
3562 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 10, OCTOBER 2020

Synchronizer-Free Digital Link Controller
Johannes Bund , Student Member, IEEE, Matthias Függer , Member, IEEE,

Christoph Lenzen , Member, IEEE, and Moti Medina

Abstract— This work presents a producer-consumer link
between two independent clock domains. The link allows for
metastability-free, low-latency, high-throughput communication
by slight adjustments to the clock frequencies of the producer
and consumer domains steered by a controller circuit. Any
such controller cannot deterministically avoid, detect, nor resolve
metastability. Typically, this is addressed by synchronizers,
incurring a larger dead time in the control loop. We follow
the approach of Friedrichs et al. (TC 2018) who proposed
metastability-containing circuits. The result is a simple control
circuit that may become metastable, yet deterministically avoids
buffer underrun or overflow. More specifically, the controller
output may become metastable, but this may only affect oscillator
speeds within specific bounds. In contrast, communication is
guaranteed to remain metastability-free. We formally prove cor-
rectness of the producer-consumer link and a possible implemen-
tation that has only small overhead. With SPICE simulations of
the proposed implementation we further substantiate our claims.
The simulation uses 65 nm process running at roughly 2 GHz.

Index Terms— Producer-consumer link, digital controllers,
continuous processes, metastability-free, metastability-containing
mixed signal control loop.

I. INTRODUCTION

L INKS that enable communication between different clock
domains are an important ingredient in every Globally

Synchronous Locally Asynchronous (GALS) system [1]. This
communication is performed in a “producer-consumer” man-
ner: in one clock domain the producer pushes messages to
the link, while in the other clock domain the consumer pulls
messages from the other side. Inherently, link implementa-
tions are susceptible to failures induced by metastable upsets;

Manuscript received October 23, 2019; revised March 2, 2020 and April 19,
2020; accepted April 19, 2020. Date of publication May 4, 2020; date of
current version October 5, 2020. The work of Johannes Bund and Christoph
Lenzen was supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 Research and Innovation Programme under
Grant 716562. The work of Matthias Függer was supported by DigiCosme
and DEPEC MODE. The work of Moti Medina was supported in part by the
Israel Science Foundation under Grant 867/19. This article was recommended
by Associate Editor A. Elwakil. (Corresponding author: Johannes Bund.)

Johannes Bund is with the Max Planck Institute for Informatics, Saarland
Informatics Campus, 66123 Saarbrücken, Germany, and also with the Saar-
brücken Graduate School of Computer Science, 66123 Saarbrücken, Germany
(e-mail: jbund@mpi-inf.mpg.de).

Matthias Függer is with the CNRS and LSV, ENS Paris-Saclay, Univer-
sité Paris-Saclay and Inria, 91190 Gif-sur-Yvette, France (e-mail: mfueg-
ger@lsv.fr).

Christoph Lenzen is with the Max Planck Institute for Informatics, Saar-
land Informatics Campus, 66123 Saarbrücken, Germany (e-mail: clenzen@
mpi-inf.mpg.de).

Moti Medina is with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel (e-mail:
medinamo@bgu.ac.il).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2020.2989552

even if such errors can be handled, they negatively impact the
performance of the link.

Previous digital controller designs resort to different meth-
ods to deal with metastability: clock-masking [2], clock-
pausing [3], [4], or adding synchronizers (while sacrificing
latency) to maintain a realistic (yet finite) mean time between
failures (MTBF) of the link [2], [5]–[8]. Downsides of these
approaches are that synchronized fill level flags are inherently
“stale” by the time they affect the system. This requires
almost-full flags [2], long handshake latencies that increase
the dead time and affect the latency and throughput, addi-
tional slack in a controller cycle accounting for metastability
resolution time in controller’s flip-flops or mutual exclu-
sion (MUTEX) elements [7], [8].

At the heart of the problems faced in these controllers
lies the impossibility to solve discrete decision problems,
e.g., writing to a cell at a certain clock tick or skipping
a clock cycle, under continuous inputs (i.e., arbitrary phase
shifts between producer and consumer clocks) within bounded
time [9]. One way out of this impossibility is to resort to
end-to-end analog designs, e.g., by letting an analog controller
apply continuous phase shifts by (slightly) tuning the producer
and/or consumer oscillator. This comes at the burden of a
fully-fledged analog design.

An interesting alternative was proposed in [11], where
the authors advocate the use of asynchronous controllers,
sensing and controlling analog processes. With this approach,
analog components are required at the controller interfaces
only, and the controller itself is implemented by a digital
asynchronous circuit. For certain classes of controllers, this
approach allows to completely circumvent metastable upsets
within the controller circuit, essentially by allowing for the
occurrence of (digital) controller outputs within a continuous
time range, rather than at discrete clock ticks only.

Contribution: We propose a fundamentally different
approach, exemplifying it at the hand of highly efficient link
controllers: like [11], we replace large parts of a (concep-
tually) analog controller by standard digital circuitry. How-
ever, we do not resort to asynchronous circuits. Instead,
we allow unstable/metastable signal values within our cir-
cuit and treat them as a third “logical” value. Clearly, care
must be taken that such values do not “infect” the whole
controller logic, leading to unconstrained control outputs.
For this purpose, we follow [12], using the same worst-
case propagation model and analysis to provably contain
metastability.

Specifically, we propose a digital controller that drives
tunable ring oscillators as presented in [13] at the sender and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1108-1091
https://orcid.org/0000-0002-3290-0674
https://orcid.org/0000-0002-5572-3754
https://orcid.org/0000-0001-5765-0301

BUND et al.: SYNCHRONIZER-FREE DIGITAL LINK CONTROLLER 3563

receiver side and prove its correctness. The controller is small
in size, has low control latency and allows for small link
buffers. We show that this guarantees high throughput and
low latency communication. Most notably, while the controller
may become metastable, we ensure that metastability is con-
tained within the controller, and does not lead to metastable
upsets, corruption, or drops of communicated data words in the
ring buffer between the sender and receiver. We complement
our provable system guarantees with simulations (see Sec. IV).

A. Related Work and Comparison

There is a large body of work on links between clock
domains, motivated by their central importance in GALS
designs. According to [1], GALS systems can be classified by
their clocking schemes: (i) pausible clocked systems, (ii) asyn-
chronous systems with uncorrelated clocks, and (iii) loosely
synchronous systems, with (partially) synchronized clocks. We
shortly review sender-receiver communication in these three
approaches.

(i) Pausible clocking overcomes synchronization issues by
halting the clock until metastability is resolved [3]; e.g.,
the design in [4] guarantees no glitches on stopping and
starting. Metastability inside the control loop may lead to an
arbitrary delay of the final pulse on stopping. This requires
that the clock cannot be started again before metastability has
been resolved.

(ii) Uncorrelated clocks: Communication between uncor-
related clock frequencies and phases is traditionally done
by combining classical two-flop synchronizers with buffers
and flow-control circuitry. A downside of these approaches
is that the latency and the throughput are determined by the
handshake cycle that has to include (at least) two synchro-
nizer cycles at both sides. Clearly, also this approach has
a non-zero upset probability and thus finite MTBF. In [5],
a mixed-clock first-in first-out pipeline (FIFO) with flow
control logic is proposed. Instead of classical handshaking,
synchronized full/empty and almost full/empty signals are
used. The throughput is one data item per clock cycle until the
almost full signal is raised; afterwards, the “true” full signal
has to be considered, at the cost of increased latency and lower
throughput. The approach has finite MTBF. In [2], a ripple
FIFO solution with almost full/empty signals is proposed. The
approach requires slow sender/receiver speeds compared to
data propagation within the ripple FIFO. Moreover, full/empty
flags have to be synchronized, which leads to increased latency
and finite MTBF. In [7], a locally delayed latching (LDL)
approach is proposed: conflicting read/write operations are
delayed by an asynchronous controller with a MUTEX ele-
ment. Controller latency is in the order of 20 gate delays,
and the minimum feasible clock cycle is no less than 69
gate delays, accounting for enough time for the MUTEX to
stabilize with high probability. Gradual synchronization [8]
allows fine-grained interweaving of synchronization and com-
putation, also shifting conflicting ripple FIFO requests by
MUTEX elements at each stage. Like synchronizer chains, this
approach has finite MTBF that can be increased at the cost of
higher latency. Dally and Tell [6] propose a scheme in which

TABLE I

PERFORMANCE AND HARDWARE OVERHEAD (BUFFER SIZE N , GATES,
FLIP-FLOPS, OSCILLATOR TYPE) OF THE PROPOSED CONTROLLER

WITH A TUNABLE 2.0 TO 2.3 GHz OSCILLATOR, [6], AND [10]

the MTBF can be made arbitrarily large without increasing
latency. They use synchronizers to continually determine phase
offsets between sender and receiver clocks only. A drawback
is that the frequency and phase measurement circuits require
accurate phase tracking (64bit in their implementation) and
can account for slow phase drifts only.

(iii) Loosely synchronous systems: in contrast to (i) and (ii),
synchronizing clocks allows obtaining worst-case guarantees
on latency and throughput together with provable absence of
metastable upsets. Our approach also falls into this class.
The closest work to our approach presumably is proposed
in [10]. By using the distributed DARTS clock generation
mechanism [14], a buffer size of 9 and latency of 9 clock
cycles was achieved for a receiver-sender clock shift of 4 ticks
at around 25 MHz in an FPGA. While these numbers clearly
can be improved in ASIC designs, DARTS inherently is slower
than our approach.

Table I shows a comparison of our controller with the most
closely related works, [6] and [10] (cf. Section IV for details).

Our link controller has some similarities to a phase
locked loop (PLL) with an all-digital phase detector; see
e.g. [15], [16] for all-digital PLL designs. We briefly summa-
rize commonalities and differences in the following.1

Classical PPLs lock a slave clock to a typically more stable
master clock. In our case we do not distinguish between a
slave and a master, but our controller treats both receiver and
sender clocks equally; one might think of this as a “peer-
to-peer PLL”. The reason is that our goal is not to stabilize
the absolute frequency of a poor clock by ensuring a bounded
phase offset to a more stable master clock, but rather to
bound the phase offset between a sender and receiver clock
of similar quality. Additionally we provide lower and upper
bounds on the frequency of the clocks which are close to the
frequency bounds free-running oscillators of the same quality
have. For example, this is useful when communicating with
the environment.

The initial stage of a classical PLL is a phase frequency
detector (PFD), which measures the phase difference between
the master and slave clock signals. Designs range from conven-
tional PFDs, which measure negative and positive phase offsets
on separate binary output signals by producing pulses whose

1We remark that the exposition does not rely on the information given in
this comparison, and it might be easier to follow the comparison based on
a more detailed understanding of our approach. Accordingly, readers should
feel free to skip to the next section and return later if needed.

3564 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 10, OCTOBER 2020

width is the negative/positive phase offset, to more advanced
setups [17]. Phase differences are then either forwarded to
charge pumps (analog PLLs) [18] or converted to digital
counter offsets (digital PLLs). For the latter, an unstable
phase difference poses a risk for increased power consumption
and likelihood of metastable upsets; see [16], where a filter
on phase difference signals for a low-power digital PLL is
proposed.

In our case, there is a (digital) unary-encoded up/down-
counter at the heart of the controller, allowing to measure
the phase difference between both clocks. Note that since our
goal is not to lock to a highly stable oscillator, our design is
much simpler: our circuit only determines whether the actual
phase offset is larger or smaller than the desired phase offset.
It is also worth noting that, while our oscillators are analog
components, our circuit relies on the ability to switch between
“fast” and “slow” only. This binary decision may become un-
or metastable frequently. In stark contrast to a classical digital
PLL with a binary counter, this does not pose a problem for our
design. We ensure that the potentially metastable output signal
of our controller is only used to control the oscillator. The
oscillator frequency is required to remain in the range spanned
by the frequencies possible under stable operation (slow and
fast mode) in presence of a metastable, or in general, unstable
signal. This is the case for starved inverter ring oscillators.

The use of local clocks in our design has a further advan-
tage over locking to a centralized clock that is assumed to
provide a highly stable frequency reference. In our system
the sender and receiver are not impaired by the failure of
the respective other’s clock. While correct communication
between the two nodes inherently requires both oscillators
to work correctly, our design guarantees that if one of the
oscillators fails, the respective other keeps running within
the same frequency bounds. Potential top-level error-detection
based on the (non-)communicated data then provides adequate
application-specific reaction to such scenarios.

B. Organization of the Paper

We start with presenting the problem of communication
in a system of two nodes with controllable oscillators in
Section II. We then break the system down into modules,
formally specifying their requirements. Section III discusses
gate-level implementations of the modules, together with
proofs that the implementations satisfy the formal require-
ments. In Section IV, we present simulations of our imple-
mentation at gate-level (VHDL) and transistor level (Spice).
The simulation results are consistent with our formally proven
results, and allow to obtain detailed performance metrics.
We conclude in Section V.

II. SYSTEM SPECIFICATION AND MODEL

We specify the system requirements and functionality next.
The link (see Fig. 1) has three parts: (i) tunable oscillators
OSCsnd and OSCrcv, (ii) a (ring) buffer BUFF, and (iii) a buffer
controller CTRL. The link enables communication between
two parties, a sender SND and a receiver RCV, that interact
with the link via prescribed interfaces, discussed later on.

Fig. 1. Link with digital controller.

The sender writes data to a ring buffer of even size N > 0,
which is read by the receiver. Cells are numbered from 0 to
N −1. Read and write access is clocked: following transitions
of its clock clksnd, the sender writes to the ring buffer.
The register address is specified by the current value of its
address pointer, which it subsequently increments (modulo N);
likewise, following transitions of its clock clkrcv, the receiver
reads from its current address and subsequently increments its
pointer.

We remark that our design can easily be altered for
bidirectional communication. Each party needs to perform a
read/write sequence instead of just a read (RCV) (respectively
write (SND)) operation when it is accessing a buffer cell; the
only effect is that the respective higher access time needs
to be respected in the timing constraints on the system. For
ease of presentation, we stick to the asymmetric setting in the
following.

A. Local Clocks

Sender and receiver clocks clksnd and clkrcv are derived from
clock sources OSCsnd and OSCrcv, respectively. We require that
these clock sources (or oscillators) are tunable in frequency by
the mode signals mdsnd and mdrcv.

Denote by C(t) ∈ Z a discrete clock value at wall-clock
time t ∈ R

+
0 . This discrete clock is derived from a continuous

clock c(t) ∈ R as C(t) � �c(t)�, with current frequency ċ(t).
Let Cs(t), Cr (t) be the discrete clock values of sender and
receiver at wall-clock time t , and cs(t), cr (t) their continuous
clocks. For properly chosen Tosc ≥ 0 and δ ≤ 1, we require:
(C1) We assume that the clocks are started roughly at the

same time:2 cs(0), cr (0) ∈ (−δ, 0].
(C2) If mdsnd (mdrcv) is constantly 0 during [t − Tosc, t],

the sender (receiver) is in slow mode at time t and
ċs(t) ∈ [s−, s+] (ċr (t) ∈ [s−, s+]).

(C3) If mdsnd (mdrcv) is constantly 1 during [t − Tosc, t],
the sender (receiver) is in fast mode at time t and
ċs(t) ∈ [f −, f +] (ċr (t) ∈ [f −, f +]).

(C4) If mdsnd (mdrcv) is neither constantly 0 nor constantly 1
during [t − Tosc, t], the respective clock is unlocked and
ċs(t) ∈ [s−, f +] (ċr (t) ∈ [s−, f +]).

(C5) Clocks in slow mode are never faster than clocks in fast
mode: s+ ≤ f −.

2For δ = 1, this is a fairly weak constraint. If sender and receiver each
access one element of the ring buffer per clock cycle, it means that both
oscillators are started within one clock cycle of each other. However, smaller
values of δ may reduce the minimum feasible ring size by 2 in some cases.

BUND et al.: SYNCHRONIZER-FREE DIGITAL LINK CONTROLLER 3565

Here, Tosc is the response time of the tunable oscillator. Note
that our requirements on the oscillator are fairly weak, making
it easy to implement (cf. Section IV): Only if the stable control
signal is stable for Tosc time, the oscillator needs to guarantee
the respective rate. At any other time, it is not locked to a fixed
frequency mode and may run at any rate between the slowest
and fastest possible. This unlocked mode may be entered
when the control signal is ambiguous or transitioned recently,
i.e., when both parties are almost perfectly synchronized. The
last condition is a minimal requirement ensuring that the phase
offset between the two clocks cannot increase further when a
clock in fast mode is chasing a clock in slow mode.

B. Buffer Access Specification

Next, we specify buffer access in an abstract model with few
parameters. We assume that access to a buffer cell starts when
the respective clock modulo N (possibly with a fixed offset)
equals the buffer index. Note that this is a normalization of
the time axis so that one computational cycle takes 1 unit of
“local” time as measured by the sender or receiver oscillator,
respectively.3 A computational cycle is defined by the local
time between accessing consecutive buffers.

Intuitively, a buffer cell is valid (i.e., ready to be read) if
it contains stable, logical data and is currently not written.
A buffer cell is invalid (i.e., ready to be written) if it is not
valid and currently not read. Formally:
(B1) We define the receiver’s (discrete) address pointer as

Pr (t) � �pr (t)� mod N = Cr (t) mod N , where the
receiver’s (continuous) address pointer is pr (t) � cr (t).
That is, the receiver starts to access cell � at each time
t when Pr (t) = pr (t) mod N = �.

(B2) We define the sender’s address pointer to be Ps(t) �
�ps(t)� mod N , where ps(t) � cs(t) + N/2. That is,
the sender pointer has a (nominal) offset of half the
ring size relative to the receiver pointer. In the fol-
lowing, we will simply drop the “starts to” and say
that the receiver (sender) accesses cell � at time t if
pr (t) mod N = � (ps(t) mod N = �).

(B3) Read and write operations take non-zero time.
We account for setup/hold times and latency by parame-
ters τs and τr, which denote the maximum “durations”
of write and read operations. Concretely, if the sender
accesses a cell at time t , the receiver must not do so
during [t, t + τs), and if the receiver accesses a cell at
time t , the sender must not do so during [t, t + τr).

(B4) On initialization, cells 0 ≤ � < N/2 are valid, while
cells N/2 ≤ � < N are invalid. If the sender accesses an
invalid cell at time t , the cell becomes valid at time t+τs.
If the reader accesses a valid cell at time t , it becomes
invalid at time t + τr. This inductively defines for each
cell and each time t ≥ 0 whether it is valid or invalid.

Note that these definitions are crafted in such a way that
if the sender accesses only invalid cells and the reader
accesses only valid cells, we have mutual exclusion of read
and write operations and for each individual cell, reads and

3Note that this will typically not be 1 unit of “absolute” time, as oscillator
speeds may vary.

Fig. 2. Ring buffer access at time t . The sender currently accesses cell 4.
Hence, its full/empty flag is M. The receiver has just finished accessing
cell 1. Thus, its full/empty flag is 0. In executions, we mark (potential) in-/
metastability in red, cf. Fig. 8.

writes alternate. This is the intended mode of operation, which
we will formalize in Section II-F.

C. Metastability

To minimize dead time of the control loop regulating the
clock speeds, we do not make use of synchronizers. Forgoing
their use can result in meta-/unstable signals. At any point in
time, a signal has a value in {0,M, 1}, where M means that a
signal is potentially metastable or in transition. We employ a
worst-case analysis, which assumes that M propagates when-
ever possible; only explicit logical masking may protect from
metastability, no probabilistic statements are used.

In particular, a flip-flop latching when its input is M will
“store” an M until is latched again with a stable input. Note that
an output signal may also be unstable due to a transitioning
signal, e.g. after latching a new value different from the
previously stored one.

D. Link Controller Interface Specification

The mode signals themselves are generated by the controller
CTRL. Controller decisions are based on full/empty flags of
the ring-buffer cells, which we will describe shortly. We stress
that, inherently, the controller acts at the border of two clock
domains. Any digital implementation (including ours) is thus
susceptible to metastable upsets. Accordingly, the voltage lev-
els of mdsnd and mdrcv may become meta-/unstable (between
logical 0 and 1, denoted by M), as, in order to minimize delay,
we do not pipe them through a synchronizer chain before
making use of them.

Let Tctr denote the maximum end-to-end delay of the
controller circuit, i.e., between its input (the full/empty flags)
and its output (mdsnd and mdrcv). The specification of the link
controller’s interface is as follows:
(L1) If for t ≥ Tctr the controller circuit specification maps

the inputs during [t−Tctr, t] continuously to 1 for signal
mdsnd, then mdsnd(t) = 1; analogous statements hold for
output 0 as well as signal mdrcv and outputs 0 and 1,
respectively.

3566 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 10, OCTOBER 2020

(L2) In all other cases, the output at time t is arbitrary, i.e., any
value from {0,M, 1}.

E. Full/Empty Flags

With each buffer cell �, we associate a full/empty flag F�.
It is specified as
(F1) F�(t) = 1 if the cell is valid at time t and it either has

not been accessed yet or the most recent access to it was
by the sender;

(F2) F�(t) = 0 if the cell is invalid at time t and it either has
not been accessed yet or the most recent access to it was
by the receiver;

(F3) if neither applies at time t , then F�(t) ∈ {0,M, 1}.
In other words, we allow for the possibility that F�(t) = M at
any point in time during read and write operations.

Fig. 2 depicts the state of the above described cell pointers
at time t . Observe that all cells between the sender and the
receiver are full and thus their full/empty flags equal to to 1,
those between the receiver and the sender are empty with
full/empty flags equal to 0, and the flags of those currently
accessed are M.

F. System Correctness

Expressing the correct order of and separation in time
between cell accesses, we can now succinctly state what
correct operation of the link architecture means.

Definition 1: A link is correct if the following holds in any
execution adhering to our model.
(P1) No underrun: the receiver accesses only valid cells.
(P2) No overflow: the sender accesses only invalid cells.

Definition 2: Controller CTRL is correct if it computes the
signals mdsnd and mdrcv out of the inputs F� so that the link
is correct.

The goal is now to design a (simple) controller that is correct
even if the ring size N is small: this minimizes both the size
of the buffer and its latency.

III. CONTINUOUS THRESHOLD CONTROLLER

Our control algorithm CONTTH(T) is specified in Alg. 1.
It is parametrized by T ∈ R

+. In the remainder of this section,
we explain the intuition behind the approach.

For the purpose of exposition, denote by fill(t) � ps(t) −
pr (t) = N/2 + cs(t) − cr (t) the fill level of the buffer.
Recall that one of our design goals is to have a simple digital
controller. The most straightforward choice for such a control
algorithm is presumably the threshold controller: If the fill
level of the ring buffer is larger than N/2, the sender is forced
to slow and the receiver to fast mode. If the fill level is less
than N/2, the sender and receiver are forced into fast and slow
mode, respectively.

However, as the various involved circuit components incur
non-zero delays, we cannot expect instantaneous (and thus also
not exact) information on the fill-level. Also, changing the
oscillators’ speeds takes non-zero time, so we cannot hope for
an immediate response to a small/large fill-level. Alg. 1 takes
this into account by introducing two thresholds. Fig. 3 shows
an execution where the controller CTRL runs the algorithm.

Algorithm 1 Controller CONTTH(T)

At each time t ≥ 0 do:
1: mdrcv(t)← choose arbitrarily in {0,M, 1}
2: mdsnd(t)← choose arbitrarily in {0,M, 1}
3: if cs(t)− cr (t) ≥ T then
4: mdrcv(t)← 1 // recall fill(t) = N/2 + cs(t)− cr (t)
5: mdsnd(t)← 0
6: end if
7: if cr (t)− cs(t) ≥ T then
8: mdrcv(t)← 0
9: mdsnd(t)← 1

10: end if

Fig. 3. CONTTH(T)’s signals of the receiver. The fill-level increases until
it hits N

2 + T , which makes the mdrcv signal drive 1 after Tctr time. After
another Tosc time, the receiver and sender clocks are required to run in fast
and slow mode, respectively (cf. Section II). Note that the second phase during
which the threshold N

2 +T is crossed is too short for CTRL and the oscillators
to react with certainty.

A. Correctness of CONTTH(T)

Before we show that, for a T that is chosen sufficiently
large, CONTTH(T) is implementable by a digital circuit in
Section III-B, we show that CONTTH(T) indeed is correct
(as per Definition 2) if T is chosen small enough.

Theorem 3: CONTTH(T) is correct if

δ ≤ T
≤ N/2 − (f + − s−)(Tosc + Tctr)− f +max{τs, τr }. (1)

Recall that pr (t) = cr (t) and ps(t) = cs(t) + N/2. Thus,
when perfectly synchronized, the sender and receiver concur-
rently access opposite cells of the buffer. The first subtrahend
accounts for the fact that the clocks remain unconstrained for
Tosc+Tctr time even after a threshold is reached: the controller
guarantees corresponding output only after Tctr time, which is
bound to affect clock speeds at most another Tosc time later;
during this time period, one clock may “catch up” to the other
at rate f + − s−. The second subtrahend accounts for the fact
that the sender must always access a cell at least τr time before
the receiver, while the receiver must do so τs time before the
sender (B3).

Note that these two conditions become fully symmetric
when using max{τs, τr } as the minimum required separation
between accesses. Translating this wall-clock time difference
to the address pointers using the upper bound of f + on clock
frequencies, we see that the following lemma is the key to
showing Theorem 3.

BUND et al.: SYNCHRONIZER-FREE DIGITAL LINK CONTROLLER 3567

Lemma 4: If Eq. (1) holds, then

∀t ∈ R
+
0 : |cs(t)− cr (t)| ≤ N/2 − f +max{τs, τr } .

Proof: Assume for contradiction that cs(t) − cr (t) >
N/2 − f +max{τs, τr } > T for some time t . Let t0 ∈ R

+
0

be the minimal time such that cs(τ) − cr (τ) ≥ T for all
τ ∈ [t0, t]; as |cs(0) − cr (0)| < δ ≤ T by (C1) and (1)
and both cs and cr are continuous, such a time t0 must exist.
Observe that cs(t0)− cr (t0) = T .

By the specification of the controller (L1), we have that
mdsnd(τ) = 0 and mdrcv(τ) = 1 for all τ ∈ [t0+Tctr, t]. Thus,
we have that ċr (τ) ≥ f − ≥ s+ ≥ ċs(τ) for all τ ∈ [t0+Tctr+
Tosc, t] by the specification of the clocks ((C2), (C3), (C5),
and (C6)). Recall that also ċr (τ) ≥ s− and ċs(τ) ≤ f + at all
times τ by (C2) to (C5). If t − t0 ≥ Tctr + Tosc, we can thus
bound

cs(t)− cr (t)

= cs(t0)− cr (t0)+
∫ t

t0
ċs(τ)− ċr (τ) dτ

≤ T +
∫ t0+Tctr+Tosc

t0
f + − s− dτ +

∫ t

t0+Tctr+Tosc

0 dτ

≤ T + (f + − s−)(Tctr + Tosc)
(1)≤ N

2
− f +max{τs, τr }.

If t − t0 < Tctr+ Tosc, the second part of the integral vanishes
and the first part becomes smaller, showing that the same
bound holds. Either way, this contradicts our assumption that
cs(t)− cr (t) exceeds this bound.

Finally, we argue analogously for the case that cr (t) −
cs(t) > N/2− f +max{τs, τr }, where the roles of sender and
receiver are exchanged. �

Proof of Theorem 3: By Lemma 4,

|ps(t)− pr (t)| = |cs(t)+ N/2 − cr (t)|
∈ [f +max{τs, τr }, N − f +max{τs, τr }]. (2)

In particular, the (continuous) sender and receiver address
pointers never have the same value modulo N and thus cannot
“pass” each other. Moreover, by our assumptions on the initial
clock values (C1), and since δ ≤ 1, we have that cs(0), cr (0) ∈
(−1, 0], i.e., pr (0) ∈ (−1, 0] and ps(0) ∈ (N/2 − 1, N/2]
by (B1) and (B2), respectively. Together with (B4), this implies
that (i) the first access to each cell that is invalid at time 0
is by the sender, (ii) the first access to each cell that is valid
at time 0 is by the receiver, and (iii) each cell is accessed
alternatingly by sender and receiver.

It remains to show that the receiver does not access a
cell less than τs time after a sender access to the same cell.
Similarly, we need to show that the sender does not access
a cell less than τr time after a receiver access. To this end,
suppose cell � is accessed by the sender and receiver at times
ts and tr , respectively. Thus, � = pr (tr)+ a N = ps(ts)+ bN
for some a, b ∈ Z, i.e.,

|pr (tr)− pr (ts)| = |ps(ts)− pr (ts)+ (b − a)N |
(2)≥ f +max{τs, τr }.

As ṗr (t) = ċr (t) ≤ f + at all times t by (C2) to (C5),
we also have |pr(tr) − pr (ts)| ≤ f +|tr − ts | and therefore

Fig. 4. Controller ClockedTh for ring-size N = 2. Flip-flop ffa stores the
address (modulo 2) that is sampled and ffs the sampled full/empty flag.

|tr − ts | ≥ max{τs, τr }. Thus, (P1) and (P2) are satisfied for
any access to cell �; since � was arbitrary, this completes the
proof. �

B. Clocked Implementation ClockedTh

Next, we provide a simple and efficient controller imple-
mentation that works if T is sufficiently large. Recall that
our goal is to detect when cs(t) − cr (t) ≥ T or cr (t) −
cs(t) ≥ T . By Lemma 4, assuming a correct implementation
satisfying (1), it holds that the address pointers never reach
each other. Together with the equality cr (t)− cs(t) = pr (t)+
N/2−ps(t), it follows that all we need to check is whether one
pointer is more or less than N/2 cells “ahead” of the other or
not. This gives us an indication of whether the buffer is more
or less than half full, and the more accurately we can decide,
the smaller T can be for the implementation to be correct.

We use the receiver’s clock to sample whether the sender’s
address pointer is currently by more or less than N/2 cells
ahead of the receiver’s address pointer.4 This is where the
full/empty flags come in handy. Instead of having to commu-
nicate and sample cs(t), the receiver simply samples the flag
of cell � + N/2 mod N when accessing cell � ∈ [N]. This
occurs at each time t when � = pr(t) mod N = cr (t) mod N ,
which means that if the buffer is exactly half full, we had that
ps(t) mod N = �+ N/2 mod N , i.e., the sender accesses cell
�+ N/2 mod N at precisely the same time. This means that
it starts setting the full/empty flag of the cell from 0 to 1 at
time t , i.e., if the buffer is less than half full, the receiver will
successfully sample a stable 0 into flip-flop ffa,5 see Fig. 4.

In contrast, if the buffer is more than half full, it may be
the case that the receiver “reads” an M, because the sender is
still writing the full/empty flag. Only if it accessed the cell
at the latest at time t − τs , we can be certain that the result
of the read operation is a stable 1. To avoid this asymmetry,
we sample cell � at times t when cr (t) mod N = �+ f +τs/2.

4It is worth noting that one could use a purely combinational controller to
achieve the same result, i.e., there is no need to rely on clocking. Making
use of the clock does also not guarantee that stable values are sampled.
However, making use of the clock results in a controller with smaller threshold
value than a straightforward combinational implementation due to the known
alignment of the sampling times with one of the clocks.

5For simplicity, we attribute any unstable reading to the transition of the
memory flag of the cell via τs . However, of course the parameters of the
flip-flop we sample into, quality of the clock signal, and the delay from the
flag’s output to the flip-flop’s input through the MUX all have an effect. Based
on a timing analysis of the circuit and adding a suitable phase shift to the
clock input of ffs by, e.g., using a buffer, the abstract behavior we assume
can be realized. τs then simply describes the size of the time window during
which ffs is vulnerable to metastability induced by a transition of the memory
flag of cell �.

3568 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 10, OCTOBER 2020

Lemma 5: Suppose time t and � ∈ [N] are such that
cr (t) mod N = �+ f +τs/2 and Eq. (2) holds. Then

(i) cs(t)− cr (t) ≥ f +τs/2⇒ F�(t) = 1, and
(ii) cr (t)− cs(t) ≥ f +τs/2⇒ F�(t) = 0.

Proof: We show (i) first, i.e., assume that cs(t) ≥ cr (t)+
f +τs/2. Then

ps(t − τs) = cs(t − τs) ≥ cs(t)− f +τs ≥ cr (t)− f +τs/2 .

Note that

cr (t)− f +τs/2 mod N = � ,

i.e., the sender completed writing cell � (for the most recent
time) at time t ; here, (2) shows that neither sender nor receiver
cannot have accessed the cell again after the operation was
complete. In other words, F�(t) = 1, as claimed.

Now we show (ii). Thus, we assume that cs(t) ≤ cr (t) −
f +τs/2, while also

cr (t)− f +τs/2 mod N = � .

Hence, the most recent access to cell � was by the reader
(again using also (2)), which also completed its access
(as N ≥ 2 and we assume that operations are completed
within a single clock cycle). In other words, F�(t) = 0,
as claimed. �

Based on this idea, we derive a straightforward implemen-
tation of the controller. Put simply, the receiver samples the
full/empty flag of the cell opposite to the one it currently reads
in the ring. More precisely, mdrcv is the output of a flip-flop
(flip-flop ‘ffs’ in Fig. 4), into which the receiver samples F�(t)
at times t such that cr (t) mod N = �+ f +τs/2. Signal mdsnd
is obtained by negating mdrcv. A circuit implementing this
approach for ring size N = 2 is shown in Fig. 4. Here,
flip-flop ffa is a modulo 2 counter used to track the address
to the current cell to sample. It is initialized to the opposite
of the receiver address. We need to ensure that the MUX
switches to forwarding the respective full flag before flip-flop
ffs latches the output of the MUX. We do so by computing
the select bit on the negated clock signal. This shifts the
computation of the select bit by half a clock cycle and
ensures correct timing. Note that here we might get metastable
mode signals due to switching full flags. Naturally, it is
necessary that the mode signal is computed within a single
clock cycle; given the simplicity of the circuit, this is easily
achieved.

In the following, denote by τmax the maximum propagation
time through the circuit shown in Fig. 4 from the full/empty
flags at the top to mdsnd (without τs , which is already taken
into account by Lemma 5). Lemma 5 then characterizes the
proposed controller.

Corollary 6: Assume that the control circuit ClockedTh is
used in accordance with Lemma 5 and that (P1) and (P2) hold
until time t > Tctr = 1/s− + τmax.

(i) If for all t ′ ∈ [t − Tctr, t] we have that

cs(t
′)− cr (t

′) ≥ f +τs/2 ,

then mdrcv(t) = 1 and mdsnd(t) = 0.

(ii) If for all t ′ ∈ [t − Tctr, t] we have that

cr (t
′)− cs(t

′) ≥ f +τs/2 ,

then mdsnd(t) = 1 and mdrcv(t) = 0.
Proof: The outputs mdrcv(t) and mdsnd(t) at time t are

derived from the output of ffs at time t (or one inverter
delay earlier). As the receiver clock runs at least at speed
s− (by (C2)–(C4)), flip-flop ffs is latched at least every 1/s−
time. Hence, taking into account the propagation time through
the MUX and the definition of τmax, the outputs correspond
to the output of one of the flags at some time t ′ ∈ [t− Tctr, t].
As the MUX selects the flag output it forwards according
to Lemma 5, we can apply the lemma to time t ′, yielding
in Case (i) that a stable 1 is latched and in Case (ii) that a
stable 0 is latched. This results in the desired corresponding
circuit outputs mdrcv(t) = 1 and mdsnd(t) = 0 (Case (i)) or
mdsnd(t) = 1 and mdrcv(t) = 0 (Case (ii)), respectively. �

We now can derive the correctness of the controller,
expressed in Theorem 7, conditional on simple constraints
on T .

Theorem 7: Assume that Eq. (1) holds, where Tctr = 1/s−+
τmax, and T ≥ f +τs/2. Then ClockedTh is an implementa-
tion of CONTTH(T).

Proof: If there is some access to a valid cell by the sender
or to an invalid cell by the reader, there must be a minimal
such time (because the start of a cell access is a discrete event).
Denote by t̄ the minimal such time if such an access occurs
and set t̄ to infinity otherwise.

We claim that the circuit implements CONTTH(T) at all
times 0 ≤ t < t̄ ; from this we will infer the statement
of the theorem. Recall that by (L1) and (L2), the controller
implementation needs to output a specific (and stable) signal
only if the condition in Line 3 or the one in Line 7 of
Algorithm 1 continuously holds during the previous Tctr time.
According to Algorithm 1, this is the case at time t if and
only if cs(t ′) − cr (t ′) ≥ T for all t ′ ∈ [t − Tctr, t] or
cr (t ′)− cs(t ′) ≥ T for all t ′ ∈ [t − Tctr, t].

Consider such a time t . Note that t > Tctr, as |cs(0) −
cr (0)| < δ ≤ T by (C1) and Eq. (1), i.e., neither condition
is satisfied at time 0. We consider the two cases (i) cs(t ′) −
cr (t ′) ≥ T for all t ′ ∈ [t − Tctr, t] and (ii) cr (t) − cs(t) ≥ T
for all t ′ ∈ [t − Tctr, t].

Case (i): Since T ≥ f +τs/2, we may apply Case (i) of
Corollary 6. We conclude that mdrcv(t) = 1 and mdsnd(t) = 0.

Case (ii): In this case we may apply Case (ii) of Corollary 6,
from which we deduce that mdrcv(t) = 0 and mdsnd(t) = 1.

We conclude that the circuit meets the specification at all
times t < t̄ . In particular, we can apply Lemma 4 at times
t < t̄ , showing that |cs(t) − cr (t)| ≤ N/2 − f +max{τs, τr }.
If t̄ �= ∞, continuity of cs and cr implies that also |cs(t̄) −
cr (t̄)| ≤ N/2 − f +max{τs, τr }. Reasoning analogously to
the proof of Theorem 3, it follows that (P1) and (P2) are not
violated at times t ≤ t̄ , contradicting the definition of t̄ . We
conclude that t̄ = ∞, implying that the circuit from Fig. 4
indeed implements CONTTH(T). �

Finally, we translate the theorem into a sufficient condition
for correctness of the link implementation. To state its perfor-
mance, we define the latency as the maximum time between

BUND et al.: SYNCHRONIZER-FREE DIGITAL LINK CONTROLLER 3569

Fig. 5. Implementation of the system with buffer size N = 2. Clock regions are marked red (sender) and blue (receiver).

consecutive accesses of the sender and receiver to the same
cell, plus the setup/hold time at the receiver (as the data should
be stable before it is used). The throughput is the guaranteed
minimum rate of delivered packets; note that no packet drops
or corruptions occur in our implementations.

Corollary 8: For � =
(f + − s−)(Tosc + 1/s− + τmax)+
f +max{τs, τr } + max{δ, f +τs/2}� and N ≥ 2�, the given
clocked link implementation is correct with latency N/s− and
throughput 1/s−.

Proof: Set Tctr = 1/s− + τmax. We choose T such that
(1) and T ≥ f +τs/2 are both satisfied. This is possible if
and only if N/2 ≥ �, which holds by the prerequisites of the
corollary. Then Theorem 7 yields that the circuit from Fig. 4
indeed implements CONTTH(T), and Theorem 3 shows that
the implemented controller is correct.

The performance bounds follow immediately from correct-
ness and the fact that the guaranteed minimum clock rate is s−.

�

IV. PERFORMANCE EVALUATION

We discuss a UMC 65 nm ASIC design operating at roughly
2 GHz for which we carried out simulations. This demonstrates
that the derived performance bounds indeed lead to promising
results.

In the section, we also demonstrate simulated executions
that show the circuit behaving according to the specifica-
tion, despite reoccurring metastability of its control signals;
see Fig. 8. In fact metastability of the control signals is
likely to be observed in an implementation, since by its
attempt to synchronize the two oscillators, the controller
repeatedly drives the control signals into metastability; much
like experimental setups to measure deep metastability of
synchronizers [19], [20]. We would like to point out that any
such demonstration, however, does not replace the correctness
proofs in Section III. Proving that metastability is not a

Fig. 6. Implementation of a buffer cell that can only be set by the sender
and only be reset by the receiver.

problem would require to verify the absence of metastability
(or resulting effects) in all circuit components, except for the
places to which our proofs show metastability to be confined.

A. ASIC Implementation

The complete design is shown in Fig. 5. It comprises
the digital controller (CTRL), tunable sender and receiver
oscillator (OSCsnd,OSCrcv), and the ring buffer of size N = 2.

At a buffer size of 2 the address logic in SND and RCV

reduces to a simple modulo 2 counter. Hence, we only have a
single register for the sender and the receiver side. The modulo
counter operates on the negated clock to ensure a stable output
at the time a register in the buffer is accessed. The buffer
consists of two buffer cells that store the full/empty-flags. The
design of a buffer cell that can be set to 1 by one clock domain
and reset to 0 by another clock domain is given in Fig. 6. The
design uses a flip-flop for each clock domain that forwards
its output to a XOR which computes the output. If the sender
flip-flop is enabled it copies the negation of the receiver state.
For differing states the XOR will output a 1. If the receiver

3570 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 10, OCTOBER 2020

Fig. 7. Timing diagram of the controller CTRL. The address addrrcv decides
which full-flag is sampled into the register of the controller at a rising clock
transition.

enables its flip-flop the state of the sender is copied. Hence,
the output of the buffer cell is reset to 0.

We can optimize the controller from Fig. 4, as we already
compute the write address of the sender. We remove flip-flop
ffa and read the address from the SND address logic. The
multiplexer in CTRL is connected such that we sample from
the buffer cell that is currently not written by the sender. The
timing diagram in Fig. 7 shows the behavior of CTRL.

Recall that we require the sender and receiver oscillators
to be well-behaved even when control bits are unstable.
Specifically, we require that (i) oscillator frequencies are
always within [s−, f +], and (ii) frequency mode changes
occur within Tosc time ((C2) to (C5)). This is why we
resorted to starved-inverter ring oscillators that guarantee such
behavior [21]; we designed the sender and receiver starved
inverter rings at transistor level following [22]. Note that we
do not need the full control logic overhead typically required
to drive the starved inverter cells, since we only need two
speeds: slow and fast. Hence, the control logic of the oscillator
takes a single bit and adjusts the delay of the starved inverters
according to fast or slow mode. As the receiver oscillator
OSCrcv additionally drives the control logic CTRL its load is
higher than the load driven by the sender oscillator. The effect
is that OSCrcv has slightly slower fast and slow modes. The
difference does not matter as long as the oscillator speeds lie
within their theoretical bounds. One can keep the imbalance
very small by decoupling the oscillators from the load with
buffers.

Signals mdrcv and mdsnd are used as control signals of the
rings, which run at roughly 2 GHz and 2.3 GHz for input 0
and 1, respectively.

Extracting delay and frequency parameters from the stan-
dard cell library we get � = 1 in Corollary 8, i.e., ClockedTh
is provably correct for N ≥ 2. This fits to the bounds given
in Table I.

B. Frequency Stability of Tunable Oscillators

Typically, accuracy of oscillator frequencies is stated as a
two-sided error, i.e., if the nominal frequency of the oscillator

is f and it has a relative frequency error of at most r , then
at any time its momentary frequency is between (1− r) f and
(1+ r) f .

Recall from (C5) that we require that the fast oscillator
mode is always faster than the slow oscillator mode. For a
2− 2.3 GHz clock we must therefore tune the clock within an
error r that satisfies the condition 2 · (1+ r)2/(1− r)2 ≤ 2.3,
i.e., r ≤ 3.49% is a sufficient bound on the frequency error.
In case these error margins would be too restrictive, we could
choose a clock with larger gap between fast and slow modes,
e.g., 2 − 2.5 GHz. Depending on the outcome of the timing
analysis (see also Corollary 8), this may require a larger buffer
size N .

For comparison, the accuracy requirements for the oscil-
lators used in [6] are as follows. If both the sender and
receiver oscillator run at (roughly) the same nominal fre-
quency, �p < g/S is proven to be sufficient for correctness
of the design, where �p is the relative phase change per clock
cycle, S = 4 the number of synchronizer stages, and g = 0.1
the guard band. However, the proof assumes a perfectly stable
receiver clock. If receiver and sender oscillator may drift,
the above inequality becomes 2�p(1 + �p) < g/S. This is
equivalent to a frequency error of less than 1.24%.

C. Gate Level and SPICE Simulations

We first ran gate-level VHDL simulations of designs of our
ClockedTh controller with delay and setup/hold parameters
from the ASIC design. The starved-inverter rings were simu-
lated by forward Euler integration of a first order ODE model,
where current clock rates are independently uniformly distrib-
uted in each integration step to account for drift. The high
respectively low frequency of the starved inverter rings where
set to 2.3 GHz respectively 2 GHz. Potential in-/metastability
of signals was simulated by X in a worst-case manner;
this includes flip-flops with setup/hold violations, full/empty-
flags, and oscillator mode signals. Simulated traces were 5 ms
(107 clock cycles) long and all in accordance with the proven
correctness results. We stress that signals mdrcv and mdsnd
were unstable (X) almost all the time due to the conservative
gate model assumptions, yet no buffer over-/underruns were
encountered; cf. Fig. 8.

We then ran Spice simulations for the ClockedTh design:
The design was implemented in Spice using standard cells
and parameters of the UMC 65 nm library combined with an
implementation of a tunable ring oscillator. The oscillator runs
at speed 2.09 GHz in slow mode and 2.42 GHz in fast mode.
Taking into account timing constraints and propagation delays
of the elements we can use a ring buffer of size two, according
to Corollary 8.

When simulating the design for 500 ns (about 1100 clock
cycles) no faulty behavior could be detected. However,
the simulation confirms what we stressed previously. In almost
50% of the cases the setup time of ffs (see Fig. 4) is violated
due to late transition of the full flags. Still the controller
behaves correct and the two oscillators run synchronously.

Fig. 9a shows the full flags of the buffer. Sender and receiver
alternatingly access cell 0 and cell 1. Fig. 9b shows the

BUND et al.: SYNCHRONIZER-FREE DIGITAL LINK CONTROLLER 3571

Fig. 8. Gate-level simulations for link with ClockedTh.

Fig. 9. Ring buffer with two cells. (a) Rising and falling full flags of cell 0 (purple) or 1 (green) show write and read access to the respective cell.
(b) Clock signals of the sender (red) and receiver (blue) oscillator. When stabilized both run at 2.28 GHz on average. (c) The mode signals for sender (red)
and receiver (blue) side alternate between fast (2.42 GHz) and slow (2.09 GHz) mode.

clock signals produced by the sender and receiver oscillators.
When stabilized, the sender is ahead by slightly more than a
clock cycle. Both run on average with a frequency of roughly
2.28 GHz. Fig. 9c shows the mode signals of the sender and
receiver which are computed by ClockedTh.

D. Increasing Initialization Slack

If a sufficiently small δ (i.e., initial clock offset) cannot
be guaranteed, the address pointers may “collide”. However,
if the pointers move apart sufficiently far, the link will resume
to operate as intended. Note that the pointers colliding and
moving at the same speed (i.e., the clocks running at the
same speed) is an unstable equilibrium state, as the control
logic aims at “pushing” them apart. Accordingly, this is a
metastable state of the link, which can be expected to resolve
fairly quickly.

We used a variation of the Spice simulation that allows us
to initialize sender and receiver clocks to a specific offset (due
to the the machinery simulation does not start exactly at 0 ns).
Together with a suitable initialization of the full/empty flags,
this simulates one of the clocks being started earlier.

We simulated the link with small initial offsets of the
continuous pointers, i.e., ps(0) − pr (0) = Cs(0) − Cr (0) +
N/2 ≈ 0, with the goal of finding a good tradeoff between
resolution time and precision of the initialization. Fig. 10
shows the pointer offset of the sender and the receiver clock
(ps(t)− pr (t)− N/2) over time t for different initializations.
We see that simulations with an initial offset of 0 ps, 30 ps
and 50 ps stay in the metastable state until eventually the
sender advances by one clock cycle relatively to the receiver
and the simulation stabilizes. Similarly, a simulation with an
initial offset of −75 ps stays in the metastable state until the
receiver advances by one clock cycle relative to the sender

3572 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 10, OCTOBER 2020

Fig. 10. Offset of the sender and receiver pointers over simulation time. When initializing the pointer offset to 50, 30, 0 and −75 ps, we observe different
times to stabilization. According to the analysis, setup and hold times cannot be violated once link is stabilized.

and the simulation reaches the corresponding stable state.
Simulations with 30 ps resp. −75 ps offsets resolve after 11 ns
resp. 10 ns. Hence, if the designer is willing to wait 11 ps after
initialization, it is sufficient to guarantee avoiding this window
of 105 ps during initialization. At the given clock speed, this
corresponds to a much larger δ = 1/ f + − 105/2 ps, which in
our setting is roughly 360 ps. In general, waiting for a couple
of clock cycles after initialization increases the slack δ to being
close to a full clock cycle.

V. CONCLUSION

We provided a digitally controlled implementation of a
synchronously accessed buffer-based link, where both sender
and receiver each have their own tunable clock. This can
be seen as a distributed phase-locked loop, as we guarantee
a fixed bound on the absolute time difference between the
clocks, based on feedback derived from measuring the phase
difference via keeping book of buffer accesses. Our design is
novel in that we neither rely on analog or asynchronous design
nor incur synchronizer delay, yet deterministically guarantee
correct operation. By accepting an un- or metastable control
signal for the oscillators when the buffer is roughly half
full, we can completely dispense with synchronizers in the
control loop. As this eliminates the associated delay from the
control loop, it leads to relaxed timing constraints compared to
synchronizer-based solutions. As a result, our link implemen-
tation can operate with a minimal buffer size of 2 under fairly
weak requirements on the frequency stability of oscillators,
yet guarantee correctness deterministically. We complemented
our formal claims with VHDL and Spice simulations of UMC
65 nm ASIC implementations.

For the link to operate correctly upon initialization, it may
be the case that δ, the initial clock offset between the sender
and receiver clock, needs to be fairly small (cf. Corollary 8).
If the resulting constraint is too tight, one can violate this
constraint, possibly resulting in the two address pointers
“meeting” each other. However, this is a metastable state of
the control loop: If the two pointers move apart sufficiently
far, operation will go back to the intended mode and push
the pointers apart. Note that once the link has stabilized,
the resulting total clock difference between the sender and

receiver clock is unknown. One could now use the operational
link to let the sender communicate its current clock value to
the receiver (prefixing the encoding e.g. by a 1, while the
buffer cells where initialized to 0).

However, the most practical compromise may be to avoid
this complication and simply relax the initialization constraint
without removing it entirely, as discussed in Section IV-D.
Simulating the link with varying initial pointer offsets,
we demonstrated a reasonable tradeoff between the time the
link stays in an unstable state (max 11 ns) and the precision
of the initialization (in two clock cycles avoid a window of
105 ps), cf. Figure 10.

One limitation of the proposed system is that it is restricted
to a single link. In follow-up work [23], the ideas presented
here are combined with a gradient clock synchronization
algorithm [24], [25] that tightly bounds the phase offset
between adjacent nodes. This retains the advantages of small
buffers and latency while maintaining deterministic correct-
ness. Future work needs to flesh this concept out into a
fully-fledged design, which subsequently is to be tested in
silicon. Here, suitable oscillators are more challenging to
devise, because the scalability of the system is directly affected
by the parameters of the oscillators. Ultimately, the result will
be an alternative approach to clocking synchronous systems
with far better scalability properties than classic designs, which
derive time from a single reference.

ACKNOWLEDGMENT

The authors thank Attila Kinali and Prof. Ran Ginosar for
pointing out that their link controller is in fact an “all-digital
PLL.”

REFERENCES

[1] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey and taxonomy
of GALS design styles,” IEEE Des. Test., vol. 24, no. 5, pp. 418–428,
Sep. 2007.

[2] W. S. Coates and R. J. Drost, “Congestion and starvation detection in
ripple FIFOs,” in Proc. ASYNC, 2003, pp. 36–45.

[3] R. Mullins and S. Moore, “Demystifying data-driven and pausible
clocking schemes,” in Proc. ASYNC, Mar. 2007, pp. 175–185.

[4] R. Najvirt and A. Steininger, “How to synchronize a pausible clock to
a reference,” in Proc. ASYNC, May 2015, pp. 9–16.

BUND et al.: SYNCHRONIZER-FREE DIGITAL LINK CONTROLLER 3573

[5] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing
systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12,
no. 8, pp. 857–873, Aug. 2004.

[6] W. J. Dally and S. G. Tell, “The even/odd synchronizer: A fast, all-
digital, periodic synchronizer,” in Proc. ASYNC, 2010, pp. 75–84.

[7] R. Dobkin, R. Ginosar, and C. P. Sotiriou, “High rate data synchroniza-
tion in GALS SoCs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 14, no. 10, pp. 1063–1074, Oct. 2006.

[8] S. Jackson and R. Manohar, “Gradual synchronization,” in Proc. ASYNC,
May 2016, pp. 29–36.

[9] L. R. Marino, “General theory of metastable operation,” IEEE Trans.
Comput., vol. C-30, no. 2, pp. 107–115, Feb. 1981.

[10] T. Polzer, T. Handl, and A. Steininger, “A metastability-free multi-
synchronous communication scheme for SoCs,” in Proc. SSS, 2009,
pp. 578–592.

[11] D. Sokolov, A. Mokhov, A. Yakovlev, and D. Lloyd, “Towards asyn-
chronous power management,” in Proc. FTFC, May 2014, pp. 1–4.

[12] S. Friedrichs, M. Fugger, and C. Lenzen, “Metastability-containing cir-
cuits,” IEEE Trans. Comput., vol. 67, no. 8, pp. 1167–1183, Aug. 2018.

[13] D. Ghai, S. P. Mohanty, and E. Kougianos, “Design of parasitic and
process-variation aware nano-CMOS RF circuits: A VCO case study,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 9,
pp. 1339–1342, Sep. 2009.

[14] M. Függer and U. Schmid, “Reconciling fault-tolerant distributed
computing and systems-on-chip,” Distrib. Comput., vol. 24, no. 6,
pp. 323–355, Jan. 2012.

[15] C.-C. Chung and C.-Y. Lee, “An all-digital phase-locked loop for high-
speed clock generation,” IEEE J. Solid-State Circuits, vol. 38, no. 2,
pp. 347–351, Feb. 2003.

[16] A. Abadian, M. Lotfizad, N. E. Majd, M. B. G. Ghoushchi, and
H. Mirzaie, “A new low-power and low-complexity all digital PLL
(ADPLL) in 180 nm and 32 nm,” in Proc. ICECS, Dec. 2010,
pp. 305–310.

[17] J. Pan and T. Yoshihara, “A fast lock phase-locked loop using a
continuous-time phase frequency detector,” in Proc. EDSSC, 2007,
pp. 393–396.

[18] A. Bashir et al., “Fast lock scheme for phase-locked loops,” in Proc.
CICC, Sep. 2009, pp. 319–322.

[19] J. Zhou, D. J. Kinniment, C. E. Dike, G. Russell, and A. V. Yakovlev,
“On-chip measurement of deep metastability in synchronizers,” IEEE J.
Solid-State Circuits, vol. 43, no. 2, pp. 550–557, Jan. 2008.

[20] T. Polzer and A. Steininger, “An approach for efficient metastability
characterization of FPGAs through the designer,” in Proc. ASYNC,
May 2013, pp. 174–182.

[21] A. Hajimiri, S. Limotyrakis, and T. H. Lee, “Jitter and phase noise in ring
oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 790–804,
Jun. 1999.

[22] S. Suman, K. G. Sharma, and P. K. Ghosh, “Analysis and design of cur-
rent starved ring VCO,” in Proc. ICEEOT, Mar. 2016, pp. 3222–3227.

[23] J. Bund, M. Függer, C. Lenzen, M. Medina, and W. Rosenbaum, “PALS:
Plesiochronous and locally synchronous systems,” in Proc. ASYNC,
2020, pp. 1–15.

[24] F. Kuhn, C. Lenzen, T. Locher, and R. Oshman, “Optimal gradient
clock synchronization in dynamic networks,” in Proc. PODC, 2010,
pp. 430–439.

[25] C. Lenzen, T. Locher, and R. Wattenhofer, “Tight bounds for clock
synchronization,” J. ACM, vol. 57, no. 2, pp. 1–42, Jan. 2010.

Johannes Bund (Student Member, IEEE) received
the B.Sc. and M.Sc. degrees from MPI for Informat-
ics, Saarland Informatics Campus. He is currently
pursuing the Ph.D. degree with the Department 1:
Algorithms and Complexity, MPI for Informatics. In
2018, he joined the Theory of Distributed Systems
Group, Christoph Lenzen.

Matthias Függer (Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer engineering
from TU Wien, Austria, in 2006 and 2010, respec-
tively. He worked as an Assistant Professor at TU
Wien, and as a Post-Doctoral Researcher at LIX,
Ecole Polytechnique, and at MPI for Informatics.
He is currently a CNRS Researcher at LSV, ENS
Paris-Saclay, and co-leading the Digicosme Group
HicDiesMeus on highly constrained discrete agents
for modeling natural systems.

Christoph Lenzen (Member, IEEE) received the
Diploma degree in mathematics from the University
of Bonn in 2007 and the Ph.D. degree from ETH
Zurich in 2011. After post-doctoral positions at
the Hebrew University of Jerusalem, the Weizmann
Institute of Science, and MIT, he became the Group
Leader at MPI for Informatics in 2014. He received
the Best Paper Award at PODC 2009, the ETH
Medal for his dissertation, and in 2017 an ERC
starting grant.

Moti Medina received the B.Sc., M.Sc., and Ph.D.
degrees from the School of Electrical Engineer-
ing, Tel-Aviv University, in 2014, 2009, and 2007,
respectively. He was a Post-Doctoral Researcher
with MPI for Informatics and with the Algo-
rithms and Complexity Group, LIAFA (Paris 7).
He has been a Faculty Member with the School of
Electrical and Computer Engineering, Ben-Gurion
University of the Negev, since 2017. He has
coauthored a text-book on logic design Digital
Logic Design: A Rigorous Approach (Cambridge
University Press, 2012).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

