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Abstract—This paper studies the impacts of stochastic load
fluctuations, namely the fluctuation intensity and the load power
variation speed, on power system dynamic voltage stability. Ad-
ditionally, the trade-off relationship between the two parameters
is revealed, which provides important insights regarding the
potential of using energy storage to maintain voltage stability
under high uncertainty. To this end, Stochastic Differential-
Algebraic Equations (SDAEs) are used to model the stochastic
load variation; bifurcation analysis is carried out to explain
the influence of stochasticity. Numerical study and Monte Carlo
simulations on the IEEE 14-bus system demonstrate that a larger
fluctuation intensity or a slower load power variation speed may
lead to a smaller voltage stability margin. To the best of authors’
knowledge, this work uncovers the impacts of the time evolution
property of the driving parameters, i.e., the load power variation
speed and its trade off effect with the fluctuation intensity on the
size of the dynamic voltage stability margin.

Index Terms—Bifurcation theory, power systems dynamics,
saddle-node bifurcation, stochastic differential equations, voltage
stability margin

I. INTRODUCTION

Voltage stability analysis is becoming a challenging issue
as the load demand continues growing and the integration
of renewable energy sources increases. While the fluctuating
power output from renewable energy sources introduces uncer-
tainty on the generation side, loading patterns entail stochastic
fluctuations on the demand side.

In previous work, both static approaches and dynamic
approaches have been exploited for power system voltage
stability analysis. Traditionally, voltage collapse was attributed
to the loss of power flow feasibility [1]. Therefore, static
approaches such as Continuation Power Flow have been used
in [2] to study the impacts of the variability of renewable
energy sources and loads on power system voltage stability. A
formula to determine the transmission reliability margin has
been developed in [3], which accounts for various uncertainties
from loads, topology changes, etc.

However, dynamic components such as generator and load
dynamics play significant roles in voltage stability as shown
in [4], [5]. Furthermore, the dynamic evolution of critical
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parameters, such as the high load variation speed, may result
in catastrophic voltage collapse (see the 1987 Tokyo Black-
out [6]), indicating that a pure static analysis may not be
sufficient and the load power variation speed is practically
important in voltage stability analysis. As a result, a dynamic
approach incorporating all dynamic components and control
actions should be applied. To account for the randomness of
renewable energy sources and loads in the dynamic stability
study, Stochastic Differential-Algebraic Equations (SDAEs)
have been proposed in [7] – [10] and applied in different
power system stability studies [10] – [13]. In [14], a stochastic
hybrid system is proposed to study the impact of stochastic
active and reactive power injections, modeled as continuous
Markov chains, on power system dynamic performance.

Regarding the dynamic voltage stability, an analytical study
based on the sample path of SDAEs was conducted in [15],
[16] to investigate the impacts of stochastic wind power
on dynamic voltage stability, showing that neglecting the
variability of wind power may lead to incorrect voltage
stability assessment. However, an analytical study close to
the bifurcation point is lacking. In [17], the statistics of the
sample paths of the SDAEs models were proposed to predict
the voltage collapse of power systems. The mean path of all
sample paths was exploited in [18] to analyze the impacts of
wind power variability on the reactive power support control
scheme for voltage stability. The authors of [19] considered
load fluctuations in voltage stability study and leveraged on
the first exit time of SDAEs as a measure for voltage stability
assessment. Similar approaches were adopted in [10], [20] to
study the intensities of load fluctuations and the uncertainty
of wind power on system voltage stability.

The bifurcation theory for a dynamical system has also
been applied to explain the dynamic mechanisms of voltage
collapse [21] - [24], which, nevertheless, did not consider
the randomness brought about by the loads and renewable
energy sources. More recently, the authors of [25] applied the
bifurcation theory and the eigenvalue analysis to study the
effect of stochastic load fluctuations on voltage stability based
on a single realization of the stochastic dynamical system.
However, the applied bifurcation theory was for the deter-
ministic rather than the stochastic dynamical system. Also,
the implementation of Monte Carlo simulations to statistically
describe the impact of uncertainty is lacking. In addition, in
all aforementioned studies, the focus was given to the impacts
of the stochastic fluctuation strength on the voltage stability.
To the best of authors’ knowledge, this work presents for the
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first time another important parameter that will also affect the
dynamic voltage stability margin.

In this paper, we aim to analytically investigate the im-
pacts of stochastic load fluctuation on the dynamic voltage
stability margin, leveraging on the bifurcation theory for the
stochastic dynamical system. Particularly, it will be shown that
the fluctuation intensity is not the only factor affecting the
size of the voltage stability margin. Interestingly, the time
evolution property of the driving parameters, e.g, the load
power variation speed, also plays significant role. The trade-
off relationship between the fluctuation intensity and the power
variation speed provides important insights towards the design
of control measures to maintain the voltage stability of power
systems under high uncertainty. The main contributions of the
paper are as follows:
• We analytically and numerically show the existence of

a strong/weak noise regime in which the uncertainty
affects/does not affect the level of the voltage stability
margin. Such result yields an important guideline regard-
ing whether and under what conditions the randomness
of loads needs to be considered in voltage stability
assessment.

• The separation of the strong and weak noise regimes
depends on two parameters, namely, the load fluctuation
intensity and the load power variation speed, the impacts
of which on the size of the margin are systematically
investigated by extensive Monte Carlo simulation.

• The trade-off relationship between the load fluctuation
intensity and the load power variation speed is discussed,
which implies a potential of using energy storage systems
to maintain voltage stability under high uncertainty level.

Although it is intuitive that decreasing the variability level
helps maintain the voltage stability, the bifurcation theory for
the stochastic dynamical system provides essential information
regarding how much reduction of the intensity is needed to
maintain the same level of the load margin. Such information
may help reduce the operating cost of energy storage systems
while maintaining the stability of the grid with high uncer-
tainty.

The remainder of the paper is organized as follows: Section
II introduces the stochastic dynamic power system model in
the form of SDAEs. Section III briefly reviews the bifurcation
theory and the theoretical results about the behavior of the
stochastic slow-fast system. Section IV presents an analytical
study of the impacts of stochastic load variation on the voltage
stability margin by applying the theoretical results of the
stochastic slow-fast systems. Section V provides systematic
numerical results on the IEEE 14-bus system to validate
the analytical results in Section IV. Section VI presents the
conclusions and perspectives.

II. THE STOCHASTIC POWER SYSTEM MODEL

A. The Stochastic Dynamic Load Model

The total load seen by a bulk power delivery transformer
can be modelled as an aggregated load comprised of many
individual physical loads and devices [4]. In this paper, we
consider a generic aggregated model of self-restoring load,

which plays significant roles in dynamic voltage stability [4],
[26]. The active and reactive consumption of the aggregated
load can be described as:

p = xp/Tp + pt

q = xq/Tq + qt
(1)

where xp and xq are the state variables given by:

ẋp = −xp/Tp + ps − pt
ẋq = −xq/Tq + qs − qt

(2)

Tp and Tq are the corresponding power time constants; ps and
pt are the static and transient real power absorptions; qs and
qt are the static and transient reactive power absorptions.

Particularly, ps, pt, qs and qt depend on voltages at load
buses. Hence, stochastic load variations can be incorporated
into the aggregated load model as follows [7], [27]:

ps = (p0 + ηi(t))(
V

V0
)αs pt = (p0 + ηi(t))(

V

V0
)αt

qs = (q0 + ηi(t))(
V

V0
)βs qt = (q0 + ηi(t))(

V

V0
)βt

(3)

where p0 and q0 are the nominal active and reactive power;
αs, βs, αt and βt are exponents related to the steady state and
the transient load response, respectively; V0 is the nominal bus
voltage. Particularly, ηi is a stochastic process describing the
stochastic perturbations around the nominal power. It should
be noted that similar procedures can be applied to other
dynamic load models such as the frequency-dependent load
model, the thermostatic recovery load model, etc., to include
the stochastic perturbations into their nominal powers.

In this paper, the stochastic variations η are modelled as
a vector Gauss-Markov process. Although the assumption
of white noise may initially not appear obvious, previous
works (e.g., [19]) have shown its appropriateness in long-term
dynamic voltage stability study, since the stochastic fluctuation
is the aggregate behavior of many thousands of individual cus-
tomer devices switching independently. Therefore, we model
the load fluctuations by a vector Ornstein-Uhlenbeck process
η, which is Gaussian and Markovian, similar to the approach
adopted in [7], [27]:

η̇ = −Aηη + σBηξ, t ∈ [0, T ] (4)

where Aη = diag([α1, ..., αk]) is positive definite and is
related with the correlation time of the load variations [29];
σ describes the intensity of stochastic perturbations; Bη =
diag([β1, ..., βk]) denotes the relative strength between per-
turbations; ξ is a vector of independent Gaussian random
variables, since ξi = dWti

dt and Wti is a Wiener process.
If the initial condition is ηi(0) ∼ N (0, (σβi)

2/2αi), then
the stochastic process ηi is a stationary autocorrelated Gaus-
sian process with the following statistical properties [30]:
• E[ηi(t)] = 0, ∀t ∈ [0, T ],
• Var[ηi(t)] = (σβi)

2/2αi, ∀t ∈ [0, T ],
• Aut[ηi(tp), ηi(tq)] = e−αi|tq−tp|, ∀tp, tq ∈ [0, T ].

It is worth noting that the parameters βi are usually adjusted
to result in the desired variance. For instance, a common
approach is to choose βi =

√
2αi to remove the influence of

βi on the variance, so that V ar[ηi(t)] = σ2 [28]. We follow
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this approach in this work such that σ is the sole parameter
representing the influence of the variance of ηi.

B. SDE Formulation of the Dynamic Power System Model

With (1)-(4), the conventional Differential-Algebraic Equa-
tions (DAE)-based power system model incorporating the
randomness can be described as:

ẋ = h1(x, z,p,η)

0 = h2(x, z,p)
(5)

where x is the vector of state variables, e.g., the states of
dynamic loads, generator rotor angles; z is the vector of
algebraic variables, e.g., bus voltage magnitudes and phases;
p is the vector of parameters, e.g., load powers; η is the
vector of stochastic perturbations describing, for instance,
load fluctuations or renewable generation variations. h1 are
the differential equations describing the dynamics of system
components. h2 are the algebraic equations describing power
flow, network connectivity and internal static behaviors of
passive devices. h1 and h2 are assumed to be sufficiently
smooth.

In normal operating conditions, the algebraic Jacobian ma-
trix ∂zh2 is typically non-singular [31]. Hence, z can be
expressed by x and p, and thus be eliminated according to
the Implicit Function Theorem [4]. As such, (4)-(5) take the
following form of Stochastic Differential Equations (SDEs):

ẋ = H(x,p,η) (6)
η̇ = −Aηη + σBηξ (7)

Denote u =
[
x,η

]T
and B =

[
0, Bη

]T
, then (6)-(7) can be

represented as:
u̇ = G(u,p) + σBξ (8)

III. MATHEMATICAL PRELIMINARIES

A. The Bifurcation Theory

Bifurcation theory has been widely used in the literature
to explain voltage stability in power systems [21] - [24].
Generally, we consider a time-dependent dynamic system with
slowly varying parameters described by:

ẋ = F (x, εt) (9)

where x ∈ Rn are the state variables. Passing to the slow time
scale s = εt results in the form of εx′ = F (x, s), which can
be further represented as a slow-fast system:

εx′ = F (x, y)

y′ = 1 (10)

where ′ = d
ds , y(s) = s.

In power system voltage stability study, slowly varying pa-
rameters are typically real and/or reactive power of loads and
renewable generators. As the parameters vary, a bifurcation
may occur leading to a qualitative change in the behavior of
the system, such as the change of stability of the equilibrium
point (e.g., transcritical bifurcation), the emergence of oscil-
lations (e.g., Hopf bifurcation) and even the disappearance of
equilibrium points (e.g., saddle-node bifurcation).

The saddle-node bifurcation (SNB) is typically used to
explain the dynamic mechanism of voltage collapse [22].
As the parameters p (e.g., load powers) change slowly, the
equilibrium point x? will vary in the state space leading to
a slow decrease in voltage magnitudes. At the critical load
power p1, the voltage magnitudes sharply decrease and the
system loses stability by x? disappearing in a SNB. When
a SNB happens, two equilibrium points—one stable and one
unstable—will coalesce and disappear. Therefore, a necessary
condition for the SNB is the singularity of the Jacobian matrix
Fx [32]. The difference between the power at the current
operating point and the power at the SNB point is defined as
the voltage stability margin of the system, as illustrated in Fig.
1. The voltage stability margin is commonly used as a stability
index to assess the voltage stability of a power system, since
it defines the critical value of the parameter (in our case the
maximum load power p1 following a load increase) for which
the system can remain voltage stable [33].

B. The Slow-Fast System

Since the power system model (9) can be represented as
a slow-fast system (10), we first consider a general slow-fast
system:

εẋ = f(x, y), x ∈ Rnx

ẏ = g(x, y), y ∈ Rny (11)

where ε is a small positive parameter, f and g sufficiently
smooth functions. x is a vector of fast variables while y is a
vector of slow variables.

Let ε = 0, the algebraic equation 0 = f(x, y) constraints
the slow dynamics to the slow manifold:M0 = { (x?(y), y) :
f(x?(y),y) = 0, y ∈ Dy ⊂ Rny }. If all eigenvalues of
the Jacobian matrix ∂xf(x?(y), y) have negative real parts,
uniformly bounded away from 0 for y ∈ Dy , then M0 is
a stable component of the constraint manifold, i.e., stable
branch.

The Fenichel’s theorem (Theorem 1) states that all trajec-
tories starting near the stable component of the constraint
manifold actually converge to an invariant manifold.

Theorem 1 (Fenichel 1979 [34]): If M0 is a stable compo-
nent of the constraint manifold, then there exists a manifold
Mε = { x̄(y, ε) = x?(y)+O(ε)}, ε-close toM0, that attracts
neighboring trajectories exponentially fast, as shown in Fig. 2.

Fig. 1. An illustration for the voltage stability margin.
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Fig. 2. Orbits approaching Mε exponentially fast.

Fig. 3. The trajectory of the stochastic model (12) is unlikely to leave the
neighborhood B(h) (27) of the trajectory of the deterministic model (11) if
h� σ.

Adding white noise to both the fast and the slow dynamics
results in the SDEs shown as below:

ẋ =
1

ε
f(x, y) +

σ√
ε
f1(x, y)ξ1, x ∈ Rnx

ẏ = g(x, y) + σ̃g1(x, y)ξ2, y ∈ Rny (12)

where ξ1 and ξ2 are k-dimensional vectors of independent
Gaussian random variables respectively, and f1, g1are suf-
ficiently smooth functions. The small parameters σ and σ̃
measure the intensity of the two noise terms. We are interested
in the case that σ̃ does not dominate σ, i.e., σ̃ = ρσ where ρ
is uniformly bounded above in ε.

As shown in Appendix A, the noise terms will not greatly
affect the sample paths of the stochastic system (12) near
the stable component of the constraint manifold compared to
the trajectory of the deterministic system (11). However, the
impact of stochasticity may be distinct near the bifurcation
point, leading to an early transition.

1) Near the Stable Component of the Constraint Manifold:
As shown in Theorem 4 in Appendix A the sample paths of
the stochastic system (12) are concentrated in an ellipsoidal
layer B(h) surrounding the invariant manifold Mε of system
(11) if h� σ, as illustrated in Fig. 3. B(h) is defined as:

B(h) = {(x, y) : 〈x−x̄(y, ε), X̄(y, ε)−1(x−x̄(y, ε))〉 < h2}
(13)

where 〈, 〉 denotes the inner product. X̄(y, ε) describing the
shape of the cross section of B(h) is well defined as shown
in Appendix B in [15].

This analytical result implies that stochastic perturbation
will not greatly affect the trajectory of the slow-fast system
near the stable branch.

2) Near the Saddle-Node Bifurcation Point: Consider a
particular two-dimensional slow-fast system, i.e., nx = 1,
ny = 1 in (11). We say that a point (x?, y?) is the saddle-node
bifurcation point of system (11) if the fast vector field satisfies
the following conditions:

f(x?, y?) = 0, ∂xf(x?, y?) = 0 (14)
∂xxf(x?, y?) 6= 0 ∂yf(x?, y?) 6= 0

To simplify analysis, we can always convert the coordinate
system and conduct scaling in x, y and time to ensure the
following conditions are satisfied at SNB [35]:

A1: (x?, y?) = (0, 0), A2: ∂xxf(x?, y?) = −2,

A3: ∂yf(x?, y?) = −1, A4: g(x?, y?) = 1.

The simplest system that satisfies the aforementioned condi-
tions is shown as below:

εẋ = −y − x2

ẏ = 1 (15)

which is the normal form around SNB for the general slow-fast
system (11) [36], [37]. Note that (0, 0) is the SNB point.

It has been shown in Theorem 3.10 [38] and illustrated in
Fig. 4 that near the SNB, the invariant manifold x̄(y, ε) of (15)
will first cross the axis y = 0 for a x of O(ε1/3), then the axis
x = 0 for a y of O(ε2/3).

If we incorporate the stochasticity and consider (12), the
impacts of the stochastic perturbation to the slow-fast system
near the SNB are summarized in the following theorem.

Theorem 2 [35], [38]: Consider the slow-fast system (12)
in which nx = 1, ny = 1, assume that the conditions A1-A4
are satisfied, then the following hold:

1) If σ < σc =
√
ε, the sample paths remain in a

neighborhood B(h) of the deterministic solution with
probability larger than 1−O(e−h

2/2σ2

) for all h up to
order

√
ε, as long as y(t) < c1ε

2/3.
2) If σ > σc =

√
ε, then sample paths are likely to cross

the unstable branch and reach negative values of order
1 for y(t) of order −σ4/3. The probability that the early
transition does not happen is of order e−O(σ2/ε|logσ|).

Fig. 4. Solutions track the stable branch at a distance O(ε1/3) [35].

(a) σ <
√
ε (b) σ >

√
ε

Fig. 5. An illustration for Theorem 2.
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Theorem 2 implies that if σ <
√
ε, the situation is similar

to the deterministic system: sample paths feel the bifurcation
after a delay of O(ε2/3). However, if σ >

√
ε, sample paths

feel the bifurcation some time before it happens and jump
to negative x. An illustration is given in Fig. 5. This result
indicates that the stochastic perturbation may greatly affect
the sample path qualitatively near the SNB, and thus needs
to be carefully considered. Particularly, the influence of the
stochastic perturbation depends on the relative size of the
parameters σ and ε.

IV. ANALYTICAL STUDY OF THE IMPACTS OF STOCHASTIC
LOAD VARIATION

We consider the stochastic power system dynamic model
given in (8) with slowly varying parameters p:

u̇ = G(u,p, εt) + σBξ (16)

where p are the real power p and reactive power q of loads,
which experience a gradual increase with respect to time:

p = p0(1 + λ(εt))

q = q0(1 + λ(εt))
(17)

where λ is a slowly increasing loading factor. The maximum
value λ before the SNB occurs multiplied by p0 corresponds
to the voltage stability margin S, i.e. S = λp0 at the SNB.

Without stochastic load variations, (16) becomes a deter-
ministic system:

u̇ = G(u,p, εt) (18)

We will discuss next how, in comparison to the deterministic
system (18), the stochastic term σBξ will affect the trajectory
of (16) near the normal operation point and near the SNB
point, respectively.

A. Concentration of Sample Paths around the Stable Compo-
nent of the Constraint Manifold

To present the concentration results, we define a manifold:

N0 = {u?(p, εt) : G(u?(p, εt),p, εt) = 0} (19)

and an invariant manifold ε-away from N0:

Nε = {ū(p, εt) = u?(p, εt) +O(ε)} (20)

In addition, we define an ellipsoidal layer N (h) surrounding
the invariant manifold Nε:

N (h) = {(u, t) : 〈u−ū(p, εt), Ū(p, εt)−1(u−ū(p, εt))〉 < h2}
(21)

where Ū(p, εt) is defined in Appendix B. Then we have the
following theorem showing that under some mild conditions,
the sample paths of the stochastic system (16) are concentrated
in the ellipsoidal layer N (h).

Theorem 3: Consider the system (16), for some fixed ε0 > 0,
h0 > 0, δ0 > 0, a time t1 of order | log h| such that if the
following two conditions are satisfied:

1) The slow manifold N0 is a stable component of the
constraint manifold;

2) The initial condition u(0) ∈ N (δ0),

then for t ≥ t1, the sample path of the stochastic system (16)
satisfies the following relation:

P{∃t2 ∈ [t1, t] : (u, t) 6∈ N (h)}

≤ Cnu(t, ε)e
−h2

2σ2
(1−O(h)−O(ε)) (22)

for all ε ≤ ε0, h ≤ h0, where the coefficient Cnu(t, ε) is linear
in time.

Proof: The stochastic dynamic power system model (16)
can be represented as a stochastic slow-fast system:

u̇ = G(u,p, y) + σBξ

ẏ = ε (23)

where y(t) = εt. If passed to the slow time scale s = εt, it
takes the form:

u′ =
1

ε
G(u,p, y) +

σ√
ε
Bξ

y′ = 1 (24)

where ′ = d
ds , y(s) = s. Its deterministic counterpart is:

u′ =
1

ε
G(u,p, y)

y′ = 1 (25)

The slow manifold of (25) can be represented as {u?(p, y) :
G(u?(p, y),p, y) = 0}, which is exactly the same as N0

defined in (19). Likewise, the ε-invariant manifold of (25)
that attracts the nearby solutions exponentially fast is Nε as
defined in (20). As a result, by Theorem 4 in Appendix A, the
relationship (22) is satisfied. This completes the proof.

Theorem 3 implies that if h � σ, i.e., the depth of the
ellipsoidal layer is much greater than the noise intensity σ, the
right hand side of (22) becomes very small, i.e., the sample
paths of (16) will unlikely leave N (h). Note that the detailed
expression of Cnu(t, ε) is not of interest (see Theorem 2.4 in
[39]). The key point is that Cnu(t, ε) is independent of h and
σ. As a result, the probability of the sample path to leave layer
N (h) decays exponentially as h increases.

The above results reveal that the trajectory of the stochastic
power system model (16) will be likely concentrated in a
small neighborhood of the trajectory of the deterministic power
system model (18) when the power system is operating in
normal conditions. A natural question to ask is what will
happen if the system is getting close to the SNB point.

B. The Impact of Noise on Saddle-Node Bifurcation

We have shown that the stochastic power system model
(16) can be represented as a stochastic slow-fast system (24).
By Theorem 3, it is seen that the shape of the concentration
neighborhood N (h) depends on ε (see the detailed expression
of Ū(p, εt) in Appendix B), whereas the depth of N (h) is
related to σ.

Mathematically, ε describes the decoupling between the
slow and the fast dynamics, while σ describes the intensity
of the stochastic perturbations. In the context of power sys-
tem voltage stability study, σ describes the intensity of load
fluctuations and ε describes the load power variation speed.
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(a) Weak regime σ <
√
ε (b) Strong regime σ >

√
ε

Fig. 6. An illustration of the weak and strong noise regimes on the time
evolution of voltage.

It is revealed in Theorem 2 that the randomness may greatly
affect the dynamics of a system near SNB. Particularly, a trade-
off relationship between σ and ε exists, based on which a weak
noise regime and a strong noise regime can be defined and are
illustrated in Fig. 6:

1) Weak Noise Regime: if σ <
√
ε, the trajectories of

the stochastic power system model (16) will continue
remaining concentrated in the neighborhood N (h) sur-
rounding the deterministic solution (18).

2) Strong Noise Regime: if σ >
√
ε, it becomes likely that

the samples paths may reach the SNB point earlier.
The above results indicate that the distinction between the

weak noise regime and the strong noise regime depends not
only on the stochastic perturbation intensity σ, but also on
the load power variation speed ε. Particularly, the influence
of the load power variation speed on the dynamic voltage
stability margin has not been reported in previous work. In
addition, the trade-off relationship between the two parameters
σ and ε implies a potential of using energy storage systems to
maintain the same level of the voltage stability margin under
high uncertainty.

Furthermore, a metric may be derived from the theoretical
result to estimate the reduction of voltage stability margin
due to the randomness. Specifically, by Theorem 2, in the
strong noise regime, the sample paths are likely to reach the
bifurcation earlier and cross the unstable branch for time of
order −σ4/3. That being said, assuming that the intensity of
the stochastic load fluctuations σ and the deterministic load
margin Sdet are known, Theorem 2 implies that the stochastic
power system model trajectories may feel the bifurcation and
collapse earlier, leading to a decrease of order σ4/3 × Sdet
(MW) in terms of the voltage stability margin. Further study
to define a more concrete metric is needed.

V. NUMERICAL RESULTS

In this section, we will numerically study the impacts of
randomness on the voltage stability margin to illustrate and
validate the analytical results in Section IV. We will firstly
show that there exists a weak/strong noise regime in which the
stochastic perturbation will not/will greatly affect the dynamic
voltage stability margin. Secondly, we will investigate the
impacts of the load power variation speed ε on the dynamic
voltage stability margin as suggested by Theorem 2, yet has
not been studied in previous work. Lastly, we will explore
the trade-off relationship between the stochastic perturbation

intensity σ and the load power variation speed ε and discuss
its significant insights in control design.

Numerical study and Monte Carlo time domain simulations
were carried out on the IEEE 14-bus system in which an
aggregated dynamic load (1)-(3) was added to Bus 9. Ornstein-
Uhlenbeck load fluctuations with αi = 1, βi =

√
2αi =√

2 were applied to the aggregated load model as in (4).
PSAT Toolbox [40] was used to perform all the simulations.
Euler-Maruyama method was used to generate the Ornstein-
Uhlenbeck process and the integration step size was ∆t =
0.05s. Active and reactive power limits of generators have been
considered. The singularity of the state matrix based on the
reciprocal of its condition number (Matlab command: rcond)
was used as a criterion to identify the SNB point and calculate
the dynamic load margin. The value 0.1 has been used as
a threshold for the reciprocal of the state matrix’s condition
number to detect its singularity.

A. The Existence of Weak and Strong Noise Regimes

By the analytical results in Section IV-B, given fixed ε, i.e.,
a constant load power variation speed, a fluctuation intensity
σ may lead to a smaller voltage stability margin if σ >

√
ε.

To show this, we apply various intensities σ1 = 0.05, σ2 =
0.10, σ3 = 0.15 for fixed ε, i.e., the load at Bus 4 increases
by 2% of its nominal power every 0.4s, corresponding to
a load power variation speed of 2 MW/s. The mean and
variance of the stability margin S for each case estimated from
1000 Monte-Carlo simulations are presented in Table I. Note
that the margin for the deterministic case where σ = 0 is
Sdet = 542.75 MW. The percentage difference of the mean
load margin with respect to Sdet is also given in the last row
of Table I.

As expected, the mean value of the load margin decreases as
the intensity of load fluctuation increases. Particularly, Fig. 7
depicts the distributions of the margin when different fluctua-
tion intensities are applied. It is obvious that the histograms are
shifted to the left when it comes to larger σ. When σ = 0.05,
the impact of noise on the margin size is almost negligible. In
contrast, when σ = 0.15, the shrinking of the voltage stability
margin is pronounced. If, for instance, 2% margin reduction
with respect to Sdet is the threshold determining if a decrease
of the stability margin occurs, i.e., the system is in strong noise
regime or not, we see that when σ = 0.05 or 0.10, the system
is in the weak noise regime; if σ = 0.15, the system is in the
strong noise regime.

B. The Impacts of the Load Power Variation Speed

We have observed that different intensities of load fluc-
tuation will make the system lie in different noise regimes,

TABLE I
THE STATISTICS OF THE VOLTAGE STABILITY MARGIN S FOR VARIOUS

FLUCTUATION INTENSITIES WHEN LOAD SPEED IS 2MW/S

Fluctuation Intensity σ 0.05 0.10 0.15
µ = Mean S (MW) 539.78 534.24 527.67

Variance S 16.17 51.09 94.13
µ−Sdet
Sdet

-0.55% -1.57% -2.78%
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indicating the impacts of randomness on the size of the
dynamic load margin. However, the separation of different
noise regimes shown in Section IV-B suggests that ε, the
load power variation speed, also plays an important role. To
investigate the impacts of the load power variation speed, we
increase the power of the load at Bus 4 at different speeds
as in (17), namely 2% of p0 and q0 every 0.1s, 0.4s, 0.9s
and 1.6s, corresponding to the load power variation speeds
8 MW/s, 2 MW/s, 0.9 MW/s and 0.5 MW/s respectively,
while keeping σ = 0.10. Note that the time interval between
each power change is O( 1

ε ). The statistics of the voltage
stability margin are shown in Table II. Moreover, Fig. 8
presents the distributions of the margin size for different load
power variation speeds when the fluctuation intensity of the
aggregated load is σ = 0.10.

If we still regard 2% reduction of the voltage stability
margin comparing to the deterministic case Sdet to be the
threshold, we see that if the load increases at a fast speed, say
8 MW/s or 2 MW/s, the system lies in the weak noise regime,
indicating that the stochastic load fluctuation does not greatly
affect the margin size; however, if the load increases at a slow
speed, say 0.9 MW/s or 0.5 MW/s, the system is in the strong
noise regime, where a more than 2% reduction of the margin
size is expected.

The above results can be well explained by the analytical
results presented in Section IV-B. For fixed σ, a smaller

√
ε,

i.e., a slower load power variation speed, results in a smaller
threshold value separating the two regimes, which therefore
leads to a smaller weak noise regime and a larger strong noise
regime. That being said, for fixed load fluctuation intensity,
a slower load power variation speed may lead to an earlier
voltage collapse and a greater reduction of the voltage stability
margin size.

These interesting results about the influence of the time evo-
lution property of driving parameters on the dynamic voltage
stability margin have not been discussed in previous voltage
stability study. However, they demonstrate the importance of
incorporating the time evolution property in assessing the
voltage stability margin especially under a high uncertainty
level. In addition, significant insights can be extracted from
the trade-off relationship between ε and σ as discussed next.

C. Important Insights behind σ <
√
ε:

From the previous analysis, we have seen that both the
fluctuation intensity σ and the load power variation speed ε

Fig. 7. The distribution of the margin for various fluctuation intensities when
the load power variation speed is 2 MW/s.

TABLE II
THE STATISTICS OF THE VOLTAGE STABILITY MARGIN S FOR VARIOUS

LOAD POWER VARIATION SPEEDS WITH FIXED FLUCTUATION INTENSITY
σ = 0.10

Load speed (MW/s) 8 2 0.9 0.5
µ = Mean S (MW) 540.00 534.24 530.67 527.76

Variance S 74.30 51.09 37.08 33.32
µ−Sdet
Sdet

-0.51% -1.57% -2.23% -2.76%

Fig. 8. The distribution of the load margin when the load power variation
speed is 8 MW/s and 0.5 MW/s with fixed fluctuation intensity σ = 0.10.
A slower load power variation speed leads to a smaller load margin.

may affect the size of the voltage stability margin. Inspired
by this observation, we have estimated the statistics of the
margin size for different combinations of fluctuation intensity
σ and load power variation speed ε, as shown in Tables III-V.
Particularly, we use ? to denote the results from Section V-A,
and � to denote the results from Section V-B.

Fig. 9 illustrates the distributions of the dynamic load mar-
gin for different fluctuation intensities when different speeds
are applied. As expected, we observe a shift to the left when
it comes to larger fluctuation intensities or slower load power
variation speeds. Fig. 10 presents the voltage magnitude at
Bus 4 for different intensities yet for the same speed. The
sample paths are concentrated around the σ-neighbourhood
of the deterministic solution. Thus, Fig. 10 corroborates the
analytical results shown in Section IV-A that the depth of
the concentration neighborhood depends on σ. Besides, it can
be seen that for large σ, the majority of the trajectories will
collapse earlier than those with smaller σ.

Another interesting observation from Tables III-V is that if
the load power variation speed is slower than expected while
the same level of stability margin is desired, energy storage

TABLE III
THE MEAN VALUE OF THE VOLTAGE STABILITY MARGIN

Fluc. Intensity σ

Load speed (MW/s)
8 2 0.9 0.5

0.05 542.16 539.78? 538.00 536.38
0.10 540.00� 534.24�? 530.67� 527.76�

0.15 536.57 527.67? 522.29 518.41

TABLE IV
THE VARIANCE OF THE VOLTAGE STABILITY MARGIN

Fluc. Intensity σ

Load speed (MW/s)
8 2 0.9 0.5

0.05 20.54 16.17? 12.19 11.15
0.10 74.30� 51.09�? 37.08� 33.32�

0.15 151.91 94.13? 73.83 57.83
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TABLE V
THE PERCENTAGE DIFFERENCE OF THE MEAN LOAD MARGIN COMPARING

TO THE DETERMINISTIC CASE ( µ−Sdet
Sdet

)

Fluc. Intensity σ

Load speed (MW/s)
8 2 0.9 0.5

0.05 -0.11% -0.55%? -0.88% -1.17%
0.10 -0.51%� -1.57%�? -2.23%� -2.76%�

0.15 -1.14% -2.78%? -3.77% -4.48%

(a) σ = 0.05 (b) σ = 0.15

Fig. 9. (a) The distribution of the load margin when the load power variation
speed is 8 MW/s or 0.5 MW/s with a fluctuation intensity of 0.05; (b) The
distribution of the load margin when the load power variation speed is 8
MW/s or 0.5 MW/s with a fluctuation intensity of 0.15. A slower load power
variation speed or a larger fluctuation intensity leads to a smaller load margin.

Fig. 10. |V4| from 1000 trajectories of different fluctuation intensities σ when
the load power variation speed is 0.5 MW/s. The straight lines denote where
96% of the trajectories have collapsed.

may be applied to smooth out the variance of the load. Such
results can be found in the entries of Table III denoted in
purple and in blue, respectively. For instance, with σ = 0.10
and a load speed of 8 MW/s, i.e., the load increases per 2%
of its base power every 0.1s, we have a margin size of 540.00
MW (the PDF with 90% confidence are denoted in yellow in
Fig. 11a). However, if the load power actually increases every
0.4 s, corresponding to the slower load power variation speed
2 MW/s, the margin reduces to 534.24 MW (the PDF with
90% confidence are denoted in red in Fig. 11a). To maintain
the same level of margin size as of the speed 8 MW/s, we
need to adopt control measures to reduce the load fluctuation
intensity to σ = 0.05, which will result in a margin of 539.78
MW (the PDF with 90% confidence are denoted in blue in
Fig. 11a). Although it is intuitive that reducing the variance
of random inputs may help the voltage stability, the relation
σ <

√
ε provides important guidelines regarding how much

reduction in terms of the fluctuation intensity is needed to
maintain the same level of margin size. In this case, when
ε, i.e., the threshold separating the weak and noise regimes,
decreases by 4 times, σ needs to be reduced by

√
4 = 2 times.

480 500 520 540 560 580

Probability Density Function

0

0.05

0.1

0.15

8 MW/s

2 MW/s

2 MW/s

(a) Base case (yellow): the fluctuation
intensity σ = 0.10, the load power
variation speed is 8 MW/s.

500 520 540 560 580

Probability Density Function

0

0.05

0.1

0.15

(b) Base case (yellow): the fluctuation
intensity σ = 0.05, the load power
variation speed is 0.5 MW/s.

Fig. 11. Illustration of using energy storage systems to keep the same level of
voltage stability margin. The straight lines indicate the lower bound of 90%
confidence interval.

Likewise, controlling the load power variation speed using
energy storage systems may also compensate for unexpected
increasing fluctuation intensity. For example, with fluctuation
intensity σ = 0.05 and a load that increases every 1.6s,
corresponding to the speed 0.5 MW/s, we have a margin size
of 536.38 MW (the PDF with 90% confidence are denoted in
yellow in Fig. 11b). However, if the actual fluctuation intensity
is σ = 0.10, the margin reduces to 527.76 MW (the PDF
with 90% confidence are denoted in red in Fig. 11b). To
maintain the same level of margin size, we can use energy
storage systems to increase the load power variation speed to
2 MW/s, i.e. the load increases every 0.4s (e.g., by increasing
the charging power of energy storage systems [41]), which
will result in a margin of 534.24 MW (the PDF with 90%
confidence are denoted in blue in Fig. 11b).

VI. CONCLUSIONS AND PERSPECTIVES

This paper has presented an analytical investigation of the
impacts of stochastic load fluctuations on the size of the
dynamic voltage stability margin using bifurcation theory.
Through analytical study and systematic numerical study,
it has been shown that two parameters, namely the load
fluctuation intensity and the load power variation speed, will
affect the size of the voltage stability margin. Particularly,
the influence of the time evolution property of the driving
parameters (e.g., the load power variation speed) on power
system voltage stability in the presence of uncertainty is
revealed. It has been observed that a slower load power
variation speed or a larger load variation intensity may lead to
a smaller voltage stability margin. Therefore, it is crucial to
consider both factors to accurately assess the voltage stability.
Additionally, by exploiting bifurcation theory of the stochastic
dynamic system, the trade-off relationship between the two
parameters has been revealed and validated. Simulation results
provide significant insights regarding the potential of using
energy storage systems to maintain the voltage stability of
the grid under high uncertainty level. It is worth mentioning
that such outcomes cannot be observed by using static or
deterministic approaches, which in turn reinforces the impor-
tance of carrying out dynamic and stochastic approaches in
voltage stability analysis, especially considering the increasing
degree of uncertainty in modern power systems due to the
integration of renewable energy sources. Future work will
focus on implementing an energy storage system to enhance
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the voltage stability of power systems with a high penetration
of renewable energy sources.

APPENDIX A
SAMPLE PATH CONCENTRATION FOR SDE MODEL

We consider the deterministic slow-fast system (11), in
which M0 and Mε are the slow and the invariant manifolds
respectively, as defined in Section III-B, and the stochastic
slow-fast system (26).

ẋ =
1

ε
f(x, y) +

σ√
ε
f1(x, y)ξ, x ∈ Rnx

ẏ = g(x, y) + σ̃g1(x, y)ξ, y ∈ Rny (26)

where
∫ t
0
ξ(u)du is a k−dimensional Brownian motion and

f1 ∈ Rnx×k, g1 ∈ Rny×k are sufficiently smooth functions.
For the noise intensities σ and σ̃, we focus on the case where
σ̃ does not dominate σ, i.e., σ̃ = ρσ where ρ is uniformly
bounded above in ε.

Assumption 1.
• f , g, f1 and g1 and all their partial derivatives up

to order 2 (respectively 1) are uniformly bounded in
norm in D, f ∈ C2(D,Rnx), g ∈ C2(D,Rny ), f1 ∈
C1(D,Rnx×k), g1 ∈ C1(D,Rny×k) where D is an open
subset D ⊂ Rnx × Rny and nx, ny, k ≥ 1.

• The slow manifold M0 of the deterministic system is a
stable component of the constraint manifold.

• Matrix f1(x,y)f1(x,y)T is positive definite for y ∈ Dy
⊂ Rny .

According to Theorem 5.1.6 in [35] (see Theorem 4 below),
with a probability roughly like 1 − O(e−h

2/2σ2

), the sample
paths of (26) remain concentrated up to time t in the ellipsoidal
layer that surrounds the invariant manifold and is defined as:

B(h) = {(x,y) : 〈x−x̄(y, ε), X̄(y, ε)−1(x−x̄(y, ε))〉 < h2}
(27)

where X̄(y, ε) describes the cross section of B(h) and is well
defined (See Chapter 5.1.1 of [35] for more details).

Theorem 4 [35]: If Assumption 1 holds, there exist ε0 >
0, h0 > 0, δ0 > 0 and a time t1 of order ε| log h| such that,
for δ ≤ δ0, if the initial condition (x(0),y(0)) where y0 ∈ Dy
satisfies (x(0),y(0)) ∈ B(δ):

P{∃s ∈ [t1, t] : (x,y) 6∈ B(h)}

≤ Cnx,ny (t, ε)e
−h2

2σ2
(1−O(h)−O(ε)) (28)

for all t ≥ t1, ε ≤ ε0, h ≤ h0, where the coefficient
Cnx,ny (t, ε) = [Cny + h−nx ](1 + t

ε2 ) is linear in time.

APPENDIX B
CROSS SECTION OF N (h)

The cross section Ū(p, εt) of N (h) is the solution of the
following slow-fast system:

εU ′ = A(p, y)U + UA(p, y)T +

[
κInx 0

0 BηB
T
η

]
y′ = 1 (29)

where κ > 0 and sufficiently small to ensure positive definite-
ness and

A(p, y) = ∂uG(u?(p, y),p, y) (30)
y = εt

Hence, Ū(p, εt) is well defined.
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