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Abstract—Recent years have seen an increasing interest in
the development of artificial intelligence circuits and systems for
edge computing applications. In-memory computing mixed-signal
neuromorphic architectures provide promising ultra-low-power
solutions for edge-computing sensory-processing applications,
thanks to their ability to emulate spiking neural networks in real-
time. The fine-grain parallelism offered by this approach allows
such neural circuits to process the sensory data efficiently by
adapting their dynamics to the ones of the sensed signals, without
having to resort to the time-multiplexed computing paradigm of
von Neumann architectures. To reduce power consumption even
further, we present a set of mixed-signal analog/digital circuits
that exploit the features of advanced Fully-Depleted Silicon on
Insulator (FDSOI) integration processes. Specifically, we explore
the options of advanced FDSOI technologies to address analog
design issues and optimize the design of the synapse integrator
and of the adaptive neuron circuits accordingly. We present
circuit simulation results and demonstrate the circuit’s ability
to produce biologically plausible neural dynamics with compact
designs, optimized for the realization of large-scale spiking neural
networks in neuromorphic processors.

Index Terms—Edge computing, silicon neurons, FDSOI, ultra-
low-power, slow synaptic dynamics, IoT, real-time, analog circuit

I. INTRODUCTION

A technological revolution is in the making where more and
more Internet of Things (IoT) and edge-computing devices are
being produced to sense and process signals, for example in
environmental or health monitoring applications, and extract
relevant information locally, without resorting to cloud com-
puting or transferring large amounts of data to remote data
centers. This poses a serious challenge in terms of memory and
power consumption requirements for IoT systems, especially
when they are expected to operate autonomously in a compact
package directly on the sensed signals (i.e., in “extreme-
edge” computing application scenarios). Due to the limitations
of Dennard scaling law [1] and the von Neumann memory
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bottleneck problems [2], [3], a disruptive change is needed in
the development of new memory and computing technologies
to be able to sustain these processing requirements under tight
power and size constraints.

A promising computational paradigm that can support the
ultra-low-power implementation of “extreme-edge” computing
processing tasks is that of Spiking Neural Networks (SNNs)
and attractor dynamics [4]–[6]. In particular, it has been shown
that recurrent SNNs provide a valuable algorithmic basis for
efficient processing of temporal signals: the rich dynamics of
these networks are instrumental in minimizing the amount of
memory resources required to process, recognize, and classify
long temporal sequences of data [7]. In addition, recent studies
suggest that longer time constants in the SNN synapse and
neuron models are very beneficial in lengthening the so-
called “fading memory” of the recurrent network [8]. The
best-suited approach to implement such networks in hardware
which minimizes power consumption and area is that of using
mixed-signal neuromorphic circuits [9], [10]. By exploiting the
temporal properties of such circuits to adapt them to the tem-
poral dynamics of the signals being processed, it is possible
to implement an optimal “matched filter” approach that mini-
mizes power consumption and maximizes the Signal to Noise
Ratio (SNR) [11]. This approach forgoes the need for storing
the data and the state of the processing elements, since they
operate in real-time directly on the signals being acquired by
the sensor. By combining the adaptive analog signal processing
strategies of these neuromorphic circuits with digital event-
based asynchronous communication schemes, it is possible
to build large-scale multi-core neuromorphic processors that
combine the best of both (analog and digital) world for low-
power signal processing, computation, and communication.
These processors typically operate with sub-mWatt power-
consumption figures and support the emulation of a wide range
of SNN models, for solving artificial intelligence tasks directly
on the sensory signals, as they are acquired (e.g., see [12],
[13]). We refer to the combination of this technology with
this approach as “extreme-edge neuromorphic intelligence”.

The key enabling features of neuromorphic intelligence
circuits are twofold: (i) They operate in continuous real-time
on sensory signals, dissipating power only when the data
becomes available and (ii) their operation speed is adapted
(typically slowed down) to the time-scale of the signals being
processed. For natural signals such as speech, human gestures,
bio-signals, and a wide range of environmental signals, these
time constants are the biologically plausible ones that range
from fractions of milli-seconds to seconds. To optimize edge-
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computing applications that operate on these types of input
signals, a crucial precondition is to be able to support the
processing of data on these different biological time scales.
It is challenging to realize a similar range of timescales
using conventional technologies, as they require very large
capacitors and/or big digital memory storage blocks which
limits the scalability of these circuits. As the technology nodes
move toward deep sub-micron processes, the increased leakage
current limits the time constants and also poses a challenge
in terms of the static power consumption. Moreover, as the
technology node scales down and the transistor’s channel
length decreases, its parameter variations (e.g. the threshold
voltage) increase, and device mismatch increases even further.

In this paper, we present sub-threshold neuron and synapse
circuits that have been designed to implement large-scale
multi-neuron multi-core neuromorphic computing architec-
tures using a 22 nm Fully-Depleted Silicon on Insulator
(FDSOI) process. In Section II we show how it is possible
to implement bio-physically complex neural and synaptic
dynamics using ultra-low-power analog circuits in advanced
scaled processes, by analyzing the features of the 22 nm
FDSOI technology and addressing the analog design issues
that arise from the advanced scaling. In particular, we exploit
the properties of the FDSOI technology to design a synapse
circuit that can reach 6 sec-long time constant, operating
reliably with femto-Ampere currents. We also optimize the
design of the FDSOI silicon neuron circuit recently proposed
in [14] to further reduce the device mismatch effects.

In Section III we present circuit simulation results high-
lighting how the synapse and neuron dynamics change as a
function of their bias parameters. We also characterize the
power consumption figures as a function of the neuron average
firing rate, and quantify the effect of device mismatch with
Monte Carlo analysis simulations.

II. METHODS

A. FDSOI process advantages

Neuromorphic analog circuits typically use transistors op-
erated in the sub-threshold or weak-inversion regime [15]–
[17], using currents that range from fractions of pico-Amperes
to hundreds of nano-Amperes. Indeed, to emulate biologi-
cally plausible dynamics, with time constants of the order
of tens of milli-seconds, while using small capacitors (e.g.,
of the order of pico-Farads), it is necessary to limit the
currents to pico-Ampere amplitudes. Furthermore, to im-
plement circuits with even longer time-scales, for example
to emulate homeostatic plasticity phenomena that last mul-
tiple seconds or tens of seconds, it would be necessary
to reduce the currents even below femto-Ampere ampli-
tudes. However, the non-ideal transistor effects of advanced
Complementary Metal-Oxide-Semiconductor (CMOS) tech-
nology nodes (e.g., drain-induced-barrier-lowering (DIBL),
band-to-band tunnelling (BTB), gate-induced-drain-leakage
(GIDL), or random dopant fluctuation (RDF)) produce leakage
currents that are well above the single pico-Ampere digits and
severely limit the functionality of subthreshold neuromorphic
circuits.

To design neuromorphic circuits in advanced technology
nodes, one option is to resort to above-threshold circuits, either
accelerating time constants by a factor of ×1000 [18] giving
up the ability to optimally process slowly changing sensory
signals, or by using switched-capacitor techniques [19]–[21]
increasing the complexity of the circuit design techniques and
power-consumption figures; the other option is to use FDSOI
technology and exploit its features. The FDSOI technology
introduces a variety of enhancements over the bulk CMOS
technology. For instance, this more advanced technology uti-
lizes a thin insulating layer of buried oxide, together with shal-
low trench isolation, which improves the electrical isolation
between the channel and the substrate. As a result, bulk effects
such as source/drain leakage, latch-up, parasitic source/drain
junction capacitances and substrate noise coupling are reduced
to a significant extent. The lower doping features lead to less
threshold voltage variation and device mismatch across the
chip. Moreover, the control over the channel and lower junc-
tion capacitances are enhanced by the addition of the second
gate terminal, referred to as “body” or “back-gate”, which can
be reverse or forward biased to set the transistor in low leakage
or high performance modes respectively. Here we will focus on
a 22 nm FDSOI process which offers two main transistor types
with thin and thick gate oxides. This provides the designer with
a variety of transistor models that can have different threshold
voltages and hence leakage currents. In analog circuit designs
it is often necessary to use non-minimum size devices (large
transistors). For these cases, it will be necessary to resort to
the use of thick gate oxide devices, to avoid gate-leakage due
to tunneling effects. These thick gate oxide devices can come
in two flavors: Low-Threshold-Voltage LVT and Super-Low-
Threshold-Voltage SLVT devices. SLVT are typically flip-well
devices featuring the same doping type for their well and
channel, and the Vth can be further reduced with forward back-
gate biasing. LVT are conventional-well devices which have
opposite doping types between channel and well and the Vth
can be further increased with reverse back-gate biasing.

B. Key sub-circuits in 22 nm FD-SOI processes

In the neuron and synapse designs presented in this section,
we use the 1.2 V I/O Low Threshold Transistors (LVT) at a Vdd
of 0.8 V. These transistors are thick gate oxide, conventional
well devices with high enough Vth which offer ultra-low
leakage baseline, essential for achieving ultra-low leakage
current levels. Moreover, due to their large utilizable range of
channel lengths and minimal channel doping, these transistors
offer less device mismatch.

In both designs the capacitances are implemented using
Alternate Polarity Metal On Metal (APMOM) structures. The
density of these devices depends on the value and on the
number of used metal layers: larger capacitances can be imple-
mented with more metal layers to attain a higher capacitance
density. However, as these devices exhibit parasitic resistance
effects that scale with their area, there are severe limitations
to the maximum capacitance that can be attained.

1) The neuromorphic synapse circuit: Here we present an
FDSOI synapse circuit based on the DPI [22], [23] which
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Fig. 1: Schematic of the DPI synapse circuit. Input spikes are applied to the Vpre node. The output EPSC Isyn has an amplitude
proportional to Vw and decays exponentially with a time constant τsyn directly proportional to Csyn and inversely proportional
to Iτ .

models the synaptic response behavior as a first order linear
system. The schematic diagram of the circuit is shown in
Fig. 1. Input spikes applied to the Vpre node get integrated
into an EPSC which obeys the following dynamics:

τsyn
dIsyn
dt

+ Isyn =
Igain
Iτ

Iw (1)

where Isyn is the synapse output current, Igain is a reference
current, Iτ is a current equivalent to Igain/4, and Iw is a
subthreshold current set by Vw. The synapse time constant
τsyn is defined as:

τsyn :=
Csyn UT
κ Iτ

where Csyn is the DPI capacitor, UT is the thermal voltage
KT/q, and κ is the subthreshold slope factor [17]. To increase
the circuit time constant it is therefore necessary to either
increase capacitor sizes or to reduce Iτ currents. Increasing
capacitor sizes however is problematic, because of large area
requirements and area-dependent leakage drawbacks (e.g.,
with APMOM structures). So the most viable solution is to
minimize the Iτ current. By exploiting the features of FDSOI
technology and analog circuit design techniques, the synapse
circuit presented on Fig. 1 can reliably produce Iτ currents of
the order of femto-Amperes. This allows the circuit to reach
τsyn values of up to 6 s with compact synaptic Csyn capacitors
that have capacitance values below 1 pF (specifically, 821 fF
with an APMOM structure of 12×12µm2 in our design).
Furthermore, by setting the DPI gain term to a constant
ratio (Igain/Iτ = 4) we ensure that changes in the synapse
time constant do not affect the maximum synapse current
amplitude.

The transistors in the synapse circuit are operated with a
power-supply voltage Vdd = 0.8 V, which is set below the
nominal supply voltage of 1.2 V, to reduce channel leakage and

power consumption. To achieve the aimed long time constants,
we configured the conventional well devices with full reverse
back-gate biases (± 2 V). In the schematic of Fig. 1, all
transistors are fully reverse body biased for minimum leakage
operation, except for the current injecting PFET (MS6) whose
body contact was set to gnd for achieving higher synaptic
efficacy. To improve the synaptic efficacy further, the NFETs
of the differential pair (MS3 and MS4) are designed with
high W

L ratio so that they accommodate a lower Vgs drop and
provide enough Vds headroom for MS1 and MS2 to remain
in saturation while Vsyn discharges to lower voltages.

To achieve even lower leakage currents and higher output
impedance for the Iτ and Igain current mirrors, and allow
them to operate correctly with sub-pico-Ampere currents, we
adopted the self-cascoding technique proposed in [24]. The
transistor self-cascoded configuration is denoted in the figure
by “x2” symbol.

The operation of the DPI synapse circuit is controlled by the
input Vpre, which is a pulse signal representing the incoming
spikes from the previous synaptic neurons. When Vpre is at
gnd there is no current flowing in the bottom branch (MS1,
MS2 and MS4) and Iτ keeps Vsyn charged at Vdd, switching
OFF MS6. When Vpre is at Vdd, Vsyn discharges with a speed
set by Iw - Iτ and as MS6 starts switching ON, the DPI
synapse circuit injects Isyn. When Vpre returns to gnd, Vsyn
charges back to Vdd with a rate set by Iτ , switching MS6 back
to the OFF state.

2) The silicon neuron circuit: It has been recently argued
that SNNs can accomplish remarkable learning and inference
performance figures, if they are endowed with complex dy-
namics which comprise multiple and diverse time-scales [8].
To support such networks, we propose the use of the Adaptive-
Exponential Integrate and Fire (AdExp-I&F) silicon neuron
circuit [10], [14], [25]–[27]. The AdExp-I&F neuron model
has been shown to be able to reproduce a wide range of
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spiking behaviors and explain a wide set of experimental
measurements from pyramidal neurons [28], [29]. Similar to
the Izhikevich neuron model [30], it is a two-variable model
with a “fast” variable that describes the dynamics of the
membrane potential and includes an activation term with an
exponential voltage dependence, and a “slow” variable that
describes the spike-frequency adaptation mechanism. This is
a negative-feedback mechanism which decreases the effect
of the input current to the neuron with every output spike,
therefore acting as a high-pass filter which reduces the neuron
firing rate in response to instantaneous increases in the input.

The equations that describe the original computational
model [28] are the following:

C
dV

dt
= −gL (V − EL) + gL∆T · e

V−VT
∆T − w + I (2)

τw
dw

dt
= a (V − EL) − w (3)

where V represents the neuron membrane potential, C its
membrane capacitance, gL the leak conductance, EL the rest-
ing potential, I the neuron’s input current, and w is the slow
variable that represents the after-hyperpolarizing current of
biological neurons responsible for their spike-frequency adap-
tation behavior [31]. The term ∆T represents the exponential
slope factor, VT the neuron’s spiking threshold potential, a
the adaptation weight, and τw the adaptation time constant.
At every spike, the neuron is reset to the resting potential and
the adaptation variable is increased by a.

The AdExp-I&F FDSOI neuron we propose is depicted in
Fig. 2. It is a current-mode circuit, in which the currents
represent the state variables. Therefore the V and w variables
of the computational model described by Eqs.(2) and (3)
are represented in the circuit by the currents Imem and
Iahp respectively. By adopting the same translinear-circuit
analysis techniques used for the DPI synapse circuit, and
described in [10], and using very low leakage currents such
that Ileak�Iin, it is possible to express the circuit dynamics
as:

Cmem
d

dt
Imem = − gLImem + gLf(Imem)

− gLIahp + gLIin (4)

τahp
d

dt
Iahp =Ia − Iahp (5)

where gL and τahp are defined as:

gL :=
κ Ileak
UT

τahp :=
Cahp UT
κ Iτahp

,

and where Ia represents the adaptation weight for the
slow variable, and f(Imem) is a current produced by the
positive-feedback block transistors (MN1–MN6) which has
been shown to well fit a positive-exponent exponential func-
tion [32].

The AdExp-I&F FDSOI circuit schematic can be subdivided
into different functional blocks: An input DPI (ML1–ML5)
models the neuron’s leak conductance (LEAK). A current-
based positive feedback module (MN1–MN6) models the

TABLE I: Capacitance values and sizes used in the neuron
design

Cmem Cahp Cref Cpex Ccc

Value 821 fF 1 pF 102 fF 136 fF 116 fF
Width 12µm 14µm 5.8µm 6µm 6µm
Length 12µm 14µm 5.5µm 7µm 6µm

neuron’s Sodium (Na+) activation and inactivation channels,
and is coupled to a low-power current comparator (CC) block
(MC1–MC9) which triggers a spike as soon as the membrane
current Imem exceeds the spiking threshold parameter Ithr. A
spike reset circuit with refractory period functionality (MK1–
MK11) models the neuron’s Potassium (K+) channels. A
negative feedback LPF circuit implemented with an additional
instance of a DPI (MA1–MA9) (AHP) emulates Calcium-
dependent after-hyperpolarization Potassium currents observed
in real neurons to produce the spike-frequency adaptation
mechanism. This circuit is driven each time the neuron pro-
duces an output spike event, which is conveyed to a pulse
extender circuit (Fig. 3) to lengthen the duration of the
spike-event and ensure proper sub-threshold operation of the
DPI. Finally, an asynchronous digital handshaking (HS) block
(MHS1–MHS4) implements the interface to Address-Event
Representation (AER) circuits for transmitting the spikes as
address-events to AER routers and destinations. This block
generates the Req and Ack signals used to implement a four-
phase handshaking cycle with the destination AER circuits: at
rest, when the neuron current is below the spiking threshold,
Req and Ack are both set to gnd. As the Imem crosses the
spiking threshold, provided Ack is still at gnd, Req is set to
Vdd. Once the AER receiver consumes the event request and
sets Ack to Vdd the neuron resets and Req is pulled back to
gnd. As the AER receiver senses this change, it should lower
the Ack signal, and the cycle can repeat.

To minimize leakage currents we reduced the Early effect
of critical transistors by using a pseudo-cascode split-transistor
sub-threshold technique [33] (see transistors ML4 and MA5 of
Fig. 2). As for the DPI synapse schematic of Fig. 1, the “×2”
symbol in the figure denotes the presence of two transistors
in series connected to form a diode-connected transistor. All
transistors are configured with the default back-gate bias (0 V).
All capacitors in this circuit are implemented using APMOM
devices. The value of the capacitances and their size is shown
in Table I.

The neuron behavior can be set by 6 tunable parameters (see
bold labels in Fig. 2) that control the neuron’s time constant
(Vleak), its spike-frequency adaptation properties (Va and
Vτ_ahp), its refractory period (Vref ), and its spiking threshold
(Vthr). As the DPI circuits of the LEAK and AHP blocks have
been configured to have a gain term Igain/Iτ = 1 (similar to
how the gain term was set to 4 in the synapse circuit), the
Vleak and Vτ_ahp signals can be tuned by modifying the Igain
and Igain_ahp currents respectively.

The spiking threshold parameter Vthr controls the cur-
rent comparator block (MC1–MC9). This is a novel circuit,
modified from the one originally proposed in [34] to reduce
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Fig. 2: AdExp-I&F neuron circuit schematic: In grey the input DPI LPF, in pink the positive-feedback and the current
comparator, in yellow the reset block, in light blue the handshake block and in green the spike-frequency adaptation block.
Adapted from [14].

the neuron’s static and dynamic power consumption. It has
been introduced to decouple the slow and gradual changes
of the neuron’s membrane potential dynamics (represented
by the Imem current) from the digital switching mechanism
required to generate a spike. This is necessary to minimize
the switching time of the digital circuits, during which they
can dissipate large amounts of power. The VinCC voltage of
the comparator circuit is set by the competition between the
currents representing the spiking threshold, Ithr , and Imem.
If Imem is smaller than Ithr, this node is actively clamped
to Vdd. However as Imem approaches Ithr, VinCC drops
sharply to produce a spike event with very low dynamic power
consumption figures. The transistor MC3 was introduced in
the CC block to reduce the neuron’s power consumption
in its resting (OFF) state: when Iin=0, the node VinCC is
driven to Vdd by MC2 which turns on a discharging path to
gnd via MC4. As both MC2 and MC4 are conducting, there
exists a direct path between Vdd and gnd which undesirably
adds to the static power consumption figure. The addition
of MC3 to this circuit breaks the discharging path to gnd,
further reducing the neuron static power consumption. The
CCC capacitance ensures that at each input current threshold
crossing corresponds only one spike.

Fig. 3: Pulse extender circuit schematic. Adapted from [14].

The pulse extender circuit depicted in Fig. 3 is used to
extend the spike-event pulse created by the neuron and to drive
the spike-frequency adaptation circuit (MA1–MA9). When a
spike is produced and Req goes to Vdd, the transistor ME2

discharges the node Vpex to gnd. As a consequence, the node
spike_extB is discharged to gnd switching ON MA1 of Fig. 2.
The length of the spike_extB pulse is set by the VB bias
voltage and the capacitance Cpex . The higher the value of
VB , the slower Vpex is charged back to Vdd and hence the
larger the extension.
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III. RESULTS

A. Synaptic circuit simulation

The simulations presented in this section demonstrate how
the DPI synapse presented in Section II-B1 can achieve very
large time constants and high synaptic efficacy. The results
demonstrating the integration and steady-state profiles of the
synapse EPSC (Isyn) are shown in Fig. 4a and 4c respectively.
To assess the corresponding synaptic time constants (τsyn), we
plot the linear fits to the natural logarithm of the normalized
EPSC in Fig. 4b and 4d.

To measure the circuit’s dynamic range we stimulate it
with a pulse train of 50 Hz rate, with each pulse lasting
100 nsec; and we sweep Iτ to cover a wide spectrum of time
constants extending from 50 msec to 6 sec. To demonstrate the
integration property of the synapse at lower Iτ values (i.e.,
larger time constants), we apply the pulse train for 1 sec, adjust
the weight Iw accordingly to obtain a peak integrated response
of 1 nA, and measure the decay time of Isyn. Moreover, to
observe the different steady-state response behavior, we extend
the pulse train stimulation duration to 5 sec, fix Iw to 500 nA
and use smaller time constant values which are comparable
with the input pulse train inter-spike interval.

Figure 4a shows the synapse response in integration mode
with the time constants in the range 250 msec–6 sec. Here,
the inter-spike interval of 20 msec is much smaller than the
synaptic time constants, and thus the EPSC charges up to
1 nA for all Iτ values. However, to obtain equal peak EPSC
magnitudes we had to make small adjustments of Iw for the
values of Iτ between 5 and 50 fA, and larger adjustments
for Iτ=1 fA and Iτ=100 fA. As the value of Iτ decreases to
fA values, the APMOM capacitor parasitic effects become
non-negligible: specifically, the capacitor’s leak increases the
effective value of Iτ . For ideal values of Iτ=1 fA, the effective
synaptic efficacy term Igain

Iτ
is in practice much less than the

nominal value of 4. To compensate for this effect it is therefore
necessary to increase the value of Iw (e.g., see solid line in
Fig. 4a).

Figure 4c shows how the synapse reaches a steady-state
with shorter time constants and a longer stimulus duration. In
this mode of operation, the discharge of the synapse during
the inter-spike interval balances out with the charge induced
by the spikes. Hence, the steady-state value scales with the
time constant. In addition, the EPSC at steady-state features
fluctuations around its peak value due to the ongoing rapid
synaptic charging-discharging process.

The fits to the synaptic current data illustrated in Fig. 4b
and 4d verify that the synapse behaves as a first order system
as Eq. (1) suggests. Table II compares the theoretical time con-
stants to the values obtained by linear fitting. The table shows
that the fitting results are in very good agreement with the the-
ory for fast synaptic dynamics while the difference increases
as the synapse becomes slower. This is due to the APMOM
capacitor leakage building on Iτ which limits the maximum
time constant of the circuit. This limitation is particularly
significant for Iτ=1 fA, where the capacitor leakage dominates
the synaptic discharging process. As a consequence, the time
constant saturates at τsyn=5.81 sec above which the circuit

TABLE II: Comparison between the measured and theoretical
time constants τsyn of the DPI synapse for Csyn=821 fF,
κ=0.75, and UT=25 mV

Iτ Theoretical Linear Fit Iτ Theoretical Linear Fit

1 fA 27.37 sec 5.81 sec 100 fA 274 msec 270 msec
5 fA 5.47 sec 3.42 sec 200 fA 137 msec 138 msec
10 fA 2.74 sec 2.21 sec 300 fA 91 msec 93 msec
20 fA 1.37 sec 1.26 sec 400 fA 68 msec 70 msec
50 fA 547 msec 535 msec 500 fA 55 msec 56 msec

cannot extend. Based on the results, the capacitor leakage is
found to constitute a 3–4 fA of peak baseline current which
is much higher than the cumulative leakage of all transistors.
Although the reduction in the transistor leakage has increased
the available time constant range, the capacitive leakage would
need to be reduced to sub-femto-Ampere regime as well, in
order to increase the time constants further up to 30 sec as
the theory suggests. Increasing the capacitance size is not
a viable option, since the capacitor leakage scales up with
its area as well. Moreover, this capacitive leakage is voltage
dependent hence utilizing different synaptic weights or pulse
configurations can result in slight deviations in the available
time constant range.

In general, the designed DPI synapse circuit with ultra-low
leakage capability can offer a wide dynamic range of time
constants with sub-pico-Ampere Iτ values and can generate
EPSC on the order of nano-Amperes for 100 nsec of pulse
duration. The ultra-low current operation of the circuit makes
time constants up to several seconds achievable with capacitors
below 1 pF which reduces the layout area and enables denser
integration in addition to the benefit of reducing the power
consumption of the overall circuit.

B. Neuron circuit simulation

In this section we present the FDSOI neuron simulation
results, demonstrating examples of biologically plausible be-
haviors, characterizing its power consumption properties, and
quantifying the effects of device mismatch on its response
properties. Figure 5 shows the response of the neuron to a
step input current for different parameter settings: Fig. 5a
shows the membrane current Imem for two different values
of Iref . As the Iref increases, the refractory period is shorter
and hence the neuron’s maximum spiking frequency increases.
Figure 5b and 5c show the Imem for different values of Ithr
when keeping the same Iin (Fig. 5b) and when changing
Iin (Fig. 5c) to obtain the same spiking frequency as Ithr
changes. As Ithr increases the neuron is less facilitated to
spike as it has to integrate more current to reach the threshold.
Higher Ithr leads to more time needed in the integrating phase
and therefore less frequent spikes, which gives lower spiking
frequency.

Figure 6a and 6b show the neurons F-I curve for different
Iref bias settings. The neurons average firing rate increases
linearly with the input current, until it reaches a saturation level
that depends on the refractory period setting (see Fig. 6a). The
saturation frequency depends on the duration of the refractory
period, as the Iref increases the refractory period is shorter
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(a) (b)

(c) (d)

Fig. 4: Synapse Isyn EPSC measurements and fits with the natural logarithm of the normalized EPSC for estimating its time
constants τsyn: (a) & (b) for a 50 Hz stimulus applied for 1 sec with synaptic time constants in the range 250 msec–6 sec. (c)
& (d) for a 50 Hz stimulus applied for 5 sec, with synaptic time constants in the range 50 msec–150 msec, causing the synapse
to reach different steady state levels.

(a) (b) (c)

Fig. 5: FDSOI neuron biologically plausible behaviour: (a) Membrane current Imem for two different values of Iref , (b) Imem
for two different values of Ithr keeping the same Iin, (c) Imem for three different values of Ithr changing Iin to obtain the
same spiking frequency.

and hence the neuron’s maximum spiking frequency increases.
For shorter refractory periods (Fig. 6b) the maximum spiking
frequency is linear with the input current for a larger range of
Iin and it reaches saturation only for very high values of Iin.
When Iref is 1µA, hence when the refractory period is very
short (few hundreds of ns), the maximum spiking frequency
does not saturate for the chosen Iin range.

Figure 6c shows the neuron spiking frequency versus input
current (F-I curve), for different settings of the Igain/Ileak bias
ratio. We modify the default ratio (Igain/Ileak=1) to higher
values. As expected, increase in the ratio results in the increase
of the neuron’s firing rate.

Figure 7 demonstrates the spike-frequency adaptation be-
havior, obtained by appropriately tuning the relevant parame-
ters in the AHP block of Fig. 2 and measuring the neuron’s
step response to a constant injection current. At each spike the
Iahp current increases, decreasing the total current charging
Cmem. When Iahp reaches the steady state, the neuron spiking
frequency remains constant to a lower value compared to the
initial one.

C. Energy per spike

Once proven that the design is able to reproduce a biolog-
ically plausible behavior, we evaluated whether it can imple-
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(a) (b) (c)

Fig. 6: Firing rate vs Input current (F-I) curve: (a) for lower values of Iref hence longer refractory period, (b) for higher value
of Iref hence shorter refractory period and (c) for different values of Igain/Ileak ratio. Adapted from [14].

Fig. 7: Spike-frequency adaptation: Membrane current and
after-hyperpolarization current trace over time. Adapted from
[14].

ment massively parallel large-scale neuromorphic processors.
The energy per spike is equal to:

Energy

Freq · Time
=
Power · Time
Freq · Time

=
Power

Freq
(6)

where Energy, the total energy consumed, is the product of
total power consumed (Power) and simulation time (Time)
and Freq is the maximum spiking frequency. As is shown
in Fig. 8, the energy per spike for lower frequencies is in
the order of tens of pJ, while it decreases to 1 pJ for higher
frequencies. This is due to the fact that in lower frequencies
the inverters spend more time in their high gain region with
both transistors conducting, since the Vmem at their input
is charging much slower compared to the case with higher
frequencies.

We compare the energy per spike of our proposed neuron
with previously published state-of-the-art neuromorphic pro-
cessors in Table III.

The neuron designed in this work consumes less energy per
spike compared to a similar circuit [34] in a similar technology
(28 nm FDSOI) at a biological plausible spiking frequency
(30 Hz). Moreover, the circuits used in [34] and our work
have similar Vdd and Cmem, which we can consider as the

Fig. 8: Energy per spike estimation: Energy per spike vs Firing
rate.

TABLE III: Energy per spike comparison with previous works

Work [12] [19] [34] This work

Techn. 180 nm 28 nm 28 nm 22 nm
CMOS CMOS FDSOI FDSOI

Type Mixed Mixed Mixed Mixed
Vdd 1.8 V 0.7-1 V 1 V 0.8 V
Freq 30 Hz - 30 Hz 30 Hz
En./spike 883 pJ 2.3 nJ-30 nJ 50 pJ 16 pJ

predominant capacitance for power consumption. Therefore,
according to the scaling factor, the energy per spike of the
circuit proposed in [34] will be similar when scaled to the
22 nm process. Hence the differences reported here can be
explained by the optimizations made at the circuit design level.

The neuron circuit energy consumption at higher frequen-
cies is compared with the Sigma-Delta neuron proposed
in [35], which is one of the most recent mixed-signal silicon
neuron circuit designs presented in the literature. Since the
Sigma-Delta neuron presented in [35] was optimized for
operation at higher frequencies in a range of 1 kHz to 10 MHz,
we compare the energy per spike between these circuits in
these ranges: the neuron proposed in this work consumes
1 pJ@2.1 kHz, approximately one order of magnitude less than
the Sigma-Delta neuron (10 pJ).
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Fig. 9: Monte Carlo analysis result distribution of the neuron circuit. Adapted from [14].

D. Monte Carlo Analysis

To evaluate the sensitivity of the circuit to device mismatch
we ran a series of Monte Carlo simulations. We performed this
analysis with 500 runs for this neuron circuit, with DC current
injected in the LEAK block in Fig. 2, and with bias currents set
to obtain a firing rate of approximately 70 Hz while switching
off the spike-frequency adaptation circuit.

The mean of the distribution obtained is centered around the
expected value (≈70 Hz) and the standard deviation is equal
to 9.26 (see Fig. 9). The variability of the neuron circuit is
thus 13 %. Our analysis found that this variability is governed
by the LEAK block and the first part of the CC, where the
comparison between Imem and Ithr is made (MC1 and MC2).
In particular, in the LEAK block the transistors more affected
by process variation are ML2 and ML3. The K+ block, in
particular MK4, also shows sensitivity to device mismatch,
but it is negligible compared to the other two blocks.

IV. CONCLUSION

We determined process and circuit parameters in order to
implement efficient (low power and slow dynamics) analog
neuron circuits using an advanced scaled 22 nm FDSOI pro-
cess. We optimized the design of the synapse and neuron
circuits for producing biologically plausible neural dynamics,
with time constants matched to those of natural signals, such
as speech or bio-signals.

The presented silicon synapse circuit can achieve time
constants of up to 6 sec without having to increase the synaptic
capacitance Csyn over 1 pF. The neuron circuit presented
has an energy per spike of tens of pJ for lower frequencies
and pJ for higher frequencies, which is considerably lower
compared to an analogous neuron design implemented in a
180 nm CMOS process [12]. Furthermore, it consumes less
compared to a more recent design [34] at biologically plausible
frequencies and it consumes one order of magnitude less

compared to the state-of-the-art neuron circuit [35] at higher
frequencies. We studied the mismatch sensitivity of the neuron
circuit by performing Monte Carlo simulations and identified
the parts of the circuit that are most critical to be optimized
for variations, showing how the more sensitive sub-parts of the
silicon neuron circuit are the LEAK block and the first part
of the CC block. In summary in this paper we demonstrate
how it is possible to exploit the features of advanced 22 nm
FDSOI processes to design complex analog circuits that can
be used to implement low-power neuromorphic processors for
edge computing sensory-processing tasks and, more generally,
“neuromorphic intelligence” applications.
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