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Abstract—In this paper, we consider the problem of esti-
mating multiple parameter vectors over a sensor network in a
multitasking framework and under temporally-correlated input
conditions. For this, an efficient clustered multitask diffusion
affine projection algorithm (APA) is proposed that enjoys both
intra-cluster and inter-cluster cooperation via diffusion. It is,
however, shown that while collaboration in principle is a useful
step to enhance the performance of a network, uncontrolled
mode of inter-cluster collaboration can at times be detrimental
to its convergence performance, especially near steady-state. To
overcome this, a controlled form of inter-cluster collaboration is
proposed by means of a control variable which helps in maintain-
ing the collaboration in right direction. The proposed controlled
multitask strategy attains improved performance in terms of both
transient and steady-state mean square deviation (MSD) vis-a-
vis existing algorithms, as also confirmed by simulation studies.
We carry out a detailed performance analysis of the proposed
algorithm, obtain stability bounds for its convergence in both
mean and mean-square senses, and derive expressions for the
network level MSD. Simulation results reveal that the proposed
scheme performs consistently well even in the absence of cluster
information.

Index Terms—Multitask network, distributed adaptive estima-
tion, block maximum norm, adaptive diffusion networks, affine
projection algorithm.

I. INTRODUCTION

Adaptive networks consist of interconnected nodes that
adaptively estimate certain parameter vector(s) of interest, by
deploying some collaboration among the neighboring nodes
[1]-[3]. In a single-task network, all nodes collectively es-
timate a single optimal parameter vector (i.e., each node is
engaged in a common task, e.g., point target localization
[1]), for which, several useful modes of collaboration have
been proposed and analyzed recently, like incremental [4], [5],
consensus [6], [7] and diffusion strategies [8]-[11]. Of these,
diffusion strategies are simple but more efficient as compared
to the other two for distributed adaptive estimation [12].

Beside single-task scenarios, in some applications, adap-
tive networks are required to estimate multiple parameter
vectors simultaneously and are called multitask networks.
For example, in distributed active noise control applications
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[13], agents need to determine different but related active
noise control filters. Similarly, in node-specific cooperative
spectrum sensing [14] and node-specific speech enhancement
[15], multiple parameter vectors need to be estimated jointly
in collaborative fashion. In a multitask network, the nodes
are grouped into clusters and nodes within the same cluster
estimate a common parameter vector [16]. Different clusters
generally carry out different (though related) tasks and the
relationship between these tasks is unknown. The estimation
still needs to be carried out cooperatively across the network
because the data across the clusters may be correlated and
therefore, cooperation across clusters can be beneficial. In
other words, a multitask network employs both inter-cluster
and intra-cluster cooperation. In [17], [18], a least mean square
(LMS) based multitask diffusion algorithm has been presented,
which is studied in [19] in presence of random link failures
and changing topology, and in [20], a robust learning approach
for the same is presented. Separately, using the robustness
of the affine projection algorithm (APA) [21] against colored
input, an APA based diffusion multitask estimation scheme
has been proposed in [22]. In the aforementioned works, it is
shown that the network level mean square deviation (MSD)
performance of multitask diffusion schemes depends on the
extent of inter-cluster cooperation present which is controlled
by certain regularization strength parameter and regularization
coefficients between the inter-cluster nodes. In [22], it is also
observed that certain choices of these weights may lead to
poor performance compared to the non-cooperation case.

In this paper, we propose a multitask diffusion APA with
efficient inter-cluster cooperation. Our main contributions here
are as follows:

1) It is shown that while collaboration in principle is a
useful step to enhance network performance, uncontrolled
mode of inter-cluster collaboration can, however, lead
to deterioration of network convergence behavior, espe-
cially near steady-state. To overcome this, we propose
an improved clustered multitask diffusion strategy that
uses a control variable to maintain cooperation among
neighboring clusters in the right direction. The proposed
algorithm exhibits faster convergence rate and lesser
steady-state MSD than the state-of-the-art.

2) Extending the energy conservation approach based APA
analysis [23] to the distributed implementation, we carry
out a detailed performance analysis of the proposed
improved clustered multitask diffusion APA, where we
derive stability bounds for its convergence in both mean
and mean-square senses, and derive expressions for the



network level instantaneous and steady-state MSD that
explain the effects of various design parameters on the
network performance.

3) We demonstrate the effectiveness of the proposed algo-
rithm through detailed simulations in a system identifica-
tion context.

The rest of the paper is organized as follows. In Section
II, we introduce the network model along with some prior
related works, and present the proposed improved multitask
diffusion strategy. Next, in Section III, we carry out a detailed
performance analysis of the proposed algorithm and obtain
stability bounds for its convergence in both mean and mean-
square senses. Detailed simulation results in support of the
proposed algorithm are provided in Section IV. Section V
concludes the paper.

II. NETWORK MODEL AND PROPOSED ALGORITHM
A. Clustered Multitask Diffusion Affine Projection Algorithm

We consider here a clustered multitask network with N
nodes that are grouped into () clusters. Each node k has
access to the input signal wuy(n) and the observable output
di(n) that are assumed to be related via a linear model

d(n) = uf (n) wi + 9p(n), (1)

where w, is the L x 1 optimal parameter vector to be estimated
at node k, ug(n) = [up(n),up(n—1), -+ jup(n—L+1)]T is
the input data vector and ¥4 (n) is an observation noise with
zero mean and variance o3, which is taken to be temporally
and spatially i.i.d. and independent of input w;(m) for all
n, m and k, [. The nodes that are grouped in the same
cluster Cy, ¢ = 1,2,---,Q, estimate the same L x 1 filter
coefficient vector wg, , implying wj = wg, for k € Cq.
Further, the optimal parameter vectors (also termed as tasks)
of neighboring clusters w*cq and w¢, are different but are
related, implying W*Cq ~ wpg  if clusters C; and C,. are
connected. We use the notation C'(k) to denote the cluster
to which node k belongs, C(k) € {Cy, Ca,--- , Co}.

Each node k estimates the corresponding w;, by updating a
weight vector wy(n) following the adapt-then-combine (ATC)
based clustered multitask diffusion APA [22], which follows
directly from [17] and is given as follows:

Adaptation:
P (n + 1) =wi(n) + 4U(n)(elp + U} (n) Uk (n)) "ex(n),
Combination (inter-cluster):

Ppn+ 1) =+ 1)+ > pu(wiln) — wi(n)),

.. . LeN\C (k)
Combination (intra-cluster):
wi(n+1) = Z ai;(n+ 1), 2
leNLNC (k)
where Ug(n) = [ug(n),ux(n —1),--- ;ug(n — P+ 1)] is

the input signal matrix, ex(n) = dx(n) — U} (n)wy(n) =
lex(n),ex(n —1),--+ jer(n — P+ 1)]T is the error vector,
di(n) = UL (n)w;+9%(n) = [dr(n), dp(n—1),- - ,dp(n—
P + 1)]7 is the desired response vector, and 9j(n) =
[I(n), Ip(n — 1),--- ,9x(n — P + 1)]T is the observation

noise vector, all at the k" node, k = 1,2,---, N, with P
being the projection order. The symbol € is a small positive
constant deployed to avoid inversion of a rank deficient matrix
U?¥(n)Ug(n). The symbol N, denotes the neighborhood of
node k including k. The small positive constant 7 is a regu-
larization strength parameter and the non-negative coefficients
Pk adjust the regularizer strength between inter-cluster nodes
k and [. The non-negative coefficients py; are chosen to satisfy
the following conditions [17]:

Y >0
> pu=1, and {p’” ’
=1

prt =0,

if €N\ C(k),
if 1¢ N\ Ck).

Further, pgr, = 1 if Ny \ C(k) = 0. The combination
coefficients a;;, are non-negative and are given by

N .
Zalkil, and {alk>0, if lENkﬁO(k)7 @)
=1

3)

air = 0, otherwise.

[A matrix with its elements a;;, satisfying (4) is called left
stochastic; also, a matrix is right stochastic if its transpose is
left stochastic.] Several methods exist in literature to select the
coefficients ayj, e.g., averaging rule, Metropolis rule etc. [2].

B. Improved Clustered Multitask Diffusion Affine Projection
Algorithm

The clustered multitask diffusion strategy presented in (2),

however, induces two problems:

1) Assume, at time index n, node [ € Nj \ C(k) exhibits
poor performance over node k. The clustered multitask
diffusion scheme does not take this into account and
aimlessly allows node & to learn from poorly performing
node [. This affects the transient performance of the
algorithm (2).

2) For all | € N \ C(k), we have w; ~ wj, ie., the
neighboring cluster tasks are only having some kind
of similarity relationship, but are not exactly the same.
This means, ideally, the inter-cluster cooperation has to
be terminated near convergence. However, the clustered
multitask diffusion strategy (2) continues the inter-cluster
cooperation between k and [ even in the steady-state,
and the cooperation is in proportion to the value of 7.
This may hamper the steady-state performance of the
algorithm.

To address these problems, motivated from [24], we introduce
a control variable 0y;(n) to regulate the learning rate during
inter-cluster cooperation, given as,

Sri(n) = % (1+ sgn(o2(n) — cr,%l(n))) ,Le N\ C(k), (5

where sgn(-) is the well known signum function. The error
variances o7 (n) and o7;(n) are recursively updated as

o3 (n) = 702 (n —1) + (1 —7) (di(n) — uf (W)wi(n))?,
o3(n) = o3, (n — 1) + (1 = ) (d(n) — uf (n)wi(n))’
for e N\ C(k), (6)

where v € [0,1] is a positive constant (note that in o;(n),
wi(n) is used with the data for k*" node, namely, dj(n) and



uy(n)). Then, defining ps,,(n) = pii Ori(n), the clustered
multitask diffusion APA (2) is modified as

Adaptation:

Py, (n+ 1) = wi(n) + pUg(n) (Ip + UT (n) Uy (n))
Combination (inter-cluster):

71ek(n),

¢k(”+1) wk(n+1 +pun Zpéu Wl( ) Wk(n))v
LEN\C (k)

Combination (intra-cluster):

wi(n+1) = Z ai; P;(n+1). (7)

leNNC(k)

The following may then be observed in the context of the
above:

o Suppose, at index n during the transient stage, node [
performs poorly whereas node k performs reasonably
well. This means o7(n) and thus o%,(n) are larger than
o%(n). From (5), we then have dy;(n) = 0, and thus,
node k stops learning from node /. On the other hand,
as w; ~ wi, o7 (n) will be less than o7 (n), and thus,
from (5), 0;(n) = 1, meaning node [ will continue to
learn from node k.

« In the steady-state when both o (n) and o7(n) are at par,
0%,(n) > o%(n), simultaneously with a2k(n) > of(n).
This means both dx;(n) = 0 and §j(n) = 0, and the
two nodes, k and [, stop learning from each other, or,
equivalently, they stop pulling each other towards their
respective optimal values. This obviously improves the
overall convergence performance.

Since the control variable dy;(n) € {0,1}, we always
have 0 < ps,,(n) < pr. Also note that dpi(n) = 1 if
N\ C(k) = 0. At each node k, the proposed multitask diffu-
sion APA incurs a small amount of additional computational
overhead, i.e., |[N;/C(k)| (L + 3) extra multiplications and
IN:/C(k)| (L + 3) extra additions, where [N} /C(k)| denotes
the number of inter-cluster neighboring nodes. Furthermore,
each node requires (JNy/C(k)|] + 1) memory locations to
store the error variance defined in (6). This slight increase
in overhead is quite acceptable in view of the improvement in
performance achieved.

III. PERFORMANCE ANALYSIS

In this section, we focus on the convergence behavior of
the proposed improved clustered multitask diffusion APA,
particularly with regard to the control variable introduced, and
obtain expressions for the instantaneous as well as steady-
state MSD by following the lines of the energy conservation
approach [23].

A. Network Global Model

Before proceeding to analysis, we define the network level
optimal filter coefficient vector w*, estimated filter coefficient
vector w(n), input data matrix U(n) and the observation noise

vector ¥(n) as follows:

wr = col{wi‘,wg7 e 7w}‘\,},
w(n) = col{wi(n),wz(n),--- ,wn(n)}, ®
Y(n) = col{V;(n),92(n), -+ ,In(n)},
U(n) = blockdiag{ U1 (n), Uz(n), -+, Un(n)},

where col{-} and blockdiag{-} are used to denote the column
wise stacking operator and block diagonalization operator,
respectively. From the above definitions, the global data model
is given by

d(n) = col{d;(n),d2(n), -+ ,dn(n)} = UT (n)w* + 9(n),
(©))
and the global error vector is given by
e(n) = col{e1(n), ez(n) (n)} =d(n) — UT (n)w(n).
(10)

Using the above definitions, from (7), the global model of the
proposed improved clustered multitask diffusion APA can then
be described as

w(n+1) = A(w(n) + pU(n)(lpy + UT(n)U(n))ile(n))
— pun A Qs(n) w(n), (11)
where
A=AT21,, a2
Qs(n) = (Ds(n) ® 1) — (Ps(n) ® 1),
with
Ds(n) = diag{ps, (n), ps,(n), -+, psx (n)}, (13)
Ps(n) =P ©d(n),
and
poi (n) = Z Poi (n) = Z Pridri(n)
LENH\ C (k) LENH\ C (k) (14)
fork=1,---,N.

The term d(n) denotes a N x N matrix with [§(n)]x; =
dri(n), A is a N x N symmetric left stochastic matrix
with [A]l;x = ai, and P is a N x N asymmetric right
stochastic matrix with [P];; = pg;. The symbols ® and ©®
denote the right Kronecker product and Hadamard product
operators, respectively [25]. In the following, we study the
convergence behavior of the proposed improved clustered
multitask diffusion APA given by (11).

In (7), every node is influenced by the local information (i.e.,
current and past data of the node itself which is temporal)
as well as the information coming from neighbors through
diffusion mode of cooperation (which is for the current cycle
and is spatial). This simultaneous presence of spatial and
temporal structures makes the analysis of distributed adaptive
filters more challenging compared to single adaptive filters. In
order to circumvent this difficulty, we assume the following:
Assumption 1: The data signal uy(n) arise from a stationary
random process that is temporally stationary with the corre-
lation matrix R,, x = E[ug(n)ur(n)] and the data matrices
Uk(n), k=1,2,--- N are spatially independent.
Assumption 2: Observation noise ¥ (n) is taken to be spa-
tially and temporally i.i.d. Gaussian with mean zero and



variance 019 -
Assumptlon 3: The network topology is assumed to be static,
meaning the combiner coefficients are constant throughout the
process.
Assumption 4: We assume statistical independence between
wi(n) and Ug(n), dg(n), k =1,2,--- , N (i.e., generalized
independence assumption), implying that w(n) is also sta-
tistical independent of ¥y (n). Further, dy;(n) is considered
to be statistically independent of Uj;(n), ¥;(n) and w;(n),
k,l=1,2,--- N.
Assumption 5: The step size p is sufficiently small so that
the terms involving higher order powers of . can be ignored.

The above assumptions are commonly used in the analysis
of diffusion adaptive strategies. Apart from these, the analysis
also requires properties of the block maximum norm of a
matrix (i.e., || - ||p,00), the block vectorization operator (i.e.,
bvec{-}), and the block Kronecker product of two matrices
(i.e., ®p). For convenience of the reader, we briefly summarize
below the definition and properties of the above. Details of the
same can be found in [3].

Firstly, given a block column vector x = col{xy,Xa," - ,
xn}, where the individual entries x;, k¥ = 1,2,--- , N are
L x 1 vectors, the block maximum norm of x is defined as

/[0 £ max |lx ]2, (15)

1<k<N
where ||-||2 denotes the Euclidean norm of its vector argument.
Correspondingly, the block maximum norm of an arbitrary
block matrix A whose individual block entries of size L x L
each, is defined as

(16)

= ma
Tllboe
The block maximum norm of a block matrix satisfies all the
standard properties of a matrix norm, namely, (i) nonnegativity
(i.e., ||Al|p,00 is real and non-negative, and equals zero iff A
is an all-zero matrix), (ii) homogeneity (i.e., for any scalar
= |||l Allp,00), (iii) triangle inequality (i.e.,
0o < || Allb,00 + [IB]]b,00), and sub-multiplicativity
(., [ ABlp.co < |lAllb.0olIBl|b,00)- Further, given a block
matrix A4, its spectral radius p(.4) (i.e., magnitude of the
largest (in magnitude) eigenvalue) is bounded by its block
maximum norm, i.e., p(A) < || Allp,c0-
In addition to the above, the block maximum norm has a
few other useful properties given as follows [1]:

1) Let A be an N x N matrix with bounded entries and
let A=A ®IL. Then || A|lp,c0 = ||Allco, Where || - |loo
denotes the maximum absolute row sum of the argument

matrix, i.e., [|[Allec = 1I<n£?§v Z |a;;| (where [A];; =
aij).
2) Let D = diag{D;,D5,--- ,Dx} be a block diagonal

matrix, where each Dy, for k¥ = 1,2,--- /N, is a
Hermitian matrix of size L x L. Then it holds that

p(D) = max p(Di) = [ Dlo.cc.

Next, let ¥ be a LN x LN block matrix, with (i, j)*
block (of size L x L) given by 3;; 4,5 = 1,2,--- ,N.
Then, bvec{X} produces an L?N? x 1 vector o from X

as o = bvec{X} = vec{oi,02,---,0n}, With o; =
vec{vec{X1;},vec{g;}, -+ ,vec{ZEn,}}, j = 1,2,--- N
(“vec{-}” is the so-called vectorization operator that stacks
successive columns of the argument matrix downwards, start-
ing from the leftmost column). Clearly, bvec{-} is a one-to-one
operator, meaning, given o = bvec{X}, we can also define
> = bvec {o}.

Lastly, the block Kronecker product of any two block
matrices A and B of size LN x LN with L x L block
element matrices A;; for 7,57 = 1,2,---,N and By for
k,l = 1,2,--- /N is denoted by A ®; B, and is given by
a L2N? x L?N? block matrix, with (i, j)*" block given by
A @B, 4,5 =1,2,---,N, where, A;; @, B is again a
block matrix of size L2N x L2N, with the (k, [)*" entry given
by A;; ® By, k,1=1,2,---,N. Given the following block
matrices A, B, C,D of size LN x LN each with L x L block
element matrices, the following properties hold [3]:

(A+B)®, (C+D)=(A®,C)+ (A®D)  (17a)
+ (B®, C) + (B®, D),

(AC ®, BD) = (A ®, B)(C ®, D), (170)

(A®B)@ (CoD) = (AcC)s (BoD), (79

Tr(AB) = (bvec{A”})” bvec{B}, (179

(A2,B)" = (AT , BT), (e

bvec{BZ AT} = (A ®; B) bvec{Z}, (179

A 2, B) = (MA@} ATy

where T'r(-) denotes the trace of its argument matrix and \;(-)
is the i*" eigenvalue of its argument matrix.

B. First Order Convergence Analysis

Denoting the global weight deviation vector of the improved
clustered multitask diffusion APA at n-th index as w(n) =
w* — w(n), recalling Aw* = w*, from (11), the recursion
for w(n) can then be obtained as

w(n+1) =Bs(n)w(n)

— AU (n) (lpy + UT()U(n)) ™ 9(n) + rs(n),
where Bs(n) = A(Iry — pZ(n) — unQs(n)), Z(n) = U(n)
(eIpny+UT(n)U(n))~'UT(n) and rs(n) = unAQs(n) w
In the following, we establish the condition of conver-
gence of the improved clustered multitask diffusion APA,
i.e., (7), where we use the definition Z, = E[Zy(n)] =
E[Uk(n)(elp 4+ U (n)Uk(n))"*Uf(n)] (the index n is
dropped from Zj, due to stationarity of ug(n)).

(18)

Theorem 1. Assume the data model (9) and the assumptions
1-4 to hold (assumption 5 not needed here). Then a sufficient
condition for the improved clustered multitask diffusion APA
to converge in mean is

2

1I<Y}Ca<XN{1rga<XL{A (Zy)} }+2n max {E ps ()]}
(19)

O<pu<



where E[ps, (n)] = Elpsy (n)] = 32 praBldw(n)].
IEN\C (k) leNNC (k)

Proof. Given in the Appendix A. O

Recalling that dy;(n) € {0,1}, implying 0 < E[dx;(n )] <1

we have Elps.(n)] = = > pu Eldu(n)] < 1, k =

LENK\C (k)

1,2,--- N. Clearly, the presence of the control variable d;(n)
in the improved clustered multitask diffusion strategy results
in a larger upper bound of p for convergence in mean as
compared to the conventional clustered multitask diffusion
APA [22]. Under (19), letting n — oo on both sides of (39),
we then have

nh_)rr;<> E[w(n)]
where FE[Bs(0)] =
nlg&E[r,;(n)]

= Iy — E[Bs(c)]) " Elrs(o0)],
lim E[Bs(n)] and Elrs(oo

n— oo

(20)
) =

C. Second Order Convergence Analysis

Defining the weighted norm-square of w(n) as ||[w(n)||% =
w(n)TXw(n) where X is a positive semi-definite matrix that
can be chosen arbitrarily, and using assumption 1 —4, one can
write from (18),

Bllw(n+1)|%] =

E[I[W(0)13,(m] + 1 B[ (n)YZ ()9 (n)] + Efl|rs(n)]|5]

+ E[WT(n)Bj (n)Ers(n)] + E[rf (n)E Bs(n) w(n)],
2D

where the cross terms turn out to be zero as ¥ (n) is taken

to be zero mean and statistically independent of U;(m), for

all k,1 and m,n, and as wg(n) and 0y;(n) are statistically

independent of ¥y(n), k,I = 1,2,---,N. The weighted
matrix 3s(n) is given by

25(n) = E[B; (n)£Bs(n)], (22)

and

Y*(n) = X(n) AT AXT (n),

with X(n) = (lpy + UT(n)U(n)) " UT(n). Using (170),
the vectors o = bvec{X} and o5(n) = bvec{X;s(n)} can be
related as

(23)

os(n)=F;(n) o (24)
where
Fs(n) = E[Bs(n) @, Bs(n)] = (A®y A) Hs(n), ((25)
with
Hs(n) = Iane — p(Ioy @5 Z) — pu(Z @ Iy) 26)

— un(E[Qs(n)] @ Irn) — pn(In @b E[Qs(n)]).

In the above, under the assumption 5, the terms involving
higher order moments of y are ignored and we continue our
analysis with this approximation.

Next, we consider the second term on the R.H.S of (21).
we can write E[97 (n)Y®(n)9(n)] = E[¥” (n)X(n)ATS.A
XT(n)d(n)] = E[Tr®"(n)X(n)ATSAXT (n)d(n))] =

Tr(AE[XT (n)d(n)d9" (n)X(n)]A'S). Using the spatial
and temporal whiteness of 95 (n), and recalling V¥x(n) is
statistically independent of U;(m), for all k, [ and m, n, we
can then obtain

Tr(AEX" (n)9(n)9" (n)X(n)]ATE)
= Tr(AE[®(n)ATS),
where ®(n) = X7 (n)AyX(n), with Ay = E[9(n)9” (n)] =

diag{a§711p,0§)21p,~~ ,0'129}NIP}, a PN x PN diagonal
matrix. Using (17d), we finally have

Tr(AE[®(n)ATE)

27)

=", (28)

where

v = bvec{AE[®(n)| AT} = (A® A)7y,
with yy=bvec{ E[X” (n)AyX(n)]}= bvec{dlag(aﬁl [U(n)
(eIp + UT()Uy(n)"2UT (n)), -+ , 03 yE[Un(n)(elp +

-2
UL (n)Un(n)) "UR ()]}

Lastly, we evaluate the last three terms on the R.H.S of (21).
Firstly,

Bllrs(n)5] = p*

(29)

7T (AE[Qs(n)w* (w*)' @1 (n) ATS).

(30)
From (17d), we get
Tr(AE[Qs(n)w* (W*)ng(n)]ATE) =’ n’r)s(n) o,
€2y
where
rp,5(n) = bvec{ AE[Q;(n)w*(w*)T Qf (n)| A"}
T

= (A®p A)FE[Qs(n) ®p Qs(n)bvec{w™ (W*) 1.

(32)

Next, we consider the term E[w” (n)B} (n)Xr;(n)] on the
R.H.S of (21). Recalling that the block vectorization of a scalar
results in itself, we can write

E[w" (n)B] (n)r;(n))

= E[bvec{w” (n)Bj (n)Zrs(n)}]
= E[rs(n) @ Bg(n)w(n)]TJ (33)
= (Elrs(n) &1 Bs(m)| (1 s E[F(n)]) o
= E[w" (n)]a; (n)o,
where a;(n) = E[rs(n) @, Bs(n)] = (A A) (un
(E[Qs(n)]w* @ Iy ) — n(E[Qs(n)]w* @y Z) —
E[Qs(n) @, Qs(n)](w* & Irn)) =~ W?(-A ®p
A)(E[Qs(n)]lw* &, IrLy) (.e., after neglecting terms
having higher order powers of ().
Finally, the last term on the R.H.S of (21), viz.,
E[rT(n)EBs(n)w(n)] is easily seen to be the same as the

previous term, E[w” (n)B2 (n)Xr;s(n)] evaluated in (33), as
both are scalars and one is the transpose of the other.

Combining all these together, the mean square of the weight
deviation vector for the improved clustered multitask diffusion
APA can then be obtained as

E[[%(n + 1)1 (oy] = EUW ) 5rec-1 {27 ()03

- (34
+ 1>y o +£(ry, 5(n), as(n), E[W(n)], o),



M2n2r£§(n)a +

where f(ry,5(n), as(n), Elw(n)],o) =
2EWwT (n)]af (n)o.

Theorem 2. Assume the data model (9) and the assumptions
1-5 to hold. Assume further that the step size is sufficiently
small such that the approximation (26) is justified by ignoring
the higher order powers of the step size, and (34) can be used
as a reasonable representation for studying the dynamics of
the weighted MSD. Then, the improved clustered multitask
diffusion APA exhibits stable MSD performance under

1
O<pu< — ,
max { max {Ai(Ze)}} + 20 max {Elps, (n)]}
(35)
Proof. Given in the Appendix B. O

Under (35), letting n — oo on both sides of (34), we will
have

. ~ 2
7}1—>H§cE[HW(”)”bvec*l{(leNz _FéT(”))U}} (36)

= M27TU + f(rb,ts(oo)v as(00), E[w(c0)], o),

where 1y, 5(00) lim rps5(n), as(co)
n—oo
E[w(c0)] lim E[w(n)]. Since H.’F(;T(oo)Hbm < 1 (un-
n— oo
der the convergence condition (35), as shown in Appendix
B), where Fs(co) = lim Fs(n), the matrix (Ipzpn2
n—roo

lim as(n) and
n—oo

N
.7-'5T(oo))_1 bvec{I.n}, network level, steady-state MSD
the improved clustered multitask diffusion APA, i.e., £(c0)
+ lim E[||w(n)||?] can be obtained as follows:

n—oo

FT(c0)) is invertible. By choosing o = (Ip2pn2

(37

recursively with &(n), where &(n)
ing (46). E[|[W(n + 1)|3]
[E[[w(n)]%]
below:

E[”VF{’(’R + 1)Ht2)vec*1{a'}]

£(x) = %MQ'YT(ILzNz — J:(;T(oo))_lbvec{ILN}
. f( rf,é(OO)’aé(OO)’E[VV(OO)L ) |
N(IL2N2 — Fi(o0)) bvec{I N}
To relate network level, instantaneouls MSD &(n + 1)
~ Elw@)[?], us-
= BlIWhn + DI )]
E[||\7V(n)||§vec_1{a}] can be related as given

and

= B[§ )1 o] + 124 FL ()

- M27T<§ ("ﬁf?(j))) (FE0) ~Lawe) o

—EHIVV(O)Hj i

T #70) (122 -FE () o)

+1(rp,5(n), as(n), Elw(n)], o)

+E(r5(n — 1), axs(n — 1), B (n — D], (FL(n) — Lana)o)
n—1 [Tps(n—1—1i),as(n— 1—14),E[w(n—1-1)],

+2t (jﬁl FF(n—9)(FF ()~ Liane)o

(38)

1
By choosing ¥ = NILN’ implying o = 3 bvec{I_n},

1 ~
the network level transient MSD, i.e., £(n) = NE[Hw(n)HQ]
can be obtained.

IV. SIMULATION STUDIES

In this section, we demonstrate via numerical simulations
the performance of the proposed improved clustered multitask
diffusion APA. For this, we considered a clustered multitask
network consisting of N = 21 nodes with the topology shown
in Fig. 1(a).
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Fig. 1. Network topology and node profile statistics.

The nodes in the network were grouped into 4 clusters:
¢y = {1,2,18,19,20,21}, C, {12,13,14,15,16,17},
C; = {8,9,10,11} and Cy = {3,4,5,6,7}. These clusters
aim to estimate their respective 256 tap optimal parameter
vectors in collaborative fashion which are chosen as w};q =
wo + 0¢,wo for ¢ = 1,2,3,4 with ¢, = 0,6¢, = 0.025,
dc, = 0.05 and §¢, = 0.075. The coefficient vector wy was
generated from zero mean, unity variance Gaussian distribu-
tion. Simulations were conducted for colored Gaussian input of
unit variance, where a unity variance colored, Gaussian input
ug(n) was generated by driving the first order auto-regressive
(AR) model: ug(n) = 0 up(n—1)++/1 — 63 zx(n), |0k <1
with a unity variance, white Gaussian input zy(n). The coef-
ficient 0}, varies from node to node and its distribution against
the node index k is shown in Fig. 1(b). The observation noise
Jk(n) was taken to be zero mean i.i.d. Gaussian with variance
0729’,6, which is plotted against k in Fig. 1(c).

At each node, the projection order was fixed at P = 4 and
the initial taps were chosen to be zero. The step size p was
set at .35 for all the nodes. Similar to [17], the regularization
coefficients px; were set to pg; = [N \ C(k)|~! (the symbol
| - | denotes the cardinality of the set) for [ € N} \ C(k) and
pri = 0 for any other [. Further, pgr, = 1 if Ny \ C(k) = 0.
In most of the literature, the common practice is to choose
either the Metropolis rule or the average rule to obtain the
combining coefficients a;;. In our simulation studies, we
chose the Metropolis rule [1] that gives a doubly stochastic
combining matrix. While estimating the error variances in
the proposed clustered multitask diffusion APA (i.e., (6)), the

. mixing coefficient vy was set to 0.5. At first, we consider the

scenario where the cluster information is available. Under this,
the proposed improved clustered multitask diffusion strategy



was simulated and the simulation results are displayed by
plotting the network level MSD (in dB) against the iteration
index n, obtained by averaging over 100 independent experi-
ments. The resulting plots are shown in Fig. 2. For comparative
assessment, same identification exercise was also carried out
by the conventional clustered multitask diffusion APA [22]
for different values of regularization strength parameter 7, and
also by the non-cooperative APA (obtained by setting n = 0
and the combiner matrix A = Iy in the clustered multitask
diffusion APA) with other parameters remaining same as used
above. The network level MSD curves of these algorithms are
also presented in Fig. 2.
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Fig. 2. Network level MSD curves of the proposed improved
clustered multitask diffusion APA. Also shown are the network
level MSD of non-cooperative APA and conventional clustered
multitask diffusion APA for different values of 7.

Fig. 2 presents an interesting comparison of the proposed
improved clustered multitask diffusion APA with the conven-
tional clustered multitask diffusion APA. Firstly, for small val-
ues of 7 (e.g., 0/0.0009), the conventional clustered multitask
algorithm achieves much less steady-state MSD at the cost of
a slow convergence rate, but with 7 increasing to the higher
values (e.g., 0.006/0.02), its convergence becomes faster, but
the steady-state MSD increases presumably because of the
undesirable effect of inter-cluster cooperation. The improved
clustered multitask diffusion APA is, however, seen to enjoy
both faster convergence rate and lesser steady-state MSD
simultaneously, by exploiting the inter-cluster cooperation in
a controlled manner.

Next, we consider the scenario where the cluster information
is unavailable. Under this, the improved multitask diffusion
strategy (which was obtained by assigning a cluster to each
node, i.e., setting n # 0, and the combiner matrix A = Iy
in the improved clustered multitask diffusion APA) was sim-
ulated and the simulation results are plotted in Fig. 3. For
comparative assessment, the non-cooperative APA and the
conventional multitask diffusion APA [22] were also simulated
for different values of 7, and the results are plotted in Fig. 3.

From Fig. 3, it can be observed that for small values of n
(e.g., n = 0.002), the conventional multitask diffusion APA
exhibits superior performance over non-cooperative strategy
in terms of both convergence rate and steady-state MSD.
However, as 7 increases, say to n = 0.006, the convergence
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Fig. 3. Network level MSD curves of the proposed improved
multitask diffusion APA. Also shown are the network level
MSD of non-cooperative APA and conventional multitask
diffusion APA for different values of 7.

rate increases further with slight degradation in steady-state
MSD. For n = 0.006, the steady-state MSD of the conven-
tional multitask diffusion APA is at par with that for the
non-cooperative strategy and the convergence rate is greatly
improved. Beyond this point, as 7 increases further, we observe
very little improvement in convergence rate but significant
degradation in steady-state MSD performance. Beyond the
value of n = 0.07, it is seen that the steady-state MSD
degrades further with no improvement in convergence rate.
On the other hand, it can be seen that the improved multitask
diffusion APA exhibits superior performance (i.e., simultane-
ously achieves faster convergence rate and lower steady-state
MSD) over the conventional multitask diffusion APA. In fact,
the improved multitask diffusion APA is seen to be able to
achieve at least 3 dB improvement in the steady-state MSD
performance over the conventional multitask diffusion APA
which increases further with increase in the value of 7. For
both the above experiments, in Figs. 2 and 3, we have also
plotted the theoretical MSD by horizontal dashed line. The
theoretical results show good agreement with the experimental
results.

To observe the effectiveness of the proposed improved strat-
egy at node level, we evaluated the steady-state MSD at each
individual node and plotted them against the node index in
Figs. 4(a) and 4(b) for the clustered, and non-clustered cases,
respectively. For comparison, we also plotted the node level
steady-state normalized MSD of the conventional strategies in
Figs. 4(a) and 4(b). From these figures, it can be observed
that the proposed improved strategy performs at par or even
better than the non-cooperative strategy at every node which
the other schemes fail to achieve.

Finally, to demonstrate the effectiveness of the proposed
algorithm in practical applications, we considered the ex-
ample of distributed acoustic echo cancellation (dAEC). To
improve intelligibility of the far-end speech signal, a dis-
tributed acoustic echo canceler aims to cancel the acoustic
echo (i.e., near-end speech signal) by exploiting the spatial
diversity of the acoustic field (i.e., exchanging information
among nodes that are monitoring the acoustic field). Since
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Fig. 4. Node level steady-state MSD of the proposed strategy:
(a) improved clustered multitask diffusion APA, (b) improved
multitask diffusion APA.

agents (i.e., microphones) are placed at different locations, it
is obvious that different acoustic transfer functions exist for
each node/agent. Therefore, it is always beneficial to model the
problem as a multiple tasks learning problem rather than single
task learning. In the following, we evaluate the performance of
the proposed algorithm in the context of distributed acoustic
echo cancellation.
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Fig. 5. (a) Far-end speech signal, (b) acoustic echo path wy,
(c) noise variance oy ..

For this, we considered an acoustic field that was monitored
by the above network of 21 interconnected nodes. At each
node, the speech signal shown in Fig. 5(a) was used as
the far-end signal. For modeling the echo path, the network
was divided into four clusters and for each g¢-th cluster,
qg = 1,2,3,4, the echo path was modeled by a 512 x 1
coefficient vector of the form Wa] =wg+0 ¢, Wq, for which
the echo path impulse response shown in Fig. 5(b) was taken
as wy, and the coefficient 5cq and the coefficient vector

w, were generated from zero mean, Gaussian distribution
with variance 0.01 and 0.06, respectively. The observation
noise Ux(n) at the k-th node was taken to be zero mean
ii.d. Gaussian with variance J?WC, which is plotted against
k in Fig. 5(c). For assessing the performance of the proposed
algorithm, we, however, considered the worst case scenario
where no cluster information was assumed to be available and
the pure multitask diffusion APA (i.e., where each node is a
cluster) with P = 4, along with the proposed controlled inter-
node collaboration, was used to cancel the near-end signal.
The corresponding learning curve (MSD vs time index) is
displayed in Fig. 6. For comparison, we also plotted the
learning curves of the conventional multitask diffusion APA
and the non-cooperative APA. From Fig. 6, it shall be observed
that the proposed controlled inter-cluster cooperation helps to
cancel the near-end signal more effectively than the other two
methods by restricting the inter-cluster cooperation in the right
direction.
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Fig. 6. Learning curve of the proposed improved multitask
diffusion APA in distributed acoustic echo cancellation setting.
Also shown are the learning curves of the non-cooperative
APA and the conventional multitask diffusion APA.

V. CONCLUSIONS

An APA based multitasking, distributed adaptive filter is
proposed for multiple parameter vector estimation under tem-
porarily correlated input conditions. The proposed algorithm
achieves remarkably improved performance over state-of-the-
art in terms of both convergence rate and steady-state MSD, by
deploying a controlled form of inter-cluster collaboration via
a control variable which enables the network to maintain col-
laboration in right direction. A detailed performance analysis
of the proposed algorithm is carried out and stability bounds
are obtained for both mean and mean square convergence. The
claims made are validated via exhaustive simulation studies.

APPENDIX A
PROOF OF THEOREM 1
Taking expectations on both sides of (18) and using the
assumptions 2 and 4, we obtain

E[W(n+1)] = E[Bs;(n)|E[W(n)] + Elrs(n)],  (39)

where E[Bs(n)] = A(Ioy — pZ — pnE[Qs(n)]) and
Elrs(n)] = unA E[Qs(n)]w*. The matrix E[Qs(n)] is



given by

E[Qs(n)] = (E[Ds(n)] ® 1) — (E[Ps(n)] ® 1), (40)
with
E[D5(n)] = diag{E[p51 (n)]v e >E[p51\r (’I’L)]}, (41)
E[Ps(n)] =P o E[§(n)],
and
Elps,(n)]= > Elps,(n)]= > pri Edr(n)]
leENK\ C (k) leENK\ C (k)
for k=1,2,--- ,N. (42)

Iterating the recursion (39), backwards down to n = 0,

ww)] - (T1 £5:00) B

w(0)]
(43)
+3 ( TI EBs)]) Elrs(i)] + Elrstn — 1)),

i=0  j=i+1

A sufficient condition for ILm E[w(n)] to attain a finite value
is that | E[Bs(n)]|| < 1 for all n, where || - || is any matrix
norm. To derive a convergence condition in terms of u, we
use the block maximum norm of the matrix E[Bs(n)] (i.e.,
IE[Bs(n)]]lp,00). From the properties of the block maximum
norm [1], we can write

|E[Bs(n)] = | ATy — pZ — unE[Qs(n )Hboo
< Al 00 ey — pZ — pmE[Qs(n Hb o
= |[Toy — wZ — pnE[Qs(n ||b (44)
In the above, we used the result | Allp o = [|[AT || = 1.

Substituting (40) in (44) and using the block maximum norm
properties, we get

IEBs(m)]llbo < Ty — pZ — pn (E[Ds(n)] @ 11) llp,0o

+un|| E[Ps(n)] @ 11 [|p,00

= p(Ien — pZ — pn(E[Ds(n)] ® 1))
+un|| E[Ps(n)][[o

= p(Izny — pZ — pn(EDs(n)] @ 11))

+un max {E[ps, (n)]}.

1<k<N (45)

From these, a sufficient condition for E[w(n)] to converge is
p(Lon—pZ—pn(E[Ds(n)]@1L))+pm max {Elps, (n)]} <

—1 + uny gaXN{E[pak( n)l} < 1 - nhi(Z) —

pnAj(EDs(n)]) < 1 — pn max {Elps.(n)l}, @ =
1,2,---,LN and j; = 1,2, N (where ¢ = (j —
L + r),r = 1, 2 L); which leads to 0 <

b @i, (E[Ds(n)])-t-n1g;§ch{E[psk(")]} Thus, asuffi-

cient condition for convergence is given by 0 < u <

9 -
_ , which proves (19).
N Ni(Z)+2n 15%’%{]5[”% ()1}

1, or,

max
L

APPENDIX B
PROOF OF THEOREM 2

Iterating the recursion (34) backwards down to n = 0, we
get

s(n), as(n), ElW(n)), o), (46)
where w(0) = w* — W(O) Note that under || Fs(n)|| < 1,
( H Fr ))o — 0 and Z ( H FL ))o — a finite quantity

asn — oo (] - denotes any matrix norm). A sufficient
condition for convergence of E[||w(n+ 1)2 . {a}] is then
given by || F;s(n)|| < 1. To derive a convergence condition in
terms of u, we use the block maximum norm of the matrix
Fis(n) (e 1 Fs(n)]00)

From the properties of block maximum norm, we can write

150 = (A 20 4) Hs()] .
< [[(Aes A, o, [IHs()], -
Since A is a left stochastic matrix and A ®, A = (A ®

AT @ (Ip, ® 1), from properties of block maximum norm,
we have [A®p Allpo = [|[(A® A)T @ I1]oc = 1. and
substituting from the definition of Hs(n) as given by (26)
where E[Qs(n)] is given by (40), we have

Irene — p(Inny @5 Z) — p(Z @y Iy)

[Fs(m)lo,00 <|| ( (EDs(n)] @ 1Ir) @ In )
FIN 118 @, (EDs(n)] @ 1) boo
+un|(EPs(n)] @ In) ® Iz||p,00
+unl|(In ® E[Ps(n)]) @ Iz ||p,co- (48)

From the properties of block maximum norm, we have

| (EPsETN) L |, +] (VO EPs) eTra], . —
|(E[Ps(m) © Ly) @ L||_ + || (In ® E[Ps(n))) © L[| =
2 max {E[p(;k( )]}. Moreover, as the first term in the
1<k<N

R.H.S of (48) is a block diagonal symmetric matrix, its block
maximum norm is equal to its spectral radius. Substituting
these results in (48), it is seen that E[[|[w(n + 1)|%]
converges under p(Irzn2 — p(Ipn @4 Z) — w(Z @, Inn) —

n((EDs(n)] @ 1) @y Iy + 1oy @ (E[Ds(n)] @11))) +

Qun 1r<r}€a<xN{E[p5k( n)]} < 1. First note that for this, we must

have 2u7711<r}€a<xN{E[p5k (n)]} < 1. Assuming this to be true,

we then make note of the following: since every eigenvector
of Z, say e;, i = 1,2,--- , LN with corresponding eigenvalue
Xi(Z), is also an eigenvector of Ipy (with eigenvalue
=1), from (17g), it is seen that both (I.y ®; Z) and
(2 ®p Irn) have the same set of eigenvectors, namely,
e;®pe;, 4,7 =1,2,---, LN and the same set of eigenvalues,

namely, \;(Z), 1 =1,2,--- , LN (each )\;(Z) has multiplicity



LN; also, the eigenvector e; @ e; has eigenvalue )\j(Z)
for (ILy ® Z) and X\;(Z) for (Z ®p In)). Therefore, the
above convergence condition can be equivalently stated as

[1=p(Xi(Z2)+2;(Z)) =pn(Ar (E[Ds (n)])+As (E[Ds (n))))| <

1 - Qﬂnlg%XN{E[p%(”)]}v %] = 1327"' aLN

and r,s = 1,2,---,N; which leads to 0 < pu <
2

Ai(Z)+X;(Z)+n(Ar (E[Ds (n))+Xs (B[Ds (n)]))+2n | max {Elps (n)]}°
Thus, a sufficient condition for convergence is given by

2 .
0<n< 2 _max, M@ tin max {Blow, (0]} which proves
(35).
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