
Abstract— Convolutional Neural Networks (CNNs) have proven 

to be extremely accurate for image recognition, even outperforming 

human recognition capability. When deployed on battery–powered 

mobile devices, efficient computer architectures are required to en-

able fast and energy-efficient computation of costly convolution op-

erations. Despite recent advances in hardware accelerator design for 

CNNs, two major problems have not yet been addressed effectively, 

particularly when the convolution layers have highly diverse struc-

tures: (1) minimizing energy-hungry off-chip DRAM data move-

ments; (2) maximizing the utilization factor of processing resources 

to perform convolutions. This work thus proposes an energy-effi-

cient architecture equipped with several optimized dataflows to sup-

port the structural diversity of modern CNNs. The proposed ap-

proach is evaluated by implementing convolutional layers of VGG-

Net-16 and ResNet-50. Results show that the architecture achieves a 

Processing Element (PE) utilization factor of 98% for the majority 

of 3×3 and 1×1 convolutional layers, while limiting latency to 396.9 

ms and 92.7 ms when performing convolutional layers of VGGNet-

16 and ResNet-50, respectively. In addition, the proposed architec-

ture benefits from the structured sparsity in ResNet-50 to reduce 

the latency to 42.5 ms when half of the channels are pruned.  

Index Terms—Deep Learning, Convolutional Neural Networks, 

computational dataflow, reconfigurable architecture, Application-

Specific Integrated Circuit (ASIC). 

I. INTRODUCTION 

EEP LEARNING approaches based on Convolutional 

Neural Networks (CNNs) have demonstrated superior re-

sults in several vision tasks including image classification [1]-

[3], object detection [4]-[6], and activity recognition [7], [8]. 

CNNs are constructed by stacking multiple convolutional lay-

ers followed by some fully connected (FC) layers and a classi-

fier. Deep CNNs with numerous convolutional layers have 

proven to achieve high classification accuracy [3]. Conse-

quently, the number of convolutional layers in modern deep 

CNNs has increased dramatically in recent years. For example, 

between AlexNet [1], the winner of ImageNet Large Scale Vis-

ual Recognition Challenge (ILSVRC) [10] in 2012, and ResNet 

[3], the winner in 2015, the number of convolutional layers in-

creased by a factor of more than 20×. This increase allowed 

ResNet to outperform human level accuracy at the expense of a 

substantial growth in the number of parameters and multiply-

accumulation (MAC) operations.  

The massive data requirements and computational complex-

ity pose significant deployment challenges of deep CNNs on 

energy-constrained portable devices. The required data, includ-

ing network parameters, input image and intermediate results, 

is normally too large to fit within internal memories. Thus, us-

ing external memories such as DRAMs is considered inevitable. 

Since DRAM accesses consume orders of magnitude more en-

ergy than any other function [11], increasing local data reuse, 

which limit data transfers to and from DRAM, can significantly 

reduce energy consumption. 

In addition, many vision tasks demand CNN inference times 

within hundreds of milliseconds per image [12], [13]. Acceler-

ation can be achieved through computational parallelism. How-

ever, CNN layers have diverse convolution configurations such 

as different filter and feature map sizes. Thus, a major challenge 

in designing CNN accelerators is to effectively map these di-

verse convolutional layers into a fixed computing architecture. 

Research on CNN complexity reduction and computational 

acceleration has evolved extensively during the past few years 

[15]-[31]. At the architecture level, a large number of domain-

specific neural network processors have been introduced for ac-

celerating deep learning tasks on servers and datacenters [16]-

[19]. Strict energy and power consumptions constraints are not 

demanded in such non-mobile applications. For example, 

Google TPU [19] and DaDianNao[17] have power consump-

tions of 40 W and 16 W, respectively. Some previous works 

introduced FPGA-based CNN accelerators [30], [31] and these 

designs typically consume power in the order of tens of watts. 

Another approach is to design accelerators that only consume 

a few hundreds of milliwatts to fit within the power budget of 

mobile devices [20]. This class of accelerators can be used by 

host mobile processors to perform the convolution computa-

tions. Several recent works have proposed energy efficient ac-

celerators for state-of-the-art CNNs, on Application-Specific 

Integrated Circuit (ASIC) [21]-[29]. Tu et al. [23], proposed the 

Deep Neural Architecture (DNA) for the convolutional and 

fully connected layers of AlexNet. Moons et al. [24] presented 

Envision, a low-power scalable accelerator, which exploits Dy-

namic Voltage Accuracy Frequency Scaling (DVAFS) to 

achieve energy efficiency. The architecture configures multipli-

ers into different word-lengths based on the accuracy require-

ments of convolutional layers in AlexNet and VGGNet. Chen 

et al. [25] proposed an architecture, called Eyeriss, to compute 

the convolutional layers of AlexNet and VGGNet. Eyeriss in-

cludes a 2D spatial array of PEs connected through a network-

on-chip (NOC), and it uses a row-stationary dataflow and a 

large global buffer to store intermediate data to reduce the num-

ber of off-chip DRAM accesses. Ardakani et al. [26], proposed 

a FC-inspired dataflow (FID) customized for VGGNet-16 and 
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VGG-like networks based on computational cores of fully-con-

nected layers. In that work, convolutional layer operations are 

treated as a special case of fully connected ones where a set of 

weights is shared among all neurons. The architecture utilizes 

computational units called Tiles, each consisting of sets of neu-

rons and a weight generator unit that provides the Tiles with 

neuron weights using a shift register. ZASCA [28] is built upon 

FID, it supports more filter sizes and is able to compute the con-

volutional layers of ResNet-50.  

Recently, Ahmadi et al. [29] introduced a convolution accel-

erator with a serial accumulation dataflow. That design only 

supports 3×3 convolutions of VGGNet-16. In this paper, we 

propose a new convolution accelerator with a reconfigurable 

and low-energy architecture, called CARLA, which supports 

efficient computation of various convolutional layers with dif-

ferent filter sizes. CARLA handles the computational diversity 

of different layers using several operating modes with distinct 

computational dataflows. The main contributions of this paper 

are as follows. 

• The paper introduces CARLA, a convolution accelerator that 

integrates efficient dataflows/architectures for 1×1 and 3×3 

convolutions with a low reconfiguration cost. In the 3×3 con-

volution mode, CARLA uses a serial accumulation dataflow by 

cascading PEs in each parallel unit while in 1×1 mode, PEs 

work independently. In addition, CARLA swaps the input fea-

ture and filter weight data movement when performing 1×1 

convolution mode compared to the 3×3 mode. This enables the 

architecture to benefit from significant input data reuse in 1×1 

convolution where the spatial size of filters shrinks to only a 

single weight in each channel. 

• The paper proposes a new pipelining scheme to increase on-

chip data reuse by taking advantage of feedbacks paths. In ad-

dition, this pipelining scheme provides the flexibility to switch 

data movement for different convolution modes. 

• The paper proposes a new on-chip memory structure to sup-

port different convolutions. Moreover, it employs a mechanism 

that allows concurrency of computation with SRAM-DRAM 

data exchanges. To maximize memory efficiency, wider on-

chip memories are employed to store the intermediate results 

while narrower on-chip memories are used to temporarily ac-

commodate the final results. 

• The paper provides performance analysis for each operation 

mode by illustrating the relation between the execution time, 

number of DRAM accesses, and the proportion of time that PEs 

actively contribute in computation, with the characteristics of 

the proposed architecture and CNN models. 

• We evaluate CARLA on the convolutional layers of ResNet-

50 which have very diverse specifications in the input data size 

(from 224×224 to 7×7), filter size (7×7, 3×3, and 1×1), number 

of filters (from 64 to 2048), input channels (64 to 2048) and 

filter strides (1 and 2). In addition, we show that CARLA is 

compatible with structured sparse CNN models and that it can 

efficiently take advantage of filter sparsity to reduce the com-

putation time and number of memory accesses. 

II. DEFINITIONS AND BACKGROUND 

A. Convolutional Layers in Deep CNNs 

Fig.1 shows the convolution operation in a convolutional 

layer. Each convolutional layer takes a 3-D input and a set of 3-

D filters and generates a 3-D output. The 3-D input, also called 

input feature maps (in-fmaps), has size IL × IL × IC, where IL 

is the length and IC is the number of channels of the input. Each 

input element is called an input feature and each 2-D plane of 

size IL × IL is called a feature map. The input feature maps are 

convolved with 3-D filters of size FL × FL × IC where FL is 

the filter length. The dot product of the filter weights and the 

corresponding input features produces partial sums that are ac-

cumulated into output feature maps (out-fmaps). The 3-D out-

fmaps are of size OL×OL×OC where OL is length of the output, 

while OC is the number of output channels. Each output chan-

nel is the result of convolving the input with one filter. There-

fore, with K filters in a convolutional layer, the number of out-

put channels is equal to the number of filters, i.e., OC=K. The 

convolution computation in a CNN layer is given by:   
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where x, w, y and b are the elements in in-fmaps, filter, out-

fmaps and bias matrices, respectively. S denotes the filter stride 

and Z is the number of zero pads [14]. 

B. Architecture Design Challenges 

When computing deep CNN inference in hardware, direct 

mapping of all computations into hardware resources of a single 

chip is not feasible due to the massive complexity of the asso-

ciated computations. Existing designs commonly use a pro-

cessing engine to perform a portion of computations at a time 

[23]. The engine is reutilized in a serial fashion to complete the 

entire computations.  

Fig.1 shows the required computations in one convolutional 

layer using an example partitioning solution. In this example, 

each output channel is divided into P sub-out-fmaps. Each sub-

out-fmap is the result of convolving one filter with the associ-

ated portion of the input features, called sub-in-fmaps. 

The large number of weights, input pixels and intermediate 

data cannot fit within internal memories and thus, utilizing ex-

ternal DRAMs is inevitable. Among all the required operations 

in hardware acceleration, the DRAM access is the most expen-

Fig.1 Convolution operation in a convolutional layer. 



sive one in terms of energy consumption. For instance, the rel-

ative energy consumption of a 32-bit DRAM access in 45 nm 

technology is 200× greater than a MAC operation [15], [33]. 

Hence, it is proportionally beneficial to maximize data reuse in-

side the chip to avoid DRAM accesses. 

A straightforward solution is to utilize larger on-chip SRAMs 

to reduce the costly off-chip DRAM accesses at the expense of 

additional silicon area. In resource-limited ASIC designs, how-

ever, an optimized dataflow is necessary to minimize data 

movements between off-chip and on-chip memories while re-

specting resource constraints. When increasing the number of 

MACs, another challenge is to effectively map the computa-

tions onto the available MAC resources. Consequently, a sig-

nificant issue in several existing designs is that they are not able 

to reach their advertised peak performance with a fixed archi-

tecture when executing modern CNNs [27]. 

III. THE CARLA ARCHITECTURE 

In a CNN inference accelerator, computation of each layer 

starts with fetching the weights and input pixels from the off-

chip DRAM. The convolution operations are then performed, 

and the generated output features are stored back to the DRAM. 

These outputs are fed to the next layer as inputs.  

CARLA is composed of a set of U+1 cascaded convolution 

units (CUs) and a controller. The controller handles the flow of 

the data transfers and assigns computations to the CUs. Each 

CU contains N processing elements (PEs) to perform convolu-

tion operations, except the last one, CU #U, which can contain 

more PEs. Fig. 2 shows the proposed architecture configured 

for the case of ResNet models. Since the number of filters in 

ResNet models is divisible to 64 and 3×3 filters are more widely 

used compared to other large filter sizes, U is set to 64 and N is 

set to 3. In this case, CU #64 contains four PEs and all other 

CUs contain three PEs. CARLA has four input buses, called In-

put #0 to Input #3, coming from the external DRAM. Input #0 

is buffered in a set of U+1 pipelined registers, each feeding one 

CU. Other buses, including Input #1 to Input #3, are connected 

to the inputs of all the CUs. The four input buses may carry 

weights or input features, interchangeably. As will be discussed 

later, this capability allows maximizing utilization of PEs for 

various operating modes. 

The left side of Fig. 2 illustrates the pipeline structure de-

signed for CARLA. Pipelining allows the sharing of input fea-

tures among parallel units [26], [29]. The proposed pipeline has 

several feedback paths that allow the existing data inside the 

pipe to return into the pipeline input. In 3×3 convolution, some 

of the input feature rows are used in different computation 

steps. The feedback paths enable multiple reuse of those com-

mon data after the first fetch, instead of repeated re-fetching 

from the off-chip DRAM. This feedback mechanism is not used 

in 1×1 convolutions. 

Fig. 2 also illustrates the internal structure of one CU when 

N=3. Inside a CU, each PE can perform one Multiply-and-Ac-

cumulate operation in each clock cycle. Each PE contains one 

internal register (e.g. R0 in PE #0) that provides the first oper-

and of the multiply operation. These registers can be loaded 

with values from the CU inputs. The second multiplier operand 

is shared among all PEs of a given CU. This operand is provided 

from the pipelined registers. 

Fig. 3 and Fig. 4 show the configuration of CARLA for 3×3 

and 1×1 convolutions, respectively. Unused resources for each 

mode are shown with greyed-out lines. We point out to different 

parts of PE #0 by blue arrows.  

The PEs can be connected in series to compute the convolu-

tion with 3×3 filter sizes (Fig. 3), or they can process independ-

ent data for 1×1 filters (Fig. 4). The result of the MAC operation 

is either stored in an accumulator (ACC0 and ACC1) when PEs 

are connected in series, or directly stored in SRAMs when the 

PEs process independent data.  

Several multiplexers route the signals inside a PE and be-

tween the PEs of a CU based on the operating mode and the 

 
Fig. 2 The architecture of CARLA. 
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working state. The first and the last PE have special multiplex-

ers, MUX M0 and MUX M2, which enable discarding and re-

placing the results of multipliers with zero. This feature facili-

tates handling of zero-pads at spatial borders of in-fmaps. Based 

on the selected dataflow (described in Section III.A.1), these 

stored values will be used later to compute convolution results. 

Three other multiplexers, named MUX A0, MUX A1, and 

MUX A2, provide flexibility to handle various convolution 

configurations required in different modes.  

In the case of deep CNNs, on-chip SRAMs are generally not 

large enough to store entire out-fmaps. Thus, after computing a 

part of the out-fmaps, i.e., sub-out-fmaps, the architecture must 

free up the SRAMs by transferring the contents to the off-chip 

DRAM. On the other hand, the PEs need to write in the SRAMs 

every clock cycle. To enable the architecture to operate uninter-

ruptedly, we propose to use a pair of SRAMs. While the PEs 

store partial results in one set of wide SRAMs, the narrower 

paired SRAMs receive the generated output features at the end 

of computation cycles. After completing each computation cy-

cle, the contents of the narrower SRAMs are gradually trans-

ferred to the off-chip DRAM.  

In CARLA, while PE #0 and PE #1 only have access to one 

pair of SRAMs, PE #2 can access all SRAMs. As will be dis-

cussed in Section III.B, each PE writes its produced partial sum 

directly into its allocated SRAMs when computing 1×1 convo-

lution. However, in 3×3 convolution, the partial sums of the 

three PEs are added together and the result, called partial result, 

is obtained in PE #2 and stored in the SRAMs. Therefore, PE 

#2 has write access to all SRAM pairs to enable utilization of 

all SRAM resources in 3×3 convolution. The two multiplexers 

MUX B0 and MUX B1 handle the write access modes. The fol-

lowing subsections describe how CARLA performs the 1×1, 

3×3, and 7×7 ResNet convolutions. 

A. 3×3 Convolution Mode 

This section describes how CARLA performs 3×3 convolu-

tion efficiently. The steps to generate a single sub-out-fmap (see 

Fig.1) are described using the proposed configuration for the 

ResNet models, i.e., U=64 and N=3. For the 3×3 convolution 

case, CUs #0 to #63 each compute one output channel of the 

out-fmaps. Thus, in this section, we only explain the function-

ality of CU #0, while CU #1 to CU #63 operate in a similar way. 

CU #64 is not functional in 3×3 convolutions. 

1) Description of CU Functionality Using an Example: This 

subsection describes the functionality of CU #0 using an exam-

ple from the ResNet models, where a matrix of in-fmaps of size 

56×56×64, with zero padding of 1, is convolved with 64 filters 

of size 3×3×64 with stride of 1. The out-fmaps matrix has a size 

of 56×56×64. The computation of the output channel n is per-

formed in CU #n. In this example, there are 56×56=3136 output 

features per output channel. In CARLA, each CU has a pair of 

SRAMs with 224 words. Thus, the out-fmap is divided into 

3136/224=14 sub-out-fmaps of size 4×56. To produce 4 sub-

out-fmaps, the sub-in-fmaps are divided into blocks of 6 rows. 

To summarize, CUs convolve sub-in-fmaps of size 6×56×64 

with filters of size 3×3×64 to compute sub-out-fmaps of size 

4×56. By repeating this process 14 times, all out-fmaps of one 

output channel are computed by the corresponding CU. 

Fig. 5 shows the proposed dataflow to perform 3×3 convolu-

tion in CU #0. Due to zero padding of 1, the convolution of the 

first filter row with the first row of the sub-in-fmaps is not re-

quired. In clock cycle #0, the registers R0, R1 and R2 are loaded 

with weights of the first filter row. The following clock cycles 

are separated into three categories: routine computing cycles, 

in-fmap boundary handling, and row filter and input channel 

change. 

Routine computing cycles: In clock cycle #1, the first input 

feature, x0(0,0), is fed to the input PR0. This input feature is 

multiplied to the filter weights of the first row, w0(0,0), w0(0,1) 

and w0(0,2), and the results are stored in the accumulators 

ACC0 and ACC1. The third adder computes x0(0,0) × w0(0,2), 

but this value does not contribute in any required computation. 

Therefore, it is discarded and replaced by zero using the multi-

plexer MUX M2. 

In clock cycle #2, the second input feature, x0(0,1), appears 

 

Fig. 4 The configuration of a CU for 1×1 convolution. 

 

Fig. 3 The configuration of a CU for 3×3 convolution. 

 



in PR0, while the registers maintain their previous values. As a 

result, the third adder sums the contents of ACC1 (from the pre-

vious cycle) with the output of the multiplier, i.e., x0(0,1) × 

w0(0,2) and the result is stored in the corresponding SRAM ad-

dress. Similarly, the contents of ACC0 (from the previous cy-

cle) are added to the output of the second adder, containing 

x0(0,1) × w0(0,1), and the result is stored in ACC1. In this cycle, 

MUX A0 passes the value 0 and consequently, the result of the 

first multiplier, x0(0,1) × w0(0,0) is directly stored in ACC0. 

As shown with a red box in Fig. 5, the movement of x0(0,0) 

× w0(0,0) is completed in clock cycle #3 and the partial result 

of x0(0,0) × w0(0,0) + x0(0,1) × w0(0,1) +x0(0,2) × w0(0,2), is 

stored in SRAM. This is exactly the convolution of the first fil-

ter row with the first three elements of the sub-in-fmaps. This 

computation flow continues, as one input feature is fetched in 

each clock cycle, its element-wise multiplication with the 

weights of one filter row is performed, and the generated partial 

sums move across accumulator registers to finally be stored in 

the on-chip SRAM. As a result, all PEs actively contribute in 

computations in all clock cycles. 

In-fmap boundary handling: In clock cycle #56, the input 

reaches the end of the first line, i.e., x0(0,55). Since there is no 

overlap between x0(0,55) and w0(0,0) their product does not 

need to be computed. Therefore, MUX M0 replaces this output 

with zero. The next input row starts with zero due to zero-pad-

ding. The produced zero in PE #0 plays the role of that zero-

pad element of the next row in subsequent cycles. Without this 

mechanism, the architecture would have to fetch an additional 

zero as input, which would waste one clock cycle.  

In clock cycle #57, x0(1,0) from the second row of the sub-

in-fmaps, is fetched to start convolution with the first filter row. 

Since the product of x0(1,0) and w0(0,2) is not useful, MUX M2 

substitutes the third multiplier output with zero. This zero plays 

the role of the zero-pad element of the last row, which saves 

another clock cycle. This zero-pad substitution mechanism, ap-

plied in clock cycles #56 and #57, save two clock cycles each 

time the computation reaches the end of an input row.  

Row filter and input channel change: In clock cycle #169, 

the convolution of the first filter row with the first portion of 

sub-in-fmaps has been completed. Thus, the weights of the sec-

ond filter row are stored in R0 to R2 registers and its convolu-

tion with the corresponding portion is started in a process simi-

lar to the first filter row. Without any stall, the computations are 

continued for other filter rows and along the input channels. The 

convolution in CU #0 is completed in clock cycle #39424, by 

fetching the last element of the sub-in-fmaps, x63(4,55), and 

storing the generated partial results in the on-chip SRAM in the 

next clock cycle. 

2) 3×3 Convolution Architecture Performance Analysis: The 

computation time and the number of DRAM accesses for fetch-

ing input features and filter weights can be analyzed for the 3×3 

convolution case. These deterministic metrics depend on the ar-

chitecture and CNN characteristics such as number of CUs, 

number of filters, filter size, feature map size and number of 

input channels. 

In CARLA, in each clock cycle, an input feature is read from 

the off-chip DRAM and a partial result is generated. Consider-

ing three filter rows and IC input channels, generating one sub-

 

Fig. 5. The proposed dataflow for 3×3 convolution to generate a sub-out-fmap. 
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x0(0,55) 0

0 x0(1,0) x0(1,1) x0(1,2) ...

0 x0(2,0) x0(2,1) x0(2,2) ...

x0(1,55) 0

x0(2,55) 0

0 x0(3,0) x0(3,1) x0(3,2) ...

0 x0(4,0) x0(4,1) x0(4,2) ...

x0(3,55) 0

x0(4,55) 0

w63(0,0) w63(0,1) w63(0,2)

w63(1,0) w0(1,1) w0(1,2)

w63(2,0) w0(2,1) w0(2,2)

w0(0,0) w0(0,1) w0(0,2)

w0(1,0) w0(1,1) w0(1,2)

w0(2,0) w0(2,1) w0(2,2)

x0(2,1) x0(2,2) ... x0(2,55)

x0(3,1) x0(3,2) ...

x0(4,1) x0(4,2) ...

x0(3,55)

x0(4,55)

x0(0,1) x0(0,2) ... x0(0,55)

x0(1,1) x0(1,2) ...

x0(2,1) x0(2,2) ...

x0(1,55)

x0(2,55)

y0(0,0) y0(0,1) y0(0,2) ...

y0(1,0) y0(1,1) y0(1,2) ...

y0(0,55)

y0(1,55)

y0(2,0) y0(2,1) y0(2,2) ...

y0(3,0) y0(3,1) y0(3,2) ...

y0(2,55)

y0(3,55)

169 x0(0,0) w0(1,0) w0(1,1) w0(1,2) x0(0,0) × w0(1,0)             0                + 

x0(0,0) × w0(1,1)
x0(2,54) × w0(1,0) + 

x0(2,55) × w0(1,1) +
x0(0,0) × w0(1,2) 

w0(1,0) w0(1,1) w0(1,2)

...

39424 x63(4,55) w63(2,0) w63(2,1) w63(2,2) x63(4,55)×w63(2,0) x63(4,54) × w63(2,0)+ 

x63(4,55) × w63(2,1)
x63(4,53) × w63(2,0) +
x63(4,54) × w63(2,1) +
x63(4,55) × w63(2,2) 

w63(2,0) w63(2,1) w63(2,2) x63(4,54) x63(4,55) 0x63(4,53)

w0(0,0) w0(0,1) w0(0,2) 0 x0(0,0) x0(0,1) x0(0,2)× 

w0(0,0) w0(0,1) w0(0,2) 0 x0(0,0) x0(0,1) x0(0,2)

0

0

... ... ... ... ... ... ...

0

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

× 

w0(0,0) w0(0,1) w0(0,2) × 

× 

0

× 

......

0 x0(0,0) x0(0,1) x0(0,2)× 

× 

......

..
...
.

x0(0,0) × w0(0,0) + x0(0,1) × w0(0,1) + x0(0,2) × w0(0,2) +   + x63(0,2) ×  w63(0,2)

* =

Filter #0
Sub-in-fmaps #0 Sub-out-fmap



out-fmap in Fig. 5 requires 
OL2

P
 ×3×IC clock cycles. This pro-

cess is repeated for the P partitions to generate the entire out-

fmap. No clock cycle is spent for zero pad rows, which saves 

2𝑍 × 𝑂𝐿 clock cycles. Moreover, the proposed boundary mech-

anism introduces no timing overhead for the zero pad columns. 

CARLA uses U parallel CUs, each computing one output 

channel in parallel. Thus, for K filters (i.e., K output channels), 

the computations are repeated ⌈
𝐾

𝑈
⌉ times. Hence, the total num-

ber of clock cycles required to generate the entire out-fmaps is 

#𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = (3 ×  𝑂𝐿2 − 2𝑍 × 𝑂𝐿) × 𝐼𝐶 × ⌈
𝐾

𝑈
⌉               (2) 

The total number of DRAM accesses is composed of the ac-

cesses required to fetch the elements of in-fmaps and the filter 

weights and to store the out-fmaps. In 3×3 convolution, three 

input rows are required to generate an output row. Therefore, 

sub-in-fmaps have two more rows, i.e., (IL/P + 2), compared to 

sub-out-fmpas. For the P partitions, the number of memory ac-

cesses for fetching input features, #𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑛−𝑓𝑚𝑎𝑝𝑠, is 

obtained as 

#𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑛−𝑓𝑚𝑎𝑝𝑠 = (𝐼𝐿 + 2𝑃 − 2𝑍) × 𝐼𝐿 × 𝐼𝐶 × ⌈
𝐾

𝑈
⌉        (3) 

The number of DRAM accesses required to store the results, 

#𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑢𝑡−𝑓𝑚𝑎𝑝𝑠, is equal to the size of the out-fmaps, 

i.e., 𝑂𝐿2 × 𝑂𝐶. On the other hand, the architecture fetches three 

weights of a filter row in each cycle. This process is repeated 

for all Q steps required to compute one sub-out-fmap. Having 

U convolution units, the number of DRAM accesses for fetch-

ing weights of K filters is increased by ⌈
𝐾

𝑈
⌉ times. This process 

is repeated for the other partitions P times. Hence, the total 

number of required DRAM access for fetching weights is 

           #𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠𝑓𝑖𝑙𝑡𝑒𝑟 = 3 ×  𝑈 × 𝑄 × ⌈
𝐾

𝑈
⌉ × 𝑃            (4) 

One important metric in CNN hardware design is PE Utiliza-

tion Factor (PUF), which indicates the proportion of time that 

PEs are actively contributing in computations [32]. 

                100 × 
cyclesClock # × PEs#

Operations#
 =(%) PUF                (5) 

The number of operations in each convolutional layer is the 

total number of MAC operations required to compute out-

fmaps excluding the operations associated to zero-pads. Thus, 

the total number of operations is  

     #𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  𝐼𝐶 × 𝐾 ×  (𝐹𝐿2  × 𝑂𝐿2 − 

2𝑍 × (2 × 𝐹𝐿 × 𝑂𝐿 − 2𝑍))                   (6) 

Replacing the number of clock cycles with (2) and the num-

ber of operations with (6), the PUF in (5) is obtained as 
𝐾

(𝑈+1)×⌈
𝐾

𝑈
⌉
. In the proposed design, the U is set to 64 and K is 

divisible to U. Thus, the PUF of the 3×3 convolution is 98.46%. 

B. 1×1 Convolution Mode 

The proposed architecture could be used naively to perform 

1×1 convolution by applying a dataflow similar to the one used 

in Section III.A. However, this would result in a considerable 

degradation of the PUF. Each input feature would be convolved 

with only one weight instead of three per row, and only one PE 

in each CU would be usable. The other two PEs per CU would 

be permanently inactive. To avoid this, CARLA exploits the 

parallelism available in the 1×1 convolution case using a dis-

tinct dataflow and hardware configuration. 

In 1×1 convolution, the filter row size shrinks to 1. Thus, the 

computed partial sum in each PE does not have to be summed 

with the adjacent PEs. In other words, in 1×1 convolution, all 

PEs in CUs operate independently. On the other hand, in many 

convolutional layers, the number of features in each input chan-

nel is larger than the number of PEs. This provides the follow-

ing possibility to parallelize the computations. 

Each filter weight is convolved with all input features of the 

same channel in 1×1 convolution. A solution to improve the ef-

ficiency is to fill the PE registers with input features and slide 

the filter weights over them (which is a reverse from the 3×3 

convolution mode). With this change, the PE registers R0, R1 

and R2 can each store one input feature. The weights pass 

through the pipelined registers shown in Fig. 2 and appear at the 

PRn input of each PEs. In every cycle, each PE participates in 

computations by multiplying the available weight at its input 

and its registered feature and accumulates the result.  

1) Description of CU Functionality Using an Example: In con-

trast to the 3×3 convolution mode where each CU computes one 

sub-out-fmap, in 1×1 convolution, each CU computes a portion 

of sub-out-fmap of all output channels. For 1×1 convolution, 

each sub-in-fmap in Fig.1 is divided into small groups each con-

taining N features. K different filters slide over each group of 

input features and generate K output channels each containing 

N output features. For instance, for K = 64 filters and a group 

size of N = 3 features, totally 3×64 partial results are computed 

in each CU. 

We use an example from the ResNet models to describe the 

functionality of the CUs when computing 1×1 convolutions. In 

this example, the input feature map is of size 56×56×256, with 

no zero padding. There are 64 filters of size 1×1×256, the filter 

stride is 1, and the output size is 56×56×64. The architecture 

has 65 CUs (U+1=65) that together provide 196 PEs, because 

the first 64 CUs contain three PEs while the last CU has four 

PEs. The out-fmaps are partitioned into 56×56/196=16 sub-out-

fmaps, each containing 196 features. In 1×1 convolutions, the 

number of features in sub-in-fmaps is the same as sub-out-

fmaps, i.e. 196, and they are placed in the registers inside the 

65 CUs while the filter weights are fed through the pipeline.  

Fig. 6 shows the proposed dataflow to perform 1×1 convolu-

tion in CU #0. There are two types of working clock cycles in 

the architecture: routine computing cycles and exceptional cy-

cles for the last input feature.  

Routine computing cycles: In each routine computing cy-

cle, three input features and one filter weight are read from the 

off-chip DRAM. The input features are loaded to three registers 

of a CU and the weight is given to the pipeline input. In clock 

cycle #1 in CU #0, the input PR0 is fed by the first weight of 

the first filter 𝑤0
0(0,0). This weight is multiplied by three input 



features, x0(0,0) and x0(0,1) and x0(0,2), which have been al-

ready loaded to the registers. The results are stored in the 

SRAM-S0, SRAM-S1 and SRAM-S2. In clock cycle #2, the 

first weight of the second filter, 𝑤0
1(0,0), is given to PR0, while 

the first input features are still in the PE registers. The dot prod-

uct results are stored in different addresses in SRAMs. In the 

following clock cycles, the weights of the next filters enter the 

pipelined registers while new input features are stored in the PE 

registers of next CUs.  

Exceptional cycles for the last input feature: The routine 

computing cycles continue until loading the input features for 

the last CU, #64, which exceptionally contains four PEs. To fill 

the registers of all these four PEs in one cycle, the architecture 

uses all four DRAM read buses to fetch four input features ra-

ther than three. Consequently, since no DRAM read bus is left 

to fetch a weight, the pipeline must be stalled in this cycle.  

After this clock cycle, the dataflow returns to its normal op-

eration cycle by fetching three features and one weight from the 

next input channel. The pipeline must be stalled each time the 

input feature fetch reaches the last CU. After IC steps, each one 

taking many clock cycles, a sub-out-fmaps is generated and 

transferred to the off-chip DRAM. 

2) 1×1 Convolution Architecture Performance Analysis: In 

the proposed dataflow, U+1 clock cycles are spent to perform 

the operations in an input channel and IC steps are required to 

complete computation of one sub-out-map. Since there are P 

partitions, this process is performed P times to generate all en-

tire out-fmaps. For K filters, the computations are repeated ⌈
𝐾

𝑈
⌉ 

times. Thus, the total number of clock cycles for 1×1 convolu-

tion is  

  #𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = (𝑈 + 1) × 𝐼𝐶 × 𝑃 × ⌈
𝐾

𝑈
⌉                     (7) 

One filter weight is fetched from DRAM every clock cycle, 

excluding the exceptional cycles. Thus, the total number of 

memory accesses for fetching filter weights is  

     #𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠𝑓𝑖𝑙𝑡𝑒𝑟 = 𝑈 × 𝐼𝐶 × 𝑃 × ⌈
𝐾

𝑈
⌉                  (8) 

The architecture must also fetch  
OL2

P
 features of a sub-in-

fmaps and store them in CU registers. As this process is re-

peated for all P sub-in-fmaps, the total number of DRAM ac-

cesses for fetching input features is 

    #𝐷𝑅𝐴𝑀𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑛−𝑓𝑚𝑎𝑝𝑠
= 𝑂𝐿2 ×  𝐼𝐶 × ⌈

𝐾

𝑈
⌉                    (9) 

In CARLA, the pipeline must be stalled in exceptional cycles 

to fetch the last input features. In the example design, one stall 

cycle occurs in each 65 clock cycles. The PUF in this mode is 

obtained as 
𝑈

𝑈+1
. For U = 64, the PUF is 98.46%.  

C. 1×1 Convolution Mode for Very Small in-fmap Size 

The proposed dataflow in Section III.B can perform 1×1 con-

volutions efficiently and achieves a high PUF when the number 

of features in each in-fmap is close to or greater than the number 

of PEs. If the number of features in a channel is radically lower 

than the total number of PEs, however, its effectiveness is de-

graded. For instance, in the last convolutional layers of the Res-

Net models, the size of the input feature maps shrinks to 7×7 

with only 49 features in each input channel. In this case, only 

49 PEs out of 196 would be utilized, resulting in a maximum 

PUF of 25%. 

To improve the PUF, the architecture employs a distinct da-

taflow in which the weights reside inside CU registers and input 

features are fed into the pipeline. Using this approach, one lim-

iting factor is that the one filter does not contain enough weights 

to fill all the PE registers in a CU. To overcome this limitation, 

we fill the remaining PEs with weights from other filters. This 

strategy is applicable due to the two following facts. (1) As in 

1×1 convolution, PEs inside each CU operate independently, 

the registers in a CU can store weights from different filters. (2) 

In state-of-the art CNNs, the size of the in-fmaps typically 

shrinks by advancing in layers, while the number of filters in-

creases. In this case the total number of clock cycles is  

            #𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = 𝑈 × 𝐼𝐶 × ⌈
𝐾

3𝑈
⌉                         (10) 

 

Fig. 6. The proposed dataflow for 1×1 convolution. 

SRAM #0 SRAM #1 SRAM #2Clock PR0 R0

1
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R1 R2

x0(0,0) x0(0,1) x0(0,2) 

x0(0,0) x0(0,1) x0(0,2)

x0(0,0) x0(0,1) x0(0,2)× 

x0(0,0) x0(0,1) x0(0,2)

..
. ... ..
.

..
.

..
.

..
. ..
.

..
.

× 

× 

* =
Filters Sub-in-fmaps #0 Sub-out-fmaps

...

w0  (0,0)63

w0(0,0)0

w0(0,0)1

x0(0,0) x0(0,1) x0(0,2)× w0  (0,0)63

w1(0,0)0 x1(0,0) x1(0,1) x1(0,2)

w0(0,0)1

w0(0,0)0

x0(0,0) x0(0,1) x0(0,2) 

        x0(0,2) × w0(0,0)0

        x0(0,2) × w0(0,0)1

62

63

w0  (0,0)
63 x0(0,0) x0(0,1) x0(0,2)         x0(0,2) × w0  (0,0)63

w0  (0,0)
63 x0(0,0) x0(0,1) x0(0,2)         x0(0,2) × w0  (0,0)63

× 64 x1(0,0) x1(0,1) x1(0,2) w1(0,0)0

..
. ...

x255(0,2) x255(0,2) x255(0,2)× w255(0,0)63

... ... ... ... ... ... ... ...... ...

16384 x255(0,0) x255(0,1) x255(0,2) w255(0,0)63

w255(0,0)63

w0(0,0)w03(0,0)63

w255(0,0)1

w0(0,0)w0(0,0)1

w255(0,0)63

w0(0,0)w0(0,0)0
x255(0,0) x255(0,1) x255(0,2)

x1(0,0) x1(0,1) x1(0,2)x0(0,0) x0(0,1) x0(0,2)

y63(0,0) y63(0,1) y63(0,2)

y1(0,0) x1(0,1) x1(0,2)y0(0,0) y0(0,1) y0(0,2)

        x0(0,1) × w0(0,0)0

        x0(0,1) × w0(0,0)1

        x0(0,0) × w0(0,0)0

        x0(0,0) × w0(0,0)1

        x0(0,1) × w0  (0,0)63        x0(0,0) × w0  (0,0)63

        x0(0,1) × w0  (0,0)63        x0(0,0) × w0  (0,0)63

            +                        
  x254(0,0) × w254(0,0)+
  x255(0,0) × w255(0,0)

63

63

            +                         
  x254(0,1) × w254(0,0)+
  x255(0,1) × w255(0,0)

63

63

            +                      
  x254(0,2) × w254(0,0)+
  x255(0,2) × w255(0,0)

63

63

        x0(0,0) × w0(0,0)+
        x1(0,0) × w1(0,0)

0

0
        x0(0,1) × w0(0,0)+
        x1(0,1) × w1(0,0)

0

0
        x0(0,1) × w0(0,0)+
        x1(0,1) × w1(0,0)



In this dataflow, each filter weight is only fetched once. Thus, 

the number of required memory accesses for fetching filter 

weights is 

           #𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠𝑓𝑖𝑙𝑡𝑒𝑟 = 𝐾 × 𝐹𝐿2 × 𝐼𝐶                (11) 

 The input features, however, need to be fetched multiple 

times if the number of weights is more than the number of PEs. 

Thus, the number of DRAM accesses to fetch input feature is 

     #𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑛−𝑓𝑚𝑎𝑝𝑠 = 𝐼𝐿2 × 𝐼𝐶 × ⌈
𝐾

3𝑈
⌉             (12) 

D. 7×7 Convolution Mode and Others 

The architecture of CARLA is designed to achieve high PUF 

for 3×3 and 1×1 convolutions, as the most widely-used convo-

lutions in most modern CNNs. However, other convolution 

sizes are used in exceptional cases. For example, the first layer 

in ResNet performs 7×7 convolutions. To support 7×7 and other 

larger convolutions, we divide the filter plane into smaller 

pieces and utilize a row-wise dataflow.  

As shown in Fig. 7, the 7×7 filter is split into 21 pieces: 14 

of them contain a row with three weights, and the remaining 7 

consist of a row with one weight and two empty locations. The 

convolution of these small pieces can be handled by CARLA 

based on the row-wise convolutions explained in Section III.B. 

To preserve computation flow homogeneity, all 21 pieces with 

one weight are computed using the 3×3 convolution mode. 

IV.  RESULTS AND DISCUSSION 

CARLA was modeled in Verilog HDL and was implemented 

in TSMC 65 nm LP CMOS technology for a 200 MHz clock 

frequency using Cadence Genus. The word lengths of the 

weights, in-fmaps and out-fmaps were set to 16 bits while the 

accumulators were 24 bits wide. CARLA was evaluated with 

the convolutional layers of the original ResNet-50 and a struc-

tured sparse ResNet-50 model with 50% channel pruning rate.  

A. Specification of ResNet-50 and its structured sparse model 

ResNet has been the default CNN choice for image recogni-

tion since 2016 [14]. Table I illustrates the structure of ResNet-

50 as one of the widely used ResNet models for benchmarking. 

In this model, the convolutional layers are grouped into five cat-

egories, Conv1 to Conv5, based on the size of layer outputs. All 

categories except Conv1, which only contains one 7×7 convo-

lutional layer, are repeated several times. 32 out of the 49 con-

volutional layers require 1×1 convolutions while 16 layers need 

3×3 convolutions.  

Table I also shows the number of filters in ResNet-50 after 

applying a structured filter pruning method. Structured filter 

pruning is one of the promising solutions to reduce CNN model 

complexity that does not require indexing and keeps CNN 

model structure unchanged while reducing the number of fil-

ters. Since removing each filter leads to removal of one output 

channel, this approach is also called channel pruning [36]. We 

evaluated the number of DRAM accesses and computation time 

in CARLA with the structured sparse ResNet-50 model from a 

state-of-the-art filter pruning method [36]. The sparse model 

has 50% fewer channels while its accuracy only drops by 0.6 % 

compared to the original ResNet-50 model. 

B. Performance and DRAM Access Results 

Fig. 8 to Fig. 10 show the results of evaluating different effi-

ciency metrics for CARLA, including PUF, computation time 

and DRAM memory accesses.  

As shown in Fig. 8, CARLA achieves a remarkable PUF of 

98% for 3×3 convolutions in all the convolutional layers of Res-

Net-50. For 1×1 convolution, the PUF is 98% for the Conv1 to 

Conv4 layers. In the Conv5 layer, in which the size of in-fmap 

is very small, CARLA utilizes the dataflow described in Section 

III.C and reaches a remarkable PUFs of 87.1% and 94.5%. The 

high PUFs for 1×1 and 3×3 convolutions highlight the effec-

tiveness of the proposed dataflows to map the required compu-

tations on the available resources in most convolutional layers. 

The PUF for Conv1 with a single 7×7 convolution layer is only 

45%. However, this lower PUF does not significantly impact 

the overall efficiency because it only applies to the first layer of 

ResNet-50. On the other hand, computing the 7×7 convolution 

using the method described in Section III.D, rather than using 

an additional customized architecture, prevents considerable 

hardware overhead.  

Fig. 9 reports the computation time of CARLA for different 

convolutional layers of ResNet-50.  The results show that 3×3 

convolutions require more computations than 1×1 convolu-

tions. The computation times for layers in Conv2 to Conv5 fol-

low the same pattern. Inside each group of layers, the number 

of filters is inversely proportional to the number of input chan-

nels from one convolutional layer to the next. These two factors 

compensate each other with respect to the computation time. On 

 

Fig. 7 Splitting each plane of a 7×7 filter into 21 pieces.  

TABLE I 

STRUCTURE OF RESNET-50 CONVOLUTIONAL LAYERS 

Convolutional 

layers 

Output 

size 

Filter 

size 

# Filters in 

original model 

# Filters in 

sparse 

model 

Conv1 112×112 7×7 64 64 

3 × Conv2 56×56 

1×1 64 32 

3×3   64 32 

1×1 256 256 

4 × Conv3 28×28 

1×1 128 64 

3×3   128 64 

1×1 512 512 

6 × Conv4 14×14 

1×1 256 128 

3×3   256 128 

1×1 1024 1024 

3 × Conv5 7×7 

1×1 512 256 

3×3   512 256 

1×1 2048 2048 

 



the other hand, when moving from one group to the next, the 

out-fmaps size decreases while the number of filters increases 

proportionally. Consequently, and as the results in Fig. 9 illus-

trate, CARLA obtains similar computation times for the same 

filter size in various layers. To reduce the out-fmap size, the 

ResNet model utilizes filters with a stride of 2 between each 

convolutional group from Conv2 to Conv5. The computation 

times for those transition layers, i.e., convolutional layers #11, 

#23, and #41, are half of the values shown in Fig. 9 for the be-

ginning layers of each group.  

Fig. 9 also shows the processing time reduction in CARLA 

for each convolutional layer of the structured sparse ResNet-50. 

In almost all convolutional layers, when the number of filters is 

reduced to half using pruning, CARLA achieves 2× to 4× 

speedup compared to the original ResNet-50 model. As men-

tioned earlier, pruning one filter results in removing one output 

channel, i.e., one input channel for the next layer. Therefore, in 

the layers without pruned filters, CARLA achieves a 2× 

speedup because of the reduced number of input channels. 

When both the number of input channels and the number of fil-

ters is halved, CARLA achieves 4× speedup. Overall, CARLA 

can perform the convolution computations of the original Res-

Net-50 in 92.7 ms and of the structured sparse ResNet-50 in 

42.5 ms. 

Fig. 10 shows the total number of DRAM accesses, which is 

mainly greater in Conv5 layers than in other layers due to their 

higher number of filters. In addition, the number of DRAM ac-

cesses for the Conv2 layers is larger due to its larger output size. 

For the Conv4 layers, where the output size is 14×14, the num-

ber of DRAM accesses is lower than for other convolution 

groups. This is a consequence of proper SRAM size selection. 

Since Conv4 is the most often repeated group of layers in Res-

Net-50 (6 times), we set the SRAM size to 224, which is divisi-

ble by all row sizes in ResNet-50, and greater than the number 

of generated partial results in the Conv4 layers, i.e. 14×14=196. 

This allows to maintain all partial results in on-chip memories. 

For other layers, due to the large size of the outputs, partitioning 

is unavoidable. 

Fig. 10 also shows the number of DRAM accesses when run-

ning the convolutional layers of the sparse ResNet-50 by 

CARLA. As the results show, the number of DRAM accesses 

in CARLA continuously decreases in the convolutional layers 

of the structured sparse model. This is achieved by avoiding 

fetching pruned filters and by avoiding input feature re-fetches 

for the pruned computations. In addition, the number of gener-

ated output channels in the sparse model is lower and it requires 

fewer DRAM accesses. In other words, pruning a set of filters 

reduces the number of DRAM accesses required for filter 

weights, input and output features. Therefore, savings in the to-

tal number of DRAM accesses in CARLA are greater than the 

obtained reduction by pruning filter weights. The results in Fig. 

10 also show that the reduction in the number of DRAM access 

is more noticeable in the Conv5 layers since most of the DRAM 

accesses in these layers are filter weight fetches. Overall, 

CARLA requires 124 MB DRAM accesses to perform the com-

putations of the original ResNet-50 model and 63.3 MB DRAM 

accesses for the structured sparse ResNet-50. The discussion in 

this section can be generalized to the ResNet-101 and ResNet-

152 models which have the same groups of convolutions with 

more iterations in each group.  

C. Comparison with State-of-the-Art CNN Implementations 

Several existing works on hardware accelerator design for 

CNNs have targeted VGGNet-16. While CARLA supports all 

the variations across convolutional layers of ResNet-50 as a 

widely used CNN model, we also provide the evaluation results 

on VGGNet-16 to facilitate comparison with existing designs. 

Table II compares the implementation results of CARLA with 

the state-of-the-art. Two implementation metrics are of pro-

found importance when comparing low-energy accelerators. 

First, the PUF measures dataflow efficiency for mapping the 

computations onto available PEs. Second, the number of 

DRAM accesses is critical and must be minimized since 

DRAMs consume orders of magnitude more energy than other 

functions.    

Eyeriss [25] utilizes an NOC-like structure to compute VGG-

Net-16 and processes batches of three images at a time to reduce 

DRAM accesses. Data batching is a suitable technique to train 

neural networks. When computing inference, however, many 

real-world applications demand to process each image frame 

 

Fig. 8 The PUF for convolutional layers in ResNet-50. 

 

Fig. 9 The computation time for convolutional layers in ResNet-50. 

 

Fig. 10 # DRAM accesses for convolutional layers in ResNet-50. 
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individually to make a quick decision instead of waiting for 

batch processing. The excessive latency of batch processing is 

a prohibitive factor for many real-time applications [15]. Eyer-

iss suffers from a high latency of 4.3 s for processing VGGNet-

16 and obtains a PUF of 26% for VGGNet-16. CARLA 

achieves 11× faster image recognition with 72% higher PUF in 

3×3 convolutions while consuming 31% smaller silicon area. 

Moreover, CARLA offers 3.6× higher performance and 3.5× 

higher energy efficiency thanks to its highly optimized model-

specific dataflows. 

Envision [24] takes advantage of the more advanced 28 nm 

UTBB FD-SOI technology and dynamic voltage-accuracy fre-

quency scaling (DVAFS) to improve its energy efficiency. That 

design offers a relatively low PUF of 32% resulting in a latency 

of 598.8 ms when running VGGNet-16. CARLA outperforms 

the Envision architecture by achieving 34% lower latency while 

requiring 2.1× fewer gates. The number of DRAM accesses has 

not been reported for Envision. 

FID [26] uses a dataflow inspired from the computational 

pattern of FC layers to compute the convolutional layers of 

VGGNet-16. Fig. 11 compares the number of DRAM accesses 

in CARLA with FID for each convolutional layer of VGGNet-

16. As these results show, our proposed pipelining scheme sig-

nificantly improves data reuse in most convolutional layers and 

consequently reduces the number of re-fetched input features. 

A large portion of the total DRAM accesses is associated with 

fetching the input features. Hence, in CARLA, the achieved re-

duction in the number of DRAM accesses for fetching input 

features reduces the total number of DRAM accesses per layer. 

Overall, compared to FID, CARLA reduces the latency by 

12.4% and the number of DRAM accesses by 22.1%.  

ZASCA [28] is built upon FID to support a larger number of 

filter sizes. Compared to FID, ZASCA requires 2× larger sili-

con area and can perform the convolutional layers of ResNet-

50. The ZASCA configuration for computing the original CNN 

model (dense activations) is called ZASCAD in [28]. Fig. 12 

and Fig. 13 compare the PUF obtained by ZASCAD and 

CARLA when computing 3×3 and 1×1 convolutional layers, 

respectively.  

As shown in Fig. 12, our proposed dataflow for 3×3 convo-

lutions outperform the FC-inspired dataflow in ZASCAD espe-

cially in early convolutional layers. The FC-inspired dataflow 

in ZASCAD suffers from an issue called weight passing [27], 

which consists of wasted clock cycles to correct weight posi-

tions in the weight generator unit when computing a new output 

feature row. In addition, in ZASCAD there is no mechanism to 

enable performing convolution and DRAM data transfers sim-

ultaneously. The lack of such a mechanism introduces inter-

rupts in the computations in ZASCAD, reducing the PUF and 

increasing the computation time. 

In CARLA, the proposed dataflow for 3×3 convolutions can 

utilize all the processing elements in all computation cycles and 

takes advantage of a mechanism to handle zero paddings at 

boundaries. Thus, it does not waste any clock cycle. In addition, 

utilizing paired SRAMs enables CARLA to overlap computa-

tions with SRAM-DRAM transfers. This results in a near per-

fect PUF of 98%. 

As shown in Fig. 13, the PUF of ZASCAD for 1×1 convolu-

tion is severely degraded in the majority of the convolutional 

layers. The 1×1 dataflow in ZASCAD does not efficiently map 

TABLE II 

COMPARISON OF THE PROPOSED METHOD WITH THE STATE-OF-THE-ART 

 Eyeriss[25] Envision [24] FID [26] ZASCAD [28] CARLA (This work) 

Technology (nm) 65 28 65 65 65 

On-chip SRAM (KB) 181.5 86 86 36.9 85.5 

Core Area (mm2) 12.25 1.87 3.5 6 6.2 

Gate Count (NAND2) 1852 k 1950 k 1117 k 1036 k 938 k 

Frequency (MHz) 200  200  200  200 200  

Batch size 3 N/A 1 1 1 

Bit precision 16b 1-16b 16b 16b 16b 

#PEs 168 256-1024 192 192 196 

CNN model VGG-16 VGG-16 VGG-16 VGG-16 ResNet-50 VGG-16 ResNet-50 

Power (mW) 236 26 260 301 248 247 247 

PUF % (filter size) 

 

3×3: 26%  

 

3×3: 32%  

 

3×3: 89 % 

 

3×3: 94% 

 

total: 88% 3×3: 98% 

 

1×1, 3×3: 98% 

7×7: 45% 

Latency (ms) 4309.5 598.8 453.3 421.8 103.6 396.9 92.7 

Performance (Gops) 21.4 51.3 67.7 72.5 74.5 77.4 75.4 (83.26)† 

Efficiency (Gops/W) 90.7 1973 260.4 240.9 300.4 313.4 305.3 (337.1)† 

# DRAM access/batch (MB) 321.1 N/A 331.7 375.5 154.6 258.2 124.0 

† In [28], the number of operations (Gop) in ResNet-50 is different of our calculations. The number in parenthesis are computed when using the 
same number of operations as [28]. 

 

Fig. 11 The number of DRAM accesses for CARLA compared to FID 

for VGGNet-16. Conv 64-3-224 means a convolutional layer with 64 

filters, 3 input channels, and in-fmap size of 224. 
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the computations to available PEs and many of them are idle. 

For instance, in the convolutional layer #2 (L2), 128 out of 192 

of PEs do not contribute in computations [27]. 

The reconfigurable architecture of CARLA, on the other 

hand, maintains computation efficiency high by using a differ-

ent dataflow for 1×1 convolution. As discussed in sections 

III.B, PEs have valid data to perform computations and they re-

main active in most computational cycles of the 1×1 convolu-

tion mode.  

Fig. 14 shows the number of DRAM accesses for 1×1 and 

3×3 convolutions in CARLA and ZASCAD. CARLA requires 

fewer DRAM accesses for both 3×3 and 1×1 convolutions. In 

1×1 convolution, the lower PUF of ZASCAD causes a larger 

number of re-fetches of the same data from the off-chip DRAM. 

In 3×3 convolution, similar to the discussion for VGGNet-16 in 

Fig. 11, CARLA requires fewer DRAM accesses thanks to the 

employed feedback mechanism in its pipeline. Overall, 

CARLA requires 19.8% fewer DRAM accesses compared to 

ZASCAD, while offering 10.5% lower latency for computing 

convolutional layers of ResNet-50.  

When comparing CARLA on VGGNet-16 benchmark with 

[24]-[26] in Table II, we assume 64-bit data bus width for off-

chip DRAM in conformance to their assumptions. However, 

our evaluation show that the implementation results for 

ZASCAD in [28] on ResNet-50 benchmark can be obtained 

only by assuming a wider data bus for DRAM. It is due to char-

acteristics of Conv5 layers in ResNet-50. In this group of con-

volutional layers, the number of input features in a channel is 

7×7= 49 which is radically lower than the total number of PEs, 

i.e., 192. In each fetch from DRAM, in [28], one 16-bit input 

feature along with three filter weights are read. After fetching 

all the input features within 49 clock cycles, there are still plenty 

of PEs which are empty and not loaded with filter weights. On 

the other hand, other PEs which were previously loaded by 

weights are data-starved since all the corresponding input fea-

tures have been already fetched. To make all the PEs active and 

achieve a high PUF, the accelerator has to fill the empty PEs 

with three filter weights and simultaneously fetch a new set of 

three filter weights and one input feature for the data-starved 

PEs. Hence, assuming 16-bit word-length for data values, in to-

tal 3×16 + 4×16 = 112 bits must be fetched from DRAM in each 

clock cycle to achieve a high PUF. We used this assumption 

when comparing CARLA with [28] on the ResNet-50 bench-

mark. If the DRAM bus width shrinks to the tight assumption 

of 64-bit, CARLA will need some stalls to first feed all CUs 

with input features and then starting the computation of the next 

filter row. The computation time in that case is 98.2 ms, which 

is still faster than ZASCAD. This highlights the advantage of-

fered by dataflows even when dealing with low bandwidth 

DRAMs. The DRAM data bus width does not impact the num-

ber of DRAM accesses and CARLA still requires 19.8% fewer 

DRAM accesses. 

V. CONCLUSION 

This work introduced CARLA, which is a convolutional ac-

celerator with several operating modes to efficiently compute 

the convolutions in very deep CNNs such as ResNet-50. For 

3×3 convolution, CARLA utilizes a new dataflow to maximally 

reuse the data fetched from DRAM. In addition, it utilizes an 

effective solution to avoid latency overhead while switching the 

rows and channels in boundaries of input feature maps. To sup-

port 1×1 convolution, CARLA maximizes data reuse by switch-

ing the datapath of the input data and the filter weights. When 

evaluated in ResNet-50, this architecture achieves a PUF of 

98% across many of 1×1 and 3×3 convolutions and supports 

other convolution structures such as 7×7. This results in a la-

tency of 92.7 ms and total DRAM accesses of 124.0 MB when 

computing the convolutional layers of ResNet-50 for classify-

ing an input image. In addition, CARLA reduces the latency to 

42.5 ms and the required DRAM accesses to 63.3 MB when 

half of the channels are pruned. 

 

Fig. 12 The PUF for CARLA compared to ZASCAD for 3×3 convolu-
tional layers in ResNet-50. L3 means the convolutional layer #3. The 

ZASCAD architecture was previously introduced under the name 

MMIE in [27]. Data for ZASCAD (MMIE) are collected from [27]. 

 

Fig. 13 The PUF for CARLA compared to ZASCAD (MMIE) for 1×1 

convolutional layers in ResNet-50. 

 

Fig. 14 The number of DRAM accesses for CARLA compared to 
ZASCAD (MMIE) for ResNet-50. 
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