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Adaptive Fuzzy Output-Feedback Control Design
for a Class of p-Norm Stochastic Nonlinear

Systems With Output Constraints
Liandi Fang , Shihong Ding , Ju H. Park , Senior Member, IEEE, and Li Ma

Abstract— This paper considers the control problem of p-norm
stochastic nonlinear systems with output constraints, while the
system nonlinearities are completely unknown and the system
states are unavailable except the output. A nonlinear observer
is constructed to estimate the unmeasurable states. Then, based
on the constructed observer and a tan-type barrier Lyapunov
function (BLF), an adaptive fuzzy output-feedback control strat-
egy is developed by combining the technique of adding a power
integrator with the fuzzy logic systems (FLSs). The proposed
scheme enables that all the signals of the considered closed-loop
systems are bounded in probability while the prespecified output
constraint is not violated. Finally, a numerical example verifies
the validation of the proposed scheme.

Index Terms— Fuzzy output-feedback control, stochastic non-
linear systems, adding a power integrator, output constraints,
state observer.

I. INTRODUCTION

OVER past decades, various control problems of nonlinear
systems have always been concerned in the control

field, such as event-triggered control [1], sliding-mode control
[2], [3], finite-time control [4], [5], neural/fuzzy control [6]–[8]
and so on. In recent years, the constrained control problem of
nonlinear systems has received growing attention since many
real systems are often subject to output/state constraints for
performance specifications and/or safety reasons [9]. Since
the barrier Lyapunov function has been proposed and verified
to be a useful tool for dealing with the constraints [10], lots
of BLF-based strategies have been subsequently developed to
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address the control issues for different deterministic and sto-
chastic nonlinear systems with output/state constraints. After
the work of [10], references [11] and [12] have respectively
solved the adaptive state-feedback control and event-triggered
control by means of log-type BLFs for pure-feedback and
interconnected nonlinear systems with state constraints, and
the integral BLFs have been proposed to address the adaptive
control problem in [13], [14]. Later, the BLF-based approaches
have been extended to stochastic nonlinear systems. For
examples, an adaptive controller and a finite-time controller
have been successively designed by using tan-type BLFs
in [15] and [16] for strict-feedback stochastic systems with
output or full-state constraints. Ulteriorly, references [17], [18]
have proposed two novel tan-type BLFs and considered the
second-order sliding mode control of nonlinear constrained
systems. Meanwhile, some adaptive neural or fuzzy control
schemes have also been recently presented for some kinds
of nonlinear systems subject to output/state constraints and
unknown nonlinear functions. For instances, reference [19]
has addressed the adaptive fuzzy constrained control for
multi-input multi-output nonstrict-feedback nonlinear systems;
the adaptive fuzzy and neural control problems have been con-
sidered for stochastic constrained nonlinear switched systems
with unknown nonlinearities in [20] and [21], respectively.

It should be noted that above methods are strictly restricted
on the state-feedback control field. Nevertheless, it is gen-
erally known that the system states are rarely completely
measurable, or are observable with requiring high observation
costs in the practical systems [22], [23]. For this reason,
the output-feedback control has been paid much attention
since it does not need the measurability of the states. For
stochastic nonlinear systems without constraints, the results
about output-feedback control are rich. References [24]–[29]
have focused on studying the output-feedback control problem
for stochastic nonlinear systems with satisfying some growth
conditions or with unknown nonlinearities. In contrast with
stochastic systems without constraints, few valuable results of
output-feedback control have been obtained for stochastic con-
strained nonlinear systems. An observer-based control strategy
has been proposed for strict-feedback stochastic nonlinear sys-
tems with an output constraint in [30], and reference [31] has
investigated the neural output-feedback control for stochastic
full-state-constrained systems.

However, the stochastic nonlinear systems considered in
above-mentioned works are all strict-feedback systems rather
than p-norm stochastic ones with the ratios of positive
odd integers as the fractional powers. Compared with the
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strict-feedback systems, the research on p-norm stochastic
nonlinear systems has started relatively later and is more
challenging due to the lack of controllability/existence in the
Jacobian linearization. Also for this reason, such a class of
stochastic systems have attracted more interest. By taking
advantage of the adding a power integrator technique [32],
the state-feedback or output-feedback control have been well
studied under some nonlinear growth conditions for such
kinds of systems without any constraints [33]–[39]. Recently,
the researching topics of p-norm stochastic nonlinear sys-
tems have been extended to the control problems in the
cases of unknown nonlinearities or output constraints. The
requirements of growth conditions in [33]–[39] have been
removed by references [40], [41], and subsequently the decen-
tralized neural state-feedback controller has been constructed
for large-scale stochastic high-order nonlinear systems. Also,
references [42], [43] have further addressed the neural control
for switched stochastic high-order systems. The progress of
constrained control of p-norm stochastic nonlinear systems
has only been made in recent three years, which has been
motivated by the achievements of p-norm deterministic con-
strained systems [44]–[46]. Based on some growth conditions,
two state-feedback control algorithms have been successively
developed for p-norm stochastic nonlinear systems with sym-
metric and asymmetric output constraints in [47] and [48].
Meanwhile, references [49]–[51] have further considered the
neural or fuzzy control for this kind of systems subject to
output/state constraints.

It is however worth noting that all above works [47]–[51]
about p-norm stochastic constrained systems are strictly
required to be available on the states, which implies that the
proposed constrained control schemes would be invalid when
only the output is available. What’s more, different from the
strict-feedback nonlinear system, the defined error dynamic
systems of p-norm stochastic nonlinear systems definitely
contain the items with exponential powers, which causes
the proposed output-feedback constrained control schemes
in [30], [31] can’t be extended to solve the output-feedback
control problem of p-norm stochastic constrained systems.
To our best knowledge, up to now, no results are available for
p-norm stochastic nonlinear systems with output constraints,
unknown nonlinearities, and some unmeasurable states.

Motivated by this observation, in this paper, we investi-
gate the output-feedback control issue for p-norm stochastic
nonlinear systems with output constraints and unknown non-
linearities. This issue is challenging in at least two aspects.
First, an adaptive fuzzy controller needs to be contrived
to concurrently handle unknown nonlinearities, unmeasurable
states and output constraints. Second, both the reconstructed
observer-based system and the error dynamic system are
p-norm nonlinear systems, which makes the stability analysis
very difficult. To resolve these obstacles, a BLF-based adaptive
fuzzy output-feedback control approach is developed, which
shows all the signals of the considered system are bounded
in probability while the output constraint requirement is
achieved. Compared with the existing results, the contributions
of this paper are mainly reflected in three aspects:

1) It is first time to investigate p-norm stochastic nonlinear
systems with output constraints, unavailable states and
unknown nonlinearities. Notably, the existing control

strategies for p-norm stochastic constrained nonlinear
systems are mainly based on the requirement that all
the states are measurable (e.g., [49]–[51]), while this
work considers the constrained control problem in the
case of that only the system output is available for
feedback design. Moreover, the system nonlinearities
in this paper are totally unknown instead of satisfying
some growth conditions which is required in [33]–[39].
In other words, three types of restrictions (i.e., out-
put constraints, unknown nonlinearities and unavailable
states) are simultaneously taken into account. Hence, our
work can develop the control theory of p-norm systems.

2) A nonlinear observer is constructed to estimate
the unmeasurable states. Different from the strict-
feedback stochastic nonlinear systems [30], [31],
the state-observer for p-norm stochastic nonlinear sys-
tems is a p-norm nonlinear system. Thus, the observer
gains can’t be directly gotten from the Hurwitz matrix,
but need to be obtained by analyzing the stability of the
defined error dynamic system.

3) A BLF-based fuzzy output-feedback control strategy
is developed. A tan-type BLF is adopted to handle
the output constraint. Based on this BLF and the con-
structed observer, an output-feedback control strategy
is proposed by combining the FLSs into the adding a
power integrator technique. It is proved that the proposed
strategy can guarantee the boundness of all the signals
in the considered systems without violating the output
constraint.

This article is organized as follows. The problem statement
and preliminaries are presented in Section II. Section III
provides the fuzzy output-feedback controller design and theo-
retical analysis. In Section IV, a numerical simulation example
is given. Finally, Section V concludes this paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Consider the following class of p-norm stochastic nonlinear
systems

dxi = x pi
i+1dt + fi (x̄i )dt + gT

i (x̄i )dω,

i = 1, · · · , n − 1,

dxn = u pn dt + fn(x)dt + gT
n (x)dω,

y = x1, (1)

where x = (x1, · · · , xn)
T ∈ Rn , u ∈ R and y ∈ R are

the system state vector, control input and output, respectively;
ω denotes a m-dimensional independent standard Brownian
motion; for i = 1, · · · , n, x̄i = (x1, · · · , xi )

T ∈ Ri , the
fractional power pi ∈ R≥1

odd := {s/r |s ≥ r, s and r
are positive odd integers}, fi : Ri → R and gi : Ri → Rm

are unknown functions satisfying locally Lipschitz continuous
condition and fi (0) = 0, gi(0) = 0. The system output
y = x1 is measurable and required to remain in the set
�1 = {y(t) ∈ R, |y(t)| < ε} with a given constant ε > 0,
while other states x2, · · · , xn are all unmeasurable.

As an important kind of stochastic nonlinear systems, the
p-norm stochastic nonlinear systems (1) can be applied to
model many practical systems, such as, the under-actuated
and weakly coupled mechanical system [33] and coupled
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inverted double pendulums [34]. It should be noted that,
system (1) is an extension of the standard strict-feedback
stochastic nonlinear systems (i.e., p1 = · · · = pn = 1),
which means the proposed method can also be applicable to
strict-feedback ones.

The objective of the paper is to develop a fuzzy
output-feedback control scheme for system (1), which can
enable that all the variables of system (1) are bounded in prob-
ability with keeping the system output within the pre-given set.

B. Preliminaries

As preliminaries, a definition, some lemmas and an assump-
tion are following listed.

Consider the stochastic system as below

dx = f (x)dt + g(x)dω, (2)

where ω and x respectively represent a standard Brownian
motion and the system state; f (x) and g(x) are locally
Lipschitz continuous functions with f (0) = 0, g(0) = 0.

Definition 1: [5] For any C2 function V (x) related to
system (2), the differential operator L is defined as:

LV = ∂V

∂x
f (x)+ 1

2
tr

�
gT (x)

∂2V

∂x2 g(x)

�
. (3)

Lemma 1: [19] For system (2), if there exists a C2 Lya-
punov function V (x) such that�

�1(|x |) ≤ V (x) ≤ �2(|x |)
LV (x) ≤ −π0V (x)+ υ0

,∀x ∈ Rn, t ≥ 0,

then, the system has a unique solution satisfying

E{V (x(t))} ≤ V (x0)e
−π0t + υ0/π0,∀t ≥ 0,

and all variables in system (2) are bounded in probability,
where�1,�2 are K∞ functions, and π0, υ0 > 0 are constants.

Lemma 2: [3] For any real numbers q ≥ 1 and any
variables ζ1, ζ2 ∈ R, one has

(i) |ζ q
1 − ζ

q
2 | ≤ q(2q−2 + 2)|ζ1 − ζ2|(|ζ1 − ζ2|q−1 + ζ

q−1
2 ),

(ii) (|ζ1| + |ζ2|)
1
q ≤ |ζ1|

1
q + |ζ2|

1
q ≤ 21− 1

q (|ζ1| + |ζ2|)
1
q .

Lemma 3: [44] For any positive real numbers k1, k2, ϑ, ς
and any variables ζ1, ζ2 ∈ R, the following inequality holds

ϑ|ζ1|k1 |ζ2|k2 ≤ ς
k1

k1 + k2
|ζ1|k1+k2

+ k1

k1 + k2
ϑ

k1+k2
k2 ς

− k1
k2 |ζ2|k1+k2 .

Lemma 4: [3] For q ∈ (0,∞), c = max{nq−1, 1} and
∀ζi ∈ R, i = 1, · · · , n, we have

(|ζ1| + · · · + |ζn|)q ≤ c(|ζ1|q + · · · + |ζn|q).
Lemma 5: [36] If p > 1 is an odd number and ζ1, ζ2 are

any real numbers, then

−(ζ1 − ζ2)(ζ
p

1 − ζ
p

2 ) ≤ − 1

2p−1 (ζ1 − ζ2)
p+1.

Lemma 6: [52] Suppose F(Z) is a continuous function
defined on a compact set �0. Then, for any positive constant
δ, there is a fuzzy logic system ϒT�(X) such that

sup
Z∈�0

|F(Z)− ϒT�(Z)| ≤ δ,

where ϒ = (υ1, · · · , υN )
T is the ideal constant weight

vector, N > 1 is the number of the fuzzy rules,
�(Z) = (ψ1(Z),··· ,ψN (Z))T�N

j=1 ψ j (Z)
is the basis function vector with

ψ j (Z)( j = 1, · · · , N) being usually chosen as Gaussian
functions.

Assumption 1: Suppose the fractional powers satisfy

p1 ≥ p2 ≥ · · · ≥ pn ≥ 1.

Remark 1: 1) In view of Lemma 6, any continuous
function F(Z) defined on a compact set �0 could be
approximated as F(Z) = ϒT�(Z)+ �(Z), where �(Z)
is the approximation error with |�(Z)| < δ (δ > 0 is a
given constant).

2) Assumption 1 shows that the fractional powers in system
(1) have a known constant upper bound, and there
is a certain relation among these powers. Evidently,
Assumption 1 is standard and common, which can be
found in the existing related works (e.g. [35], [38]).

III. MAIN RESULTS

First of all, introduce a coordinate transformation as

χi = xi

H ri
, i = 1, · · · , n, ũ = u

H rn+1
, (4)

where r1 = 0, r j+1 = r j +1
p j
( j = 1, · · · , n) and the scaling

gain H > 1 is a constant to be determined later. By adjusting
the value of H , the drift and diffusion terms (i.e., fi (·)’s and
gi(·)’s ) can be dominated. Thus, H plays an important role
in the later controller design and stability analysis.

According to (4), system (1) turns into an equivalent system

dχi = Hχ pi
i+1dt + φi (χ i )dt + hT

i (χ i )dω,

i = 1, · · · , n − 1,

dχn = H ũ pndt + φn(χ)dt + hT
n (χ)dω,

y = χ1, (5)

where χ = (χ1, · · · , χn)
T , χ i = (χ1, · · · , χi )

T , φi (·) = fi (·)
Hri ,

hi (·) = gi (·)
Hri .

A. State-Observer Design

In this section, we will construct an observer to estimate
the state vector χ . The variable vectors �χ = (�χ1, · · · ,�χn)

T

and �χ i = (�χ1, · · · ,�χi )
T respectively represent the estimators

of the state vectors χ and χ i . For the sake of brevity,
the functions φi (·)’s and hi (·)’s are replaced with φi ’s and
hi ’s.

Firstly, motivated by [36], [37], a full-order nonlinear
state-observer is constructed as�̇χ i = H�χ pi

i+1 + Hγi . . . γ1(χ
p1
1 − �χ p1

1 ),

i = 1, · · · , n − 1,�̇χn = H ũ pn + Hγn . . . γ1(χ
p1
1 − �χ p1

1 ), (6)

where γ j ( j = 1, · · · , n) are the gains to be determined later.
Then, the error dynamics of above observer can be defined as

ei = χi − �χi , i = 1, · · · , n.

Further, we introduce the following coordinate transformation

ẽ1 = e1, ẽi = ei − γi ei−1, i = 2, · · · , n. (7)
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From the equivalent system (5) and the state-observer (6),
one can infer an error dynamics system

dẽ1 = H (χ p1
2 − �χ p1

2 )dt − Hγ1(χ
p1
1 − �χ p1

1 )dt

+φ1dt + hT
1 dω,

dẽi = H (χ pi
i+1 − �χ pi

i+1)dt − Hγi(χ
pi−1
i − �χ pi−1

i )dt

+(φi − γiφi−1)dt + (hi − γi hi−1)
T dω,

i = 2, · · · , n − 1,

dẽn = −Hγn(χ
pn−1
n − �χ pn−1

n )dt

+[φn − γnφn−1]dt + [hn − γnhn−1]T dω. (8)

Besides, we reconstruct a new system from (5) and (6)

dχ1 = Hχ p1
2 dt + φ1dt + hT

1 dω,

d�χi = H�χ pi
i+1dt + Hγi . . . γ1(χ

p1
1 − �χ p1

1 )dt,

i = 1, · · · , n − 1,

d�χn = H ũ pn dt + Hγn . . . γ1(χ
p1
1 − �χ p1

1 )dt . (9)

Remark 2: Observer (6) is constructed by borrowing from
the work of [36], [37]. However, observer (6) is a full-order
nonlinear observer different from the reduced-order ones used
in [36], [37]. It should be mentioned that, the systems investi-
gated in [36], [37] are p-norm systems without constraints and
with some given growth conditions, while this paper considers
the output-feedback control problem for the systems with the
output constraint and removing the growth conditions.

In addition, the output-feedback controller design method
proposed in [36], [37] is first constructing a state-feedback
controller and then applying the equivalent principle. In a
word, this method is however invalid for p-norm systems
with output constraints since the coefficient gains of the con-
strained state-feedback controller are functions of the origin
state vector rather than constants. Thus, motivated by the
output-feedback control design method for the strict-feedback
constrained nonlinear systems (e.g., [30], [31]), this paper
designs the state-observer at first, and then reconstructs a new
system (9) from the origin system (5) and the state-observer
(6). Then, based on the new system (9), the output-feedback
controller is directly designed by the adding a power integrator
technique, which will be explicitly shown in next subsection.

B. Output-Feedback Controller Design

Set up the following transformation

η1 = χ1, ηi = �χi − ξi−1, i = 2, . . . , n, (10)

where ξi−1’s are the virtual controllers to be designed later.
Next, the controller design procedure of system (9) will be

explicitly shown.
Step 1. From (10), we can get

dη1 = dχ1 = (Hχ p1
2 + φ1)dt + hT

1 dω. (11)

Define the first Lyapunov function

V1 = ε4

2π
tan

�
πη4

1

2ε4

�
+ θ̃2

1

2b1
� VB(η1)+ θ̃2

1

2b1
, (12)

where b1 > 0 is an adjustment parameter, θ̃1 = θ1 − θ̂1 is the
error with θ̂1 being the estimation of θ1 to be given later.

Clearly, the tan-type BLF VB(η1) = ε4

2π tan

	
πη4

1
2ε4



is used

to handle the system output constraint. It is clear to see that
V1 is positive definite. In light of (3), (11) and (12), it is easy
to obtain

LV1 = ∂VB

∂η1
(Hχ p1

2 + φ1)+ 1

2

∂2 VB

∂η2
1

hT
1 h1 − 1

b1
θ̃1

˙̂θ1

= K (η1)η
3
1(Hχ

p1
2 + φ1)+ 3

2
K (η1)�h1�2η2

1

+2π

ε4 tan

�
πη4

1

2ε4

�
K (η1)�h1�2η6

1 − 1

b1
θ̃1

˙̂
θ1,

where K (η1) = sec2
	
πη4

1
2ε4



.

Applying Lemma 3, one gets

3

2
K (η1)�h1�2η2

1 ≤ 3

4
(K (η1))

2�h1�4η4
1 + 3

4
.

Then, we have

LV1 ≤ H K (η1)η
3
1(�χ p1

2 − ξ
p1

1 )+ H K (η1)η
3
1ξ

p1
1

+H K (η1)η
3
1 F1(Z1)− τ1ε

4

2π
tan

�
πη4

1

2ε4

�

− θ̃1

b1

˙̂θ1 + 3

4
, (13)

where Z1 = (χT
2 ,�χT

2 )
T , τ1 > 0 is an adjustment parameter,

F1(Z1) = χ
p1
2 − �χ p1

2 + τ1ε
4

2πHη3
1

sin

�
πη4

1

2ε4

�
cos

�
πη4

1

2ε4

�

+φ1

H
+ 3η1

4H
K (η1)�h1�4 + 2πη3

1

Hε4 tan

�
πη4

1

2ε4

�
�h1�2.

Obviously, F1(Z1) is an unknown nonlinear function need-
ing to be approximated. Analysing the expression of this
function, it is easy to deduce that F1(Z1) is continuous, and
a reduced fuzzy system proposed in reference [49] is an
appropriate approximator for it. Based on Lemma 6 and [49],
F1(Z1) can be approximated as

F1(Z1) = ϒT
1 �1(�Z1)+ �1(�Z1), (14)

where �Z1 = (χ1,�χ1)
T , |�1(�Z1)| ≤ δ1 and δ1 is a given positive

constant. In view of Lemma 3, it is easy to obtain

K (η1)η
3
1 F1(Z1)

≤ K (η1)|η1|3(�ϒ1���1� + δ1)

≤ 3σ11θ1

p1 + 3
(K (η1)��1�)

p1+3
3 η

p1+3
1 + p1

p1 + 3
σ

− 3
p1

11

+ 3

p1 + 3
K (η1)

p1+3
3 η

p1+3
1 + p1

p1 + 3
δ

p1+3
p1

1 , (15)

where θ1 = �ϒ1�
p1+3

3 and σ11 > 0 is an adjustment parameter.



2630 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 6, JUNE 2021

Combining (15) with (13), gets

LV1 ≤ H K (η1)η
3
1(�χ p1

2 − ξ
p1

1 )+ H K (η1)η
3
1ξ

p1
1

−τ1ε
4

2π
tan

�
πη4

1

2ε4

�
− 1

b1
θ̃1

˙̂θ1

+ 3H

p1 + 3
(K (η1))

p1+3
3

�
��1�

p1+3
3 σ11θ̂1 + 1



η

p1+3
1

+θ̃1

�
3Hσ11

p1 + 3
(K (η1)��1�)

p1+3
3 η

p1+3
1 −

˙̂θ1

b1

�

+ p1 H

p1 + 3
σ

− 3
p1

11 + 3

4
+ p1 H

p1 + 3
δ

p1+3
p1

1 . (16)

Thus, we can design

ξ1(χ1,�χ1, θ̂1) = −(M1(χ1,�χ1, θ̂1))
1
p1 η1

� −ϕ1(χ1,�χ1, θ̂1)η1, (17)
˙̂θ1 = 3H b1σ11

p1 + 3
(K (η1)��1�)

p1+3
3 η

p1+3
1

−d1θ̂1, (18)

where M
1
p1

1 (·) is a positive smooth function satisfying

M1(·) ≥ 3
p1+3 (K (η1))

p1
3

�
��1�

p1+3
3 σ11θ̂1 + 1



+ ρ1(η1)

K (η1)
+ τ1;

ρ1(η1) is a positive smooth function to be given in the next
step and d1 > 0 is an adjustment parameter.

Apparently, the property of M1(·) infers that the virtual
controller ξ1(·) is smooth. Meanwhile, if θ̂1(0) ≥ 0, it is
easily gotten from Lemma 2 in reference [29] and (18) that
θ̂1(t) ≥ 0 for ∀t ≥ 0. This implies the positivity of M1(·) can
be guaranteed. Similar characteristics will be always fulfilled
in next steps of the design procedure.

Then, substituting (17) and (18) into (16), gets

LV1 ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
− H τ1η

p1+3
1

−Hρ1(η1)η
p1+3
1 + H K (η1)η

3
1(�χ p1

2 − ξ
p1

1 )

+d1

b1
θ̃1θ̂1 + 3

4
+ H p1

p1 + 3
σ

− 3
p1

11 + H p1

p1 + 3
δ

p1+3
p1

1 .

Additionally, it is easy to get

d1

b1
θ̃1θ̂1 = d1

b1
(θ1 − θ̃1)θ̃1 ≤ −d1θ̃

2
1

2b1
+ d1θ

2
1

2b1
.

Hence, we can obtain

LV1 ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
− d1θ̃

2
1

2b1
− Hρ1(η1)η

p1+3
1

−H τ1η
p1+3
1 + Q1 + H K (η1)η

3
1(�χ p1

2 − ξ
p1

1 ), (19)

where Q1 = 3
4 + p1 H

p1+3σ
− 3

p1
11 + H p1

p1+3δ

p1+3
p1

1 + d1θ
2
1

2b1
.

Remark 3: The tan-type BLF VB(η1) is adopted to handle
the output constraint issue, since it possesses the property

limε→∞ VB(η1) = η4
1

4 which implies that the proposed method
is also applicable to the systems without output constraints.
What’s more, it is worth mentioning that the function K (η1)
is the key to keep the output variable to remain in the

constrained region, since K (η1) increases along with the state
x1 approaching the boundaries x1 = |ε|.

Remark 4: (i) Obviously, one can verify

lim
η1→0

sin

	
πη4

1
2ε4



cos

	
πη4

1
2ε4



2πHη3

1

= lim
η1→0

πη4
1

2ε4 cos

	
πη4

1
2ε4



2πHη3

1

= 0,

which further ensures that F1(Z1) is continuous.
(ii) Note that F1(Z1) in (14) includes variables χ1, χ2, �χ1,�χ2, hence the FLS ϒT

1 �1(�Z1) is a reduced fuzzy system
utilized to perform the approximation task. In fact,
if a traditional fuzzy system is used to approximate
it, the first virtual controller ξ1(·) will include all the
variables χ1, χ2,�χ1,�χ2. That means the backstepping
approach can’t be continually applied in the later design
procedure. As stated in [49], the reduced FLS is more
proper to estimate the unknown functions.

Step 2. Based on (10) and It ô’s formula, one has

dη2 = [H�χ p2
3 + Hγ2γ1(χ

p1
1 − �χ p1

1 )− Lξ1]dt

−
	
∂ξ1

∂χ1
h1


T

dω, (20)

where Lξ1 = ∂ξ1
∂χ1
(Hχ p1

2 + φ1)+ ∂ξ1
∂�χ1
�̇χ1 + ∂ξ1

∂θ̂1

˙̂
θ1 + 1

2
∂2ξ1
∂χ2

1
hT

1 h1

is a smooth function due to the smoothness of ξ1.
Choose the Lyapunov function as

V2 = V1 +�2 (21)

with

�2 = η
p1−p2+4
2

p1 − p2 + 4
+ θ̃2

2

2b2
, (22)

where b2 > 0 is an adjustment parameter, θ̃2 = θ2 − θ̂2 is the
error with θ̂2 being the estimation of θ2 to be given later.

By the definition of V2, it is easily seen that V2 is positive
definite. According to (3), (20) and (22), it can be gotten that

L�2 = η
p1−p2+3
2 [H�χ p2

3 + Hγ2γ1(χ
p1
1 − �χ p1

1 )− Lξ1]
− 1

b2
θ̃2

˙̂θ2 + p1 − p2 + 3

2

���� ∂ξ1

∂χ1
h1

����2

η
p1−p2+2
2 . (23)

Using Lemma 3, one can directly deduce

p1 − p2 + 3

2

���� ∂ξ1

∂χ1
h1

����2

η
p1−p2+2
2

≤ q2

���� ∂ξ1

∂χ1
h1

����
2(p1−p2+4)

p1−p2+2

η
p1−p2+4
2 + p1 − p2 + 3

p1 − p2 + 4
, (24)

where q2 = (p1 − p2 + 3)(p1 − p2 + 2)/2(p1 − p2 + 4).
Besides, it can be obtained from Lemmas 2 and 3 that

K (η1)η
3
1(�χ p1

2 − ξ
p1

1 )

≤ K (η1)|η1|3 D1[|η2|p1 + ϕ
p1−1
1 |η2||η1|p1−1]

≤ (K (η1))
p1+3

3
3D

p1+3
3

1

p1 + 3
σ

− p1
3

12 η
p1+3
1 + p1σ12

p1 + 3
η

p1+3
2

+ p1 + 2

p1 + 3
K (η1)η

p1+3
1 + (ϕ1(·))(p1−1)(p1+3)

p1 + 3
K (η1)η

p1+3
2

≤ ρ1(η1)η
p1+3
1 + p1σ12

p1 + 3
η

p1+3
2 + �1(·)ηp1+3

2 , (25)
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where D1 = (2p1−2 + 2)p1 is a positive constant;
�1(·) = (ϕ1(·))(p1−1)(p1+3)K (η1)/(p1 + 3) and ρ1(η1) =

3
p1+3 D

p1+3
3

1 σ
− p1

3
12 (K (η1))

3
p1+3 + p+2

p1+3 K (η1) are positive
smooth functions; and σ12 > 0 is an adjustment parameter.

Then, in light of Definition 1 and Eqs. (19), (21) and
(23)-(25), one gets

LV2 ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
− H τ1η

p1+3
1 − d1θ̃

2
1

2b1

+H
p1σ12

p1 + 3
η

p1+3
2 + Hηp1−p2+3

2 F2(Z2)

+Hηp1−p2+3
2 (�χ p2

3 − ξ
p2

2 )+ Hηp1−p2+3
2 ξ

p2
2

+Q1 + p1 − p2 + 3

p1 − p2 + 4
− 1

b2
θ̃2

˙̂θ2, (26)

where Z2 = (χT
2 ,�χT

2 , θ̂1)
T and

F2(Z2) = q2η2

H

���� ∂ξ1

∂χ1
h1

����
2(p1−p2+4)

p1−p2+2

+�1(·)ηp2
2 + γ2γ1(χ

p1
1 − �χ p1

1 )− Lξ1

H
.

Obviously, F2(Z2) is an unknown and continuous nonlinear
function. By following the same lines to obtain F1(Z1) in
Step 1, F2(Z2) can be approximated as

F2(Z2) = ϒT
2 �2(�Z2)+ �2(�Z2),

where �Z2 = (χ1,�χT
2 , θ̂1)

T , |�2(�Z2)| ≤ δ2 and δ2 is a given
positive constant.

By Lemma 3, one obtains

η
p1−p2+3
2 F2(Z2) ≤ |η2|p1−p2+3(�ϒ2���2� + δ2)

≤ (p1 − p2 + 3)σ21θ2

p1 + 3
��2�

p1+3
p1−p2+3 η

p1+3
2

+ p2σ21
− p1−p2+3

p1

p1 + 3
+ p1 − p2 + 3

p1 + 3
η

p1+3
2

+ p2δ

p1+3
p2

2

p1 + 3
, (27)

where θ2 = �ϒ2�
p1+3

p1−p2+3 and σ21 > 0 is an adjustment
parameter.

Then, combining (26) with (27), it is easy to infer

LV2 ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
− H τ1η

p1+3
1 + H p1σ12

p1 + 3
η

p1+3
2

+ (p1 − p2 + 3)H

p1 + 3

�
��2�

p1+3
p1−p2+3 σ21θ̂2 + 1

�
η

p1+3
2

+θ̃2

�
(p1 − p2 + 3)H

p1 + 3
��2�

p1+3
p1−p2+3 σ21η

p1+3
2 −

˙̂
θ2

b2

�

+Hηp1−p2+3
2 (�χ p2

3 − ξ
p2

2 )+ Hηp1−p2+3
2 ξ

p2
2 − d1θ̃

2
1

2b1

+ p1 − p2 + 3

p1 − p2 + 4
+ H p2σ

− p1−p2+3
p1

21

p1 + 3
+ H p2δ

p1+3
p2

2

p1 + 3
+ Q1.

(28)

Thus, one can design

ξ2(χ1,�χT
2 ,

¯̂
θT

2 ) = −(M2(χ1,�χT
2 ,

¯̂
θT

2 ))
1
p2 η2

� −ϕ2(χ1,�χT
2 ,

¯̂
θT

2 )η2, (29)
˙̂θ2 = (p1 − p2 + 3)H b2σ21

p1 + 3

× ��2�
p1+3

p1−p2+3 η
p1+3
2 − d2θ̂2, (30)

where M
1
p2

2 (·) is a positive smooth function satisfying M2(·) ≥
p1−p2+3

p1+3 [��2�
p1+3

p1−p2+3 σ21θ̂2 + 1] + p1σ12
p1+3 + ρ2 + τ2; ρ2 > 0 is

a constant to be given in the next step; and τ2, d2 > 0 are
adjustment parameters. Combining the property of M2(·) with
the definition of ξ2(·), infers that ξ2(·) is also smooth.

What’s more, it is not difficult to deduce

d2

b2
θ̃2θ̂2 = d2

b2
(θ2 − θ̃2)θ̃2 ≤ −d2θ̃

2
2

2b2
+ d2θ

2
2

2b2
. (31)

Substituting (29)-(31) into (28), yields

LV2 ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
− H τ1η

p1+3
1 − d1θ̃

2
1

2b1

−Hρ2η
p1+3
2 − H τ2η

p1+3
2 − d2θ̃

2
2

2b2

+Hηp1−p2+3
2 (�χ p2

3 − ξ
p2

2 )+ Q1 + Q2, (32)

where Q2 = p1−p2+3
p1−p2+4 + H p2

p1+3σ
− p1−p2+3

p1
21 + H p2δ

p1+3
p2

2
p1+3 + d2θ

2
2

2b2
.

Step k(3 ≤ k ≤ n). Suppose at Step k − 1, there exist
a Lyapunov function Vk−1 and a series of smooth virtual
controllers ξ j (χ1,�χT

j ,
¯̂
θT

j )( j = 1, · · · , k − 1), such that

LVk−1 ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
−

k−1�
j=1

d j θ̃
2
j

2b j

−
k−1�
j=1

H τ jη
p1+3
j − Hρk−1η

p1+3
k−1

+Hηp1−pk−1+3
k−1 (�χ pk−1

k − ξ
pk−1

k−1 )

+Hηp1−pk−1+3
k−1 ξ

pk−1
k−1 +

k−1�
j=1

Q j , (33)

where η j , d j ( j = 1, · · · , k − 1) are positive adjustment
parameters; ρk−1, Q j ( j = 1, · · · , k−1) are positive constants.
Meanwhile, one can infer from (10) and It ô’s formula that

dηk = [H�χ pk
k+1 + Hγk · · · γ1(χ

p1
1 − �χ p1

1 )− Lξk−1]dt

−
	
∂ξk−1

∂χ1
h1


T

dω, (34)

where Lξk−1 is a smooth function in the following form

Lξk−1 = ∂ξk−1

∂χ1
(Hχ p1

2 + φ1)+
k−1�
j=1

∂ξk−1

∂�χ j
�̇χ j

+
k−1�
j=1

∂ξk−1

∂θ̂ j

˙̂
θ j + 1

2

∂2ξk−1

∂χ2
1

hT
1 h1.
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We choose the Lyapunov function as

Vk = Vk−1 +�k (35)

with

�k = η
p1−pk+4
k

p1 − pk + 4
+ θ̃2

k

2bk
, (36)

where bk > 0 is an adjustment parameter, θ̃k = θk − θ̂k is the
error with θ̂k being the estimation of θk to be given later.

Evidently, Vk is positive definite. Based on Definition 1,
it can be obtained from Eqs. (34) and (36) that

L�k = η
p1−pk+3
k [H�χ pk

k+1 + Hγk · · · γ1(χ
p1
1 − �χ p1

1 )− Lξk−1]

− 1

bk
θ̃k

˙̂θk + p1 − pk + 3

2
η

p1−pk+2
k

����∂ξk−1

∂χ1
h1

����2

. (37)

Apparently, it is not hardly gotten from Lemma 3 that

p1 − pk + 3

2
η

p1−pk+2
k

����∂ξk−1

∂χ1
h1

����2

≤ qk

����∂ξk−1

∂χ1
h1

����
2(p1−pk+4)

p1−pk+2

η
p1−pk+4
k + p1 − pk + 3

p1 − pk + 4
, (38)

where qk = (p1 − pk + 3)(p1 − pk + 2)/2(p1 − pk + 4).
In addition, it can be verified from Lemmas 2 and 3 that

η
p1−pk−1+3
k−1

��χ pk−1
k − ξ

pk−1
k−1

�
≤ |ηk−1|p1−pk−1+3 Dk−1

�
|ηk |pk−1 + |ηk||ξk−1|pk−1−1



≤ ρk−1η

p1+3
k−1 + pk−1σk−1 2

p1 + 3
η

p1+3
k + �k−1(·)ηp1+3

k , (39)

where Dk−1 = (2pk−1−2 + 2)pk−1 and ρk−1 =
(Dk−1)

p1+3
p1−pk−1+3 σ

− pk−1
p1−pk−1+3

k−1 2 /(p1 + 3) + p1+2
p1+3 are positive

constants; �k−1(·) = [Dk−1(ϕk−1(·))pk−1−1]p1+3/(p1 + 3) is
a smooth positive function; and σk−1 2 > 0 is an adjustment
parameter.

In light of (28), (37)-(39), one has

LVk ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
−

k−1�
j=1

H τ jη
p1+3
j − θ̃k

bk

˙̂θk

+H
pk−1σk−1 2

p1 + 3
η

p1+3
k + Hηp1−pk+3

k F(Zk)

−
k−1�
j=1

d j θ̃
2
j

2b j
+

k−1�
j=1

Q j + p1 − pk + 3

p1 − pk + 4

+Hηp1−pk+3
k (�χ pk

k+1 − ξ
pk

k )+ Hηp1−pk+3
k ξ

pk
k ,

(40)

where Zk = (χT
2 ,�χT

k ,
¯̂
θT

k−1)
T , ¯̂
θk−1 = (θ̂1, · · · , θ̂k−1)

T and

Fk(Zk) = γk · · · γ1(χ
p1
1 − �χ p1

1 )− Lξk−1

H
+ �k−1(·)ηpk

k

+qkηk

H

����∂ξk−1

∂χ1
h1

����
2(p1−pk+4)

p1−pk+2

.

Clearly, Fk(Zk) is an unknown and continuous nonlinear
function. Similarly to the first two steps, we rewrite Fk(Zk)
by applying a reduced FLS ϒT

k �k(�Zk) as

Fk(Zk) = ϒT
k �k(�Zk)+ �k(�Zk),

where �Zk = (χ1,�χT
k ,

¯̂θT
k−1)

T , |�k(�Zk)| ≤ δk and δk is a given
positive constant.

Hence, from Lemma 3, it is easy to obtain

η
p1−pk+3
k Fk(Zk)

≤ (p1 − pk + 3)σk1θk

p1 + 3
��k�

p1+3
p1−pk+3 η

p1+3
k

+ pk

p1 + 3
σ

− p1−pk+3
pk

k1 + p1 − pk + 3

p1 + 3
η

p1+3
k + pkδ

p1+3
pk

k

p1 + 3
,

(41)

where θk = �ϒk�
p1+3

p1−pk+3 and σk1 > 0 is an adjustment
parameter.

In light of (41) and (40), it is easy to get

LVk ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
−

k−1�
j=1

H τ jη
p1+3
j −

k−1�
j=1

d j θ̃
2
j

2b j

+
k−1�
j=1

Q j + H
pk−1σk−1 2

p1 + 3
η

p1+3
k + H pk

p1 + 3
δ

p1+3
pk

k

+H
p1 − pk + 3

p1 + 3
[��k�

p1+3
p1−pk+3 σk1θ̂k + 1]ηp1+3

k

+θ̃k[ (p1 − pk + 3)H

p1 + 3
��k�

p1+3
p1−pk+3 σk1η

p1+3
k −

˙̂
θk

bk
]

+Hηp1−pk+3
k (�χ pk

k+1 − ξ
pk

k )+ Hηp1−pk+3
k ξ

pk
k

+ H pk

p1 + 3
σ

− p1−pk+3
pk

k1 + p1 − pk + 3

p1 − pk + 4
. (42)

Hence, the smooth virtual controller ξk with the adaptive
law of θ̂k can be designed as

ξk(χ1,�χT
k ,

¯̂
θT

k ) = −(Mk(χ1,�χT
k ,

¯̂
θT

k ))
1
pk ηk

� −ϕk(χ1,�χT
k ,

¯̂
θT

k )ηk, (43)

˙̂θk = (p1 − pk + 3)Hσk1bk

p1 + 3

× ��k�
p1+3

p1−pk+3 η
p1+3
k − dk θ̂k, (44)

where ¯̂θk = (θ̂1, · · · , θ̂k)
T ; M

1
pk

k (·) is a positive smooth
function satisfying

Mk (·) ≥ p1 − pk + 3

p1 + 3
[σk1θ̂k��k�

p1+3
p1−pk+3 + 1]

+ pk−1σk−1 2

p1 + 3
+ ρk + τk;

ρk > 0 is a constant to be given in the next step; and τk, dk > 0
are adjustment parameters.

Furthermore, we have
dk

bk
θ̂k θ̃k ≤ − dk

2bk
θ̃2

k + dk

2bk
θ̂2

k . (45)

From (42)-(45), it can be deduced that

LVk ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
−

k�
j=1

d j θ̃
2
j

2b j
−

k�
j=1

H τ jη
p1+3
j

−Hρkη
p1+3
k + Hηp1−pk+3

k (�χ pk
k+1 − ξ

pk
k )+

k�
j=1

Q j , (46)
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where Qk = H pk
p1+3σ

− p1−pk+3
pk

k1 + H pk
p1+3δ

p1+3
pk

k + p1−pk+3
p1−pk+4 + dkθ

2
k

2bk
.

That is to say, for ∀k = 3, · · · , n, Eqs. (43), (44) and (46)
all hold.

Step n. It easily renders from above steps that, there exist a
sequence of smooth virtual signals with corresponding adap-
tive parameter laws (ξi , θ̂i )(i = 1, · · · , n) such that Eq. (46)
holds for k = n with χn+1 = ũ. That is, the Lyapunov function
can be chosen as

Vn = Vn−1 +�n

= ε4

2π
tan

�
πη4

1

2ε4

�
+

n�
j=2

η
p1−p j +4
j

p1 − p j + 4
+

n�
j=1

θ̃2
j

2b j
, (47)

and the controller ũ can be designed as

ũ = ξn(χ1,�χT , θ̂T ) = −(Mn(χ1,�χT , θ̂T ))
1
pn ηn

� −ϕn(χ1,�χT , θ̂T )ηn (48)

with
˙̂θn = (p1 − pn + 3)Hσn1bn

p1 + 3
��n�

p1+3
p1−pn+3 η

p1+3
n − dn θ̂n, (49)

where θ̂ = (θ̂1, · · · , θ̂n)
T , M

1
pn

n (·) is a positive smooth
function satisfying

Mn(·) ≥ p1 − pn + 3

p1 + 3
[σn1θ̂n��n�

p1+3
p1−pn+3 + 1]

+ pn−1σn−1 2

p1 + 3
+ τn .

Clearly, one can further get

LVn ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
−

n�
j=1

d j θ̃
2
j

2b j

−
n�

j=1

H τ jη
p1+3
j +

n�
j=1

Q j . (50)

Then, by the definitions of ηk(k = 1, · · · , n), we obtain the
implementable output-feedback controller of system (9)

ũ = −(ϕ̄1χ1 + ϕ̄2�χ2 + · · · + ϕ̄n�χn), (51)

where ϕ̄k =�n
j=k ϕ j for k = 1, . . . , n.

Thus, the fuzzy output-feedback controller of system (1) is

u = H rn+1 ũ = −H rn+1(ϕ̄1χ1 + ϕ̄2�χ2 + · · · + ϕ̄n�χn), (52)

where �χi (i = 2, · · · , n) are provided by the observer (6).
In light of the design procedure, the actual controller (52) is
evident smooth.

C. Selection of the Observer Gains

In this part, the values of the unknown gains
γi (i = 1, · · · , n) will be obtained by the Lyapunov
analysis. At the same time, one will get the values of some
other parameters appearing in the output-feedback controller.

Based on the error dynamic system (8) and Assumption 1,
we define the Lyapunov function

Un = γ ẽ4
1

4
+

n�
i=2

γ ẽ p1−pi−1+4
i

p1 − pi−1 + 4
, (53)

where γ > 0 is an adjustment constant.

By the definition of Un , we can easily know Un is positive
definite and obtain that

LUn = Hγ ẽ3
1(χ

p1
2 − �χ p1

2 )− Hγ γ1ẽ3
1(χ

p1
1 − �χ p1

1 )+ γ ẽ3
1φ1

+3

2
γ ẽ2

1�h1�2 +
n�

i=3

Hγ ẽ p−pi−2+3
i−1 (χ

pi−1
i − �χ pi−1

i )

−
n�

i=2

Hγ γi ẽ
p1−pi−1+3
i (χ

pi−1
i − �χ pi−1

i )

+
n�

i=2

H
� γ

H
ẽ p1−pi−1+3

i (φi − γiφi−1)



+
n�

i=2

H

�
p1 − pi−1 + 3

2H
γ ẽ p1−pi−1+2

i �hi − γi hi−1�2
�
.

(54)

To find the appropriate values of γi ’s, the upper bound of each
item in the right side of Eq. (54) will be given in the next steps.
Firstly, we can directly infer from Lemma 5 that

−γ γ1ẽ3
1(χ

p1
1 − �χ p1

1 ) ≤ − γ γ1

2p1−1 ẽ p1+3
1 . (55)

Furthermore, from Lemmas 2 and 3, one can get

γ ẽ3
1(χ

p1
2 − �χ p1

2 ) ≤ γ |ẽ1|3 · 2p1[|e2|p1 + |χ2|p1] (56)

≤ a21ẽ p1+3
1 + a22ẽ p1+3

2 + λ21|χ2|p1+3,

× γ

H
ẽ3

1φ1 + 3γ

2H
ẽ2

1�h1�2

≤ 9

p1 + 3
·
� γ

H

� p1+3
3

ẽ p1+3
1 + �F1(χ1), (57)

where a21 = a21(γ2) > 0 is a constant independent of H and
γ1; a22 > 0 is a constant independent of H and γk(k = 1, 2);

and �F1(χ1) = p1
p1+3φ

p1+3
p1

1 + 3
2 (

γ
H )

p1+3
3(p1+1) �h1�

2(p1+3)
p1+1 .

On the other hand, it can be given from Assumption 1 that
4 ≤ p1 + pi−1 − pi−2 + 3 ≤ p1 + 3 for all i = 3, · · · , n.

Then, for ∀3 ≤ i ≤ n, it is verified from Lemmas 2-5 that

γ ẽ p1−pi−2+3
i−1 (χ

pi−1
i − �χ pi−1

i )

≤ γ |ẽi−1|p1−pi−2+3 · 2pi−1 [|ei |pi−1 + |χi |pi−1 ]

≤
i�

j=1

ai j ẽ p1+3
j + λi1χ

p1+pi−1−pi−2+3
i + �Qi , (58)

where ai j = ai j (γi , · · · , γ j+1)( j = 1, · · · , i − 1) are positive
constants independent of H and γk(k = 1, · · · , j); aii ,
λi1 > 0 are constants independent of H and γ j ( j = 1, · · · , i),�Qi > 0 is also a constant.

For ∀2 ≤ i ≤ n, it is obvious that

−γ γi ẽ
p1−pi−1+3
i (χ

pi−1
i − �χ pi−1

i )

= −γ γi ẽ
p1−pi−1+3
i [χ pi−1

i − (�χi + ẽi )
pi−1 ]

−γ γi ẽ
p1−pi−1+3
i [(�χi + ẽi )

pi−1 − �χ pi−1
i ]. (59)

Then, for ∀2 ≤ i ≤ n, it can be inferred from
ẽi = (�χi + ẽi )− �χi and Lemma 5 that

−γ γi ẽ
p1−pi−1+3
i [(�χi + ẽi )

pi−1 − �χ pi−1
i ]

−γ γi ẽ
p1−pi−1+2
i · ẽi [(�χi + ẽi )

pi−1 − �χ pi−1
i ]

≤ − γ γi

2pi−1−1 ẽ p1+3
i . (60)
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Meanwhile, for ∀2 ≤ i ≤ n, we can deduce from Lemmas 2
and 3 that the following inequalities hold

| − γ γi ẽ
p1−pi−1+3
i [χ pi−1

i − (�χi + ẽi )
pi−1 ]|

≤ γ γi Di−1|ẽi |p1−pi−1+3

×
�
|γi ei−1|pi−1 + |γi ei−1||χi |pi−1−1



≤

i�
j=1

ci j ẽ p1+3
j + λi2χ

p1+3
i , (61)

γ

H
ẽ p1−pi−1+3

i (φi − γiφi−1)

+ p1 − pi−1 + 3

2H
γ ẽ p1−pi−1+2

i �hi − γi hi−1�2

≤ (p1 − pi−1 + 3)2

p1 + 3
·
� γ

H

� p1+3
p1−pi−1+3

ẽ p1+3
i + �Fi (χ i ),

(62)

where ci j = ci j (γi , · · · , γ j+1)( j = 1, · · · , i − 1) are positive
constants independent of H and γk(k = 1, · · · , j); cii ,
λi2 > 0 are constants independent of H and γ j ( j = 1, · · · , i);
and�Fi (χ i ) = pi−1

p1 + 3
(φi − γiφi−1)

p1+3
pi−1

+ p1 − pi−1 + 3

2
(
γ

H
)

p1+3
(p1−pi−1+3)(pi−1+1) �hi − γi hi−1�

2(p1+3)
pi−1+1 .

Substituting (55)-(62) into (54) yields

LUn ≤ −H

⎛⎝ γ γ1

2p1−1 −
n�

j=2

(a j1 + c j1)

⎞⎠ ẽ p1+3
1

−H
n−1�
i=2

⎛⎝ γ γi

2pi−1−1 −
n�

j=2

(a j i + c j i)

⎞⎠ ẽ p1+3
i

−H
� γ γn

2p1−1 − (ann + cnn)
�

ẽ p1+3
n

+H
n�

i=2

(p1 − pi−1 + 3)2

p1 + 3

� γ
H

� p1+3
p1−pi−1+3

ẽ p1+3
i

+ 9H

p1 + 3

� γ
H

� p1+3
3

ẽ p1+3
1 + �F(χ)+ n�

i=2

H �Qi ,

(63)

where �F(χ) = Hλ21χ
p1+3
2 +�n

i=3 Hλi1χ
p1+pi−1−pi−2+3
i +�n

i=2 Hλi2χ
p1+3
i +�n

i=1 H�Fi(χ i ) is an unknown continuous
function.

Apparently, a FLS can be applied to handle the unknown
function �F(χ). Consequently, using Lemmas 4 and 6, one
easily deduces that�F(χ) = ϒT

0 �0 + �0(χ) ≤ 3θ0

p1 + 3
+ p1

p1 + 3
+ δ0,

where θ0 = �ϒ0�
p1+3

3 , and δ0 > 0 is a given constant.
Therefore, the observer gains γ1, · · · , γn and constant H

can be selected as bellow:
γn ≥ max

�
2pn−1−1

γ
(c̄n + 1 + κn), 1

�
,

γn−1 ≥ max

�
2pn−2−1

γ
(c̄n−1(γn)+ 1 + κn−1), 1

�
,

...

γ2 ≥ max

�
2p1−1

γ
(c̄2(γn, · · · , γ3)+ 1 + κ2), 1

�
,

γ1 ≥ max

�
2p1−1

γ
(c̄1(γn, · · · , γ2)+ 1 + κ1), 1

�
,

H ≥ max

�
1,

	
9

p1 + 3


 3
p1+3

, · · · ,

×
	
(p1 − pn−1 + 3)2

p1 + 3


 p1−pn−1+3
p1+3

⎫⎬⎭ , (64)

where c̄n = ann + cnn is a positive constant independent
of H and γi ’s, c̄i = c̄i (γn, · · · , γi+1) = �n

j=2(a j i + c j i)
(i = 1, · · · , n − 1) are positive constants independent of H
and γ j ( j = 1, · · · , i), and κi (i = 1, · · · , n) are adjustment
parameters.

Then, substituting (64) into (63) yields

LUn ≤ −
n�

j=1

Hκ j ẽ
p1+3
j + Q, (65)

where Q =�n
i=2 H �Qi + 3θ0

p1+3 + p1
p1+3 + δ0 is a constant.

So far, we have completed the design of the output-feedback
controller with appropriate observer gains.

Remark 5: It should be pointed out that, since the error
dynamic system is also a p-norm stochastic nonlinear system,
the observer gains can’t be directly assumed to satisfy the
Hurwitz matrix widely used in strict-feedback constrained
nonlinear constrained systems. In this paper, the gains are
devised by the rigorous analysis of the stability of the error
dynamic system. The exponential terms with pi ’s as the
fractional powers are handled by fully and subtly taking
advantage of the properties of the FLSs for the error dynamic
system.

D. Verification of Keeping the Output Constraint and
Stability

A theorem is first provided in the following to summarize
the main result of this paper.

Theorem 1: For system (1), there is a fuzzy
output-feedback controller (52) with the parameter adaptive
laws (18), (30), (44) and (49), such that

1) the output constraint is not violated in the sense of
probability, i.e., P{|y(t)| < ε} = 1;

2) all the signals in system (1) are bounded in probability.
Proof. Firstly, we define the overall Lyapunov function for

system (9) as

V = Vn + Un,

where Vn and Un have been respectively defined in
(47) and (53).

Then, based on Eqs. (3), (50) and (65), it is easy to infer

LV ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
−

n�
j=1

d j θ̃
2
j

2b j

−
n�

j=1

H τ jη
p1+3
j −

n�
j=1

Hκ j ẽ
p1+3
j +

n�
j=1

Q j + Q. (66)
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In addition, it is easily obtained from Lemma 3 that

ẽ4
1 ≤ 4

p1 + 3
ẽ p1+3

1 + p1 − 1

p1 + 3
,

ẽ
p1−p j−1+4
j ≤ p1 − p j−1 + 4

p1 + 3
ẽ p1+3

j + p j−1 − 1

p1 + 3
,

η
p−p j +4
j ≤ p1 − p j + 4

p1 + 3
η

p1+3
j + p j − 1

p1 + 3
, j = 2, · · · , n,

(67)

which renders

−
n�

j=1

Hκ j ẽ
p1+3
j ≤ − κ̄1ẽ4

1

4
−

n�
j=2

κ̄ j ẽ
p1−p j−1+4
j

p1 − p j−1 + 4

+ (p1 − 1)Hκ1

4
+

n�
j=2

(p j−1 − 1)Hκ j

p1 − p j−1 + 4
,

−
n�

j=1

H τ jη
p1+3
j ≤ −

n�
j=2

τ̄ jη
p1−p j +4
j

p1 − p j + 4
+

n�
j=2

(p j − 1)H τ j

p1 − p j + 4
,

(68)

where κ̄ j = (p1 + 3)Hκ j , τ̄ j = (p1 + 3)H τ j( j = 2, · · · , n).
Further, we get

LV ≤ −τ1ε
4

2π
tan

�
πη4

1

2ε4

�
−

n�
j=1

d j θ̃
2
j

2b j
− κ̄1ẽ4

1

4

−
n�

j=2

τ̄ jη
p1−p j +4
j

p1 − p j + 4
−

n�
j=2

κ̄ j ẽ
p1−p j−1+4
j

p1 − p j−1 + 4
+ Q∗, (69)

where Q∗ =�n
j=1 Q j +Q+ (p1−1)Hκ1

4 +�n
j=2[ (p j−1−1)Hκ j

p1−p j−1+4 +
(p j−1)Hτ j
p1−p j +4 ].

1) Since V = Vn + Un is continuous and positive definite,
we can obtain from Lemma 4.3 in [53] that there exist K∞
class functions �1(�Z�) and �2(�Z�) such that

�1(�Z�) ≤ V ≤ �2(�Z�), (70)

where Z = (η1, · · · , ηn, θ1, · · · , θn, ẽ1, · · · , ẽn)
T .

Let π0 = min{τ1, τ̄2, · · · , τ̄n, κ̄1, · · · , κ̄n, d1, · · · , dn} and
υ0 = Q∗. Then, Eq. (69) can be rewritten as

LV ≤ −π0V + υ0. (71)

According to Lemma 1, one can directly verify from
Eqs. (70) and (71) that

EV (t) ≤ V (0)e−π0t + υ0

π0
.

Due to 0 < e−π0t < 1, it is easy to get

EV (t) ≤ V (0)+ υ0

π0
. (72)

For any initial state x(0) = (x1(0), · · · , xn(0))T ,
if |x1(0)| < ε, then |η1(0)| = |χ1(0)| < ε. Hence, by
the definition of V (t), it is easy to gain V (0) < ∞ for ∀x(0)
with |x1(0)| < ε, which gives

EV (t) ≤ V (0)+ υ0

π0
< ∞. (73)

Eq. (73) renders the boundness of the mean of V (t), which
also indicates V (t) is bounded with probability one. Keeping

this in mind and noting that V = VB + θ̃2
1

2b1
+�n

j=2� j + Un ,
one directly gains

P{VB(η1) < ∞} = 1.

Thus, it can be deduced that P{|η1(t)| < ε} = 1, that is
P{|y(t)| < ε} = P{|x1(t)| < ε} = 1. (74)

Consequently, the output of system (1) remains in the set �1
with probability one.

2) On the other hand, combining Eq. (71) with Lemma 1
directly infers that all the variables in system (9) (i.e., χ1, �χi ’s,
θ̃i ’s, ξi ’s and ũ) are bounded in probability, which indicates
θ̂i ’s are also bounded owing to θ̂i = θi −θ̃i . Meanwhile, noting
that the controller u = H rn+1 ũ, one can easily deduce that the
controller u is also bounded. Equally, one directly gets from
Eq. (71) and Lemma 1 that all the error variables (i.e., ei ’s
and ẽi ’s) are bounded in probability. Since χi = ei + �χi , all
the χi ’s are bounded. Moreover, by (4), one has xi = χi H ri ,
which verifies that xi is bounded, ∀i = 1, · · · , n. Till now,
we drive the conclusion that all the signals in system (1) are
bounded in probability. �

Remark 6: 1) This paper designs a fuzzy output-
feedback controller rather than the state-feedback con-
trollers in existing literatures about output constraints.
Compared with the existing results, the main feature is
that three restrictions (i.e., output constraints, unknown
nonlinearities and unavailable states) are simultaneously
taken into account, which implies the topic is quite
difficult and challenging.

2) Although the paper has made some contributions on
p-norm stochastic systems with output constraints. How-
ever, the proposed method still has some shortcomings.
On one hand, the proposed control strategy has been
developed under Assumption 1, which is still somewhat
restrictive from the practical point of view. On the other
hand, the considered output constraint is constant and
symmetric, which causes the proposed scheme cannot be
directly applied or further extended to the cases of state
constraints or asymmetric output constraints. We will
focus on these issues in the future.

Remark 7: It could be observed from (71) that the control
performance depends on the parameters π0 and υ0. As stated
in [28]–[31], a better control performance could be obtained by
carefully adjusting the values of all the adjustment parameters,
the observer gains γ1, · · · , γn and scaling gain H under the
given rules (64). Undesirably, to arrive the better performance
may make the altitude of the controller u larger. Consequently,
in practical applications, the careful adjustment of all the
parameters and gains also should take into consideration the
tradeoff between the better performance and control action.

IV. SIMULATION EXAMPLE

A p-norm stochastic nonlinear system is presented in
the following to demonstrate the validation of the proposed
scheme. ⎧⎪⎨⎪⎩

dx1 = x5
2 dt + 2x3

1 dt + 4x1dω,

dx2 = u3dt + x1x2
2 dt + 3x2

2dω,
y = x1.

(75)
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Fig. 1. Trajectories of x1(t) and x̂1(t) with ε = 0.8.

Suppose ε = 0.8, that means the output y = x1 is required
to be kept in �1 = {y(t) ∈ R, |y(t)| < 0.8}. Obviously,
r1 = 0, r2 = 1

5 , r3 = 2
5 . Letting χ1 = x1

Hr1 , χ2 = x2
Hr2 and

ũ = u
Hr3 , the following equivalent system is gotten⎧⎪⎨⎪⎩

dχ1 = Hχ5
2 dt + 2χ3

1 dt + 4χ1dω,

dχ2 = H ũ3dt + H
4
5χ1χ

2
2 dt + 3H

4
5χ2

2 dω,

y = χ1.

(76)

Based on system (76), a two-order observer is first con-
structed as � �̇χ1 = H�χ5

2 + Hγ1(χ
5
1 − �χ5

1 ),�̇χ2 = H ũ3 + Hγ2γ1(χ
5
1 − �χ5

1 ).
(77)

Thus, the fuzzy output-feedback controller with adaptive
laws is designed from Theorem 1 as

u = H
2
5 ũ = −H

2
5 (M

1
3

2 �χ2 + M
1
3

2 M
1
5

1 χ1),

M1 = 3

8
(K (η1))

5
3

�
��1(�Z1)�

8
3 σ11θ̂1 + 1

�
+ ρ1(η1)

K (η1)
+ τ1,

M2 = 5

8
[��2(�Z2)�

8
5 σ21θ̂2 + 1] + 5σ12

8
+ τ2,

˙̂θ1 = 3H b1σ11

8
(K (η1)��1(�Z1)�) 8

3 η8
1 − d1θ̂1,

˙̂θ2 = 5H b2σ21

8
��2(�Z2)�

8
5 η8

2 − d2θ̂2, (78)

where η1 = χ1 = x1, η2 = �χ2 − ξ1, ξ1 = −M
1
5

1 η1,�Z1 = (χ1,�χ1)
T , �Z2 = (χ1,�χT

2 , θ̂1)
T ; ρ1(η1) = 3

8 ·
50

8
3 σ

− 5
3

12 (K (η1))
3
8 + 7

8 K (η1); �i (�Zi )(i = 1, 2) are the fuzzy
basis functions; σ11, σ12, σ21, τi (i = 1, 2), bi (i = 1, 2), and
di (i = 1, 2) are adjustment parameters; H and γi (i = 1, 2)
are constant parameters to be designed. Choose

�1(�Z1) = (ψ11(�Z1), · · · , ψ17(�Z1))
T�N

j=1ψ1 j (�Z1)

�2(�Z2) = (ψ21(�Z2), · · · , ψ27(�Z1))
T�N

j=1ψ2 j (�Z2)

with

ψ1 j (�Z1) = exp

�−(χ1 − 8 + 2 j)2

2

�
exp

�−(�χ1 − 8 + 2 j)2

2

�
,

Fig. 2. Trajectories of x2(t) and x̂2(t).

Fig. 3. Trajectory of u.

ψ2 j (�Z2) = exp

�−(χ1 − 8 + 2 j)2

2

�
exp

�−(�χ1 − 8 + 2 j)2

2

�
× exp

�−(�χ2 − 8 + 2 j)2

2

�
× exp

�
−(θ̂1 − 8 + 2 j)2

2

�
, j = 1, . . . , 7.

Further, we choose the adjustment parameters as
σ11 = 0.2, σ12 = 0.1, σ21 = 5, b1 = b2 = 1, d1 = d2 = 0.05,
τ1 = τ2 = 0.5. At the same time, one chooses and designs
other parameters appearing in the controller as γ = 20,
κ1 = κ2 = 0.05, H = 21, γ1 = 300, γ2 = 2. Then,
the initial values of the states and adaptive parameters
are selected as [x1(0), x2(0),�χ1(0),�χ2(0), θ̂1, θ̂2]T = [0.4,
7.5, 0.4, 7.5, 10, 10]T . The simulation results are displayed
in Figs. 1-3.

Fig.1 shows the trajectories of x1(t) and x̂1(t) under con-
troller (78), which clearly demonstrates that the system output
x1(t) and the estimate x̂1(t) are kept within �1. In addition,
since x1(t) is available, the error between it and the estimate
x̂1(t) constructed by the aid of the known x1(t) can reach to
be very small. Further, the trajectories of x2(t) and x̂2(t) are
provided by Fig. 2, which illustrates that x2(t) can be well
estimated by x̂2(t). In addition, the trajectory of controller u
is given by Fig. 3. Also, it is easy to observe from Figs. 1-3
that all the variables in system (75) remain bounded under
controller (78) all the time.

V. CONCLUSION

This paper has investigated the controller design problem for
a class of p-norm stochastic nonlinear systems which suffer
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from output constraints, unmeasurable states, and unknown
nonlinearities. A tan-type BLF has been used to handle the
output constraint issue, and a full-order observer has been
designed to estimate the unmeasurable states. On these basic,
the fuzzy control algorithm has been developed by applying
the FLSs and the adding a power integrator technique, thereby
an output-feedback controller being constructed. The designed
controller ensures the stability of the considered system in
the sense of boundness without violating the given constraint.
However, there are still some challenging and unsolved prob-
lems, such as the strong restriction of Assumption 1, how
applying the type-2 FLSs to enhance the computational issue,
how to solve the output-feedback control for systems with state
constraints or asymmetric output constraints and so on. In our
future work, we will try to investigate these issues.
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