
  

Abstract –This paper proposes a novel artificial neural network 

(ANN) based control method for a dc/dc buck converter. The 

ANN is trained to implement optimal control based on 

approximate dynamic programming (ADP). Special 

characteristics of the proposed ANN control include: 1) The 

inputs to the ANN contain error signals and integrals of the error 

signals, enabling the ANN to have PI control ability; 2) The ANN 

receives voltage feedback signals from the dc/dc converter, 

making the combined system equivalent to a recurrent neural 

network; 3) The ANN is trained to minimize a cost function over 

a long time horizon, making the ANN have a stronger predictive 

control ability than a conventional predictive controller; 4) The 

ANN is trained offline, preventing the instability of the network 

caused by weight adjustments of an on-line training algorithm. 

The ANN performance is evaluated through simulation and 

hardware experiments and compared with conventional control 

methods, which shows that the ANN controller has a strong 

ability to track rapidly changing reference commands, maintain 

stable output voltage for a variable load, and manage maximum 

duty-ratio and current constraints properly. 
 

Index Terms – dc/dc buck converter, artificial neural network, 

approximate dynamic programming, optimal control 

I.  INTRODUCTION 

ITH the fast developments of microgrids, electric 

vehicles and renewable generations, dc/dc converters 

have been widely used to regulate output dc voltage 

and power from the distributed energy sources [1-3]. In these 

applications, the controller design of dc/dc converters is still 

facing the challenge to accurately and rapidly maintain desired 

output voltages due to the low switching frequency normally 

required in high-power converters, load variations, dc input 

voltage disturbances, parameter deviation, and current and 

PWM saturation constraints of the converters [2-4]. 
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Two types of conventional control methods, voltage mode 

control (VMC) and current mode control (CMC), are typically 

used for the control of a dc/dc converter. The traditional VMC 

uses PI, Type II, or Type III compensators, and has a single 

control loop with voltage feedback [5, 6]. The implementation 

is simple, but the load-disturbance rejection ability is poor. 

The CMC improves the performance through a cascade 

structure, by introducing an inner inductor current-control 

loop. This structure has the ability to limit the inductor current 

due to the introduction of the inner current-loop controller. 

However, the response speed of the output voltage control 

could be affected due to the two-nested-loop configuration.     

In recent years, various advanced control techniques for 

dc/dc converters have been developed [7-13]. Sliding-mode 

control (SMC) is a popular method developed in recent years 

for dc/dc converter control. The technology has been shifted 

from early first-order SMC [7] to recent second-order SMC 

[8-10]. Second-order SMC improves performance measures 

such as transient response, in comparison to first-order SMC, 

but an extra capacitor current sensor is usually needed to 

achieve this. Conventionally, hysteresis-modulation (HM) 

based SMC isused for control of a dc/dc converter, but one of 

the major problems is that the switching frequency is not 

constant [7-9]. Recently, PWM-based SMC was developed to 

overcome the variable switching frequency issue [10, 11]. In 

[10], a nested SMC strategy is adopted in both voltage and 

current control loops for DC/DC converters. With this design, 

the robustness of the paralleled converter system is improved. 

In [11], a disturbance observer is integrated with a PWM-

based sliding mode approach to improve the voltage tracking 

performance. But the PWM-based SMC typically requires 

high switching frequency and high sampling rate in order to 

assure a good dynamic response, which can cause excessive 

losses and complicated filter designs, and is not suitable for 

high-power converters. A few research articles show the use 

of model predictive control (MPC) for control of dc/dc 

converters, because of its fast dynamic response [12, 13]. 

However, a weakness of the MPC is it would become unstable 

when the model parameters differ from the actual values. 

Artificial neural networks (ANNs) have been applied to 

dc/dc converter control in recent years. Nevertheless, ANNs 

have not been developed to implement predictive and optimal 

control of the dc/dc converter based on approximate dynamic 

programming (ADP). In [14], a feedforward ANN is proposed 

to assist the sliding-mode based control of a dc/dc Cuk 

converter, which is fundamentally still a sliding-mode based 
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controller. In [15], the authors introduced a neural network to 

improve the performance of a fuzzy-controlled dc/dc 

converter. In [16], an adaptive fuzzy-neural-network control 

scheme is designed based upon the SMC for the voltage 

tracking of a dc/dc boost converter. Similar to [14] though, the 

overall control structure is a sliding-mode based controller, 

while the purpose of the fuzzy-neural-network scheme is to 

help improve the SMC performance.   

Although significant research has been conducted in 

optimal control of nonlinear systems based on ADP [17-21], 

none focuses on dc/dc converter control. In [21], an ANN 

control strategy was developed for control of dc/ac inverters 

based on ADP [17] while how to implement ADP-based ANN 

control for dc/dc converters remains unknown. The authors in 

[20] proposed an ADP-based optimal switching strategy for 

dc/dc converter control without using ANNs. However, the 

ADP-based power-converter switching mechanism is similar 

to a hysteresis switching strategy used in SMC [7, 8]. As a 

result, the switching frequency varies depending on the 

optimal action generated by the ADP strategy proposed in [19], 

which is difficult to implement in practical applications.  

This paper develops ADP-based ANN control in the PWM 

switching framework for dc/dc buck converters. Some special 

features of the proposed method include: 1) The control 

objective of a dc/dc buck converter is defined based on ADP 

and implemented via an ANN; 2) The complete system 

dynamic equation for the dc/dc converter is integrated into the 

ANN development to achieve the ADP-based optimal control; 

3) A recurrent network structure is formulated by integrating 

the dc/dc converter feedback and the ANN as an integrated 

system; 4) Error signals and integrals of error signals are used 

as network inputs to let the ANN gain PI control ability; 5) 

The ANN is trained offline to avoid the instability of the ANN 

at runtime that could be caused by network weight 

adjustments of a real-time training algorithm. On the other 

hand, compared to the conventional control methods, there are 

two main limitations associated with the proposed control 

method. One is that training of the ANN controller is needed 

in the design stage of the controller. The other one is that more 

computing time is needed in the implementation stage of the 

controller. However, it is appropriate to point out that since 

the proposed ANN controller is trained offline, the proposed 

ANN controller can be easily implemented using a low-cost 

DSP as demonstrated by the hardware experiment shown in 

Section VI of the paper. 

The rest of the paper is structured as follows: Section II 

reviews conventional control methods of a buck converter, 

Section III presents the proposed ANN-based control of the 

buck converter. Section IV shows how to train the ANN to 

implement the ADP-based optimal control for the dc/dc buck 

converter. Section V presents simulation evaluation, and the 

hardware experiment evaluation is presented in Section VI. 

Finally, Section VII summarizes with conclusions. 

II.  CONVENTIONAL CONTROL OF BUCK CONVERTER 

A.  Buck Converter Model 

A basic buck converter is shown in Fig. 1, where Vdc 

represents the input dc voltage. Using the converter average 

model and the generator sign convention, the voltage and 

current-balance equations across the smoothing inductor and 

capacitor of the dc/dc converter are  

A L L L ov R i L di dt v= +  +  (1a)

c L oC dv dt i v R = −  (1b)

( )o C L o cv R i v R v= − +  (1c) 

where RL and L are the resistance and inductance of the 

inductor, RC and C are the resistance and capacitance of the 

capacitor, vA represents the average voltage at the diode, vC is 

the capacitor voltage, and vo is the output voltage to the load 

R, and iL is the current flowing through the inductor. 
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Fig. 1.  A dc/dcbuck converter with loads 

In typical controller design of a buck converter, the impact 

of the capacitor resistance is generally neglected, making the 

model of the buck converter (1) as follows: 

A L L L ov R i L di dt v= +  +  (2a)

o L oC dv dt i v R = −  (2b) 

Also, a graphic representation of (2) is usually used for the 

design of a conventional controller [8], as shown in Fig. 2. 

1

L

1

s

1

s

1

C

1

R

-+ -+
d o

vL
i

L
R

-d c
V

vA

 
Fig. 2.  Buck converter graphic model 

B.  VMC based Control  

VMC-based control typically has one voltage control loop. 

To design a VMC controller, a transfer function is needed 

between the buck-converter output voltage vo and the control 

voltage vA generated by the VMC.  This is obtained from (2) 

or Fig. 2 as follows: 

( )2

( ) ( ) 1

( ) 1

o o

A dc L L

V s V s

V s d V s LC s R C L R R R
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Fig. 3.  Buck converter VMC model 

In terms of the buck-converter graphic model shown in Fig. 

2, the block diagram of the closed-loop control system can be 

obtained as shown in Fig. 3, in which Gv(s) represents the 

transfer function of the VMC controller, and vo
* is the 



reference output voltage of the dc/dc converter. A Type-III 

compensator is usually employed [5, 6]. To design the VMC 

controller Gv(s) using the Bode plot design approach, the 

cutoff frequency of the controller is generally selected as one 

to two orders smaller than the converter switching frequency. 

C.  CMC based Control  

CMC typically has a cascade control structure [5]. The 

overall block diagram of the cascade control is shown in Fig. 

4, which consists of an inner current-loop controller, plus an 

outer voltage-loop controller. Typically, decoupling between 

the voltage vo and the current iL is needed [5, 22, 23]. Thus, the 

transfer function between the buck-converter output current iL 

and the control voltage vA generated by the current-loop 

controller is: 

( ) ( ) 1

( )

L L

A dc L

I s I s

V s d V s L R
= =

  +
 (4) 

In terms of the buck-converter graphic model shown in Fig. 2, 

the block diagram of the current-loop control system is 

represented by the inner-block enclosed by the dashed green 

line shown in Fig. 4, in which Gi(s) represents the transfer 

function of the inner current-loop controller, and iL
* is the 

reference current generated by the voltage-loop controller. 

Typically, the current-loop controller is much faster than 

the voltage-loop controller, and is generally assumed to be 

ideal. Hence, the transfer function of the current-loop is 

assumed to be 1 during the design of the voltage-loop 

controller [5, 22, 23]. To design the voltage-loop controller, 

the transfer function between the buck-converter output 

voltage vo, and the control action iL generated by the voltage-

loop controller, is obtained from (2b) as follows: 

( ) 1

( ) 1/

o

L

V s

I s s C R
=

 +
 (5) 

In terms of the graphic illustration shown in Fig. 4, Gv(s) 

represents the transfer function of the outer voltage-loop 

controller, which is designed according to (5), and iL
* is the 

reference current generated by the voltage-loop controller. 
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Fig. 4.  Buck converter CMC cascade voltage-current control model 

Using the Bode-plot approach, the cutoff frequency of the 

voltage-loop controller is normally one order smaller than that 

of the current-loop controller. As a result, under the same 

switching frequency, the response speed of the output voltage 

for the cascade control strategy is generally slower than that of 

the VMC approach. 

D.  Sliding-mode based Control  

Fig. 5 shows a PWM-based second-order SMC approach 

[24], which can overcome the variable switching frequency 

issue associated with traditional SMC, and also can use low 

switching frequency and sampling rate for control of the dc/dc 

buck converter. Similar to the CMC, a cascade SMC control 

structure is employed, which includes a second-order current-

loop SMC and a second-order voltage-loop SMC. The sliding 

surfaces for the current- and voltage-loop SMCs are defined as 

(6a) and (6b), respectively, as shown by 

i i i iS e e dt= +    (6a) 

v v v vS e e dt= +    (6b) 

where 
*

i L Le i i= − and
*

v o oe v v= − . Here vo
* and iL

* represent 

output voltage and inductor current references, respectively. 

According to (2a) and (2b), the control actions generated by 

the current- and voltage-loop SMCs are designed as (7a) and 

(7b), respectively, as shown by 

( )
*

* sgn( )o o

L v v v v v v

dv v
i C C e a S b S

dt R
=  + +  +  +   (7a) 

( )
*

sgn( )oL L L

i i i i i i

dc dc dc dc

vdi i RL L
u e a S b S

V dt V V V
= + + + +  +   (7b) 

where va , vb and v  are the parameters of the voltage-loop 

SMC, ia , ib and i are the parameters of the current-loop 

SMC, and u is the duty ratio. Details about the PWM-based 

cascade SMC control design and analysis are provided in [24]. 

C

R

LR L

Li oi

vo

dcV Drive

PWM

Ci

Eq. (3b)

Li
oi

voEq. (3a)

vo

u
iL

*

 
Fig. 5.  A PWM-based cascade SMC for Buck converter 

III.  ANN CONTROL OF BUCK CONVERTER 

A.  Buck Converter State-Space Model  

The ANN controller is developed based on the complete 

state-space model of the buck converter, which is obtained 

from (1) by first rearranging (1c) to get ( )c o C L ov v R i v R= − − . 

Substituting this into (1b) and combining with (1a) gives the 

state-space model in terms of iL and vo, as follows: 

( )

( ) ( ) ( )

1 1L

L L

CL C AC

o o

CC C

R L L L
i id

RRL CR R R vL CRR
v vdt

R R LR R CL R R CL

− −   
      

−= ++      −      ++ +   

 (8) 

where the system states are iL and vo, and vA is proportional to 

the output of the ANN controller [25]. 

As the ANN controller is a digital controller, a discrete 

model of (8) is needed. This is obtained via a zero- or first-

order hold discrete equivalent mechanism as [26]: 



( )

( )

( )

( )
( )
0

L s s L s A s

o s s o s

i kT T i kT v kT

v kT T v kT

 +     
= +     

+     
A B  (9) 

in which Ts represents the sampling time, A is the system 

matrix, and B is the input matrix. Note: matricesA and B are 

obtained from (8) based on a chosen discrete equivalent 

mechanism [26]. Since Ts is present on both sides, (9) can be 

simplified as (10) where k is an integer time step. 

( )

( )

( )

( )
( )1

,
1 0

L L A

o o

i k i k v k

v k v k

 +     
= +     

+     
A B  (10) 

B.  ANN Control Structure 

The overall ANN control structure is shown in the lower 
part of Fig. 6, in which the ANN is a feedforward network. 
The ANN consists of four different layers: an input layer, two 
hidden layers, and an output layer. The input layer contains 
two inputs: the error term and the integral of the error term as 
defined by: 

( ) ( ) ( ) ( )*

0
, ( ) ,

s

o o o

kT

v o o v ve k v k v k s k e t dt= − =   (11) 

where ( )*

ov k is the reference output voltage of the dc/dc 

converter. The two inputs are divided by their appropriate 
gains, and then processed through a hyperbolic tangent 
activation function. Each gain is selected as 4 for the 
simulation and experimental Buck converter setup shown in 
Sections V and VI. The input layer then feeds into the hidden 
layers. Each of the two hidden layers contains six nodes. Each 
node at the hidden layers uses a hyperbolic-tangent activation 

function. Finally, the output layer gives
*

( )
A

v k , the output of 

the ANN. This output is multiplied by a gain, kPWM, which 
represents the PWM gain, to obtain the final control action, vA, 
of the dc/dc converter given by: 

( ) ( )( ), ( ), ,
o oA PWM v vv k k A e k s k w=   (12) 

where w  represents the network’s overall weight vector, and  

A(•) denotes the whole ANN. The error signal and integral of 

the error signal as the network inputs would enable the ANN  

to gain important PI control characteristics. Besides, there are 

hundreds of 'PI' gains for the ANN controller instead of two 

gains for a conventional PI controller, and the training of the 

network should enable its performance to match, and 

potentially exceed, that of an optimal  “PI” controller.  
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Fig. 6.  ANN control for buck dc/dc converter 

It is also important to point out that although the ANN is a 

feedforward network, the feedback signal of the dc/dc 

converter applied as the input to the ANN makes the 

combined ANN and dc/dc converter equivalent to a recurrent 

neural network. This property is considered properly and 

accurately in training the ANN as shown in Section IV, which 

would allow the ANN to gain important predictive control 

ability.  

C.  Maximum Duty-ratio and Current Limitations  

During the real-time control stage, it is possible that the 

controller output voltage may be beyond the maximum duty 

cycle constraint, or the inductor current may be beyond the 

maximum inductor current limitation.  

To handle the maximum duty cycle constraint, a locking 

mechanism (Fig. 6) is developed with the ANN controller. 

The mechanism first detects whether the controller output 

voltage is beyond the PWM saturation limit. If so, the error 

signal passed to the ANN controller will be blocked and the 

controller just maintains the output voltage at the maximum 

duty cycle until there is a potential to draw the ANN controller 

out of the PWM saturation limit.   

To handle the maximum inductor current constraint, a PI 

regulation block (Fig. 6) is added to adjust the reference 

output voltage of the dc/dc converter. However, this PI 

regulation block is only initiated when the actual inductor 

current is over the maximum current constraint and stops 

when the actual inductor current is about 2% below the 

maximum current constraint. Here, 2% is a dead-band margin 

to assure that the PI controller for the maximum current 

limitation does not turn on and off constantly at the maximum 

current constraint. Later, it will be demonstrated by the 

simulation and hardware experiments shown in Sections V 

and VI that the proposed ANN controller correctly handles the 

maximum current constraint, even using such a small dead-

band margin. 

IV.  TRAINING ANN TO IMPLEMENT ADP-BASED CONTROL 

A.  ADP-based Control  

ADP employs the principle of Bellman’s optimality [17] 

and is a very useful tool for solving optimization and optimal 

control problems. The typical structure of discrete-time ADP 

includes a discrete-time state-space system model and a 

performance index or cost associated with the system [17, 18]. 

For the ADP-based control of the dc/dc converter, the 

discrete-time state-space model is (10) and the performance 

index or cost is  

( ) ( ) ( )
2

*

1

N

o o o

k

C v v k v k

=

 = −   (13) 

where N is the trajectory length and  is a fractional number. 

The objective of the ADP-based control for the dc/dc 

converter is to determine a sequence of control actions vA(k), 

k=1, 2, ..., N, such that the ADP cost (13) is minimized. 

Compared to the cost function normally used for the 

conventional MPC methods, the ADP cost function 

emphasizes minimizing the difference between the actual and 

reference voltages over a much longer time horizon, instead of 

the one-step ahead that is normally used in the conventional 



MPC [13]. Thus, ADP-based control would provide a much 

stronger predictive control ability than conventional MPC. 

B.  Training ANN to Implement ADP 

The ADP-based control is achieved through the ANN that 

is trained to minimize the ADP cost function (13). We used 

the Levenberg-Marquardt (LM) algorithm [27] to train the 

ANN, and the Jacobian matrix needed by the LM algorithm is 

calculated via a Forward Accumulation Through Time (FATT) 

algorithm [28]. Similar to many other neural network training 

algorithms, the most important part of the training algorithm is 

the calculation of the gradient of (13) regarding the weight 

vector. Define ( ) ( )
2

*( ) o oU k v k v k  = −  and ( ) ( )V k U k= , 

then, the gradient /C w   can be written in matrix form as 

 
2

1

1

( )
( )

2 ( ) 2 ( )

N

N
Tk

k

V k
C V k

V k J w V
w w w

=

=


 

= = =
  


  (14) 

where the Jacobian matrix ( )J w is  

1

1

(1) (1)

(1)

( ) ,  

( ) ( ) ( )

  
     

  = =
  
     

   

M

M

V V

w w V

J w V

V N V N V N

w w

 (15) 

Therefore, the weight update can be expressed by  

1

( ) ( ) ( )T Tw J w J w J w V
−

  = − +
 

I  (16) 

Here µ>0 is an adaptable parameter set by the LM algorithm 

[28].  The network weights are updated by 

updatew w w= + 
 

(17) 

Note: the combination of the ANN and the dc/dc converter is 

equivalent to a recurrent network as explained in Section III-B. 

Also, the ANN is trained offline, meaning that there is no 

further training involved at the real-time control stage. A more 

detailed description about training a recurrent network using 

LM and FATT algorithms is provided in [28]. In general, in 

each experiment, training continued until one of the following 

three stopping criteria were met [28]: 1) when the training 

epoch reaches the maximum number of training epochs, 2) 

when μ is larger than μmax, a predefined maximum μ value, or 

3) when the smallest gradient of (14) is less than a predefined 

minimum gradient. 

V.  SIMULATION EVALUATION 

The parameters of the dc/dc buck converter used in both 

the simulation and experiment evaluation are as follows: 

RL=0.3, L=5.63mH, RC=0.02, and C=5F. The nominal 

input voltage is 42V.  

A.  Tuning of Conventional Controller 

The conventional VMC and CMC controllers were tuned 

based on the description shown in Sections II-B and II-C 

using the phase-margin of 60. In the simulation, the converter 

switching frequency was 20kHz. To reject the switching 

noises and disturbances, the crossover frequency of the VMC 

Type-III compensator is selected lower than the switching 

frequency, usually from 0.1fsw to 0.05fsw. Therefore the 

bandwidth of the VMC compensator was selected as 1000 Hz. 

For the CMC, a cascade PI configuration was used. To limit 

the switching noise in the current loop, the bandwidth of the 

current PI controller was selected as 1000 Hz. Then the 

bandwidth of the outer voltage loop was selected as 1000/10 = 

100 Hz. The SMC controller was tuned according to Section 

II-D and [24].  

B.  Training of ANN Controller 

The ANN was trained to implement ADP-based control 

through multiple training experiments. In each experiment, the 

ANN was trained repeatedly to track a variety of randomly 

generated reference voltage trajectories. The procedure of 

each training experiment is as follows: 1) randomly generate a 

sample reference output voltage trajectory; 2) randomly 

generate a sample initial state vo(1) where the value 1 indicates 

a start time; 3) unroll the converter output voltage trajectory 

from the initial state; 4) train the ANN as detailed in Section 

IV-B; and 5) repeat the process for other randomly generated 

reference voltage trajectories and sample initial states. In each 

training experiment, a dozen randomized reference voltage 

trajectories were created to train the network. Each reference 

trajectory duration was 1 second, with a sampling time of 

Ts=0.1ms, and was changed randomly every 0.1 seconds. The 

training of each experiment for all randomly generated 

reference output voltage trajectories continued until reaching a 

stop criterion (Section IV-B). Each training experiment started 

with randomly generated network weights, which were 

initially randomized using a uniform distribution within ±0.1. 

The impact of load and input voltage variations are considered 

as noises in each training experiment. Each training 

experiment took about 10 to 30 minutes to complete on a PC 

with a 2.3GHz CPUand 16GB RAM. Since each experiment 

starts with randomly generated weights, each may converge to 

a different ADP cost. The final network weights were selected 

from the training experiment having the lowest ADP cost. 

Compared to the conventional control methods, the trained 

ANN controller has a very strong adaptive ability to withstand 

circuit parameter changes that may appear in real-life 

conditions, such as the increase or decrease of L and C values 

beyond the nominal values, as shown in the subsection below. 

C.  Control Evaluation within System Constraints  

The tuned conventional controllers shown in Section V-A 

and the trained ANN controller shown in Section V-B are first 

evaluated and compared via simulation. The simulation 

models of traditional and ANN-controlled dc/dc buck 

converter were built by using SimPowerSystems. Again, the 

switching frequency was 20kHz. The evaluation focuses on 

the output voltage and inductor current under different 

conditions using conventional and ANN control techniques as 

presented in Sections II to IV.  
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Fig. 7.  Simulated results for ANN vs. VMC Type III, CMC cascade PI, and cascade SMC:a) a load change from 7.33 to 11, b) a reference voltage change 

from 18V to 24V, c) an input voltage change from 42V to 47V, d) the same load change as (a) when L decreases by 50%, e) the same load change as (a) when L 

decreases by 85%

Fig. 7a) compares the control of the buck converter under a 

load change from 7.33 to 11using VMC-Type III, CMC-

Cascade PI, Cascade SMC, and ANN. The comparison shows 

both the conventional VMC and the proposed ANN controller 

responding faster to maintain the output voltage at a constant 

level than the cascade PI and SMC control. This is due to the 

fact that there are two control loops for the CMCand SMC 

approaches. Thus, the response speed of the external voltage 

loop would be slower than that of a single voltage control loop 

according to the design rules presented in Section II. Overall, 

the ANN controller shows the best performance and fastest 

response speed, demonstrating the higher bandwidth of the 

ANN controller than that of others. 

Fig. 7b) compares the control of the buck converter under 

a reference-voltage change from 18V to 24V using VMC, 

CMC, SMC, and ANN. The comparison shows that the ANN 

controller has the fastest response speed to track a reference 

voltage change than other control methods. 

Fig. 7c) compares the control of the buck converter as the 

input voltage changes from 42V to 47V, to examine how the 

four different control methods behave in maintaining output-

voltage stability when there is a disturbance in the supply 

voltage. Since there is no load or reference output voltage 

change, the CMC-Cascade PI has better performance than the 

VMC-Type III. However, the ANN still has the best 

performance, demonstrating its strong adaptive ability to 

manage a system condition variation.  

Figs. 7d) and 7e) compare the control of the buck 

converter when the inductance value is different from the 

inductance value used in tuning conventional controllers and 

training the ANN controller. Normally, the performance of the 

controllers would be worse as the inductance value reduces, 

because this would make the dc/dc converter more likely to 

get out of continuous-conduction mode. Although more 

oscillations are shown with all the four control methods, the 

ANN has the smallest degradation in performance, especially 

for a large parameter variation away from its nominal value 

(Fig. 7e), demonstrating its strong robust ability under system 

parameter variations. 

D.  Control Evaluation beyond System Constraints  

Physical system constraints of the dc/dc converter are an 

important issue that needs to be addressed. Typically, there are 

two constraints: maximum duty-ratio constraint and inductor 

current constraint. Fig. 8 evaluates the performance of the 

dc/dc converter using the ANN and conventional control 

strategies under the two physical constraint conditions. It is 

assumed in the simulation that the maximum inductor current 

is 2A. Also, the dc supply voltage is 30V.  

For a fair comparison, the mechanism used to handle the 

PWM saturation limit shown in Fig. 6 is applied to all the 

conventional methods. However, the mechanism used to 

handle the current limitation shown in Fig. 6 cannot be applied 

to VMC, as this would result in high oscillations of the output 

voltage. For both the CMC and SMC, the current limit control 

is handled by the inner-loop current controller.  

For the ANN controller (Fig. 8d), when the inductor 

current is over the maximum current limit, the controller is 

(a1) 

(b1) 

(c1) 

(d1) 

(a2) 

(c2) 

(d2) 

(b2) 

(e1) 
(e2) 
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(c) SMC (d) ANN 

Fig. 8.  Simulated results for ANN vs. VMC Type III, CMC cascaded PI, and SMC under: a maximum inductor current constraint of 2A (a1)-(a2), (b1)-(b2), 

(c1)-(c2), & (d1)-(d2); b) the maximum duty-ratioconstraint (a3)-(a4), (b3)-(b4), (c3)-(c4), & (d3)-(d4) 

 

able to react immediately to maintain the output voltage at a 

lower value, while preventing the inductor current from 

exceeding the maximum limit; when a high reference voltage 

command is presented to the controller, the ANN can maintain 

the output voltage at the highest voltage that can be outputted 

by the converter, while stability and controllability of the 

dc/dc converter are not affected before and after the maximum 

duty-ratio operation period. 

The CMC cascade-PI and cascade SMC control structures 

can properly prevent the inductor current from exceeding the 

maximum inductor current limit too. But, the VMC Type III 

controller is unable to limit the inductor current, because the 

current limit control used for the ANN cannot be applied to 

the VMC as explained above. When using the locking 

mechanism presented in Fig. 6 and Section III-C, all the three 

conventional methods can manage the PWM saturation 

constraint properly.  

VI.  HARDWARE EXPERIMENT EVALUATION AND VALIDATION 

A.  Experiment Setup 

To further validate the proposed ANN controller, a DSP-

based digital control systemwas implemented. The 

experimental setup (Fig. 9) consists of four main parts: (i) 

adc/dc Buck converter built by using a three-phase converter 

board from Vishay HiRel Systems which has the maximum 

allowable switching frequency of 20kHz, (ii) a LabVolt LC 

circuit module representing the inductor and capacitor of the 

Buck converter, (iii) a dSPACE DS1103 controller board to 

collect inductor current and output voltage/current of the dc/dc 

converter, and (iv) a sensor board to convert measured voltage 

and current to dSPACE compatible format. The converter 

switching frequency is 10kHz and the controller sampling 

time is 0.1ms.  

B.  Experiment Results 

Fig. 10 shows the comparison of VMC-Type III, CMC-

Cascade PI, cascade SMC and ANN for control of the dc/dc 

Buck converter. The left side of Fig. 10 shows the Buck 

converter’s ability to follow a reference voltage change from 

18V to 24V. Again, in the experiment condition, the ANN 

controller shows less overshoot and faster response speed than 

the conventional control methods in tracking the reference 

output voltage change. The right side of Fig. 10 shows the 

Buck converter’s ability to maintain a constant output voltage 

under a load change. As shown in the figure, the ANN 

controller presents a much stronger ability in maintaining 

output voltage stability under the variable load condition. 

 

 
Fig. 9.  Hardware laboratory testing and control systems 
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 Fig. 10. Hardware results for VMC vs. CMC Cascade PI vs. Cascade SMC vs. ANN: a) Change of v*
o from 18V to 24V, b) Load change from 7.33 to 11 

 

Fig. 11 shows the experiment results of the ANN controller 

when considering the maximum inductor current (2A) and 

duty-ratio constraints. In Fig. 11a, when a load change causes 

the inductor current to be over the maximum current limit, the 

output voltage of the dc/dc converter is dropped automatically 

to regulate the inductor current within the maximum current 

limitation. In Fig. 11b, when the reference voltage increases 

and makes the duty-ratio over the maximum duty-ratio 

constraint, the output voltage is automatically limited; and 

when the reference voltage reduces, the ANN controller is 

able to return to its normal condition. 

Vo

Imax 2A

Vo

Vdc 30V

50ms/div 10ms/diviL
iL

 

Fig. 11. Hardware results for ANN under a) inductor current constraint; b) 

duty-ratioconstraint 

VII.  CONCLUSION 

This paper presents an ANN-based optimal and predictive 

control based on ADP for dc/dc Buck converters. Compared 

to conventional control methods, the ANN controller shows 

better performance in various aspects. In addition, the ANN 

controller can handle the control of the dc/dc converter 

properly under both the maximum inductor current and duty 

ratio constraints, while a conventional controller needs to have 

an inner-current loop through a cascade control structure to 

handle the current limit control. Compared to the conventional 

control methods, the ANN controller responds faster and 

maintains a more stable output voltage. The hardware 

experiment confirmed that the ANN controller is able to track 

reference commands, maintain output voltage stability under 

variable load and input voltage conditions, and manage the 

control of the dc/dc converter correctly under the maximum 

duty-ratio and inductor current constraints. The study shows 

that it is feasible to implement the ANN-based control for 

practical dc/dc Buck converters. 

The proposed ANN control method can be extended to 

other dc/dc converters, such as Boost and Buck-Boost 

converters. However, since the state-space models of the 

Boost and Buck-Boost converters are different from that of the 

Buck converter, the training algorithms for each of the other 

dc/dc converters need to be redesigned and revalidated. We 

plan to extend the proposed ANN-ADP control method to 

other dc/dc converters through future research. 
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