
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 1, JANUARY 2020 189

DPTC—An FPGA-Based Trace Compression
Giovanni Bruni, Student Member, IEEE, and Håkan T. Johansson

Abstract— Recording of flash-ADC traces is challenging from
both the transmission bandwidth and storage cost perspectives.
This work presents a configuration-free lossless compression
algorithm, which addresses both limitations, by compressing the
data on-the-fly in the controlling FPGA. Thus it can easily be
used directly in front-end electronics. The method first computes
the differences between consecutive samples in the traces, thereby
concentrating the most probable values around zero. The values
are then stored as groups of four, with only the necessary least-
significant bits in a variable-length code, packed in a stream
of 32-bit words. To evaluate the efficiency, the storage cost of
compressed traces is modeled as a baseline cost including ADC
noise, and a cost for pulses that depends on amplitude and width.
The free parameters and the validity of the model are determined
by compressing artificial traces with varying characteristics.
The compression method was also applied to actual data from
different types of detectors. A typical storage cost is around 4 to
5 bits per sample. Code for the FPGA implementation in VHDL
and for the CPU decompression routine in C are available as open
source software, both able to operate at speeds of 400 Msamples/s.

Index Terms— Analog-to-digital conversion (ADC), data acqui-
sition, data compression, field programmable gate array (FPGA),
front-end electronics, lossless compression, real-time data acqui-
sition, open source, variable-length code, VHDL.

I. INTRODUCTION

THIS work is motivated by developments in data handling
in nuclear and particle physics. However, its applicability

is not limited to those fields. Experiments in nuclear and par-
ticle physics are growing, which implies an increasing amount
of data that needs to be handled. This is caused by an increase
in the number of detectors employed, finer segmentation and
higher event rates. Of particular interest for this work is the
recording of signal traces, because this is associated with a
dramatic increase of data that need to be transferred, compared
with a simple digitization of pulse amplitudes.

To illustrate the development of experimental setups, we
consider two front-line particle physics experiments almost
30 years apart. We compare the ATLAS (A Toroidal LHC
ApparatuS) experiment at LHC, CERN, which started data-
taking in 2009, with the UA1 (Underground Area 1) exper-
iment at Spp̄S, CERN, which started data-taking in 1981.
Concerning data production, UA1 was designed to deliver

Manuscript received August 30, 2019; accepted September 29, 2019. Date of
publication October 18, 2019; date of current version January 15, 2020. This
work was supported in part by the Swedish Research Council, the Scientific
Council for Natural and Engineering Sciences under Grant 2017-03839 and in
part by the Council for Research Infrastructure under Grant 822-2014-6644.
This article was recommended by Associate Editor M. Mozaffari Kermani.
(Corresponding author: H. T. Johansson.)

The authors are with the Department of Physics, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden (e-mail: f96hajo@chalmers.se).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2019.2945179

around 3 MB/s, mainly limited by the speed in writing to
magnetic tape [1]. The data acquisition of ATLAS on the
other hand stores around 320 MB/s [2], with much higher
internal data rates. The increase of a factor 100 in recorded
data rate over a time span of 30 years is compensated by the
substantial improvement of commercial development in both
communication and storage.

Considering the evolution of Ethernet between 1980 and
2010, we have witnessed an increase of about a factor 20 every
10 years in bandwidth [3], [4], with the major increase in the
latter half of the timespan. After 2010 however, a lower rate
of growth, a factor 4 every 10 years, starts to appear.

For data storage, between 1980 and 2010, the increase was
on average a factor 30 every 10 years, with a peak between
1990 and 2005 where the area density doubled and prices per
byte fell by half on a yearly basis [5]. Also this pace has
slowed down since around 2010, with instead a factor 4 every
10 years [6], [7].

This slowdown in industry development poses new data
acquisition challenges for both transmission speed and storage.
A particular case when these are in high demand is when scien-
tists are interested in storing entire traces, i.e. raw data directly
from flash-ADCs, for example during testing or debugging
of detectors and data processing procedures. In this case,
the amount of data is much larger, easily by a factor
20–1000 [8].

One way to cope with these challenges is to increase capital
expenditure to buy newer and better performing equipment.
However the need to reduce costs leads to a different approach,
where we aim to reduce the size of the data to be handled.
This can be achieved through data compression.

A typical example of the traces considered is time-series
data from flash-ADCs, which usually are slowly varying,
with short intervals of larger variations due to pulses. The
series data can also be information from adjacent channels,
e.g. coupled strips of Si detectors, which can exhibit similar
correlation characteristics.

If compression is employed as software running on a PC,
only data which has already been sent from the signal acquisi-
tion unit can be reduced. This gives no reduction in the transfer
rate demands. To address both limitations, an implementation
of the compression directly on the FPGA, where the initial
signal processing takes place, is needed. This article presents
a simple yet effective lossless compression method, that can
be applied to sequences of correlated data. The method allows
a straightforward and fast implementation in FPGAs as well
as CPUs, and is available as open source software.

This paper is structured in the following way: First, already
available solutions are reviewed, followed by a description of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7978-8336

190 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 1, JANUARY 2020

the present routine. Optimisation possibilities, both regard-
ing compression efficiency and resource utilisation are then
discussed. This is followed by descriptions of the interfaces
to the FPGA compression module and the CPU decompres-
sion code. The storage cost of both noise and pulses are
then modeled, and verified using synthetic trace simulations.
Finally, the achieved storage cost reduction is benchmarked
using traces from actual detectors.

II. OVERVIEW OF AVAILABLE SOLUTIONS

Ideas for data compression on front-end electronics are not
new. Scientists working on large detectors have already faced
the problem of how to efficiently compress data, albeit with
different boundary conditions than in our case. Both lossy
compressions, where a part of the initial information is lost to
accomplish a reduction [9], [10]; and lossless compressions,
where the initial information can be fully reconstructed, can
be achieved following different approaches. One is to dis-
card parts of the signal with no or little information (zero-
suppression [11]). Another approach is to use a variable
length coding [12], such as Huffman coding [13] as shown
in [14] or Golomb-Rice coding, which is used in [15]. The
effectiveness of such algorithms is based on the knowledge of
the probability distribution of the original data values. Usually
this knowledge is gained from inspecting the whole or a
representative pool of the data undergoing compression. This
requires to store and to analyse a representative sample of
the data during setup, in order to tune the compression
configuration to the signal and ADC operation parameters. As
the signal characteristics have a tendency to change within and
between calibration and production data, causing operational
inconveniences, such approaches are not suitable for our pur-
pose as a generic configuration-free compression method for
traces, as it causes additional work when operating detectors.

In some cases, through a pre-processing of the incoming
data, a more advantageous probability distribution can be
exploited. A common approach is the calculation of differ-
ences between values [16]–[20]. These differences may be
between sampled data and a model [16] or between sampled
data and a reference value (base) [17], [18] or between
consecutive samples [16], [18], [19]. When dealing with signal
traces, which are sampled at rates high enough that consecutive
samples have values close to each other, i.e. are correlated,
the latter approach delivers a distribution dominated by small
values.

III. OPERATING PRINCIPLE

The difference predicted trace compression (DPTC) pre-
sented in this paper is based on preserving only those least sig-
nificant bits which hold the information necessary to recover
each value. Although this does not correspond to a real
Huffman coding, the result is to encode the more common
smaller values, i.e. closer to zero, with shorter sequences.
This approach is quite similar to the one presented in [18],
where one sample works as base value and the following
three samples undergo the differencing treatment. The base
value can be chosen arbitrarily. We use the first value of

Fig. 1. Behavioural structure of the circuit implementing the DPTC
algorithm. The first stage prepares the values to be encoded as differences of
the input values. The second stage concerns the bit-packaging and determines
the number of bits needed for each group, and prepares and shifts group
headers and encoded values, merging them into the output words. One input
value can be accepted each cycle, marked by the data valid (dv) signal.
This predicate follows the data pipeline (PPL), and could in the future allow
the circuit to operate even if new values are not provided every cycle. Full
output words are signalled by dv_out. The end of a trace is to be marked
by the flush signal, which, after passing the pipeline, ensures that the last
data word is generated, followed by done.

each trace, with all following samples subject to the difference
processing. The resulting differences are organised in groups
of four, and all the samples in one group are stored using the
same number of bits. A small header containing information
about the encoding is placed at the beginning of each group.

Our implementation is organised in two steps, as shown
in Fig. 1. First, the procedure calculating the differences is
applied to the input data. The original samples consist of a
sequence of n-bit data words, where n is given by the bit
resolution of the sampling ADC. The current design allows
n to have any value in the range 5–16. The second stage is
responsible for packing the differences into a stream of 32-bit
words.

A. Differencing Procedure

The first stage treats each value according to the following
rules:

1) Calculate the difference to the previous value.
2) The later storage is due to the binary encoding slightly

asymmetric. With a certain number of bits, it can store
one more negative value than positive. With e.g. 3 bits,
the eight differences −4,−3,−2, . . . , 3 can be stored.
For flat (noise-like) parts of a trace, any deviation from
zero will generally be followed by a difference of the
opposite sign. To make negative values more common
than positive, a sign-changing scheme is applied: If a

BRUNI AND JOHANSSON: DPTC—AN FPGA-BASED TRACE COMPRESSION 191

Fig. 2. Layout of a group of difference values together with its header.
Depending on the difference �m in the number of bits that are needed in
this group compared to the previous, the group header is characterised by
a short (upper) or long (lower) encoding. The parameter k is fixed by the
maximum number of bits that are needed to represent the maximum difference
not covered by the short header max(�m) = n − 3.

stored value is negative, the next non-zero value is stored
with inverted sign; while, if positive, the next is stored
as is. A value of zero does not change how to store
following values.

Note that in all operations, only n bits are considered, i.e.
the differences are allowed to wrap (arithmetic is modulo-2n).
This does not introduce any ambiguity.

B. Group Creation

The values are stored in groups of four, using the same
number of bits, m, for each value in a group. This is illustrated
in Figs. 2 and 3. Since the stored values are differences, both
positive and negative values must be representable (in two’s
complement representation). Since each value may require
a different number of bits to be represented, the widest
representation needed by any value in a group is used. The
number of bits used for values in each group is stored in
a group header, placed before the actual data. Considering
consecutive groups, it is worth noticing that the number of
bits needed will often not change much and therefore a short
and long encoding of the number of bits is employed, see
Fig. 2. The short header consists of two bits: if the encoded
value is 1, 2, or 3, the number of bits to use for the group is the
same as for the previous group with a change of −1, 0 or +1
bits, respectively. If the value of the two-bit short header is
0, the encoding is long and contains the full difference of
bits stored per value. Since some values are already covered
by the short encoding, an offset of 2 is applied to the full
difference. This is encoded using k bits, which is chosen such
that any needed difference, at most n − 3, can be stored;
k = �log2(n − 3)�, i.e. 1 bit for n = 5, 2 bits for n ≤ 7, 3 bits
for n ≤ 11, and 4 bits for n ≤ 19.

The number of bits per stored difference is interpreted with
a bias of 1, meaning that storing 0 bits per value is not
supported. This is a conscious choice: supporting 0-bit values
(i.e. minimal encoding of groups with all value differences
0) would make the code for CPU decompression (and com-
pression) more complicated. Since ADCs usually are operated

Fig. 3. Graphical representation of the differencing and group formation
procedures. Shown in the upper panel is a simulated double-exponential signal
(difference of double exponentials, DEXP [21]), which is used as input data,
with n = 16. The center panel shows the differences, and how the number
of bits, m, used in each group, depends on the largest difference. The lower
panel shows the compressed data size in bits.

with noise in the least significant bit, it is also expected to
have limited practical use.

The data values are then stored with the necessary number
of bits for the group. Each data value is stored with a bias
relative to the most negative value that can be stored with the
given number of bits. This simplifies decoding, as the stored
value only has to be unmasked, and the bias subtracted. This
avoids a cumbersome sign extension operation by the CPU
decoder.

As an exception to the above rules, the first data value is
stored alone and fully, using n bits. This avoids storing the
entire first group of data with many bits.

C. Output Word Formation

The resulting stream of bits is then packed in 32-bit words,
being filled from the least significant bits. When a value to
store cannot fit, the completed output word is emitted and the
remaining bits are stored in the next 32-bit output word.

Information about the number of original data values, num-
ber of data words produced by the compression and n is
needed by the decompression procedure. These values are not
recorded by our routine, therefore it is the responsibility of
the user to retain this information.

IV. OPTIMISATION

The algorithm described in the previous section can be opti-
mised in different ways. However, the improvements obtained
by applying additional procedures depend on many aspects,
such as noise level, signal shape, and the distribution of signal

192 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 1, JANUARY 2020

Fig. 4. Compression efficiency as a function of the group size for the
actual traces presented later in Table III. The results have been averaged
(geometrically) within the different sample groups, and then again to provide
a total average. The minimum locations are indicated. The flat test traces are
not included in the total average.

amplitudes. Note that while improving for some characteristic,
an optimisation will undermine other aspects. We present a few
ideas together with a short analysis of each one, discussing
advantages and disadvantages.

A. Compression Factor Optimisation

1) Linear Predictor: With this additional pre-processing,
the linear component of long sloped parts of a trace are
removed by a second differencing of the data. This aims at
a distribution of values more narrow around zero. However,
for flat parts of a trace, which mainly contain noise, such a
double difference leads to a wider distribution. Thus, in order
to give an overall improvement, this procedure must only
be applied for sufficiently long, sloped sequences. This is
controlled by a heuristic using the observation that consecutive
samples in unfavorable regions change sign often, or have
0 difference, and thus can be detected by a three-most-recent
rule. The second differencing is switched off when at least
one sign change or a zero has occurred for the previous three
values.

While at first appearing to be promising for synthetic traces,
from tests on actual traces, this optimisation does however
not bring any improvement. This is connected to the fact
that usually most of the pulses in the digitised traces only
have small amplitudes, therefore the few improvements by
this predictor are neutralised due to it activating spuriously
in flat parts. The optimisation is implemented in the code, but
deactivated by default.

2) Number of values in a group: The group size can also be
varied to optimise the compression efficiency, see Fig. 4. Using
smaller groups require more storage space due to the more
frequent headers, while larger groups will encode unnecessary
bits for more samples. The figure shows an optimum around
six samples per group, with gradual losses at larger values, or
steeply below three.

We have chosen to code four values in each group. The
loss is about 1.2% compared to groups of six values. Fixing

TABLE I

CIRCUIT RESOURCE USAGE FOR DIFFERENT FPGA TARGETS

the number as a power of two might be useful for a future
parallelized unpack code. We choose four rather than eight
as this leads to shorter pipelining in the group formation part
of the circuit.

B. Circuit Optimisation

1) Additional Pipeline Stages: The achievable minimum
clock cycle period in a digital circuit depends on the propa-
gation delay of the longest combinational logic chain between
register latches.

In our case the circuit is described in VHDL, where the
model and grade of the FPGA that is targeted will affect which
logic expression becomes the longest. Adding pipeline stages
to split the longest paths helps to lower the minimum clock
cycle. At the same time however, introducing a pipeline stage
causes more LUTs1 to be used, as well as flip-flops; leading
to a trade-off between resource-usage and speed. In order to
allow flexibility when using the code, a few generic parameters
control a number of optional pipeline stages.

Since the synthesized code uses more LUTs than flip-
flops, compared to the usually available ratio on FPGAs,
we concentrate on the LUT usage for the circuit optimization
comparisons.

By performing VHDL synthesis for all combinations of the
optional pipeline stages, and directing the respective FPGA
development toolchain to optimise for speed, the achievable
performance as function of resource usage can be determined.
The results are shown in Fig. 5 and summarized in Table I.
Locations further down in the figure indicate that shorter clock
periods can be used, and further to the left mean less resource
consumption. For each circuit, only the results which improve
the achievable clock frequency for a certain resource usage
is kept, thus the short curves mainly show the improvements
possible as more pipeline stages are enabled. To a smaller
degree they also come from the ability of the toolchains to
trade resource usage for speed. To compare with the most
used constructions (adders, subtractors, comparators), 16-bit
adders are also shown in the figure. The VHDL code allows the
minimum period of the clock to be below 10 ns (i.e. 100 MHz)

1Look-up table, a basic FPGA building block. The other basic unit is signal
registers, i.e. flip-flops (FF).

BRUNI AND JOHANSSON: DPTC—AN FPGA-BASED TRACE COMPRESSION 193

Fig. 5. Achievable circuit frequency as a function of look-up table (LUT)
usage for some commercial FPGA architectures from the companies Xilinx
(left column) and Altera (now Intel; right column), mainly varied by additional
pipeline stages. The circuit handles one data values per clock cycle, indendent
of the actual value. Three main configurations, all with n = 16, are evaluated:
without and with the predictor, and by doing the shift using multiplier units.
The resource use of a single 16-bit adder, and a 22-bit 38-position shifter are
also shown. Note that different FPGA models have resources (e.g. LUTs) with
different capabilities, thus the resource consumption cannot be meaningfully
compared between models.

even on 10-year old FPGAs, and it can easily be configured
to reach below 5 ns with additional pipeline stages. On more
modern FPGAs, going below 3 ns seems rather easy. If the
compression circuit is operated continuously, directly fed by
the data generator (e.g. flash-ADC), the speed needs to match
the sampling period, since the circuit can process one sample
per clock cycle. When compressing only selected traces which
first have been recorded into temporary memory buffers, a
slower clock can be used for the compression circuit.

The single most expensive component of the circuit is
the barrel shifter, which aligns the encoded data at the next
position in the output word. For n = 16, the shifter input
is 22 bits wide, with the additional 6 bits coming from the
potentially long encoded header. The shift amount is in the
range 0 to 37, inclusive. 0 to 31 depends on how many
bits already are used in the output word. The additional 0,
4, or 6 positions depend on the header (long, short, or none).
This gives a 60 bit output. The cost and performance of the
shifter units are also shown in Fig. 5.

2) Barrel Shifter vs. Multiplier Units: A barrel shifter on
FPGAs is normally realised as one multiplexer for each output
bit (sharing some parts of the first stage selectors of each
multiplexer). Since it also can be expressed as a multiplication
of the input value with 2i , where i is the shift value, it can
also be implemented using multiplier units in FPGAs. For
the second factor, the input value is generated as 2i , i.e. a
one-hot encoding of the shift amount.

One could imagine this to be beneficial when generic LUT
resources are scarce, however for the cases tested, it is not.
The generation of the 2i input value is rather expensive,
as it requires 2i individual selectors. Also the combination

of the output values from the several multiplier units, often
9 × 9 or 18 × 18 wide, is rather expensive.

The resource usage for 22-bit, 38-position left-shifters
implemented in the two ways are also compared in Fig. 5.

The results in Fig. 5 and Table I are for n = 16. Similar
tests for 5 ≤ n < 16 give that for each bit removed, the
needed number of LUTs shrinks on average by 4–5%, and
the attainable minimum period required decreases by 1–2%,
depending on FPGA model.

V. VHDL MODULE INTERFACE

The interface to the VHDL compression module is a single
entity, with input and output signals as seen at the top and
bottom of Fig. 1. Optional pipeline stages are configured using
a generic map.

The circuit inputs are:

• clk: clock signal;
• reset: reset signal, given for at least as many cycles as

the pipeline has stages;
• input: n-bit data value to compress;
• dv_in: data valid signal: set to ’1’ every clock cycle an

input value is provided;
• flush: flush signal: set to ’1’, after the last input value

has been given. Held until done reported back. This
forces the last output word to be emitted, especially when
it is not fully occupied.

The output signals are:

• output: 32-bit output data word;
• dv_out: data valid signal: ’1’ every time the output word

is filled, signaling the presence of a completed data word
to be stored;

• done: informs that the last input value has been
processed and the final output word was produced (pos-
sibly in the current cycle).

VI. DECOMPRESSION

The decompression is performed by one C function with
the following parameters:

• compr: pointer to the 32-bit words of the compressed
input buffer;

• ncompr: number of elements in the input buffer;
• output: pointer to a buffer of 16-bit items for the

decompressed values;
• ndata: number of original/decompressed values;
• bits: number of bits of each value that was stored (n).

This must be the same as the number configured during
compression.

On success, 0 is returned, otherwise a non-zero value.
The routine will report decompression failure on malformed

compressed data, e.g. if there are non-zero bits left in the
input buffer, or when entire words have not been used. The
decompression routine will not read items beyond the end of
the source buffer even if it runs out of data, e.g. due to a
corrupted data stream. Table II shows the typical performance,
which only has a small dependence on the actual data values.

194 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 1, JANUARY 2020

TABLE II

PERFORMANCE OF THE DECOMPRESSION ROUTINE ON VARIOUS CPUS

VII. COMPRESSION EFFICIENCY—STORAGE COST

The contributions to the compressed data size can be divided
in two parts:

1) The cost of storing traces with no pulses, i.e. only
containing the digitization noise. This is described as
a cost per sample.

2) The cost of storing a pulse, described as an additional
cost for the entire pulse.

There is a natural interplay between the two, as the noise
affects the additional cost to store a pulse. This effect is also
addressed below.

In the following, we use the variables c for cost and b for
bits. To specify these, subscripts are used: N for noise, T
for trace, S for sample, P for pulse, and B for a small pulse
(bump). Gaussian noise is described by its amplitude σN . The
amplitude and width (std. dev.) of Gaussian-shaped pulses are
given by AP and wP .

A. Bare Trace Cost

The cost of storing a trace without pulses has two parts: the
size of the headers and the size of the encoded values, i.e. the
differences.

The cost of storing the differences depends on the noise
content, most easily expressed as the number of bits of noise
bN = log2 σN .

Ignoring the pecularities of the first group, which may
require a long header encoding, the estimated cost for a trace
�cT � will be proportional to its length nT :

�cT � = n + (nT − 1)�cS� + 15.5. (1)

The first sample has a fixed cost n. The constant 15.5 accounts
for the average number of unused bits in the last output word
at the end of a trace. A first approximation, denoted by the
tilde, for the average cost per noise sample is

�c̃S � = 0.5 + bN + 1 + o. (2)

The first half bit comes from the short group header, using
two bits every four samples. The additional one comes from
differences encoding both positive and negative entries, i.e.
effectively a sign bit. The term o is an overhead, since the
grouping of values causes some more bits than necessary to
be used. To model the transition from very small noise levels,
where the total cost is 1.5 bits/sample, to the proportional

Fig. 6. Average cost per sample depending on the number of noisy bits.
The minimum cost per sample is 1.5 bits, given by one bit per sample and a
short header of two bits every group of four samples. The model is compared
to actual compression of traces with either Gaussian or uniform noise. For
Gaussian noise the standard deviation of the distribution expresses the number
of noisy bits. For uniform noise instead the number of noisy bits represents
the span of the random value distribution.

regime, a smooth transition function g(x) = 1
f log2(1 + x f)

is used for bN , with x = σN . As wanted, g(x) → 0 as x → 0
and g(x) → log2 x for x � 1, while the parameter f controls
the smoothing. This yields:

�cS � = 0.5 + 1

f
log2(1 + σN

f) + 1 + o. (3)

This is illustrated for Gaussian and uniform noise in Fig. 6,
where good fits are achieved with f = 8. For uniform
noise, the range of differences is twice as large as the value
distribution (due to also encoding negative entries), explaining
the use of, on average, one more bit per sample in addition to
the short header and bN . This is modeled by (3) shown as a
solid line. For Gaussian noise, the distribution of differences
between consecutive samples is wider by a factor ∼ √

2 than
the original distribition, and any large value in a group of four
leads to longer encodings. The further small fractional costs
per sample are in both cases likely given by the occasional
use of long group headers.

B. Pulse Cost

The cost of a pulse is best described as the total cost of the
pulse, and not a cost in bits per sample. For the following
discussion, pulses are assumed to have a Gaussian shape,
as opposed to the double exponential function considered
in Fig. 3. Detector pulses can be considered as composed of
two parts with different time constants (i.e. widths) for the
rising and falling parts. Even if this may be a rather rough
approximation of real pulses, especially for the trailing part,
it is practical, since Gaussian functions are efficiently and
familiarly described using their widths and amplitudes.

Since it is differences that are stored, the important parame-
ter is not the amplitude AP of a pulse, but its steepest slope,
which scales as AP

wP . As a first approximation, denoted by the
tilde, the cost is proportional to the number of bits needed to
store these differences, as well as the width of the pulse,

�c̃P � = awP log2

(
AP
wP

)
. (4)

BRUNI AND JOHANSSON: DPTC—AN FPGA-BASED TRACE COMPRESSION 195

The scale is given by the proportionality constant a. It turns
out that this formula works rather well, if modified to account
for the facts that even for small pulses, costs are not negative
(by adding 1 inside the logarithm and control parameter b),
and that very narrow pulses still will affect the storage size of
at least one entire group (d within the square root):

�cP � = a
√

w2
P + d2 1

b
log2

(
1 +

(
AP
wP

)b
)

. (5)

The modification is thus adjusted by the control parameters b
and d .

C. Pulse-Noise Interaction

The above description (5) works in the limit where the
pulse is large compared to the background noise. When this
is not the case, the additional cost of storing the pulse will be
smaller, since the pulse-associated part of the differences to
some extent will be covered by the noise storage cost. This
can be modeled by

�cB� =
√

�cP �2 + �cNB�2 − �cNB�. (6)

The correction is the cost of storing the noise for a stretch of
samples proportional to the pulse width:

�cNB� = q
√

w2
P + d2 1

f
log2

(
1 + σN

f
)

. (7)

q is a proportionality constant.

D. Storage Cost Verification—Synthetic Traces

The storage cost described above and culminating in (6)
has been verified by simulating a large number of traces with
Gaussian pulses, where the parameters AP , wP , and σN were
varied. A global fit suggests the following values for the
control parameters: a = 5.6, b = 1.3, q = 33, d = 2.6 and
f = 7.7, with a parameter uncertainty of up to 10%. Fig. 7
shows the σN = 2.0 case.

Simulations were performed by building, for each set of
parameters, a set of 15×106 traces, each made of 500 samples,
with Gaussian noise σN . In each, a Gaussian pulse (AP , wP)
was added to the trace. To average over discretisation effects,
both the (noise) baseline and the center of the pulse were
randomised, trace by trace, with fractional offsets.

Although Fig. 7 shows a good agreement between Equa-
tion (6) and the data, larger differences emerge for small values
of AP and wP . These correspond to the limits handled by the
modifications between (4) and (5), which are thus seen to only
partly address these edge effects.

E. Storage Cost Verification—Actual Traces

Table III shows the compression efficiencies for some
different collections of actual data. They are compared to the
common gzip [22] and xz [23] generic compression routines
(at their normal setting). For the generic routines, all data
of each file was stored in a binary file with 16-bit values.
For a fair comparison, the overhead size of storing an empty
compressed file was subtracted. In general, the DPTC results

Fig. 7. Cost to store a Gaussian pulse as a function of the pulse amplitude
and width. This is shown for both compressed simulated data (solid lines) and
the model (6) (dotted lines). The input traces are built adding Gaussian noise,
in this case with a sigma of 2.0, to the Gaussian pulse. The cost of storing
only the Gaussian noise is then subtracted from the cost of storing the trace,
leaving the cost of storing the pulse. The fit is done using model (6) on the
total amount of data and minimizing relative differences.

are quite similar to the LZMA results, and well below the gzip
results. The main exception are the LaBr3 collections marked
a, where the data is very flat (virtually no noise) except for
the pulses. Here the DPTC routine still uses its minimum of
at least 1.5 bits/sample. This effect is also seen for the three
synthetic traces marked b, which have constant values.

Since Huffman encoding [13] is a common approach for
compression where the typical distribution of values is known,
the actual traces have for comparison purposes also been
compressed using this approach. It is applied after a difference
stage, with the Huffman encodings individually optimised for
each data set. To allow average costs below one bit per sample
for very flat traces, encodings of up to four consecutive values
using one symbol were also allowed, when such stretches of
values would account for more than 1% of the symbols. In
these tests, the 1% threshold was only passed for the cases
marked a and b. Overall, the Huffman compression scheme
delivers results slightly better than both the DPTC routine and
the generic compression routines, but needs to be optimised
to the characteristics of the signals.

Finally, note how close the costs per sample are to the
expectations for only storing the respective noise content,
showing that the storage cost contributions from pulses are
negligible.

F. Caveat Emptor—How to Ignore ADC Noise

In case the original data contains an excessive number of
least-significant bits with noise that shall not be stored, they
must be shifted out of the original data before the values are
given to the DPTC compression routine. Just masking them out
will not improve the compression efficiency, as the routine is
looking for the most significant bit of the differences that need
to be stored. On the other hand, using a compressor with n
larger than necessary causes little extra cost. Few, if any, extra

196 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 1, JANUARY 2020

TABLE III

COMPRESSION EFFICIENCY OF THE DPTC ALGORITHM FOR ACTUAL TRACES, CATEGORISED BY DETECTOR TYPE AND DETECTED RADIATION, AND
COMPARED TO POPULAR GENERAL-PURPOSE COMPRESSION METHODS AND HUFFMAN ENCODING

bits will be used; since mainly k will potentially be affected,
see Fig. 2.

Note that the choice of omitting least-significant bits is
a delicate decision. The finally achievable resolution of a
measurement may be improved by retaining some additional
least-significant bits, since it may allow analysis of the
later de-compressed traces to partially recover the effects of
quantization error and differential non-linearity in the ADC,
by averaging or fitting.

When applicable, in oversampled parts of a trace, much
larger savings than obtained through omitting some least-
significant bit may be obtained through downsampling the
information by summing adjacent samples before compres-
sion, thus storing fewer samples, but with better resolution.

VIII. CONCLUSION

A lossless compression routine which addresses both the
transmission bandwidth and storage cost challenges associated
with recording flash-ADC traces has been presented. The rou-
tine can be directly integrated in front-end electronics and can
handle data streams on-the-fly at rates of 400 Msamples/s in
the controlling FPGA. Calculation of the differences between
consecutive trace samples concentrated the most frequently
occuring values around zero. The compression was concluded
by storing the values in groups of four, yielding a simple yet
effective variable-length code, by only storing the necessary
least-significant bits, in a stream of 32-bit words.

A model for the storage cost was developed, by first
considering the influence of the group headers as well as the
retained ADC noise. The additional cost of storing a pulse was
expressed in terms of its amplitude and width. By compressing
a large set of artificial traces with varying characteristics,
both the free parameters and the validity of the model were
determined.

The method was then applied to actual data from different
kinds of detectors. The compression efficiency was found to be
comparable to popular general-purpose compression methods
(gzip and xz). It was shown that the dominating cost of
storing actual traces is generally given by the retained ADC
noise, and not the pulses. It is therefore important for users to
carefully assess how many least-significant bits shall be kept,
in case they are noisy. Except for that, there are no parameters
that need to be adapted, which is of particular interest for
experiments employing hundreds or thousands of detector
channels.

Computer code for the FPGA implementation in VHDL
and for the CPU decompression routine in C are available
for download [24] as open source software.

ACKNOWLEDGMENT

The authors would like to extend their thanks to O. Schulz,
B. Löher, S. Storck, and P. Díaz Fernández for providing test
data, and to A. Heinz and D. Radford for valuable discussions.

BRUNI AND JOHANSSON: DPTC—AN FPGA-BASED TRACE COMPRESSION 197

REFERENCES

[1] A. Astbury et al., “The UA1 calorimeter trigger,” Nucl. Instrum. Methods
Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 238, nos. 2–3,
pp. 288–306, 1985.

[2] ATLAS Collaboration. (Jun. 2012). ATLAS Fact Sheet.
Accessed: Dec. 5, 2018. [Online]. Available: http://cds.cern.ch/record/
1457044/files/ATLAS fact sheet.pdf

[3] V. S. Latha and D. S. B. Rao, “The evolution of the Ethernet: Various
fields of applications,” in Proc. Online Int. Conf. Green Eng. Technol.
(IC-GET), Nov. 2015, pp. 1–7.

[4] Ethernet Alliance. (Feb. 2018). 2018 Roadmap Graphics.
Accessed: Dec. 6, 2018. [Online]. Available: https://ethernetalliance.
org/the-2018-ethernet-roadmap/

[5] R. J. T. Morris and B. J. Truskowski, “The evolution of storage systems,”
IBM Syst. J., vol. 42, no. 2, pp. 205–217, 2003.

[6] R. Wood, “Future hard disk drive systems,” J. Magn. Magn. Mater.,
vol. 321, no. 6, pp. 555–561, Mar. 2009.

[7] A. Nordrum, “The fight for the future of the disk drive,” IEEE Spectr.,
vol. 56, no. 1, pp. 44–47, Jan. 2019.

[8] S. Paschalis et al., “The performance of the gamma-ray energy tracking
in-beam nuclear array GRETINA,” Nucl. Instrum. Methods Phys. Res. A,
Accel. Spectrom. Detect. Assoc. Equip., vol. 709, pp. 44–55, May 2013.

[9] D. Falchieri, E. Gandolfi, and M. Masotti, “Evaluation of a wavelet-
based compression algorithm applied to the silicon drift detectors data of
the ALICE experiment at CERN,” Nucl. Instrum. Methods Phys. Res. A,
Accel. Spectrom. Detect. Assoc. Equip., vol. 527, no. 3, pp. 580–590,
2004.

[10] A. Nicolaucig, M. Ivanov, and M. Mattavelli, “Lossy compression of
TPC data and trajectory tracking efficiency for the ALICE experiment,”
Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc.
Equip., vol. 500, nos. 1–3, pp. 412–420, 2003.

[11] A. Werbrouck et al., “Image compression for the silicon drift detectors
in the ALICE experiment,” Nucl. Instrum. Methods Phys. Res. A, Accel.
Spectrom. Detect. Assoc. Equip., vol. 471, no. 1, pp. 281–284, 2001.

[12] K. Sayood, Introduction to Data Compression, K. Sayood, Ed., 4th ed.
San Mateo, CA, USA: Morgan Kaufmann, 2012.

[13] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. Inst. Radio Eng., vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[14] G. Mazza and S. Cometti, “The front-end data conversion and readout
electronics for the CMS ECAL upgrade,” J. Instrum., vol. 13, no. 3,
2018, Art. no. C03003.

[15] R. Ammendola et al., “Natrium: Use of FPGA embedded processors
for real-time data compression,” J. Instrum., vol. 6, no. 12, 2011,
Art. no. C12036.

[16] C. Patauner, A. Marchioro, S. Bonacini, A. U. Rehman, and W. Pribyl,
“A lossless data compression system for a real-time application in HEP
data acquisition,” IEEE Trans. Nucl. Sci., vol. 58, no. 4, pp. 1738–1744,
Aug. 2011.

[17] J. Duda and G. Korcyl, “Designing dedicated data compression for
physics experiments within FPGA already used for data acquisi-
tion,” 2015, arXiv:1511.00856. [Online]. Available: https://arxiv.org/abs/
1511.00856

[18] R. Kobayashi and K. Kise, “A high performance FPGA-based sorting
accelerator with a data compression mechanism,” IEICE Trans. Inf. Syst.,
vol. E100-D, no. 5, pp. 1003–1015, 2017.

[19] J. Badier, P. Busson, A. Karar, D. Kim, G. Kim, and S. Lee, “Reduction
of ECAL data volume using lossless data compression techniques,” Nucl.
Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip.,
vol. 463, nos. 1–2, pp. 361–374, 2001.

[20] A. Biasizzo and F. Novak, “Hardware accelerated compression
of LIDAR data using FPGA devices,” Sensors, vol. 13, no. 5,
pp. 6405–6422, May 2013.

[21] G. Wu, “Shape properties of pulses described by double exponential
function and its modified forms,” IEEE Trans. Electromagn. Compat.,
vol. 56, no. 4, pp. 923–931, Aug. 2014.

[22] GNU Gzip. Accessed: Feb. 12, 2019. [Online]. Available: https://www.
gnu.org/software/gzip/

[23] XZ Utils. Accessed: Feb. 12, 2019. [Online]. Available: https://
tukaani.org/xz/

[24] DPTC—Firmware for FPGA Trace Compression. Accessed:
Mar. 26, 2019. [Online]. Available: http://fy.chalmers.se/subatom/dptc/

Giovanni Bruni (S’11) received the M.S. degree
in electronic engineering from the Università degli
Studi di Padova, Padova, Italy, in 2014 and the M.S.
degree in physics from the Chalmers University of
Technology, Göteborg, Sweden, in 2018, where he
is currently pursuing the Ph.D. degree in physics.

His current research interests include detector
development, data acquisition systems, radiation
effects on digital circuits, FPGA development, and
data analysis of nuclear physics experiments.

Håkan T. Johansson was born in Halmstad,
Sweden, in 1977. He received the M.S. degree in
engineering physics and the Ph.D. degree in physics
from the Chalmers University of Technology, Göte-
borg, Sweden, in 2002 and 2011, respectively.

In 2001, he was a Summer Student with CERN,
and from 2003 to 2007, a Research Assistant with
GSI, Darmstadt, Germany. Since 2010, he has been
a Research Engineer with the Subatomic Physics
Group, Physics Department, Chalmers University
of Technology. His research interests include the

efficient use of computers in all aspects of experiment preparations, execution,
and analysis and high-performance computations for theory.

Dr. Johansson is a member of the Swedish Nuclear Physics Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

