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Enhancing Transient Stability of DC Microgrid by
Enlarging the Region of Attraction Through

Nonlinear Polynomial Droop Control
Bernardo Severino and Kai Strunz

Abstract— A methodology for enlarging the region of attrac-
tion (ROA) of a DC microgrid with constant power loads (CPLs)
is proposed. The enlargement is achieved through the optimal
design of a polynomial droop controller. The design of this
nonlinear controller is done by solving a sum of squares (SOS)
program. The proposed SOS program allows finding a Lyapunov
function that serves to estimate the ROA. Therefore, the coef-
ficients of the polynomial droop controller are optimized to
maximize that estimate. Using the SOS approach, the estimate
of the ROA exceeds the performance previously attained with
alternative methods. It is illustrated how this nonlinear droop
control approach is able to enlarge the ROA compared with a
linear droop technique. Numerical simulations confirm that the
proposed polynomial controller makes the system more robust
against large disturbances and so enhances the transient stability.

Index Terms— DC microgrids, constant power loads, region of
attraction, transient stability, Lyapunov theory, nonlinear control,
sum of squares, semidefinite programming.

I. INTRODUCTION

DC MICROGRIDS receive attention thanks to their ability
to integrate renewables, storage, and loads efficiently [1].

A typical architecture of a DC microgrid is shown in Figure 1.
In this configuration, the sources depicted at the left feed
a common DC bus to which several loads are connected.
All the sources and loads are interfaced by power electronic
converters. The loads that are interfaced by converters with a
high control bandwidth act as Constant Power Loads (CPL),
adding nonlinear dynamics to the overall system. These non-
linearities have a negative impact on the system stability,
due to the negative impedance behavior of CPLs [2]–[4].
Therefore, to promote the adoption of DC microgrids, it is
important to study the stability of DC networks taking into
account the presence of CPLs.

Often, the small-signal modeling is used for local sta-
bility analysis and control design of DC networks with
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Fig. 1. Schematic of DC microgrid for wind and solar power integration.

CPLs [5]–[11]. This approach ensures asymptotic stability of
the equilibrium point if all the eigenvalues of the linearized
system are strictly in the left-half complex plane [12]. Using
this technique, linear controllers can be designed to move the
eigenvalues to the left-half plane and to add more damping
to the system. Even though local stability is ensured, it is
not possible to quantify what “local” means. To answer this
question, the Region of Attraction (ROA) of the equilibrium
point must be studied [12]. Additionally, it is of interest to
design controllers to enlarge the ROA, making the system
more robust against large disturbances. One approach to this
end is the usage of time-domain simulations to check every
point in the neighborhood of the stable equilibrium point.
However, it does not give any closed form for control design
purposes and could present scalability issues [13]. In contrast,
direct methods based on the construction of Lyapunov energy
functions have shown a good balance between accuracy and
computational effort, and they are also control-oriented tools.

Several Lyapunov-based methods have been used to
estimate and, in some cases, to enlarge the ROA of DC net-
works with CPLs. The Brayton-Moser potential theory, used
in [14]–[17], allows an analytic construction of a Lyapunov
function based on a special nonlinear representation of the
electrical elements. Despite the simple computation of the
Lyapunov function, this method is too conservative because
the Lyapunov function is not defined to give a good estimate of
the ROA. In [18]–[20], the Takagi-Sugeno fuzzy model is used
to represent the nonlinear system as the weighted sum of linear
systems. Then, under some conditions for the linear systems,
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Fig. 2. Circuit details of a DC microgrid with one bidirectional source and N CPLs.

the asymptotic stability is ensured if a Linear Matrix Inequal-
ity (LMI) problem is feasible. This approach allows a less
conservative estimate of the ROA compared with the Brayton-
Moser potential theory. In [21], it is shown that the Takagi-
Sugeno fuzzy approach becomes computational expensive for
systems with a large number of CPLs. To overcome this
issue, the nonlinear system is rewritten as a Lur’e problem in
which stability can be studied by solving an LMI optimization
problem [22]. The Takagi-Sugeno and Lur’e approaches have a
good balance between accuracy and computational effort and
allow to enlarge the ROA through control design. However,
they cannot be used to synthesize nonlinear controllers, due
to the structure of the LMI optimization problem.

Nonlinear controllers could be more suitable for enlarging
the ROA as they take advantage of the nonlinear nature of
the CPLs. The sum of squares (SOS) optimization technique,
introduced in [23], is a promising approach for studying
nonlinear systems. It allows computing polynomial Lyapunov
functions, improving the accuracy of the estimated ROA [24].
In [25], the SOS technique was used to solve general con-
trol applications, and a methodology for enlarging the ROA
with state feedback was proposed. SOS approach was used
in [26] and [27] to study the ROA of an autonomous AC
electrical power system. Also in other fields of engineering,
it is observed that stability analysis using SOS shows accuracy
improvements. However, one of the drawbacks is the polyno-
mial growth of the computational effort with the number of
variables [28]. Recently, [29] proposed two new polynomial
decompositions which prove to reduce the computational time
significantly. These are named as the diagonally-dominant sum
of squares (DSOS) and the scaled-diagonally-dominant sum of
squares (SDSOS).

In this paper, a methodology for estimating the ROA of DC
microgrids with CPLs is proposed. The methodology relies on
solving a sequence of SOS optimization problems. These prob-
lems are formulated and solved by exploiting the mathematical
model of a DC microgrid. Since rational functions arise when
modeling CPLs, a Taylor series approximation is used to
recast the system into a polynomial one. The performance and
scalability of the SOS-based modeling approach are analyzed.

Results show that the proposed method improves the state of
the art. Moreover, the methodology supports the design of
nonlinear controllers for enlarging the ROA and enhancing
stability, making the system more robust against large distur-
bances. A specific polynomial control structure is proposed
and optimally designed using the SOS framework. The per-
formance improvement is confirmed through simulation. The
remainder of this paper is organized as follows. In Section II,
the modeling of the DC microgrid with CLPs is presented
and the ROA is defined, emphasizing its importance for the
transient stability problem. In Section III, the Lyapunov theo-
rem is recalled, the SOS decomposition introduced, and it is
revealed how to find Lyapunov functions through polynomial
certificates. In Section IV, the methodology for estimating the
ROA is described, and its performance studied in Section V.
In Section VI, the methodology is adapted for enlarging
the ROA through a linear-cubic droop controller. Finally,
in Section VII the conclusions of this work are discussed.

II. PROBLEM FORMULATION

Figure 2 gives details of the general subsystem of the
DC microgrid shown in Figure 1. As shown, N CPLs are
connected to a DC bus trough EMI RLC filters. The DC
bus voltage is regulated by a Battery Energy Storage System
(BESS). The BESS encompasses an internal constant voltage
source representing a battery, a bidirectional DC-DC buck
converter, and its controller. The controller adopts a droop con-
trol strategy, commonly used to allow current sharing, active
damping and plug and play capability [8]. Here, the current-
voltage strategy is implemented [10]. The voltage vs across the
output capacitor C is measured and compared to a reference
voltage vref

s , to generate an error signal. This error signal is
applied to the voltage controller (VC) which computes the
reference current i ref

s via a droop curve. The reference i ref
s is

compared to the current is flowing through the inductance L,
to generate an error signal. This error signal feeds the inner
current controller (CC) that computes the duty cycle signal
for the PWM block. Finally, the PWM synthesizes two square
signals which drive the switches of the buck converter.
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The generic j th CPL is composed of an internal load
resistance R j , a DC-DC buck converter, and its controller [2].
The controller measures the load voltage v ′

j and compares
it with the voltage reference v ′ref

j . This error signal feeds
a voltage controller (VC) which is designed to have zero
steady-state error and high bandwidth. If the bandwidth of the
closed-loop system is high enough, the DC-DC buck converter
presents a CPL characteristic.

A. System Modeling

For the modeling of the BESS, it is assumed that the inner
current controller is much faster than the outer voltage con-
troller. Then, the closed-loop current dynamic is approximated
by a first-order model with a time constant s, i.e.,

Gi(s) = is

i ref
s

= 1

(s s + 1)
, (1)

where is is the current flowing through the upper switch, and
i ref
s is the current reference. The outer voltage controller is

considered as a general polynomial droop curve, thus

i ref
s = i0

s +
dmax∑
d=1

kd(vref
s − vs)

d , (2)

where i0
s is a free parameter, kd is the droop coefficient

associated with the term of degree d , and dmax is the max-
imum degree of the polynomial droop curve. Note that when
dmax = 1 the linear droop curve is recovered. Then, from
(1) and (2) the dynamic equations for the BESS when it is
connected at the DC bus are:

C v̇s = is −
N∑

j=1

i j ,

si̇s = i0
s +

dmax∑
d=1

kd(vref
s − vs)

d − is, (3)

where i j is the current flowing through the j th RLC filter.
The j th CPL is modeled as a controlled current source

with internal dynamics, which is approximated by a first-order
model [20], [30]. With the voltage being tightly regulated,
the input of the controlled current source is Pj/v j , leading
to the nonlinear behavior of the CPL. Then, the dynamic
equations for the j th CPL connected to the DC bus through
the j th filter are:

L j i̇ j = −r j i j − v j + vs,

C j v̇ j = i j − ic j ,

j i̇c j = Pj /v j − ic j , (4)

where v j is the voltage across the filter capacitor C j , i j is
the current through the filter inductor L j , r j is the resistance
of the filter, Pj is the power consumption, ic j is the current
through the switch, and j is the time constant of the closed-
loop current dynamic.

For convenience, a change of variables is performed as
follows to express the dynamic behavior around the origin:
y = ȳ+ỹ, where y denotes the voltage or current variable, ȳ its

equilibrium point and ỹ its variations around the equilibrium
point. Additionally, in (2) the setting is vref

s = v̄s and i0
s = īs.

The resulting dynamic equations for the BESS are:

C ˙̃vs = ĩs −
N∑

j=1

ĩ j ,

s
˙̃is = K (ṽs) − ĩs, (5)

where

K (ṽs) =
dmax∑
d=1

kd(−ṽs)
d (6)

is the polynomial control droop, and the resulting dynamic
equations for the j th Filter-CPL are:

L j
˙̃i j = −r j ĩ j − ṽ j + ṽs,

C j ˙̃v j = ĩ j − ĩc j ,

j
˙̃ic j = −ī j h(ṽ j ) − ĩc j , (7)

where ī j = Pj /v̄ j , and

h(ṽ j ) = ṽ j

ṽ j + v̄ j
(8)

is the nonlinear behavior of the CPL.
From (5) to (8) the dynamical system around the origin can

be written as follows:

ẋ = Ax + �(x), (9)

where the vector x, the matrix A, and the vector of nonlinear
functions �(x) are given in Appendix A. Finally, note from
(5) to (8) that the i th state variable of (9) can be written as a
rational function, i.e.,

ẋi = ni (x)

di (x)
(10)

where ni (x) and di (x) are polynomial functions. Therefore,
the system under study is a rational system.

Other types of loads can be included in this modeling
framework. In general terms, the proposed method supports
any load that can be described as a polynomial function.
In the case of loads that are not polynomials, such as rational
systems, they may be approximated using the Taylor series as
it is proposed in Section IV-A. For example, ZIP loads [31]
could be modeled with the proposed approach.

B. Region of Attraction

Consider the autonomous system

ẋ(t) = f (x(t)) , x(0) = x0 ∈ D, (11)

where f : D → R
n is a vector field of nonlinear functions,

x(t) ∈ R
n is the state vector, x0 is the initial condition, and

D ⊆ R
n is a neighborhood of the origin.

Let the origin x = 0 be an asymptotically stable equilibrium
point for (11), and φ(t, x0) be the solution of (11) that starts at
initial state x0 at time t = 0. The ROA of the origin, denoted
by RA, is defined by

RA = {x0 ∈ D | φ(t, x0) → 0 as t → ∞}. (12)
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Fig. 3. Equivalent reduced circuit of the DC microgrid.

Thus, RA defines the neighborhood of all initial conditions
for which the system (11) will return to the origin. Often,
to have a better understanding of the ROA, it is plotted in the
phase plane, i.e., the plane having the states of the system as
coordinates.

To appreciate the importance of determining the ROA, let
recall the transient stability problem [12], [13], [32]. Suppose
that at time t0 the system (11) is subjected to a severe transient
disturbance, commonly named as a fault. The disturbance
could be for example a short circuit or a sudden large change
of load. Henceforth, the system variables are governed by
the so-called fault-on system, different from the pre-fault
system (11). The differences between them are due to a
change of the network or to a change of the parameters
of the system (11). During the fault-on process, the system
response to such disturbances involves large excursions of
system variables. Suppose that the disturbance ends or is
cleared at time t1. At this time, the fault-on system reaches
the state xpos(t1), and it switches to the post-fault system.
The post-fault system could be equal to the pre-fault system.
In such a case, the equilibrium point of the post-fault system
is x = 0, and the state variables are governed by (11). The
transient stability problem considers whether the trajectory
x(t) for (11) with initial conditions x(0) = xpos(t1) will
converge to x = 0, as time t goes to infinity. Whether or not
the system will return to steady-state operation depends on
whether xpos(t1) belongs to the ROA RA defined in (12).

To illustrate the transient stability problem, consider the
system in Figure 2 when N = 1, C � C1, 1 = 0. In such a
situation, a constant voltage source approximates the behavior
of the BESS, and the CPL acts as a controlled current source
without internal dynamics. Therefore, from (7) and (8) the
dynamic equations around the origin are given by

L1
˙̃i1 = −r1ĩ1 − ṽ1,

C1 ˙̃v1 = ĩ1 + P1

v̄1

(
ṽ1

ṽ1 + v̄1

)
. (13)

Figure 3 shows the equivalent circuit of (13) which corre-
sponds to a single CPL connected to a constant voltage source
through an EMI RLC filter.

Using the time-domain simulation approach, the exact ROA
can be obtained. Figure 4 shows the boundary of RA , for
different values of P1 and the parameters given in Table I.
As expected, the ROA decreases as P1 increases. For all values
of P1, the equilibrium point is shown to remain asymptotically

Fig. 4. Boundary of the ROA for different values of power in the phase
plane.

TABLE I

CIRCUIT PARAMETERS FOR THE CIRCUIT IN FIG. 3

stable when using small-signal analysis. Although the time-
domain simulation approach is applied to this example, its use
becomes prohibitive when the number of state variables of the
system increases, and it does not provide a closed-form solu-
tion of the transient stability problem, making it impractical for
a control design process [13]. The use of eigenvalue analysis is
not an alternative either. While the size of the ROA relates to
the distance between the absolute real part of the eigenvalues
and the imaginary axes, there is no methodology to translate
that distance into the phase plane where the ROA is defined.
These disadvantages encourage the use of direct methods,
also called Lyapunov-based methods. In particular, the SOS
approach has the potential for a less conservative estimate
of the ROA compared to other techniques, while preserving
computation times for small and medium-size problems [28].

III. BACKGROUND

The methodology for estimating and enlarging the ROA
of a DC microgrid with CPLs is based on the Lyapunov
stability theory, and the SOS of polynomials decomposition
approach. In the following, a brief discussion about these
topics is presented.

A. Lyapunov Stability

Direct methods are based on the Lyapunov stability theorem
which allows assessing the stability of nonlinear systems by
solving the problem of the existence of a Lyapunov func-
tion [12].

Theorem 1. Let x = 0 be an equilibrium point for (11) and
D ⊂ R

n be a domain containing x = 0. Let V : D → R be a
continuously differentiable function such that V (0) = 0 and

(i) V (x) > 0 in D − {0},
(i i) −V̇ (x) > 0 in D − {0},
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then x = 0 is asymptotically stable. Moreover, any region
defined by �c := {x ∈ R

n | V (x) ≤ c} such that �c ⊂ D is
an estimate of the ROA defined in (12).

Note that V̇ (x) is the time derivative of V (x) along the
trajectories of (11), i.e., V̇ (x) = ∇V f (x). A function V (x)
that might satisfy the conditions of Theorem 1 is called a Lya-
punov function candidate. While a function V (x) satisfying
the conditions is called a Lyapunov function.

The largest estimate of the ROA using V (x) can be obtained
by solving the following optimization problem [12]:

max c s.t. �c = {x ∈ R
n | V (x) ≤ c} ⊂ D. (14)

Note that Theorem 1 leaves complete freedom in the selection
of both the Lyapunov function V and the domain D. Then,
the problem (14) suggests that a search over V and D could be
performed. Thus, a choice to improve the estimate of the ROA
is to enlarge the domain D for which a Lyapunov function
V exists.

Suppose now that V (x) is a Lyapunov function candidate
which is positive definite in D, but it might not satisfy the
condition (i i) of Theorem 1. In such a case, the largest
estimate of the ROA using V (x) can be obtained by solving
the following optimization problem [12]:

max
c

c

s.t. �c = {x ∈ R
n | V (x) ≤ c} ⊂ D,

−V̇ (x) > 0 in �c − {0},
(15)

where the second constraint enforces the nonnegativity of
−V̇ over �c.

As seen from Theorem 1, the problem of estimating the
ROA can be reduced to finding a Lyapunov function V and
solve (14); or at least to find a positive definite function V and
solve (15). In the specific case of a linear system ẋ = Ax,
a quadratic Lyapunov function V (x) = xT P x can be easily
found by solving the so-called Lyapunov matrix equation [12]

AT P + P A = − Q, (16)

where Q ∈ R
n×n is an arbitrary positive definite symmetric

matrix, and P ∈ R
n×n is the matrix to be solved. In contrast,

for nonlinear systems, the search for Lyapunov functions is a
challenging task [12]. In the case when f (x) is a vector of
polynomial functions, this search is, in general, an NP-hard
problem [28]. Nevertheless, the conditions (i) and (i i) of
Theorem 1 could be relaxed to be SOS of polynomials,
instead of to be positive definite functions. Thus, checking the
conditions of Theorem 1 is equivalent to solving a semidefinite
programming problem [28].

B. Sum of Squares Decomposition

Let x ∈ R
n be a vector of n variables, p(x) ∈ R[x]n,2d be

a multivariate polynomial in n variables and degree 2d , and
[x]d be a vector of all

(n+d
d

)
monomials in x of degree up to

d . For example, the vector of all monomials in x = [x1, x2]T
of degree up to d = 2 is [x]2 = [1, x1, x2, x2

1 , x1x2, x2
2 ]T.

Definition 1. The polynomial p(x) is SOS if there exist
q1, . . . , qm ∈ R[x]n,d such that

p(x) =
m∑

k=1

q2
k (x).

Obviously, p(x) being an SOS implies that p(x) is nonneg-
ative over the whole space R

n . Note that the SOS condition can
be written as p(x) = (C[x]d)T (C[x]d), where C ∈ R

m×(n+d
d ),

and its kth row contains the coefficients of the polynomial
qk(x). The following theorem describes how to obtain an SOS
decomposition [23].

Theorem 2. A polynomial p(x) ∈ R[x]n,2d is SOS if and

only if there exists a symmetric matrix Q ∈ R(n+d
d )×(n+d

d ) such
that p(x) = [x]Td Q[x]d and Q � 0. Then, by factorizing
Q = CTC , an SOS decomposition of p(x) can be obtained.

Thus, an SOS decomposition problem is recast into an LMI
problem. LMI problems are convex optimization problems and
can be solved via semidefinite programming (SDP) [23]. Then,
if the SDP problem is feasible, p(x) is SOS and therefore it
is nonnegative for all x ∈ R

n .
In many cases it is required to check if p(x) is positive

definite in a given subset S ⊆ R
n , as in Theorem 1 where the

conditions need to be checked over the domain D. Assume
the set S has a description:

S = {x ∈ R
n | g1(x) ≤ 0, . . . , gm(x) ≤ 0}.

A sufficient condition to certify that p(x) is positive definite
in the set S is the existence of SOS polynomials si (x) for
i = 0, . . . , m and a positive definite polynomial function ϕ(x)
such that

s0(x)p(x) +
m∑

i=1

si (x)gi (x) − ϕ(x) is SOS. (17)

Indeed, take an arbitrary point x ∈ S. Since si (x) is SOS and
gi(x) ≤ 0 for all i = 1, . . . , m then si (x)gi(x) ≤ 0 for all
i = 1, . . . , m. Therefore, s0(x)p(x) − ϕ(x) ≥ 0 ⇒ p(x) > 0
because ϕ(x) > 0 and s0(x) is SOS.

With the sufficient condition (17), the SOS decomposition
can be applied on Theorem 1, the optimization problem (14),
and the optimization problem (15). In Appendix B, three
Lemmas are presented to certify the conditions of Theorem 1,
problem (14), and problem (15). These Lemmas lead to
optimization problems where the constraints are SOS of
polynomials. These optimization problems are called SOS
programs. The software SOSTOOLS [33], YALMIP [34] or
SPOT [35] can be used along with an SDP solver such as
SeDuMi or MOSEK to solve such SOS programs.

The software SPOT additionally handles DSOS and SDSOS
decompositions, which have been proposed to reduce the
computational time [29]. SOS decomposition certifies nonneg-
ativity of p(x) by finding a positive semidefinite symmetric
matrix Q, as shown in Theorem 2. In contrast, DSOS and
SDOS certify nonnegativity by finding a diagonally dominant
symmetric matrix and a scaled diagonally dominant symmetric
matrix, respectively. As a result, DSOS and SDSOS rely on



SEVERINO AND STRUNZ: ENHANCING TRANSIENT STABILITY OF DC MICROGRID 4393

Fig. 5. Flow chart of the SOS-based modeling.

solving a linear programming problem and a second-order
cone programming problem, respectively. In Appendix C,
more details about the DSOS and SDSOS decompositions are
given.

IV. METHODOLOGY FOR ESTIMATING THE ROA

The flow chart of the SOS-based modeling approach
is shown in Figure 5. The input is the nonlinear system
ẋ = f (x), and the output is the estimate of the ROA, �γmax.

The methodology is composed by four steps, and it mainly
relies on the sufficient condition (17). Condition (17) is used
to recast Theorem 1, the optimization problem (14), and the
optimization problem (15) into SOS programs by using the
lemmas in Appendix B. The methodology is implemented in
Matlab using the SPOT software with the capability of using
SeDuMi or MOSEK SDP solvers. The SOS-based modeling
is flexible in the selection of both the specific polynomial
decomposition and the SDP solver. This feature allows explor-
ing the natural compromise between computational effort and
conservatism in the ROA estimation. In the following, the steps
of the methodology are explained.

A. Step 0

Before the formulation of the SOS programs, the set D
in Theorem 1 has to be defined. One option is to use the
information provided by the linear approximation of (9) to

shape the domain D wherein a Lyapunov function can be
computed.

Therefore, defining D as

D := {x ∈ R
n | β(x) − b ≤ 0}, (18)

where β(x) is a multivariate polynomial and b ∈ R, this can
be accomplished by taking

β(x) = xT P x, (19)

where P ∈ R
n×n is the solution of the Lyapunov equation

(20) for the linearized model:(
A + ∂�

∂x

)T

P + P
(

A + ∂�

∂x

)
= − Q, P > 0. (20)

In (20), A is the matrix in (9), ∂�
∂x is the Jacobian matrix

of �(x) evaluated at x = 0, Q ∈ R
n×n is a given arbitrary

positive definite symmetric matrix, and P is the matrix to be
solved. The solution can be found using LMI solvers, such
as the one provided in [34]. To this end, Q is set equal to
the identity matrix. This selection is usually performed in
[12], [22], [28]. In this manner, the boundary of D is an
ellipsoid centered at the origin described by β(x) = b.

To apply the SOS approach, f (x) must be a polynomial
vector, as assumed in Section III-B. But, as it was described
in Section II-A, the system under study is a rational system.
Nevertheless, the original nonlinear system f (x) can be recast
to a polynomial system by using Taylor series expansion. The
truncated Taylor series of f (x) until degree dT is

f̂ (x) = Ax + �̂(x), (21)

where �̂(x) is the truncated Taylor series of � until degree dT.
In this fashion, f̂ (x) approximates the nonlinear function
f (x) and meets the assumption of Lemma 1.

B. Step 1

Once β(x), f̂ (x) are set, the Lemma 1 in Appendix B is
used to formulate the following SOS program that enlarges
the domain D in (18) wherein a Lyapunov function V can be
found.

max
b,V ,s1,s2

b

s.t. V + s1(β − b) − ϕ1 is SOS

−∇V f̂ + s2(β − b) − ϕ2 is SOS

s1 and s2 are SOS. (22)

Therefore, by solving this SOS program the conditions of the
Lemma 1 are fulfilled, and then the origin is asymptotically
stable.

To solve the problem (22) the following is considered. Since
V (0) = 0 and V (x) > 0 in a domain containing the origin,
V (x) must not have any constant terms and cannot be of
degree one. Consequently, the degree dV of V (x) must be
equal or higher than two. The degrees of the SOS polynomials
s1 and s2 are defined as ds1 and ds2 , respectively. They
are set such that the polynomial expressions involved in the
constraints have even degree. The positive definite polynomial
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functions ϕ1(x) and ϕ2(x) are defined in advance to reduce
computational time. It is chosen ϕi (x) = λi‖[x]di ‖2, with
λi > 0 a fixed parameter, and [x]di a vector of all monomials

up to degree di = dϕi
2 , where dϕi is the desired degree of

ϕi (x). The selection of λi could influence the results. It is
recommended to test the problem before for some values of λi

and check the error between the resulting SOS decomposition
and the polynomial constraints.

The SOS program (22) is not affine in the decision variables
s1, s2, and b. Nevertheless, a bisection search over b can be
conducted, as described in Algorithm 1 below. The selection
of the interval is [bl, bu], where bl = 0 and bu = β(−x̄). Note
from Appendix A that the vector −x̄ contains the value −v̄ j .
Therefore, from (8) it follows that

h(−v̄ j ) = −v̄ j

−v̄ j + v̄ j
−→ −∞.

Therefore, β(−x̄) is a good selection for the upper bound since
the point −x̄ does not belong to the ROA. In each step of the
bisection method, a feasibility problem over the polynomials
V , s1, and s2 needs to be solved. The process continues
until the problem is not feasible. The maximum value of
b corresponds to the last iteration in which the problem
has found a feasible solution. The termination condition is
defined by ε.

Algorithm 1 will require at most �log2(
bu
ε )� + 1 itera-

tions. In each iteration a feasibility SOS program must be
solved. The complexity of solving an SOS program can be
measured in terms of the number of LMI scalar variables
required for establishing whether the constraints are SOS [36].
In Appendix IV the complexity of the SOS program (22) is
analyzed in terms of the degree dV of the Lyapunov function
candidate V (x) and the degree dT of the truncated Taylor
series f̂ (x). By using the ellipsoid algorithm or the interior-
point method, the time needed to solve the resulting LMI will
be a polynomial function of the LMI size [28].

Summarizing, at the end of Step 1 the value bmax is
obtained. This value defines the domain Dmax in (18). Also,
the polynomial Vmax(x) is obtained.

It must be recalled that Dmax is not an estimate of the
ROA [12]. Although φ(t, x0), defined as the solution of (9),
will move from one Lyapunov level to an inner Lyapunov

Algorithm 1 Bisection Search Over b.

Data: β(x), f̂ (x), ϕ1(x), ϕ2(x), dV, ds1 , ds2 and ε
Result: bmax and Vmax
initialize bmax = 0, bl = 0 and bu = β(−x̄);
while |bu − bl |/2 > ε do

set b = (bu + bl)/2;
solve (22) for V , s1 and s2;
if feasible then

set bmax = b, Vmax = V and bl = b;
else

set bu = b;
end

end

level in Dmax, there is no guarantee that φ(t, x0) will remain
in Dmax as t goes to infinity. Once φ(t, x0) leaves Dmax, there
is no guarantee that V̇max(x) will be negative. Consequently,
the condition (ii) of Theorem 1 may not be met. This issue
does not arise when RA in (12) is estimated by the largest
compact set �c ⊂ D as it was defined in (14).

C. Step 2

The Lyapunov function Vmax could be used to compute the
largest invariant region contained in Dmax, as it was described
in (14). To this end, the Lemma 2 in Appendix B is used to
formulate the following SOS program that expands the domain
�α defined in Lemma 2.

max
α,s0

α

s.t. −s0(β − bmax) + (Vmax − α) − ϕ1 is SOS

s0 is SOS. (23)

Note that this problem is affine in the SOS variables. Then,
it can be solved directly without the usage of a bisection
method. The optimal solution of this problem is αmax, and
�αmax is the largest estimate of the ROA of f̂ (x). It must be
recalled that �αmax is the ROA of the approximated system
f̂ (x) and would likely not meet the conditions of Theorem 1
for the original system f (x). This issue is solved in the next
step.

D. Step 3

The obtained Lyapunov function Vmax for f̂ (x) could be
used as a Lyapunov function candidate to study the stability of
the original nonlinear system f (x) in a new domain as it was
described in (15). Based on that, the Lemma 3 in Appendix B
is used to formulate the following SOS program that enlarges
the domain �γ defined in Lemma 3.

max
γ,s0,s1

γ

s.t. �γ ⊆ Dmax

−s0V̇max + s1(Vmax − γ ) − ϕ1 is SOS

s0 and s1 are SOS. (24)

To solve this problem, some aspects must be addressed. First,
we have the multiplication between the decision variables s1
and γ . Therefore, a bisection algorithm that searches over γ is
used in the same manner as it was used to solve the problem
(22). In this case, Vmax is an input, and there is only one output
γmax. The interval to be considered is [γl, γu] where γl = 0,
and γu is equal to the maximum level set of Vmax contained
in D. Therefore, γu = αmax where αmax is the argument of
the optimization problem (23). By doing so, it is ensured that
�γ ⊆ D for all γ ∈ [γl, γu]. Then, the first constraint of (24)
is not needed as it is always fulfilled.

Secondly, by using (10), V̇max(x) = ∇Vmax ẋ can be
written as:

V̇max(x) =
n∑

i=1

∂Vmax

∂xi

ni (x)

di(x)
.
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Expanding the sum and taking the minimum common denom-
inator, it follows that

V̇max(x) =
∑n

i=1
∂Vmax
∂xi

ni (x)
∏n

∀ j=1, j �=i d j (x)∏n
i=1 di (x)

.

Since the interval used in the bisection method of problem (22)
is [0, β(−x̄)], we obtain that

∏n
i=1 di (x) > 0 in the domain D.

Therefore, V̇max is replaced by
n∑

i=1

∂Vmax

∂xi
ni (x)

n∏
∀ j=1, j �=i

d j (x).

It can be shown that the degree of this polynomial is dV + N ,
where N is the number of CPLs. Since the domain �γ

was defined using the Lyapunov function Vmax, the biggest
invariant region contained in �γ is the domain itself at γmax.
Therefore, the set

�γmax := {x ∈ R
n | Vmax(x) ≤ γmax}

is the estimate of the ROA at x = 0.
The optimization problem (24) is challenging from the point

of view of the numerical resolution [28]. Changes in the
structure of Vmax and in the parameters of the system (9)
could lead to numerical problems. It has been noted, from
the application of the method, that the estimated ROA �γmax

increases with the expansion of the domain D. Therefore, for
control purposes, it is sufficient to solve the problem (22) and
use the value bmax as a measure of robustness.

V. ANALYSIS OF PERFORMANCE

The performance of the SOS-based modeling is analyzed
in terms of its accuracy and its scalability. Regarding the
accuracy, it is evaluated how conservative the solution �γmax

is compared with the exact ROA. The scalability refers to
the number of CPLs that the methodology can handle. To this
end, the methodology is applied to two different DC networks.
One is used to study the accuracy, and the other one is to
show the scalability. These systems can be obtained from the
general system presented in Section II-A, whose dynamics are
governed by (9).

A. Accuracy

The proposed approach has three sources of conservative-
ness. The first source is given by the set D defined in (18).
As it was described, the selection of D is based on the
local behavior of the system under study. For this specific
application, selecting D in this manner has shown good
results. However, it could be the case that a different set D
improves the estimation of the ROA. The second source of
conservativeness is given by the approximation of f (x) by its
truncated Taylor series in (21). By increasing the degree dT of
the truncated Taylor series f̂ (x), a better approximation of the
original nonlinear system is obtained. Nevertheless, estimating
the ROA would require a higher computational time. The
third source of conservativeness depends on the degrees of the
polynomials defined for the SOS problem (22) in Step 1 of
Section IV. These degrees could be made as large as possible

Fig. 6. Estimated ROA; a) the boundary of Dmax, b) the equation
∇Vmax f̂ = 0, c) the boundary of �αmax , d) the equation ∇Vmax f = 0, and
e) the boundary of �γmax .

with the aim of finding a Lyapunov function valid for the
set D. Nevertheless, that would require a higher computational
effort.

The method is now applied to the system depicted in
Figure 3. Since only two state variables are involved in this
problem, the outcomes of the methodology can be illustrated
graphically in the phase plane as shown in Figure 4. Thus, its
accuracy can be directly quantified and compared with other
methods. The power of the CPL is set to 300 W, the degree
of V is set to dV = 4, the degree of the Taylor series is set to
dT = 3, the SOS decomposition is selected, and the SeDuMi
SDP solver is used.

Figure 6 shows five curves that illustrate how the method-
ology proceeds. From Step 0 it is obtained that

f̂ =
[ −27.848x1 − 25.316x2

2000x1 + 15.253x2 − 0.076903x2
2 + 0.00038774x3

2

]
,

P =
[

75.5512 0.8231
0.8231 1.0091

]
.

Curve (a) is the boundary of the domain Dmax obtained from
solving problem (22) in Step 1. Therefore, it is the equation
xT P x = bmax = 30271. At this step the resulting Lyapunov
function is

Vmax(x) = 306270 x2
1 − 8156.9x3

1 + 3529.4x4
1 + 3887.4 x2

2

−1.68x3
2 + 0.57x4

2 + 8041.1 x2x1 − 336.19 x2x2
1

+188.1 x2x3
1 −156.1 x2

2 x1+92.7 x2
2 x2

1 +2.7 x3
2 x1.

Curve (b) is the equation ∇Vmax f̂ = 0, as approximation
for ∇Vmax f = 0. Since the curve (b) does not go into the
ellipse (a), ∇Vmax f̂ < 0 in the domain Dmax. Curve (c) is
the boundary of �αmax obtained from solving problem (23)
in Step 2. Therefore, (c) is the equation Vmax(x) = αmax =
2.65·104. It can be seen that �αmax is the biggest set contained
in Dmax. Curve (d) is the equation ∇Vmax f = 0, i.e., the
time derivative of Vmax along the trajectories of the original
system (13). It can be seen that ∇Vmax f does not meet the last
condition of Theorem 1 in the set Dmax, since the curve (d)
goes into the ellipse (a). The curve (e) is the boundary of the
domain �γmax obtained by solving problem (24) in Step 3.
Therefore, (e) is the equation Vmax(x) = γmax = 1.78 · 104.
It can be seen that now the curve (d) does not go into the
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Fig. 7. Estimated ROA obtained by different methods; a) numerical
simulation, b) proposed SOS approach, c) Lur’e approach, d) Takagi-Sugeno
approach, and e) Brayton-Moser approach.

domain defined by the boundary (e). Thus, the last condition
of Theorem 1 is achieved. Therefore, the curve (e) is the
boundary of the estimated ROA of the system (13) obtained
by applying the methodology.

The proposed approach is compared with the Lur’e problem
approach [21], the Takagi-Sugeno fuzzy approach [20], and the
Brayton-Moser method [17]. To observe the accuracy of the
methodology, five curves are compared in Figure 7. Curve (a)
is the boundary of the exact ROA computed by time-domain
simulation as given in Section II-B. Curve (b) is the boundary
of �γmax, i.e. the curve (e) in Figure 6. Curves (c), (d) and (e)
are the boundaries of the ROA obtained by the methods used
in [20], [21], and [17], respectively. It can be seen that the
proposed method achieves a better ROA estimation compared
with alternative state-of-the-art methods. Moreover, it can be
shown that the results obtained by [20], [21] are equivalent
to the results obtained by the SOS-based modeling when the
search space is limited to quadratic Lyapunov functions, i.e.
when setting dV = 2. Therefore, the proposed method is more
general and can achieve less conservative solutions.

B. Scalability

The analysis of the scalability is performed by compar-
ing the computational times of using different polynomial
decompositions. Then, the difference between using sum of
squares (SOS) and scaled-diagonally-dominant sum of squares
(SDSOS) decompositions is studied. The SOS-based modeling
is applied to the system (9) when the CPLs are controlled
current source without internal dynamics, i.e. j = 0 for all
j = 1, . . . , N . Note that, although j = 0, the nonlinear
behavior of the constant power load remains. This adaptation
was done to scale the number of constant power loads.

Several experiments were run on a 4.2GHz Intel i7 proces-
sor, for different numbers of CPLs and different optimization
options. The optimization options of the problem (22) are:
the polynomial decomposition method, the degree dV of the
Lyapunov function candidate V (x), and the degree dT of the
truncated Taylor expansion f̂ (x). The polynomial decomposi-
tion method can be set to SOS or SDSOS. To make the results
comparable, the quantity dV + dT is conserved. Otherwise,
the complexity of problem (22) changes significantly as it
is explained in Appendix IV. After each experiment, two

TABLE II

COMPUTATIONAL EFFORT AND ACCURACY FOR MULTIPLE
CPLS USING SOS DECOMPOSITION

TABLE III

DIFFERENCES BETWEEN SOS AND SDSOS DECOMPOSITIONS

WHEN THE NUMBER OF CPLS IS N = 5

quantities are recorded: the solution time and the maximum
level of D, bmax. Note that bmax is not the parameter that
defines the ROA, but it helps to assess how conservative the
ROA will be. If bmax increases, then a better estimation of the
ROA will be obtained.

Table II shows the performance of the proposed method
when a different number of CPLs are considered. For this
analysis, two optimization options are considered. The first
one with dV = 3 and dT = 4, and the second with dV = 4
and dT = 3. In both cases, the SOS decomposition method
is selected. Results show that the optimization option dV = 4
and dT = 3 obtains a larger domain D without a significant
increase in the solution time. However, in both cases the
computational time growths fast with the number of CPLs.

To overcome this issue, the SDSOS decomposition is
applied. To illustrate the difference between using SOS or
SDSOS decompositions, the results are shown in Table III.
The number N of CPLs was set to five. The results show
that SDSOS decomposition is able to solve the problem
approximately 10 times faster than using SOS decomposition.
Using SDSOS the solution bmax decreases approximately
by 35% compared with using SOS. It was to be expected
that the cost of such speed-up would be a reduction of the
accuracy. Nevertheless, considering the significant speed-up,
the observed reduction in accuracy can offer an acceptable
trade-off.

VI. APPLICATION: ENLARGING THE ROA
THROUGH CONTROL FEEDBACK

Consider a system of the form

ẋ(t) = f (x) + g(x)u(t) (25)

with x(t) ∈ R
n , u(t) ∈ R, and f , g n-vectors of polynomials

such that f (0) = 0. The objective is to synthesize a state
feedback controller u = K (x) with K (x) being a polynomial
that enlarges the ROA.
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Fig. 8. Equivalent circuit of the DC microgrid with N CPLs and the
polynomial droop controller.

Using Lemma 1 in Appendix B, the problem of enlarging
the ROA can be recast into the following SOS program

max
b,V ,K ,s1,s2

b

s.t. V + s1(β − b) − ϕ1 is SOS

−∇V ( f̂ + gK ) + s2(β − b) − ϕ2 is SOS

s1 and s2 are SOS (26)

where b is the level, f̂ is the polynomial approximation, V
and K are polynomials, ϕ1(x) and ϕ2(x) are non-negative
polynomials, and s1(x) and s2(x) are SOS polynomials.

Now, it is not possible to use the bisection method on b
as it is used in problem (22) because of the bilinear term
∇V gK that appears in the second constraint. However, if K is
a polynomial with few coefficients, a bisection method over the
coefficients of K and b can be employed. This idea is exploited
to design a nonlinear droop controller capable of enlarging
the ROA of a DC system with CPLs. For this purpose,
the following polynomial control structure is proposed:

K (ṽs) = −k1ṽs − k3ṽ
3
s (27)

where k1 and k3 are the linear and cubic droop coefficients,
respectively.

The control structure in (27) allows higher current from the
source compared with the linear droop control. This higher
current allows to suppress oscillations caused by the nonlinear
behavior of the CPLs in the presence of large disturbances.
The current provided by the source is to have the same sign
as the voltage error ṽs. Therefore, only coefficients of odd
degree are taken into account. The maximum degree was set
equal to three to maintain the control design problem practical.
If more odd coefficients are added, a bisection search on
these coefficients would be needed to solve problem (26).
Coefficient k1 is designed to achieve current sharing or voltage
regulation using small-signal analysis [8]. Coefficient k3 is
designed to enlarge the ROA of the system. Therefore, k1 is
a given parameter of the problem (26), and k3 is a decision
variable.

To illustrate the problem of enlarging the estimated ROA,
the system (9) is solved for three CPLs. The equivalent circuit
of (9) is depicted in Figure 8. The parameters of system (9) are

TABLE IV

PARAMETERS OF SYSTEM CONTROL PROBLEM

Fig. 9. Comparison of the estimated ROA: Linear-cubic droop controller
(blue) and linear droop controller (red-dashed).

shown in Table IV. The linear droop coefficient k1 is also given
in Table IV. To solve the problem (26), a bisection search over
k3 in the interval from 0 to 5 is performed. On average, it takes
5.5 minutes to solve each problem. The maximum value of
b is obtained for k3 = 1.6. Systems with more CPLs can be
handled with this methodology at an increase in solution time.
If the solution time is a critical constraint, model reduction
methods can be used. For example, in [9] it is shown that N
CPLs connected to a common DC bus can be reduced to an
equivalent CPL unit if the ratios L j /r j for j = 1, . . . , N are
approximately equal.

Figure 9 shows the estimated ROA with and without the
nonlinear coefficient k3. The ROA is given in a 2-dimensional
plane for four combinations of state variables, while the rest
of the variables are set equal to zero. As it can be seen,
a considerable enlargement of the ROA is achieved in all the
sub-spaces.

To study the performance of the nonlinear controller,
the system (9) is simulated for two different initial conditions.
In the first initial condition ṽ1(0) = −0.74v̄1 with v̄1 =
47.94 [V], and the remaining state variables are set to zero
at t = 0. In the second initial condition ṽ1(0) = −0.5v̄1
with v̄1 = 47.94 [V], and the remaining state variables are
set to zero at t = 0. These two initial conditions represent a
large and a medium disturbance, respectively. Figure 10 shows
the response of the system for both cases. In the case of the
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Fig. 10. Transient response and control behavior for a medium and a large
disturbance. 1st column: medium disturbance. 2nd column: large disturbance.
1st row: control dynamics. 2nd row: current source ĩs. 3rd row: bus voltage ṽs.
4th row: voltage across CPL 1 ṽ1.

TABLE V

PARAMETERS OF BIDIRECTIONAL DC-DC CONVERTER
IN SYSTEM CONTROL PROBLEM

medium disturbance, both systems remain stable. However,
the one with the linear-cubic droop controller shows better
damping. In the case of the large disturbance, the system
with the linear droop controller becomes unstable while the
system with the nonlinear polynomial droop controller. As it
was expected and designed, when the polynomial controller is
employed, more current is available to support the nonlinear
behavior of the CPL.

To have a more accurate validation of the polynomial
controller performance, the detailed model of the buck con-
verter connected to the voltage source is considered, referring
to Figure 2. The system is modeled in Simulink using the
SimPowerSystems library. For the inner current loop controller
of the buck converter, a PI controller ka(1 + kb/s) is imple-
mented. The coefficients of the PI controller are tuned so that
the inner current closed-loop cross-over frequency becomes
equal to ωs = 1/ s. The parameters of the converter source
are listed in Table V.

Figure 11 shows the numerical results under a sudden
large change of load to study transient stability. Two cases
are distinguished: when the linear-cubic controller is turned
off and when it is turned on. For each case, the quantities
Ptotal, is, vs, and v1 are plotted. The initial conditions are set
equal to the steady-state values of the system (9). During the
time interval from 0 to 5 ms, the quantities converge to the

Fig. 11. Numerical results of the voltage and current dynamics when the
DC microgrid with 3 CPLs is subjected to a load power disturbance.

operation point given by the detailed model. In both cases,
during the pre-fault interval, the response is stable. During
the time interval from 5 ms to 8 ms, the CPL 1 increases
the power up to 4 times the initial power. This disturbance is
reflected in an increment of the total system load Ptotal up to
2.33 times the initial load. In both cases, the system response
to such disturbance involves a large excursion of system
variables. At 8 ms the fault is cleared. During the post-fault
interval, the system with the linear controller cannot converge
to the original operating point. The voltage v1 across the
CPL 1 oscillates taking negative values. In contrast, the system
with the polynomial controller returns to the operation point,
revealing improved transient stability.

The simulations show that the system becomes more robust
when adopting the nonlinear controller. It can tolerate larger
perturbations without loss of stability. Note that this gain of
robustness is not reflected in the eigenvalues of the linearized
system.

VII. CONCLUSIONS

A new methodology to analyze and enhance the transient
stability of a DC microgrid with constant power loads based
on the sum of squares decomposition is proposed. An SOS
program was formulated to compute a polynomial Lyapunov
function. Results show that the proposed formulation achieves
a better characterization of the ROA compared with recent
references. The SOS-based modeling also handles the SDSOS
decomposition, enhancing the solution time compared with
the SOS decomposition without a significant compromise
in the accuracy. With a similar SOS program formulation,
the problem for enlarging the ROA by nonlinear control
feedback is solved. A linear-cubic polynomial droop controller
was computed. Results show that the ROA is enlarged, and
also the damping of the system is increased. The transient
stability was improved.
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APPENDIX A
MODELING EQUATIONS

For the system (9)

x =

⎡
⎢⎢⎢⎣

x0
x1
...

xN

⎤
⎥⎥⎥⎦ , Ax =

⎡
⎢⎢⎢⎣

�0(x)
�1(x)

...
�N (x)

⎤
⎥⎥⎥⎦ , �(x) =

⎡
⎢⎢⎢⎣

�0(x)
�1(x)

...
�N (x)

⎤
⎥⎥⎥⎦ ,

where

x0 =
[

x0,1
x0,2

]
=

[
ṽs

ĩs

]
, x j =

⎡
⎣x j,1

x j,2
x j,3

⎤
⎦ =

⎡
⎣ ĩ j

ṽ j

ĩc j

⎤
⎦ ,

�0(x) =
[

0
�0,2(x0,1)

]
, �0(x) =

[
0,1(x)
0,2(x)

]
,

� j (x) =
⎡
⎣ 0

0
� j,3(x j,2)

⎤
⎦ , � j (x) =

⎡
⎣ j,1(x)

 j,2(x)
 j,3(x)

⎤
⎦ ,

∀ j = 1, . . . , N , with

0,1 = 1

C

⎛
⎝x02 −

N∑
j=1

x j1

⎞
⎠ ,

0,2 = 1

s
(−x02),

�0,2 = 1

s
K (x01),

 j,1 = 1

L j
(−r j x j1 − x j2 + x01),

 j,2 = 1

C j
(x j1 − x j3),

 j,3 = 1

j
(−x j3),

� j,3 = 1

j
− ī j h(ṽ j ).

APPENDIX B
SOS-BASED LEMMAS

The following three lemmas are based on real algebraic
geometry and the Positivstellensatz theorem. An explanation
about how to derive these lemmas can be found in [28]. For all
the lemmas consider the autonomous system (11) and assume
that f (x) is a vector field of polynomial functions.

Lemma 1. Assume a given domain D defined in (18). If there
exist a constant b > 0, a polynomial function V , SOS
polynomials s1(x), s2(x), and positive definite polynomial
functions ϕ1(x), ϕ2(x), all of bounded degree, such that
V (0) = 0 and

(i) V + s1 (β − b) − ϕ1 is SOS,

(i i) − V̇ + s2 (β − b) − ϕ2 is SOS,

then the origin is asymptotically stable.
Proof: The conditions (i) and (i i) ensure that V (x) and

−V̇ (x) are positive definite on D. Indeed, defining g(x) :=
β(x) − b, the conditions of Lemma 1 are equivalent to (17)

when s0 = 1. Therefore, Lemma 1 serves to prove the
conditions of Theorem 1.

Lemma 2. Assume a given Lyapunov function V (x) over
the domain D defined by (18) where b > 0 is a given fixed
value. Define the set �α := {x ∈ R

n | V (x) − α ≤ 0}.
If there exists a constant α > 0, an SOS polynomial s0(x), and
a positive definite polynomial function ϕ1(x), all of bounded
degree, such that

(i) − s0 (β − b) + (V − α) − ϕ1 is SOS,

then �α ⊂ D is an estimate of the ROA.
Proof: Indeed, defining g(x) := V (x) − α, the condition

of Lemma 2 is equivalent to (17) when s1 = 1. Since s0 is
SOS, then (β − b) < 0 in �α . This proves that �α ⊂ D is an
estimate of the ROA, as the region defined in Theorem 1.

Lemma 3. Assume a given positive definite function V (x)
over the domain D, i.e., V (0) = 0 and V (x) > 0 for all
x ∈ D − {0}. Define the set �γ := {x ∈ R

n | V (x) − γ ≤ 0}.
If there exist a constant γ > 0, SOS polynomials s0(x), s1(x),
and a positive polynomial function ϕ1(x), all of bounded
degree, such that

(i) �γ ⊂ D
(i i) − s0V̇ + s1(V − γ ) − ϕ1 is SOS,

then the origin is asymptotically stable, and �γ is an estimate
of the ROA.

Proof: The first condition ensures that V (x) > 0 over
the domain �γ . Indeed, if �γ ⊂ D then V (x) is positive
definite in �γ . The second condition forces −V̇ > 0 over
the domain �γ . Indeed, defining g(x) := V (x) − γ , the
condition (i i) of Lemma 3 is equivalent to (17). Therefore,
V (x) fulfills the conditions of Theorem 1 over the domain �γ .

APPENDIX C
DSOS AND SDSOS DECOMPOSITIONS

In this section, the DSOS and SDSOS decompositions
proposed in [29] are considered. These decompositions certify
nonnegativity by finding a diagonally dominant symmetric
matrix and a scaled diagonally dominant symmetric matrix,
respectively.

Definition 2. A polynomial p(x) is a diagonally-dominant
sum of squares (DSOS) if it can be written as

p(x) =
∑

i

αi m
2
i (x) +

∑
i, j

β+
i j (mi (x) + m j (x))2

+
∑
i, j

β−
i j (mi (x) − m j (x))2

for some monomials mi (x), m j (x), and some nonnegative
scalars αi , β+

i j , and β−
i j .

Definition 3. A polynomial p(x) is a scaled-diagonally-
dominant sum of squares (SDSOS) if it can be written as

p(x) =
∑

i

αi m
2
i (x) +

∑
i, j

(β̂+
i j mi (x) + β̃+

i j m j (x))2

+
∑
i, j

(β̂−
i j mi (x) − β̃−

i j m j (x))2
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for some monomials mi (x), m j (x), and some scalars αi , β̂+
i j ,

β̃+
i j , β̂−

i j , and β̃−
i j , with αi ≥ 0.

Definition 4. A symmetric matrix A = (ai j ) is diagonally
dominant (DD) if ai j ≥ ∑

j �=i |ai j | for all i . A symmetric
matrix A is scaled diagonally dominant (SDD) if there exists
a positive definite diagonal matrix D such that D AD is DD.

The following theorem provided in [29] establishes the
relation between the polynomial decomposition, the class of
matrix, and the resulting optimization problem.

Theorem 3. A polynomial p(x) ∈ R[x]n,2d is DSOS (resp.,
SDSOS) if and only if there exists a symmetric matrix Q ∈
R(n+d

d )×(n+d
d ) such that p(x) = [x]Td Q[x]d and Q is DD

(resp., SDD). Moreover, for any fixed d, the optimization over
DSOS (resp., SDSOS) can be done with a linear program
(resp., second-order cone program) of size polynomial in n.

IV. COMPLEXITY OF SOS PROGRAMS

The complexity of an SOS program can be measured by
the number of LMI scalar variables NSV [36]. The number of
LMI scalar variables is given by:

NSV =
Nv∑

i=1

ηi +
Nc∑

i=1

θi , (28)

where Nv is the number of polynomial variables, ηi is the
number of free coefficients in the i th polynomial variable, Nc
is the number of SOS constraints, and θi is the number of
scalar variables for the i th SOS constraint. The number of
free coefficients is given by

ηi = c(n, 2 pi), (29)

where c(k, q) = (k + q)!/(k!q!), n is the number of variables,
and 2 pi is the degree of the i th polynomial variable. The
number of scalar variables is given by

θi = c(n, hi )(c(n, hi ) + 1)

2
− c(n, 2hi ) (30)

where 2hi is the degree of the i th SOS constraint.
In problem (22), the polynomial variables are V , s1, and s2.

Therefore, NV = 3. The number of SOS constraints is
NC = 4. The degrees of the first and second SOS constraint
of problem (22) are defined as d1 and d2, respectively.
Then,

d1 = max{deg(V ), deg(s1(β − b)), deg(ϕ1)},
d2 = max{deg(∇V f̂ ), deg(s2(β − b)), deg(ϕ2)}.

Given dV and dT, the degrees of s1 and s2 are set as follows:

ds1 =
{

dV − dβ if dV is even

dV − dβ + 1 if dV is odd

ds2 =
{

dV + dT + dβ − 1 if dV + dT − 1 is even

dV + dT + dβ if dV + dT − 1 is odd

where dβ = 2 because β(x) in (19) is quadratic. Assuming
that deg(ϕ1) ≤ deg(V ) and deg(ϕ2) ≤ deg(∇V f̂ ), it follows
that

d1 =
{

dV if dV is even

dV + 1 if dV is odd

d2 =
{

dV + dT − 1 if dV + dT − 1 is even

dV + dT if dV + dT − 1 is odd

The degrees of the third and fourth SOS constraint of problem
(22) are equal to ds1 and ds2 , respectively. Therefore, given dV
and dT, NSV can be computed by (28)-(30).

For example, if n = 2, dV = 4, and dT = 3, then NSV = 75.
The number of scalar variables is lower if it is considered that
V , s1 and s2 contain only monomials of degree larger or equal
than two [36].
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