution

	III Design Framework
	III-A FIR Matrix Synthesis Filter Expression
	III-A1 Computational Complexity

	III-B Extension to NUFB
	III-C Minimum Mean-square Error
	III-C1 Optimal Delay


	IV FIR Perfect Reconstruction Filter Bank
	IV-A Pseudocirculant Property
	IV-B Parametric Form for PR Solutions
	IV-C Necessary and Sufficient Conditions on Analysis Bank and Delay

	V Experimental Results
	V-A Experiment 1
	V-B Experiment 2
	V-C Experiment 3

	VI Conclusion
	Appendix: FIR Matrix Wiener Filter Derivation
	Biographies
	Sandeep Patel
	Ravindra Dhuli
	Brejesh Lall


