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Abstract—Wave Digital Filters (WDFs) turn circuits into net-
works of input-output relationships that can be computed in an
explicit fashion. This is done through a linear port-wise mapping
of Kirchhoff variables into pairs of incident-reflected waves
introducing one scalar free parameter per port, called reference
port resistance. Parameters are then used to eliminate the implicit
equations relating wave variables, referred to as delay-free-loops.
Unfortunately, this methodology can only be applied under strong
linearity and topological conditions. This manuscript presents
an extension of the WDF formalism involving a novel “cross-
port” vector definition of waves, whose reference resistance is a
matrix of free parameters. This generalization greatly simplifies
the WDF implementation of circuits with two-port elements,
such as operational amplifiers. It allows us to derive wave-based
descriptions of elements such as nullors, for which no scattering
relation is available in the literature. Moreover, it enables a full
adaptation of a wide class of two-port elements, thus avoiding the
delay-free-loops that would otherwise form in traditional WDFs.
This new formalism allows us to implement a wider range of
circuits with two-port elements in a modular fashion, since the
topology and the elements can be modeled independently.

Index Terms—Wave Digital Filters, Scattering Matrices, Junc-
tions, Adaptors, Connection Networks.

I. INTRODUCTION

WAVE Digital Filter (WDF) theory [1] was originally
developed in the ’70s by A. Fettweis with the purpose

of designing pseudopassive digital filters starting from refer-
ence passive analog circuits [2]. WDFs rely on a port-wise
linear mapping of Kirchhoff pairs of variables (voltage and
current) into pairs of wave variables (incident and reflected
waves) with the introduction of a scalar free parameter per port
called reference port resistance. Combined with an appropriate
stable discretization strategy, such as the trapezoidal method,
this turns each circuit element into a Wave Digital (WD) block
described by an explicit input-output relationship [3]. At the
same time, the interconnection topology is turned into an in-
terconnection of scattering junctions [4]. The reference circuit
is therefore modeled as an interconnection of WD blocks,
which turns out to be characterized by implicit relations
between wave variables, called delay-free-loops. According to
WDF principles [1], we can actively eliminate such implicit
relations by properly setting the free parameters introduced
in the WD domain through a process called “adaptation” that
eliminates local instantaneous dependencies between incident
and reflected wave variables. Unfortunately, only for a class of
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circuits (linear circuits or certain circuits containing a single
nonlinearity) it is possible to eliminate all delay-free-loops,
and implement the circuit in a fully “explicit” fashion (i.e.,
without the need of iterative solvers) [5]–[8] while using
stable discretization methods, such as the trapezoidal method
or the backward Euler method [3]. In fact, when dealing with
multiple nonlinearities WD implementations typically involve
iterative solvers [3], [9]–[13]. Even in this case, however, do
WD methods offer some advantages over simulation tech-
niques that are entirely developed in the “Kirchhoff domain”.
The main reason is that WDF principles allow us to model
the topology and the elements of a circuit in a rather modular
fashion, employing input-output blocks connected through
port connections. Exploiting this fact, recent extensions of
WDF principles proved particularly promising and efficient for
applications of circuit simulation, when compared with tradi-
tional circuit simulation software, as they do not necessarily
require the construction of large Jacobian matrices and multi-
variate Newton-Raphson solvers [3], [10], [12]–[14] whose
size is in the order of the number of nodes of the reference
circuit.

In the WD domain, a one-port circuit element is modeled as
a scattering relation derived from its constitutive equation in
the Kirchhoff domain. The reflected wave is, in fact, expressed
as a function of the incident wave and the introduced free
parameter [1]. Topological connections, instead, are modeled
as N -port junctions, usually referred to as adaptors, which are
characterized by N ×N scattering matrices [4], [15]–[18]. A
topological graph description of a circuit can be obtained using
the so-called SPQR-tree decomposition [19]; the resulting
tree structure maps circuit elements onto Q nodes; series con-
nections onto S nodes; parallel connections onto P nodes; and
connections that are neither series nor parallel (triconnected
components) onto R nodes. WDFs are traditionally designed
to match the morphology of the corresponding SPQR-tree
structure: S and P nodes are implemented with series and
parallel adaptors, respectively; while R nodes are realized
using R-type adaptors [19]. Several recent publications are
focused on the modeling of R-type adaptors [17], [18], [20]–
[23]. In [18] the meaning ofR-type adaptor was generalized to
the concept of connection network, which denotes a junction
whose role is to connect elements or other networks together.
A connection network could represent a simple “wiring” of
elements, but it could also embed linear reciprocal or non-
reciprocal multi-ports such as multi-winding transformers,
nullors, or controlled sources [17]. A general method for
implementing reciprocal as well as non-reciprocal connection
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networks in the WD domain is presented in [17], while a less
computationally expensive approach for the WD realization of
reciprocal connection networks is presented in [18]. We recall
that arbitrary purely topological connection networks (i.e., wire
connections) are inherently reciprocal and can all be modeled
as shown in [18]. The main reasons why linear multi-ports
are sometimes embedded into R-type adaptors are related to
computability. In fact, connecting multi-port linear elements
to adaptors might introduce delay-free-loops. For example,
when both ports of a two-port linear element are connected to
the same multi-port junction a double delay-free-loop passing
through the element and the junction always arises, and it
cannot be eliminated even in the case in which both ports
of the two-port element are locally made reflection-free [17],
[24]. Moreover, scattering relations of many relevant linear
multi-ports, such as nullors or controlled sources, cannot be
modeled using the traditional WDF formalism. Incorporating
linear multi-ports within the junction is an effective way to
eliminate such computability problems, but it actually under-
mines the separation, typical of traditional WDF modeling,
between topological adaptors and circuit elements [1].

In this manuscript we present an extension of the tradi-
tional port-wise WDF formalism that employs novel vector
definitions of waves, involving cross-port reference resistances
in the form of 2 × 2 matrices of free parameters. We show
that this generalization of the WDF theory brings consider-
able advantages in the implementation of circuits with two-
ports, such as gyrators, controlled sources or operational
amplifiers (opamps). In fact, it allows us to derive wave-
based descriptions of elements, such as nullors or controlled
sources, for which a scattering relation could not be defined
otherwise. It also enables to connect a wide class of linear
two-ports to R-type adaptors without ending up with delay-
free-loops. The proposed approach, therefore, solves many of
the computability problems that arise when modeling circuits
with complicated topologies and multi-port elements, without
having to embed the multi-ports within R-type adaptors and
maintaining a clear separation between the topological infor-
mation and the constitutive equations of the elements, just like
in WD structures with one-ports.

The manuscript is organized as follows. Section II provides
a background on the classical scalar definition of waves in
WDFs and on the corresponding WD modeling of a generic
two-port element. It then introduces a novel vector definition
of wave variables involving a reference two-port resistance.
Section III applies such a definition to the WD modeling of the
same generic two-port considered in Section II, highlighting
its advantages. General conditions for performing the full
adaptation of a two-port WD element, i.e., making the pair
of ports reflection-free, are provided. Energetic properties of a
WD two-port element based on the proposed vector definition
of waves are also analyzed. The six sections from IV to IX
present detailed WD models of all the six families of linear
resistive two-ports [25] as special cases of the general model
discussed in Section III. WD models of specific resistive two-
ports are also discussed as examples, like voltage-controlled
or current-controlled sources, the gyrator, and the nullor.
Section X shows how WD topological junctions based on

mixed scalar and vector definitions of wave variables can be
designed. Closed-form formulas for the formation of the scat-
tering matrices are provided, along with some considerations
on their properties. We also show that a pair of ports of a
WD junction characterized by a vector definition of waves
can be made reflection-free, which is something that could
not be done in the case of traditional WDFs. This means
that, by properly selecting the free parameters, it is possible
to set a 2 × 2 block of diagonal entries of the scattering
matrix to zero. Section XI proves the effectiveness of the
proposed approach by discussing different WD realizations
of two circuits: an active band-pass filter with one opamp
and a phono preamplifier with two opamps. Different two-port
models of op-amps are considered: the nullor-based model, a
model with an ideal controlled source, and a model with a
resistive controlled source. A comparison between the WD
structures obtained with the proposed approach and those
obtained with the method in [17] is provided; the advantages
brought by the proposed technique are highlighted both in
terms of computational cost and in terms of modularity.
Section XII concludes this manuscript.

II. SCALAR AND VECTOR WAVES

A. Background: Scalar Definition of Wave Variables with
Reference One-Port Resistances

Let us consider a generic two-port circuit element. In the
Kirchhoff domain, port j of the element, with j ∈ {1, 2}, is
characterized by a port voltage vj and a port current ij , as
shown in Fig. 1.
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i2
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Fig. 1. Generic two-port in the Kirchhoff domain.

In traditional WDFs based on voltage waves, the pair of
WD variables at port j is expressed with the following scalar
definition [1]

aj = vj + Zjjij , bj = vj − Zjjij , (1)

where aj is the wave incident to the element, bj is the wave
reflected by the element and Zjj 6= 0 is a real scalar free
parameter, usually called reference port resistance and here
renamed as reference one-port resistance.

vj =
aj + bj

2
, ij =

aj − bj
2Zjj

. (2)

Though the definition in (1) is the most widespread, other
definitions of WD variables with one free parameter per port
have been proposed in the literature on WDFs [17], [26]–
[28]. Among them are current waves, or power-normalized
waves, which are characterized by different units of measure.
A more general definition of biparametric waves, characterized
by two free parameters per port instead of just one, was
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introduced in [29], with significant impact on the resulting
WDF structures. Such types of WDFs, however, are all based
on scalar definitions of waves, as each free parameter refers
to a single port of a WD element. When two-port circuit ele-
ments are present, a WDF structure based on scalar port-wise
definitions of waves is generally affected by computability
problems. For example, Fig. 2 shows a WDF structure based
on scalar wave variables that includes a generic (linear or
nonlinear) two-port element whose ports are both connected to
the same topological junction. Dashed paths denote two delay-
free-loops that are unavoidably formed in the WDF, which
cannot be eliminated through any choice of free parameters.

WD Two-Port
based on Scalar Waves

a1 b1

Z1

a2 b2

Z2

WD Topological
Junction

WD
Structure

WD
Structure

1

Fig. 2. Example of traditional WDF based on a scalar definition of wave
variables. The WDF includes a WD two-port element connected to a WD
topological junction. The red dashed circles indicate two delay-free-loops that
unavoidably arise in the WDF.

In the following, we re-define wave variables in vector form
so as to encompass both ports of the same two-port element.
We will see that this will bring advantages in the design
of WDFs with two-ports, including in many situations the
possibility to remove the delay-free-loops of Fig. 2.

B. Vector Definition of Wave Variables with Reference Two-
Port Resistance

With reference to the same generic two-port circuit element
shown in Fig. 1, we propose the following vector definition
of WD variables, which generalizes (1),

[
a1
a2

]
=

[
v1
v2

]
+

[
Z11 Z12

Z21 Z22

] [
i1
i2

]
(3)

[
b1
b2

]
=

[
v1
v2

]
−
[
Z11 Z12

Z21 Z22

] [
i1
i2

]

where [v1, v2]T is the vector of the two port voltages, [i1, i2]T

is the vector of the two port currents, [a1, a2]T is the vector
of the waves incident to the two-port element, [b1, b2]T is the
vector of the waves reflected by the two-port element and

Z1,2 =

[
Z11 Z12

Z21 Z22

]
(4)

is a full-rank 2 × 2 matrix of real free parameters Zkj , with
k ∈ {1, 2} and j ∈ {1, 2}, which we refer to as reference
two-port resistance. As Z1,2 is full-rank, we have

|Z1,2| = det [Z1,2] = Z11Z22 − Z12Z21 6= 0 . (5)

This allows us to derive the inverse mapping from WD
variables to Kirchhoff variables as[

v1
v2

]
=

1

2

([
a1
a2

]
+

[
b1
b2

])
(6)

[
i1
i2

]
=

1

2 |Z1,2|

[
Z22 −Z12

−Z21 Z11

]([
a1
a2

]
−
[
b1
b2

])
(7)

It is easy to verify that the traditional port-wise definition
of waves (1) can be seen as a particular case of (3), in which
Z12 = Z21 = 0.

In the next Section, we will show how to derive the
scattering relation of a generic WD two-port element based
on the vector definition of wave variables (3).

III. A WD VECTOR MODEL FOR TWO-PORT ELEMENTS

In this manuscript, we consider the large class of linear
memoryless two-port circuit elements that can be described
by the following model in the Kirchhoff domain

Ψξ −Φµ− δ = 0 (8)

where ξ and µ are two-dimensional column vectors collecting
port variables; in particular, vector ξ contains two different
variables in the set {v1, v2, i1, i2}, collecting port voltages
and port currents, while vector µ contains the remaining two
variables. Ψ and Φ are 2×2 matrices of real coefficients, while
δ is a two-dimensional column vector of real coefficients. 0
is a two-dimensional column vector of zeros.

According to (6) and (7), vector ξ and vector µ can
be expressed as linear combinations of the vectors of wave
variables as follows

ξ = Kξ

[
a1
a2

]
+ Pξ

[
b1
b2

]
(9)

µ = Kµ

[
a1
a2

]
−Pµ

[
b1
b2

]
(10)

where 2× 2 matrices Kξ, Pξ, Kµ and Pµ vary according to
the Kirchhoff port variables contained in ξ and µ.

Substituting (9) and (10) in (8), we obtain

ΨKξ

[
a1
a2

]
+ ΨPξ

[
b1
b2

]
−ΦKµ

[
a1
a2

]
+ ΦPµ

[
b1
b2

]
− δ = 0

or equivalently

(ΦPµ + ΨPξ)

[
b1
b2

]
= (ΦKµ −ΨKξ)

[
a1
a2

]
+ δ . (11)

Solving (11) for the vector of reflected waves, we get
[
b1
b2

]
= P−1K

[
a1
a2

]
+ P−1δ (12)

where
P = ΦPµ + ΨPξ , (13)

K = ΦKµ −ΨKξ . (14)

The scattering relation in vector form (12) is the WD model of
the two-port element based on the proposed vector definition
of waves (3). Such a scattering relation in explicit form exists
if and only if

det [P] 6= 0 . (15)
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Most linear one-ports (e.g., resistors or resistive sources)
in traditional WDF theory can be adapted [1]. Adapting a
one-port element in the WD domain means eliminating the
instantaneous dependency of the reflected wave signal from
the incident wave signal. Similarly, in the following, we will
refer to an adapted two-port as a two-port WD element for
which the following condition holds

K =

[
0 0
0 0

]
. (16)

According to (14), condition (16) can also be written as

ΦKµ = ΨKξ . (17)

It follows that an adapted two-port is characterized by the
following simplified scattering relation

[
b1
b2

]
= P−1δ (18)

in which the dependency of the vector of reflected waves
[b1, b2]T from the vector of incident waves [a1, a2]T is elimi-
nated.

Wave Digital Two-Port
based on Vectorial Waves

[
a1
a2

] [
b1
b2

]
Z1,2

1

(a)

Adapted
Wave Digital Two-Port
based on Vectorial Waves

[
a1
a2

]
P−1δ

Z1,2

1

(b)

Fig. 3. Symbol of a WD two-port element based on vector waves (a). Symbol
of an adapted WD two-port element based on vector waves (b).

A. Power Absorbed by a WD Two-Port

Here we provide general considerations about the energetic
properties of a WD two-port element based on vector waves
in terms of its absorbed power, similarly to what done in
reference [2] concerning traditional WDFs. Assuming to deal
with real discrete-time signals, the power W1,2 absorbed by
the two-port shown in Fig. 1 can be expressed in the Kirchhoff
domain as follows

W1,2 = v1i1 + v2i2 . (19)

Substituting (6) and (7) in (19), we get

W1,2 =
1

4

([
a1 a2

]
+
[
b1 b2

])
Z−11,2

([
a1
a2

]
−
[
b1
b2

])

or equivalently

W1,2 =
1

4

([
a1
a2

]T
Z−11,2

[
a1
a2

]
+

[
b1
b2

]T
Z−11,2

[
a1
a2

]
+ (20)

−
[
a1
a2

]T
Z−11,2

[
b1
b2

]
−
[
b1
b2

]T
Z−11,2

[
b1
b2

])

which is the same absorbed power in (19), but expressed in
the WD domain. The two-port is said passive when W1,2 ≥ 0
and lossless when W1,2 = 0.

We notice that if Z−11,2 is symmetric, (20) reduces to

W1,2 =
1

4

([
a1
a2

]T
Z−11,2

[
a1
a2

]
−
[
b1
b2

]T
Z−11,2

[
b1
b2

])
. (21)

B. A Special Case: the Subclass of Resistive Two-Ports

Let us consider the subclass of two-ports such that δ = 0
and Ψ = I2, where I2 is the 2 × 2 identity matrix. In this
case, the scattering relation (12) reduces to

[
b1
b2

]
= (ΦPµ + Pξ)

−1
(ΦKµ −Kξ)

[
a1
a2

]
, (22)

and, when the adaptation condition (17) is met, we simply
have that [

b1
b2

]
=

[
0
0

]
. (23)

In the next six Sections, we will show that WD models of
many important two-ports, namely all the six families of linear
resistive two-ports discussed in [25, Chapter 3], can be derived
as particular cases of (22).

IV. CURRENT-CONTROLLED TWO-PORT ELEMENTS

Current-controlled two-port resistive elements in the Kirch-
hoff domain are characterized by the equation

[
v1
v2

]
=

[
r11 r12
r21 r22

] [
i1
i2

]
(24)

where rkj are resistance parameters. The corresponding WD
model can be derived by taking (22) and setting

ξ =

[
v1
v2

]
, µ =

[
i1
i2

]
, Φ = R1,2 =

[
r11 r12
r21 r22

]
,

Kξ = Pξ =
1

2
I2 , Kµ = Pµ =

1

2
Z−11,2 ,

where R1,2 is the matrix of resistance parameters. The con-
dition (15) on the existence of the scattering relation (22) is
satisfied if and only if

|R1,2|+ r11Z22 − r12Z21 − r21Z12 + r22Z11 + |Z1,2|
4 |Z1,2|

6= 0 .

(25)
The condition of adaptation (17), that allows us to implement
the WD two-port using (23), is satisfied by setting the refer-
ence two-port resistance matrix as

Z1,2 = R1,2 . (26)

A. Example I: Current-Controlled Voltage Source (CCVS)

Writing the constitutive equation of the ideal CCVS shown
in Fig. 4(a) in terms of resistance parameters, equation (24)
reduces to [

v1
v2

]
=

[
0 0
Ar 0

] [
i1
i2

]
, (27)

where Ar is the transresistance gain. Provided that condition
(25) is satisfied, the scattering relation of an ideal CCVS is
the following

[
b1

b2

]
=

[ −1 0

−2ArZ22

ArZ12−|Z1,2|
ArZ12+|Z1,2|
ArZ12−|Z1,2|

][
a1

a2

]
. (28)
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An ideal CCVS cannot be adapted in the WD domain sim-
ilarly to what happens to one-port ideal voltage sources.
However, like the one-port ideal voltage source that can be
well approximated by a resistive voltage source with a small
series resistance, the ideal CCVS can be well approximated
using the transresistance amplifier model described in the next
subsection, obtaining an element that can be adapted.

B. Example II: Transresistance Amplifier Model

The transresistance amplifier model represented in Fig. 4(b)
is characterized by the following constitutive equation

[
v1
v2

]
=

[
Rin 0
Ar Rout

] [
i1
i2

]
(29)

where Ar is the transresistance gain, Rin is the input resistance
and Rout is the output resistance. If resistances Rin and Rout
are sufficiently small the model in Fig. 4(b) well approximates
the ideal CCVS in Fig. 4(a). The WD realization of the tran-
sresistance amplifier model can be adapted and its scattering
relation reduces to[

b1
b2

]
=

[
0
0

]
, with Z1,2 =

[
Rin 0
Ar Rout

]
. (30)

i1

−

+

v1

+−Ari1

i2

−

+

v2

1

(a)

i1

Rin

−

+

v1

+−Ari1

Rout

i2

−

+

v2

1

(b)

Fig. 4. Ideal CCVS (a) and transresistance amplifier model (b). If resistances
Rin and Rout are sufficiently small the model in (b) well approximates the
CCVS in (a).

V. VOLTAGE-CONTROLLED TWO-PORT ELEMENTS

Voltage-controlled two-port resistive elements in the Kirch-
hoff domain are characterized by the equation

[
i1
i2

]
=

[
g11 g12
g21 g22

] [
v1
v2

]
(31)

where gkj are real conductance parameters. The corresponding
WD model can be derived by taking (22) and setting

ξ =

[
i1
i2

]
, µ =

[
v1
v2

]
, Φ = G1,2 =

[
g11 g12
g21 g22

]
,

Kξ = −Pξ =
1

2
Z−11,2 , Kµ = −Pµ =

1

2
I2 ,

where G1,2 is the matrix of conductance parameters. The
condition (15) on the existence of the scattering relation (22)
is satisfied if and only if

|G1,2| |Z1,2|+ g11Z11 + g12Z21 + g21Z12 + g22Z22 + 1

4 |Z1,2|
6= 0 .

(32)
The condition of adaptation (17) is satisfied by setting

Z1,2 = G−11,2 , (33)

provided that |G1,2| 6= 0.

A. Example I: Voltage-Controlled Current Source (VCCS)

Writing the constitutive equation of the ideal VCCS shown
in Fig. 5(a) in terms of conductance parameters, equation (31)
reduces to [

i1
i2

]
=

[
0 0
Ag 0

] [
v1
v2

]
(34)

where Ag is the transconductance gain. Provided that condition
(25) is satisfied, the scattering relation of an ideal VCCS is
the following

[
b1

b2

]
=


−

AgZ12−1
AgZ12+1 0

− 2AgZ22

AgZ12+1 1



[
a1

a2

]
. (35)

An ideal VCCS cannot be adapted; however, it can be well
approximated using the transconductance amplifier model de-
scribed in the next subsection that can instead be adapted.

B. Example II: Transconductance Amplifier Model

The transconductance amplifier model in Fig. 5(b) is char-
acterized by the following constitutive equation

[
i1
i2

]
=

[
1/Rin 0
Ag 1/Rout

] [
v1
v2

]
(36)

where Ag is the transconductance gain, Rin is the input
resistance and Rout is the output resistance. If resistances Rin
and Rout are sufficiently large the model in Fig. 5(b) well
approximates the ideal VCCS in Fig. 5(a). The WD realization
of the transconductance amplifier model can be adapted and
its scattering relation reduces to
[
b1
b2

]
=

[
0
0

]
, with Z1,2 =

[
Rin 0

−AgRinRout Rout

]
. (37)

C. Example III: Gyrator

The gyrator in Fig. 6 is characterized by the following
constitutive equation

[
i1
i2

]
=

[
0 G0

−G0 0

] [
v1
v2

]
(38)

where G0 is the gyration conductance. The WD model of the
gyrator can be adapted and its scattering relation reduces to
[
b1
b2

]
=

[
0
0

]
, with Z1,2 =

[
0 −1/G0

1/G0 0

]
. (39)
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i1

−

+

v1 Agv1

i2

−

+

v2

1

(a)

i1

Rin

−

+

v1 Agv1 Rout

i2

−

+

v2

1

(b)

Fig. 5. Ideal VCCS (a) and transconductance amplifier model (b). If resis-
tances Rin and Rout are sufficiently large the model in (b) well approximates
the VCCS in (a).

i1

−

+

v1

G0

i2

−

+

v2

1

Fig. 6. Gyrator with gyration conductance G0.

VI. HYBRID TWO-PORT ELEMENTS

Hybrid two-port resistive elements in the Kirchhoff domain
are characterized by the equation

[
v1
i2

]
=

[
h11 h12
h21 h22

] [
i1
v2

]
(40)

where hkj are real hybrid parameters. The corresponding WD
model can be derived by taking (22) and setting

ξ =

[
v1
i2

]
, µ =

[
i1
v2

]
, Φ = H1,2 =

[
h11 h12
h21 h22

]
,

Kξ =
1

2

[
1 0

−Z21

|Z1,2|
Z11

|Z1,2|

]
, Kµ =

1

2

[ Z22

|Z1,2|
−Z12

|Z1,2|
0 1

]
,

Pξ =
1

2

[
1 0
Z21

|Z1,2|
−Z11

|Z1,2|

]
, Pµ =

1

2

[ Z22

|Z1,2|
−Z12

|Z1,2|
0 −1

]
,

where H1,2 is the matrix of hybrid parameters. The condition
(15) on the existence of the scattering relation (22) is satisfied
if and only if

h12Z21 − h11 − Z11 − h21Z12 − Z22 |H1,2| − h22 |Z1,2|
4 |Z1,2|

6= 0 .

(41)
The condition of adaptation (17) is satisfied by setting

Z1,2 =
1

h22

[
|H1,2| h12
−h21 1

]
,

provided that h22 6= 0.

A. Example I: Current-Controlled Current Source (CCCS)

Writing the constitutive equation of the ideal CCCS shown
in Fig. 7(a) in terms of hybrid parameters, equation (40)
reduces to [

v1
i2

]
=

[
0 0
A0 0

] [
i1
v2

]
(42)

where A0 is a dimensionless gain. Provided that condition
(41) is satisfied, the scattering relation of an ideal CCCS is
the following

[
b1

b2

]
=

[
−1 0

− 2(Z21+A0Z22)
Z11+A0Z12

1

][
a1

a2

]
(43)

An ideal CCCS cannot be adapted; however, it can be well
approximated using the current amplifier model described in
the next subsection that can instead be adapted.

B. Example II: Current Amplifier Model

The current amplifier model in Fig. 7(b) is characterized by
the following constitutive equation

[
v1
i2

]
=

[
Rin 0
A0 1/Rout

] [
i1
v2

]
(44)

where A0 is the dimensionless gain, Rin is the input resistance
and Rout is the output resistance. If resistance Rin is sufficiently
small and resistance Rout is sufficiently large the model in
Fig. 7(b) well approximates the ideal CCCS in Fig. 7(a). The
WD realization of the current amplifier model can be adapted
and its scattering relation reduces to
[
b1
b2

]
=

[
0
0

]
, with Z1,2 =

[
Rin 0

−A0Rout Rout

]
. (45)

i1

−

+

v1 A0i1

i2

−

+

v2

1

(a)

i1

Rin

−

+

v1 A0i1 Rout

i2

−

+

v2

1

(b)

Fig. 7. Ideal CCCS (a) and current amplifier model (b). If resistance Rin
is sufficiently small and resistance Rout is sufficiently large the model in (b)
well approximates the CCCS in (a).
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VII. INVERSE HYBRID TWO-PORT ELEMENTS

Inverse hybrid two-port resistive elements in the Kirchhoff
domain are characterized by the equation

[
i1
v2

]
=

[
h̃11 h̃12
h̃21 h̃22

] [
v1
i2

]
(46)

where h̃kj are real inverse hybrid parameters. The correspond-
ing WD model can be derived by taking (22) and setting

ξ =

[
i1
v2

]
, µ =

[
v1
i2

]
, Φ = H̃1,2 =

[
h̃11 h̃12
h̃21 h̃22

]
,

Kξ =
1

2

[ Z22

|Z1,2|
−Z12

|Z1,2|
0 1

]
, Kµ =

1

2

[
1 0

−Z21

|Z1,2|
Z11

|Z1,2|

]
,

Pξ =
1

2

[−Z22

|Z1,2|
Z12

|Z1,2|
0 1

]
, Pµ =

1

2

[ −1 0
−Z21

|Z1,2|
Z11

|Z1,2|

]
,

where H̃1,2 is the matrix of inverse hybrid parameters. The
condition (15) on the existence of the scattering relation (22)
is satisfied if and only if

h̃21Z12 − h̃22 − Z22 − h̃12Z21 − Z11|H̃1,2| − h̃11 |Z1,2|
4 |Z1,2|

6= 0.

(47)
The condition of adaptation (17) is satisfied by setting

Z1,2 =
1

h̃11

[
1 −h̃12
h̃21 |H̃1,2|

]
,

provided that h̃11 6= 0.

A. Example I: Voltage-Controlled Voltage Source (VCVS)

Writing the constitutive equation of the ideal VCVS shown
in Fig. 8(a) in terms of inverse hybrid parameters, equation
(46) reduces to

[
i1
v2

]
=

[
0 0
A0 0

] [
v1
i2

]
(48)

where A0 is a dimensionless gain. Provided that condition
(47) is satisfied, the scattering relation of an ideal VCVS is
the following

[
b1

b2

]
=

[
Z22+A0Z12

Z22−A0Z12

−2Z12

Z22−A0Z12

2A0Z22

Z22−A0Z12

−Z22−A0Z12

Z22−A0Z12

][
a1

a2

]
. (49)

B. Example II: Voltage Amplifier Model

The voltage amplifier model in Fig. 8(b) is characterized by
the following constitutive equation

[
i1
v2

]
=

[
1/Rin 0
A0 Rout

] [
v1
i2

]
(50)

where A0 is the dimensionless gain, Rin is the input resistance
and Rout is the output resistance. If Rin is sufficiently large
and Rout is sufficiently small the model in Fig. 8(b) well
approximates the ideal VCVS in Fig. 8(a). The WD realization
of the voltage amplifier model can be adapted and its scattering
relation reduces to[

b1
b2

]
=

[
0
0

]
, with Z1,2 =

[
Rin 0
A0Rin Rout

]
. (51)

i1

−

+

v1

+−A0v1

i2

−

+

v2

1

(a)

i1

Rin

−

+

v1

+−A0v1

Rout

i2

−

+

v2

1

(b)

Fig. 8. Ideal VCVS (a) and voltage amplifier model (b). If Rin is sufficiently
large and Rout is sufficiently small the model in (b) well approximates the
VCVS in (a).

VIII. TRANSMISSION TWO-PORT ELEMENTS

Transmission two-port resistive elements in the Kirchhoff
domain are characterized by the equation

[
v1
i1

]
=

[
t11 t12
t21 t22

] [
v2
−i2

]
(52)

where tkj are real transmission parameters, also known as
ABCD parameters. The corresponding WD model can be
derived by taking (22) and setting

ξ =

[
v1
i1

]
, µ =

[
v2
−i2

]
, Φ = T1,2 =

[
t11 t12
t21 t22

]
,

Kξ =
1

2

[
1 0
Z22

|Z1,2|
−Z12

|Z1,2|

]
, Kµ =

1

2

[
0 1
Z21

|Z1,2|
−Z11

|Z1,2|

]
,

Pξ =
1

2

[
1 0

−Z22

|Z1,2|
Z12

|Z1,2|

]
, Pµ =

1

2

[
0 −1
Z21

|Z1,2|
−Z11

|Z1,2|

]
,

where T1,2 is the matrix of transmission parameters. The
condition (15) on the existence of the scattering relation (22)
is satisfied if and only if

Z12 − t12 − t11Z22 − t22Z11 + Z21 |T1,2| − t21 |Z1,2|
4 |Z1,2|

6= 0 .

(53)
The condition of adaptation (17) is satisfied by setting

Z1,2 =
1

t21

[
t11 |T1,2|
1 t22

]
,

provided that t21 6= 0.

A. Example: Nullor

The two-port nullor in Fig. 9 is composed of a one-port
nullator (at the left) and a one-port norator (at the right) [24].
It is characterized by the following constitutive equation

[
v1
i1

]
=

[
0 0
0 0

] [
v2
−i2

]
. (54)

A two-port WD realization of a nullor based on a scalar
definition of wave variables is not feasible as already discussed
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in [17], [24]. However, a two-port WD realization of the nullor
based on vectorial waves can be derived. It can be verified
that the condition of existence of the scattering relation (53)
reduces to

Z12 6= 0 ∧ |Z1,2| 6= 0 . (55)

It follows that, setting (55), the scattering relation of a WD
nullor is given by

[
b1

b2

]
=

[
−1 0

− 2Z22

Z12
1

][
a1

a2

]
. (56)

+

−

+

−
v1 = 0 v2

i1 = 0 i2

1

Fig. 9. Two-port nullor composed of a nullator and a norator.

It is worth noticing that a two-port WD nullor cannot be
adapted.

IX. INVERSE TRANSMISSION TWO-PORT ELEMENTS

Inverse transmission two-port resistive elements in the
Kirchhoff domain are characterized by the equation

[
v2
−i2

]
=

[
t̃11 t̃12
t̃21 t̃22

] [
v1
i1

]
(57)

where t̃kj are real inverse transmission parameters. The corre-
sponding WD model can be derived by taking (22) and setting

ξ =

[
v2
−i2

]
, µ =

[
v1
i1

]
, Φ = T̃1,2 =

[
t̃11 t̃12
t̃21 t̃22

]
,

Kξ =
1

2

[
0 1
Z21

|Z1,2|
−Z11

|Z1,2|

]
, Kµ =

1

2

[
1 0
Z22

|Z1,2|
−Z12

|Z1,2|

]
,

Pξ =
1

2

[
0 1

−Z21

|Z1,2|
Z11

|Z1,2|

]
, Pµ =

1

2

[ −1 0
Z22

|Z1,2|
−Z12

|Z1,2|

]
,

where T̃1,2 is the matrix of inverse transmission parameters.
The condition (15) on the existence of the scattering relation
(22) is satisfied if and only if

Z21 + t̃12 − t̃11Z11 − t̃22Z22 + Z12|T̃1,2|+ t̃21 |Z1,2|
4 |Z1,2|

6= 0 .

(58)
The condition of adaptation (17) is satisfied by setting

Z1,2 =
−1

t̃21

[
t̃22 1

|T̃1,2| t̃11

]
,

provided that t̃21 6= 0.

X. MODELING TOPOLOGICAL JUNCTIONS BASED ON
MIXED SCALAR AND VECTOR DEFINITIONS OF WAVES

Two main different approaches for modeling topological
junctions and, more generally, multi-port connection networks
are available in the literature on traditional WDFs based on
scalar wave variables. The former consists of connecting in-
stantaneous Thévenin or Norton equivalents to the ports of the
target connection network in the Kirchhoff domain and then
solving the resulting circuit using the Modified Nodal Analysis
[17], [20]. This method can be used for deriving the scattering
matrix of whatever reciprocal or nonreciprocal connection
network. The latter approach was developed for modeling
reciprocal connection networks using different definitions of
wave variables [15], [16], [18]. This is based on the derivation
of a fundamental cut-set matrix (or a dual fundamental loop
matrix) that characterizes the relations between Kirchhoff port
variables. In this case, the scattering matrix of the junction can
be obtained in closed-form as a function of the fundamental
cut-set matrix (or the fundamental loop matrix). Though less
general, as it only works with reciprocal connection networks,
the latter approach [18] surpasses (or at least matches) the
performance of the former [17], as far as the cost of the
formation of the scattering matrix and the computation of
the waves reflected from the junction are concerned. It is
worth recalling that purely topological junctions (i.e., wire
interconnections) are all intrinsically reciprocal [18], [30].

As mentioned in the Introduction, in many scenarios, the
computability problems arising in WDFs with linear two-ports
can be circumvented by embedding the two-ports in a topolog-
ical multi-port junction. However, this modeling strategy par-
tially undermines the modularity property of traditional WDFs
formalized by Fettweis [1], according to which topological
junctions (adaptors) and circuit elements are implemented in
the WD domain using separated input-output blocks. More-
over, as a further side effect, when the embedded two-ports
are non-reciprocal also the resulting connection network might
be non-reciprocal and the efficient modeling method described
in [15], [16], [18] cannot be used for the realization of the
corresponding WD junction.

This Section provides a generalization of the approach pre-
sented in [15], [16], [18] which allows us to design topological
multi-port WD junctions based on mixed scalar and vector
definitions of waves. The resulting WD junctions can be used
to interconnect one-ports based on traditional scalar waves
and the two-ports based on vector waves, thus solving many
of the computability problems that would arise using scalar
definitions, while preserving modularity, i.e., modeling circuit
elements and topology in a separate fashion.

Let us consider a N -port topological junction that is con-
nected to other blocks (elements or other junctions) through
P two-port connections and N − 2P one-port connections.
We collect port voltages in vector vJ = [vJ1, . . . , vJN ]T and
port currents in vector iJ = [iJ1, . . . , iJN ]T . Since purely
topological junctions are reciprocal, we can always write [18]

vJ = QTvJt , iJ = BT iJl , (59)

where vJt is a column vector of size q, 1 ≤ q < N , containing
independent port voltages and iJl is a column vector of size
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N − q containing independent port currents. Q and B are
the q × N fundamental cut-set matrix and the N − q × N
fundamental loop matrix, respectively, and they satisfy the
orthogonality property BQT = 0, where 0 is a zero matrix
of proper size. Kirchhoff port variables are mapped to wave
variables according to

vJ =
1

2
(aJ + bJ) , iJ =

1

2
Z−1J (aJ − bJ) , (60)

where aJ = [aJ1, . . . , aJN ]T is the vector of waves entering
the junction, bJ = [bJ1, . . . , bJN ]T is the vector of waves
reflected by the junction, while ZJ is a full-rank block-diagonal
matrix of free parameters (not simply a diagonal matrix as in
traditional WDFs based on scalar waves). Assuming, without
loss of generality, to number the P two-port connections
before the N − 2P one-port connections, matrix ZJ can be
written as

ZJ =




Z1,2 0 . . . 0 [0, 0]T . . . [0, 0]T

0 Z3,4 . . . 0 [0, 0]T . . . [0, 0]T

...
...

. . .
...

...
. . .

...
0 0 . . . Z2P−1,2P [0, 0]T . . . [0, 0]T

[0, 0] [0, 0] . . . [0, 0] Z2P+1 . . . 0
...

...
. . .

...
...

. . .
...

[0, 0] [0, 0] . . . [0, 0] 0 . . . ZN




(61)
where Z1,2, . . . ,Z2P−1,2P are 2×2 full-rank submatrices and
Z2P+1, . . . , ZN are scalar parameters different from zero.

For example, let us assume that a generic two-port, such as
the one described in Subsection II-B, is connected to ports 1
and 2 of the junction. It follows that

vJ1 = v1 , vJ2 = v2 , iJ1 = −i1 , iJ2 = −i2 , (62)

where v1, v2, i1 and i2 are the Kirchhoff port variables of
the two-port element. Eq. (61) and eq. (62) also imply the
following constraints in the WD domain

aJ1 = b1 , aJ2 = b2 , bJ1 = a1 , bJ2 = a2 , (63)

where a1, a2, b1 and b2 are the wave variables of the two-port
element. Moreover, the 2×2 submatrix Z1,2 of ZJ is set equal
to the reference two-port resistance matrix of eq. (4).

Waves reflected by the junction bJ and waves incident to
junction aJ are related by the scattering relation

bJ = SaJ . (64)

Two closed-form expressions of S are obtained starting from
eq. (60) and eq. (59), similarly to what done in [15] and
in [18], but in the more general case in which ZJ is full-
rank block-diagonal instead of full-rank diagonal. The two
equivalent formulas for computing S are

S = 2QT
(
QZ−1J QT

)−1
QZ−1J − IN , (65)

S = IN − 2ZJB
T
(
BZJB

T
)−1

B , (66)

where IN is the N ×N identity matrix.
In the following subsections we discuss two fundamental

properties of the scattering matrix S and, finally, we show
how to derive it in a practical example.

A. Losslessness Property

Topological connection networks are lossless, therefore

WJ = vTJ iJ = 0 . (67)

According to (67), in the WD domain we can write

WJ =
1

4
(aJ + SaJ)

T
Z−1J (aJ − SaJ) , (68)

or equivalently

WJ =
1

4
aTJ
(
IN + ST

)
Z−1J (IN − S) aJ . (69)

It follows that, for arbitrary wave signals in aJ, losslessness
implies the condition

(
IN + ST

)
Z−1J (IN − S) = 0 . (70)

If ZJ is symmetric (which is always the case in traditional
WDFs, but it is not in WDFs based on vectorial waves) does
eq. (68) reduce to

WJ =
1

4

(
aTJ Z−1J aJ − bTJ Z−1J bJ

)
, (71)

or equivalently

WJ =
1

4
aTJ
(
Z−1J − STZ−1J S

)
aJ . (72)

Hence, if ZJ is symmetric, does the losslessness condition (70)
simplify to [18]

STZ−1J S = Z−1J . (73)

B. Self-inverse Property

Similarly to what pointed out in [31], since vJ and iJ are
solutions of independent homogeneous linear equations, we
can rewrite the relation (64), i.e., bJ = SaJ, as

ξvJ − ζZJiJ = S (ξvJ + ζZJiJ) , (74)

where ξ and ζ are arbitrary real numbers. Hence, choosing
ξ = −1 and ζ = 1, the inverse mapping aJ = SbJ holds true
as well. This means that S is an involutory matrix and the
following self-inverse property is satisfied

SS = IN . (75)

C. Case Study

Let us consider the active band-pass filter with one opamp
in Fig. 10(a). The topological connections of the circuit are
represented by the directed graph in Fig. 10(b). Each branch of
the graph is numbered and it corresponds to one specific port
of the elements of the circuit. This means that each one-port
element is associated to one branch, while the two-port opamp
is associated to two branches of the graph, i.e., branches 1
and 2. Directions of arrows in branches are determined by the
chosen polarity of the corresponding port currents. We design
a WD model of the reference circuit based on a single 7-port
topological junction (called J1) to which all the elements are
connected, as shown in Fig. 11(a) (further details of such a
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Fig. 10. Active band-pass filter circuit (a). Directive graph representing the topological connection network to which all the one-port elements and the two-port
opamp of the circuit are connected (b). Branches numbered 1 and 2 correspond to the two ports to which the opamp Uf is connected. Decomposition of the
directive graph in tree subgraph (continuous branches) and cotree subgraph (dashed branches) (c).

model are provided in the next section). It follows that the
matrix of free parameters of the junction is given by

ZJ =




Z1,1 Z1,2 0 0 0 0 0
Z2,1 Z2,2 0 0 0 0 0

0 0 Z3 0 0 0 0
0 0 0 Z4 0 0 0
0 0 0 0 Z5 0 0
0 0 0 0 0 Z6 0
0 0 0 0 0 0 Z7




. (76)

J1

WD 7-port Topological
Scattering Junction

Cm Ch Rf Rout

Vin

Rin
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+

Uf
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1

(a)
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WD 5-port Nonreciprocal
Scattering Junction

embedding the Opamp Model

Cm Ch Rf Rout

Vin

Rin

1 2 3 4

5

1

(b)

Fig. 11. WDF realizations of the circuit in Fig. 10(a).

In order to derive the scattering matrix of the junction SJ1

we perform a tree-cotree decomposition that allows us to easily
identify the subset of independent port voltages or independent

port currents, as explained in [18]. A tree-cotree partition
is represented in Fig. 10(c), where the tree subgraph has
continuous branches (called twigs), while the cotree subgraph
has dashed branches (called links). Since twigs are less than
links (3 vs 4), eq. (65) is the most computationally efficient
formula to derive the scattering matrix [15], [18]. Independent
port voltages, related to the 3 twigs of the tree, are collected
in the vector vJt = [v5, v6, v7]T and, according to eq. (59), the
fundamental cut-set matrix is expressed as

Q =




1 0 −1 0 1 0 0
−1 1 1 1 0 1 0

0 0 −1 −1 0 0 1


 . (77)

XI. EXAMPLES OF APPLICATIONS

This Section discusses how two circuits with two-port ele-
ments can be implemented in the WD domain using the vector
waves introduced in this manuscript. Comparisons between
the resulting WD structures and state-of-the-art structures [17]
are also provided, highlighting the benefits of the proposed
approach. The two-ports considered in this Section are all 3-
terminal opamps. Opamps can be implemented using various
models characterized by a different “degree of ideality”. The
models that we refer to are summarized in Fig. 12.

The modeling of linear one-ports is based on traditional
WDF principles [1]; in particular, the trapezoidal rule is used
for discretizing the time derivatives present in the constitutive
equations of dynamic elements. Each linear one-port that
admits an adaptation condition is adapted, i.e., the local
instantaneous dependency between the wave incident to the
element and the wave reflected by the element is eliminated
by properly setting the reference one-port resistance [1].

All the discussed WD implementations are performed in
the discrete-time domain using a sampling frequency Fs = 96
kHz. The frequency responses are obtaining computing the
Discrete Fourier Transform of the time-domain impulse re-
sponses. In both the examples, the input signal is the voltage
source Vin, while the output signal is the voltage Vout across
the resistor Rout.
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Fig. 12. Symbol of opamp with 3 terminals (a). v1+, v1− and v2+ are the potentials at the 3 terminals. Port voltages are defined as v1 = v1+ − v1− and
v2 = v2+. Opamp model based on nullor (b). Opamp model based on ideal VCVS (c). Opamp model based on VCVS, input resistor and output resistor (d).

A. WD Implementations of the Active Band-Pass Filter Circuit
with One Opamp

The active band-pass filter circuit in Fig. 10(a) is character-
ized by the following parameters: Rin = 10 kΩ, Rf = 20 kΩ,
Rout = 100 kΩ and Cm = Ch = 11.2 nF. For now we assume
that the opamp Uf is described using the ideal nullor-based
model in Fig. 12(b). Let us consider the two different WD
implementations in Fig. 11.

The WD structure in Fig. 11(a), based on the vector def-
inition of waves at the ports of the opamp is characterized
by the 7-port WD topological junction J1 already discussed
in Subsection X-C. The scattering matrix SJ1 is computed
substituting the 3× 7 matrix Q in (77) and the 7× 7 matrix
ZJ in (76) into eq. (65). The nullor-based model of the opamp
Uf is implemented using equation (56). It is worth remarking
the fact that the proposed definition of waves allows us, for the
first time in the literature, to treat the nullor as a two-port WD
element characterized by its own scattering relation. The free
parameters Z1,1, Z1,2, Z2,1 and Z2,2 are set in such a way that
the four entries of the first 2×2 diagonal submatrix of SJ1

are
zeroed, hence the opamp does not create any delay-free-loop
despite it is connected to the junction through a double port
connection. Adaptation conditions on the free parameters are
not included here for reasons of space, but they can be easily
derived using a symbolic math software.

The WD structure in Fig. 11(b), instead, is designed follow-
ing the approach in [17] based on traditional scalar port-wise
definitions of waves. For computability reasons the nullor is
embedded in the connection network, which is modeled in the
WD domain using a 5-port non-reciprocal junction R1. The
scattering matrix of R1 is computed as

SR1 = 2ÃT
p [I3 0] X̃−10 [I3 0]T ÃpGJ − I5 , (78)

where In is the n × n identity matrix, 0 is a zero matrix
of proper size, GJ = Z−1J = diag[G1, . . . , G5] is a diagonal
matrix containing inverse reference one-port resistances, X̃0
is the 4 × 4 matrix obtained by removing the kth column
(1 ≤ k ≤ 5) and the kth row of matrix X0 given by

X0 =




G4 +G5 −G5 −G4 0 −1
−G5 G1 +G2 +G5 −G2 −G1 0
−G4 −G2 G2 +G3 +G4 −G3 +1

0 −G1 −G3 G1 +G3 0
+1 0 0 −1 0



,

while Ãp is the 3 × 5 matrix obtained by removing the kth

row of matrix Ap given by

Ap =




0 0 0 −1 −1
−1 −1 0 0 1

0 1 1 1 0
1 0 −1 0 0


 .
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Fig. 13. Active band-pass filter. Comparison between a WDF implementation
based on the proposed approach (named “WDF (a)” in the legend), a WDF
implementation based on the approach in [17] (named “WDF (b)” in the
legend), and an LTspice implementation. The upper plot is the amplitude
response of the Vout signal, while the lower plot is the phase response.

The two WDFs in Fig. 11 can be both implemented in a
fully explicit fashion without resorting to iterative solvers. We
verified that both the WDFs accurately match the behavior of
the reference circuit, as confirmed by Fig. 13, which shows
a comparison between their frequency response (amplitude
and phase) and the frequency response obtained through an
LTspice simulation of the reference circuit. As far as the
differences of the two WD structures are concerned, the
vector implementation in Fig. 11(a) is characterized by a
higher degree of modularity than the scalar implementation
in Fig. 11(b). As a matter of fact, in the first case the
elements (i.e., the one-ports and the opamp) are modeled
using WD blocks that are separated from the 7-port WD
junction which contains only topological information, while
in the second case the opamp model is embedded in the 5-
port WD junction. Notice that, in case we wanted to change
the opamp model (e.g., employing the VCVS-based model in
Fig. 12(c) instead of the nullor-based one in Fig. 12(b)) in
the WD implementation of Fig. 11(a), we would only need to
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change the scattering relation of the two-port WD block (e.g.,
using eq. (49) in place of eq. (56)), while leaving the scattering
matrix SJ 1 unaltered. Conversely, changing the opamp model
in the WD structure of Fig. 11(b) would require to form new
matrices X0 and Ap, and recompute the scattering matrix SR1

from scratch. A further difference is that, despite the size of
SJ 1 being larger than the size of SR1 (7 × 7 vs 5 × 5), the
formation of SR1 requires the inversion of the 4 × 4 matrix
X̃0, while the formation of SJ1

requires the inversion of the
3× 3 matrix

(
QZ−1J QT

)
, as reported in Table I. This makes

the WDF in Fig. 11(a) more suitable in scenarios in which the
circuit parameters are time-varying and the scattering matrix
of the junction needs to be recomputed.

B. WD Implementations of the Phono Preamplifier Circuit
with Two LM4562 Opamps

The phono preamp circuit in Fig. 14 is characterized by the
following parameters: Cp1 = 10 pF, Rp1 = 47 kΩ, Rq1 = 150
Ω, Rf1 = 3320 Ω, Rcon = 27009 Ω, Cpl2 = 27.2 nF,
Rp2 = 3930 Ω, Cpr2 = 80 nF, Rq2 = 150 Ω, Rf2 = 3320
Ω and Rout = 100 kΩ. The opamps Uf1 and Uf2 are two
Texas Instrument LM4562 audio operational amplifiers and
are described using the model in Fig. 12(d). The model
parameters are chosen according to the LM4562 datasheet;
RopOut1 = RopOut2 = 1000 MΩ, RopIn1 = RopIn2 = 0.01 Ω,
A01 = A02 = 140. We consider the two WD implementations
in Fig. 15.

The WD structure in Fig. 15(a) is characterized by se-
ries/parallel adaptors (P1, P2, S1) designed according to
traditional WDF principles [1] and a 12-port WD topologi-
cal junction J2, based on the vectorial definition of waves
at the ports of the opamps. The scattering matrix SJ2 is
derived by following the approach of Section X and using
eq. (65), where the block-diagonal matrix of free parameters
is ZJ = blkdiag[Z1,2,Z3,4, Z5, Z6, . . . , Z12] and

Q =




1 0 0 0 0 0 1 0 0 0 0 0
−1 1 0 0 0 −1 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0
0 0 −1 0 1 0 0 0 0 0 1 0
0 0 0 1 −1 0 0 0 0 0 0 1



.

According to (51), WD opamp models are adapted by setting

Z1,2 =

[
RopIn1 0

A01RopIn1 RopOut1

]
, Z3,4 =

[
RopIn2 0

A02RopIn2 RopOut2

]
.

The WD structure in Fig. 15(b), instead, is designed by
following the approach in [17] based on a traditional scalar
port-wise definition of waves. The implementation employs
a WD 12-port nonreciprocal junction R2. For computability
reasons, in fact, the two controlled sources of the two opamp
models are embedded in R2. The scattering matrix of R2 is

SR2 = 2ÃT
p [I8 0] X̃−10 [I8 0]T ÃpGJ − I12 , (79)

where GJ = Z−1J = diag[G1, . . . , G12], X̃0 is the 10 × 10
matrix obtained by removing the kth column (1 ≤ k ≤ 11)
and the kth row of matrix X0 reported in Fig. 16, while Ãp

TABLE I
SIZE OF THE BIGGEST MATRIX TO BE INVERTED

Circuit Approach in [17] Proposed Approach
Active Band-Pass Filter 4× 4 3× 3

Phono Preamplifier 10× 10 6× 6

is the 8× 12 matrix obtained removing the kth row of matrix
Ap given by

Ap =




−1 −1 −1 −1 −1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 0 1 1




.

The four resistances (RopIn1, RopOut2, RopIn2, RopOut2) of the
opamp models are connected to the junction R2.

The two WDFs in Fig. 15 can be both implemented in
a fully explicit fashion without resorting to iterative solvers
and they are equally accurate as shown in Fig. 17. Also in
this case, the proposed vector implementation in Fig. 15(a)
is characterized by a higher degree of modularity as the
opamp elements and the topological connections are modeled
with separated WD blocks. Moreover, the computational cost
required for the formation of SJ2 is lower than the cost
required for the formation of SR2 , despite they both describe
a 12-port WD junction. In fact, the most expensive operation
involved in the derivation of SR2

is the inversion of the 10×10
matrix X̃0, while, in the derivation of SJ2

, it is the inversion
of the 6× 6 matrix

(
QZ−1QT

)
, as reported in Table I.

XII. CONCLUSIONS AND FUTURE WORK

In this manuscript we generalized the port-wise definition
of wave variables, employed in traditional WDFs, to a vector
definition, which is particularly useful for modeling circuits
with two-port elements, e.g., ideal and resistive controlled
sources, gyrators and nullors. The proposed vector wave
definition allows us to overcome several computability issues,
such as the delay-free-loops that are formed when connecting
a two-port to a topological junction, which are unavoidable in
WDFs based on scalar waves. This is done while preserving
the modularity of traditional WDFs, in which the topological
connections and the elements are modeled separately, i.e.,
using different WD scattering blocks. Moreover, as discussed
in Section XI, the proposed approach generally requires the
inversion of smaller matrices for the computation of the
scattering matrices of multi-port junctions.

The presented WDF modeling approach can be extended to
circuits containing M -port elements, with M ≥ 2, adopting
the following vector definition of waves, that generalizes (3),

a1:M = v1:M + Z1:M i1:M , b1:M = v1:M − Z1:M i1:M ,

where a1:M and b1:M are M × 1 vectors of incident waves
and reflected waves, respectively, v1:M and i1:M are vectors
collecting port voltages and port currents of the M -port,
respectively, while Z1:M is a M × M full-rank matrix of
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Fig. 14. Phono preamplifier circuit.
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Fig. 15. WDF realizations of the circuit in Fig. 14.

free parameters. An in-depth analysis of the properties of WD
models of relevant M -ports based on such a vector definition
of waves will be provided in future works.

The proposed approach could be combined with the macro-
modeling method for linear multi-ports presented in [32].

As a further development, it is worth applying vector WDFs
to the implementation of circuits with nonlinear multi-port
elements [33]–[35], such as transistors or nonlinear amplifiers.
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[16] G. O. Martens and H. H. Lê, “Wave digital adapters for reciprocal
second-order sections,” IEEE Trans. Circuits Syst., vol. 25, no. 12, pp.
1077–1083, Dec. 1978.

[17] K. J. Werner, A. Bernardini, J. O. Smith, and A. Sarti, “Modeling circuits
with arbitrary topologies and active linear multiports using wave digital
filters,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 65, no. 12, pp.
4233–4246, Dec 2018.

[18] A. Bernardini, K. J. Werner, J. O. Smith III, and A. Sarti, “General-
ized wave digital filter realizations of arbitrary reciprocal connection
networks,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 66, no. 2, pp.
694–707, Feb 2019.

[19] D. Fränken, J. Ochs, and K. Ochs, “Generation of wave digital structures
for networks containing multiport elements,” IEEE Trans. Circuits Syst.
I: Reg. Papers, vol. 52, no. 3, pp. 586–596, Mar. 2005.

[20] K. J. Werner, J. O. Smith, and J. S. Abel, “Wave digital filters adaptors
for arbitrary topologies and multiport linear elements,” in Proc. 18th Int.
Conf. Digital Audio Effects, Trondheim, Norway, Nov.–Dec. 2015.

[21] K. J. Werner, W. R. Dunkel, M. Rest, M. J. Olsen, and J. O. Smith,
“Wave digital filter modeling of circuits with operational amplifiers,” in
Proc. 24th Eur. Signal Process. Conf. (EUSIPCO), Budapest, Hungary,
Aug. 2016, pp. 1033–1037.

[22] M. Verasani, A. Bernardini, and A. Sarti, “Modeling Sallen-Key audio
filters in the wave digital domain,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., New Orleans, LA, Mar. 2017, pp. 431–435.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 00, NO. 0, XXX 20XX 14

X0 =




G1 + G2 + G3 + G4 + G5 −G1 −G2 0 0 −G3 −G4 0 −G5 −1 −1
−G1 G1 + G6 −G6 0 0 0 0 0 0 0 0
−G2 −G6 G6 + G8 + G2 0 −G8 0 0 0 0 0 0
0 0 0 G7 −G7 0 0 0 0 +1 0
0 0 −G8 −G7 G7 + G8 + G9 −G9 0 0 0 0 0

−G3 0 0 0 −G9 G9 + G3 + G10 −G10 0 0 0 0
−G4 0 0 0 0 −G10 G4 + G12 + G10 0 −G12 0 0
0 0 0 0 0 0 0 G11 −G11 0 +1

−G5 0 0 0 0 0 −G12 −G11 G11 + G12 + G5 0 0
−1 −A01 A01 +1 0 0 0 0 0 0 0
−1 0 0 0 0 −A02 A02 +1 0 0 0




Ap =




−1 −1 −1 −1 −1 0 0 0 0 0 0 0
+1 0 0 0 0 +1 0 0 0 0 0 0
0 +1 0 0 0 −1 0 +1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 +1 −1 −1 0 0 0
0 0 +1 0 0 0 0 0 +1 +1 0 0
0 0 0 +1 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 +1 0 0 0 0 0 +1 +1




1

Fig. 16. Phono preamplifier. Nodal matrix X0 needed for the formation of SR2 .
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