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Constructing Higher-Dimensional Digital Chaotic
Systems via Loop-State Contraction Algorithm

Qianxue Wang, Simin Yu, Christophe Guyeux, and Wei Wang

Abstract—In recent years, the generation of rigorously prov-
able chaos in finite precision digital domain has made a lot
of progress in theory and practice, this article is a part of
it. It aims to improve and expand the theoretical and appli-
cation framework of higher-dimensional digital chaotic system
(HDDCS). In this study, topological mixing for HDDCS is
strictly proved theoretically at first. Topological mixing implies
Devaney’s definition of chaos in compact space, but not vise
versa. Therefore, the proof of topological mixing improves and
expands the theoretical framework of HDDCS. Then, a general
design method for constructing HDDCS via loop-state contraction
algorithm is given. The construction of the iterative function
uncontrolled by random sequences (hereafter called iterative
function) is the starting point of this research. On this basis, this
article put forward a general design method to solve the problem
of HDDCS construction, and a number of examples illustrate the
effectiveness and feasibility of this method. The adjacency matrix
corresponding to the designed HDDCS is used to construct the
chaotic echo state network (ESN) for the Mackey-Glass time
series prediction. The prediction accuracy is improved with the
increase of the size of the reservoir and the dimension of HDDCS,
indicating that higher-dimensional systems have better prediction
performance than lower-dimensional systems.

Index Terms—HDDCS, loop-state contraction algorithm, iter-
ative function, state transition diagram, echo state network.

I. INTRODUCTION

THE ability to generate a succession of chaotic systems on
digital devices can be very useful, both for the simulation

of physical phenomena and for the reinforcement of crypto-
graphic technology on such machines [1], [2], [3], [4], [5]. At
the mathematical level, the formalization of discrete dynamic
systems with chaotic behaviour is theoretically mature [6],
[7], [8], [9], but its practical realization on any digital devices
frequently suffers from the finite precision of the latter [10],
[11], [12]. Without external control, for a chaotic autonomous
system in finite precision digital domain, it cannot strictly
satisfy the mathematical definition of chaos [13]. Therefore,
the fundamental way is to add some external control method
to solve the modeling problem of digital chaos [14], [15], [16],
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[17], [18]. For example, in 2010, a new theory of constructing
chaos in the digital domain was proposed in [19], that is,
the chaos generation strategy controlled by random sequences.
The main feature of this strategy is that some bits are randomly
updated by the iterative function at each iteration, while
the rest remains unchanged. This is very different from the
existing discrete-time chaotic system in infinite precision real
number domain, that all bits will participate in all the update
operations by the iterative function. Digital chaotic system
constructed with the chaos generation strategy controlled by
random sequences is proven to satisfy the Devaney’s defi-
nition of chaos in [19], [20], [21], [22], [23], [24]. Since
this system is directly generated in finite precision digital
domain, there is no finite precision effect problem, and the
binary sequences can be obtained without transformation and
combination. Therefore, it fundamentally solves the dynamic
degradation problem of digital chaotic systems caused by the
finite precision.

Some works were firstly done to disclose how to build
digital chaotic systems in finite precision domain, such as
Chaotic Iterations (CI) system [19]. Then, a mark sequence
was applied to avoid wasteful duplication of values in [20],
leading to an obvious speed improvement. In [21], chaotic
combination of two input entropic streams has solved flaws
exhibited in the system designed in [20]. The chaos generation
strategy was implemented in [22], through a sample-hold
circuit and a decoder circuit so as to convert the uniform noise
signal into a random sequence. The second chaos generation
strategy named Chaotic Bitwise Dynamical System (CBDS)
was proposed in [23]. All the above related works deal with
1-D chaotic maps.

In a recent study, the concept of HDDCS based on the above
chaos generation strategy controlled by random sequences has
been proposed in [25]. It is simple and does not require
floating-point operations, which makes it provides higher
computational speeds, and it is more convenient for hardware
implementation than the real number domain chaotic systems.
As far as we know, Topological mixing implies Devaney’s
definition of chaos in compact space, but not vise versa [26],
[27]. Therefore, based on the fact that HDDCS satisfies
Devaney’s definition of chaos, this article will prove that
the system is also topological mixing. Note that topological
mixing is a stronger version of transitivity, and topological
mixing implies transitivity.

The main construction method of HDDCS in [25] is the
experimental trial-and-error method. This method may be
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effective for modeling low-dimensional chaotic systems, but
more and more limitations appear when the dimension in-
creases. This article presents a more general design method
for HDDCS via loop-state contraction algorithm. The design
of iterative functions is the starting point of this research, and
then using simple bitwise operations to create the iterative
function. In this way, the connectivity of the state transition
diagram of GF in HDDCS will not change as finite precision
changes. Then the set of all possible iterative functions S
is obtained by that. Note that the strong connectivity for
GF in HDDCS is key to chaos. Therefore, the iterative
function F ∈ S is constructed according to the loop-state
contraction algorithm, so that the state transition diagram of
GF corresponding to F is strongly connected. The loop is
a non-empty directed path in the state transition diagram,
where the first state and the last state are the same [28]. To
contract the loop in a state transition diagram is to replace
the set of states in the loop (and each occurrence of all the
states in the set in any edge) by a single new state, and
to delete any subsequent self-loops (edges that join a state
to itself) and multi-edges [29]. Each edge in the resulting
state transition diagram is identified with the corresponding
edge in the original state transition diagram or, in the case of
multiedges, the single remaining edge is identified with any
one of the corresponding edges in the original state transition
diagram.

Finally, the adjacency matrix corresponding to HDDCS is
used to construct a chaotic ESN. ESN [30] is a Recurrent
Neural Network (RNN) proposed by Jaeger in 2001. Because
of its recursive processing of historical information, it has
short-term memory capabilities, and it is suitable for pro-
cessing the information with strong correlation in time and
space sequence, especially the ESN can guarantee fastness and
global optimal, which avoids the inherent characteristics of the
traditional RNN, such as easy to fall into local optimality and
difficulty in stability analysis. Therefore, ESN shows strong
application prospect in speech recognition [31], language
modeling [32], modeling and control of nonlinear system [33],
etc. Especially in 2004, the prediction accuracy of Mackey-
Glass time series achieved a qualitative leap [34], [35], [36].
As a time series with a chaotic attractor, the Mackey-Glass
system has become one of the benchmark problems for time
series prediction in both the neural network and fuzzy logic
fields [37]. In this article, the adjacency matrix corresponding
to HDDCS is used to construct the network structure of the
reservoir, which makes ESN be a chaotic ESN [38].

The remainder of this article is organized as follows. The
description of HDDCS and the proof of its topologically
mixing are provided in Sec. II. Section III presents the
detail of the general design method of constructing iterative
function via loop-state contraction algorithm. The application
of the adjacency matrix corresponding to HDDCS to construct
chaotic ESN for the Mackey-Glass time-series prediction is
demonstrated in Sec. IV. The last section concludes the article.

II. PROOF OF TOPOLOGICAL MIXING OF GF

Topological mixing is a stronger property than transitiv-
ity [27]. This section proves that if the state transition diagram

of GF in HDDCS is strongly connected, then GF is topolog-
ical mixing in a compact space. Therefore, the description of
GF in [25] is reviewed at first, then the concepts of metric
space and compact space are introduced, and then GF : E → E
is proved to be a continuous mapping in (E , d) (Theorem 1).
Finally, it is proved that GF is topological mixing in a compact
space (Theorem 2).

A. Description of GF in HDDCS

Let us recall the description of GF in HDDCS, as previously
published in [25]. Define E as the set of points E of the
form ((s, u, . . . , v), (x1, x2, . . . , xm)), where s, u, . . . , v are
m independent random sequences, while x1, x2, . . ., xm are
m real numbers, each one is represented by N -bit floating
numbers (limited accuracy), that is N = P + Q, P is the
number of binary digits for integral part and Q is the number of
binary digits for fractional part. Let us now define the mapping
GF : E → E as

GF (E)=GF ((s, u, . . . , v), (x1, x2, . . . , xm))

=((σ(s), σ(u), . . . , σ(v)), (HF1(i(s), (x1, x2,

. . . , xm)), HF2(i(u), (x1, x2, . . . , xm)),

. . . , HFm(i(v), (x1, x2, . . . , xm)))) .

(1)

According to Eq.(1), the general form of the iterative equation
controlled by random sequences for HDDCS is

Ek+1 = GF (Ek)(k = 0, 1, 2, . . .) . (2)

In Eq.(1), HFj (i(u), (x1, x2, . . . , xm))(j = 1, 2, . . . ,m) is
HF1

(i(s), (x1, x2, . . . , xm)) =((x1 · i(s)) + (F1(·) · i(s))) ,
HF2

(i(u), (x1, x2, . . . , xm)) =((x2 · i(u)) + (F2(·) · i(u))) ,

...
HFm

(i(v), (x1, x2, . . . , xm))=((xm · i(v)) + (Fm(·) · i(v))) ,
(3)

where the operators “ · ”, “(·)”, and “ + ” denote bitwise
AND, bitwise NOT (negation), and bitwise OR, respectively,
σ(w) (w ∈ {s, u, · · · , v}) shifts one item in the one-sided
infinite sequence w = w1w2 · · ·wn · · · to the left, and at the
k-th iteration, σk(w) = wk+1wk+2 · · ·wn, k = 1, 2, . . . , and
i(w)(w ∈ {s, u, · · · , v}) is equal to the overflow from the left
shifting of the sequence w.

Note that in Eq.(3), Fj(·)(j = 1, 2, . . . ,m) represents an
iterative function, and its general form is

F1(·) = F1(x1, x2, . . . , xm) ,

F2(·) = F2(x1, x2, . . . , xm) ,

...
Fm(·)= Fm(x1, x2, . . . , xm) .

(4)

How to select the appropriate iterative function F1, F2, . . . , Fm

to make the state transition diagram of GF in HDDCS
represented by Eq.(2) is strongly connected is an important
content of this article.
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B. Metric space

In mathematics, a distance function on a given set E is a
function d : E × E → R, where R denotes the set of real
numbers, that satisfies the following conditions:

1) Non-negativity and identity of indiscernibles: d(E, Ê) ≥
0, and d(E, Ê) = 0 iff E = Ê.

2) Symmetry: d(E, Ê) = d(Ê, E).
3) Triangle inequality: d(E, Ê) ≤ d(E, Ẽ) + d(Ẽ, Ê).

It should be noted that the distance d cannot be infinite,
otherwise the above three properties cannot be satisfied.

According to [25], the distance for HDDCS in the metric
space is defined as

d(E, Ê)=d(((s, u, . . . , v), (x1, x2, . . . , xm)),

((ŝ, û, . . . , v̂), (x̂1, x̂2, . . . , x̂m)))

=ds(s, ŝ) + du(u, û) + · · ·+ dv(v, v̂)

+dx((x1, x2, . . . , xm), (x̂1, x̂2, . . . , x̂m)) ,

(5)

where 

ds(s, ŝ) =

∞∑
k=1

|sk − ŝk|
2Nk

,

du(u, û)=

∞∑
k=1

|uk − ûk|
2Nk

,

...

dv(v, v̂) =

∞∑
k=1

|vk − v̂k|
2Nk

,

dx((x1, x2, . . . , xm), (x̂1, x̂2, . . . , x̂m))

=
√

(x1 − x̂1)2 + (x2 − x̂2)2 + · · ·+ (xm − x̂m)2,

x1, x̂1, x2, x̂2, . . . , xm, x̂m are binary forms of real numbers
with N -bit finite precision, and 0 ≤ dx ≤

√
m(2P − 2−Q).

In Eq.(5), the general expression of two different m one-
sided infinite random sequences as

s= s1s2 · · · sn · · ·
u= u1u2 · · ·un · · ·

...
v= v1v2 · · · vn · · ·

,


ŝ= ŝ1ŝ2 · · · ŝn · · ·
û= û1û2 · · · ûn · · ·

...
v̂= v̂1v̂2 · · · v̂n · · ·

.

Obviously, the above Eq.(5) satisfies the non-negativity
and identity of indiscernible, the symmetry and triangular
inequality properties, so this is a distance that makes (E , d)
a metric space. Note that the definition of distance is not
unique. As long as it satisfies the three properties and is not
infinite, it can be used as the definition of distance. Choosing
an appropriate definition of distance is more conducive to the
study of the problem.

C. Continuity of GF and compact space

Lemma 1. Let w ∈ {s, u, · · · , v}, w = w1w2w3 . . . wn . . .
and ŵ = ŵ1ŵ2ŵ3 . . . ŵn . . ., the metric distance d satisfies
that if wi = ŵi for i = 1, 2, 3, . . . n, then d(w, ŵ) ≤ 1/2Nn. If
d(w, ŵ) ≤ 1/2Nn, there must be wi = ŵi for i = 1, 2, 3, . . . n.
And wk, ŵk ∈ [0, 2P − 2−Q] for k ∈ Z+.

The lemma can let us quickly determine whether the two
sequences are close to each other. From intuitive observation,
we can assure two sequences are close to each other as long
as they have a considerable number of consistent foregoing
entries.

Theorem 1. GF : E → E is a continuous function in (E , d).

Proof. Before the proof of topological mixing of GF , let’s
first review the definition of continuity. GF is continuous in
(E , d). In other words, for all ε > 0, there always exists
δ > 0 such that d(E, Ê) < δ with E 6= Ê, implies that
d(GF (E), GF (Ê)) < ε, the function GF is consecutive at Ê.

1) According to the definition of continuity, ∀ε > 0, a
positive integer k0 = b(log2m− log2ε)/Nc + 1 can
always be found, so that m/2Nk0 < ε holds, where m
is the dimension, N = P +Q is the finite precision, and
the operator “bc” means round down.

2) According to the found k0, ∃δ = m/2N(k0+1), from
Eq.(5), d(E, Ê) < δ is obtained as

d(E, Ê)=ds(s, ŝ) + du(u, û) + · · ·+ dv(v, v̂)+

dx((x1, x2, . . . , xm), (x̂1, x̂2, . . . , x̂m))

<m/2N(k0+1) = δ ,

(6)

By making Eq.(6) hold, we must set

(x1, x2, . . . , xm) = (x̂1, x̂2, . . . , x̂m),

otherwise dx((x1, x2, . . . , xm), (x̂1, x̂2, . . . , x̂m)) ≥
2−Q, but considering that the arbitrary value
k0 = b(log2m− log2ε)/Nc + 1, may make
d(E, Ê) ≥ 2−Q ≥ m/2N(k0+1), which contradicts
to Eq.(6).

3) We must set (x1, x2, . . . , xm) = (x̂1, x̂2, . . . , x̂m) to
obtain dx((x1, x2, . . . , xm), (x̂1, x̂2, . . . , x̂m)) = 0. Ac-
cording to Eq.(6), one can obtain

d(E, Ê)=ds(s, ŝ) + du(u, û) + · · ·+ dv(v, v̂)

<m/2N(k0+1) = δ ,
(7)

By making Eq.(7) hold, we should ensure that the dis-
tances of m pairs of independent random sequences
satisfy 

ds(s, ŝ) ≤1/2N(k0+2) ,

du(u, û)≤1/2N(k0+2) ,

...
dv(v, v̂)≤1/2N(k0+2) ,

(8)

Referring to the Lemma 1, if ds(s, ŝ) ≤ 1/2N(k0+2),
there must be si = ŝi(i = 1, 2, . . . , k0 + 2). Similar
results can be obtained as du(u, û) ≤ 1/2N(k0+2), . . .,
dv(v, v̂) ≤ 1/2N(k0+2), then ui = ûi(i = 1, 2, . . . , k0 +
2), . . ., vi = v̂i(i = 1, 2, . . . , k0 + 2). So, we can obtain

d(E, Ê)=ds(s, ŝ) + du(u, û) + · · ·+ dv(v, v̂)

≤m/2N(k0+2) < m/2N(k0+1) = δ.

4) The following further proves that when d(E, Ê) < δ,
the inequality d(GF (E), GF (Ê)) < ε always holds. In
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fact, according to the definition of d(GF (E), GF (Ê)),
we have

d(GF (E), GF (Ê))

= ds(σ(s), σ(ŝ)) + du(σ(u), σ(û)) + · · ·
dv(σ(v), σ(v̂))+dx((HF1(i(s), (x1, x2, . . . , xm)),

HF2(i(u), (x1, x2, . . . , xm)), . . . ,

HFm
(i(v), (x1, x2, . . . , xm))),

(HF1
(i(ŝ), (x̂1, x̂2, . . . , x̂m)),

HF2
(i(û), (x̂1, x̂2, . . . , x̂m)), . . . ,

HFm(i(v̂), (x̂1, x̂2, . . . , x̂m)))),
(9)

where σ(·) is the operation of shifting the sequence
one place to the left, so the first k0 + 1 elements of
σ(s) and σ(ŝ) are the same, then ds(σ(s), σ(ŝ)) ≤
1/2N(k0+1) from Lemma 1. Also, first k0 + 1 elements
of σ(u), . . . , σ(v) and σ(ũ), . . . , σ(ṽ) are the same and
du(σ(u), σ(û)) ≤ 1/2N(k0+1), . . . , dv(σ(v), σ(v̂)) ≤
1/2N(k0+1), which makes the inequality

ds(σ(s), σ(ŝ))+du(σ(u), σ(û))+· · ·+dv(σ(v), σ(v̂))

≤m/2N(k0+1) < m/2Nk0 < ε
(10)

hold.
5) In Eq.(9), notice that i(·) is equal to the overflow from

the left shifting of the sequence, that is, i(s) = s1, i(u) =
u1, . . . , i(v) = v1. Because the first k0 + 2 elements of
s, u, . . . , v and ŝ, û, . . . , v̂ are exactly the same, we know
that s1 = ŝ1, u1 = û1, . . . , v1 = v̂1, x1 = x̂1, x2 =
x̂2, . . . , xm = x̂m, then, one has
HF1

(s1, (x1, x2, . . . , xm)) =HF1
(ŝ1, (x̂1, x̂2, . . . , x̂m)),

HF2
(u1, (x1, x2, . . . , xm))=HF2

(û1, (x̂1, x̂2, . . . , x̂m)),

...
HFm(v1, (x1, x2, . . . , xm))=HFm(v̂1, (x̂1, x̂2, . . . , x̂m)).

(11)
According to Eq. (11),

dx((HF1(i(s), (x1, x2, . . . , xm)),

HF2(i(u), (x1, x2, . . . , xm)), . . . ,

HFm(i(v), (x1, x2, . . . , xm))),

(HF1(i(ŝ), (x̂1, x̂2, . . . , x̂m)),

HF2(i(û), (x̂1, x̂2, . . . , x̂m)), . . . ,

HFm(i(v̂), (x̂1, x̂2, . . . , x̂m)))) =0 . (12)

Substituting Eq. (10) and Eq. (12) into Eq. (9), we get

d(GF (E), GF (Ê)) ≤ m/2N(k0+1) < m/2Nk0 < ε ,

(13)

which shows that GF is continuous.

In summary, it can be seen that GF : E → E is a continuous
mapping in the metric space (E , d), and it also means the
metric space (E , d) is a compact space.

D. State transition diagram and strong connectivity

Given a digital chaotic system, a state and its interval is
mapped to another one. Considering the mapping relation as a
directed edge (link), the state transition diagram of the chaotic
system can be build up. As shown in [40], [41], the associated
state transition diagram can demonstrate some dynamical
properties of digital chaotic systems that cannot be observed
by the previous analytic methods. For the state transition
diagram of GF in HDDCS, all the possible combinations of
(x1, x2, . . . , xm) are the states, and there is a directed edge
from state (x̂1, x̂2, . . . , x̂m) to another state (x̃1, x̃2, . . . , x̃m)
if

(GF ((ŝ, û, . . . , v̂), (x̂1, x̂2, . . . , x̂m)))x1,x2,...,xm

= (x̃1, x̃2, . . . , x̃m) ,
(14)

Definition 1 ([25]). If each state in the state transition
diagram can reach any other state through a directed edge,
the state transition diagram is strongly connected.

E. Topological mixing of GF

Topological mixing, Li Yorke and Devaney’s chaos are three
well known and common criterias of chaos in a discrete dy-
namical system. The relationship between them is as follows:
topological mixing implies both Li Yorke and Devaney’s chaos
in compact spaces [26], [27], [39], but not vise versa.

Theorem 2. If the state transition diagram of GF is strongly
connected, then GF is topological mixing in the compact space
(E , d).

Proof. Before the proof, first review the topological mixing
of GF in the compact space (E , d). The so-called topological
mixing specifically refers to that, for the non-empty open
set U, V ⊂ E , there is a positive integer n0, which satisfies
Gn

F (U) ∩ V 6= ∅,∀n ≥ n0.
Suppose that the non-empty open set U is centered on

((s, u, . . . , v), (x1, x2, . . . , xm)) with a radius r, notice the
center point ((s, u, . . . , v), (x1, x2, . . . , xm)) ∈ U ⊂ E can
be expressed as

((s, u, . . . , v), (x1, x2, . . . , xm))

= (((s1s2 · · · sk0 · · · sn · · · ),
(u1u2 · · ·uk0 · · ·un · · · ), . . . ,
(v1v2 · · · vk0 · · · vn · · · )),
(x1, x2, . . . , xm)) .

(15)

First, we need to prove that for any point
((s′u′, . . . , v′), (x′1, x

′
2, . . . , x

′
m)) ∈ E , we can find

((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m)) ∈ U ⊂ E that can reach
the point ((s′u′, . . . , v′), (x′1, x

′
2, . . . , x

′
m)) ∈ E after n0 =

k0 +2Nm-th iteration, where k0 = b(log2m− log2r)/Nc+1,
N is the finite precision of GF , m is the dimension of GF .
The proof process is as follows:

1) Given the spherical radius r of U is less than 2−Q,
if (x1, x2, . . . , xm) and (x̃1, x̃2, . . . , x̃m) do not co-
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incide in the m-dimensional space, we can obtain
(x̃1, x̃2, . . . , x̃m) 6= (x1, x2, . . . , xm) such that

dx((x̃1, x̃2, . . . , x̃m), (x1, x2, . . . , xm))

=

√
(x̃1 − x1)

2
+ (x̃2 − x2)

2
+ · · ·+ (x̃m − xm)

2

≥2−Q > r ,

Then, one has ((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m)) /∈ U .
Therefore, (x̃1, x̃2, . . . , x̃m) = (x1, x2, . . . , xm) must
first be satisfied.

2) According to Lemma 1, if the first k0 elements of
s̃, ũ, . . . , ṽ and s, u, . . . , v are the same, then ds(s, s̃) ≤
1/2Nk0 , du(u, ũ) ≤ 1/2Nk0 , . . . , dv(v, ṽ) ≤ 1/2Nk0 . So
∀ r < 1, an integer k0 satisfying the relation

ds(s, s̃) + du(u, ũ) + · · ·+ dv(v, ṽ) ≤ m/2Nk0 < r

can always be found.
3) If after the k0-th iteration, equality

(Gk0

F ((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m)))x1,x2,...,xm

=(x′1, x
′
2, . . . , x

′
m) ,

(16)

exists, we know that (x̃1, x̃2, . . . , x̃m) =
(x1, x2, . . . , xm), the point is found in U as

((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m))

= (((s1s2 · · · sk0 šk0+1šk0+2 · · · šn0s′
1
s′

2 · · · s′n · · · ),
(u1u2 · · ·uk0 ǔk0+1ǔk0+2 · · · ǔn0u′

1
u′

2 · · ·u′n · · · ),
. . . ,

(v1v2 · · · vk0 v̌k0+1v̌k0+2 · · · v̌n0v′
1
v′

2 · · · v′n · · · )),
(x̃1, x̃2, . . . , x̃m))

∈ U ,
(17)

where šk0+1šk0+2 · · · šn0 , ǔk0+1ǔk0+2 · · · ǔn0 , . . .,
v̌k0+1v̌k0+2 · · · v̌n0 are all 0s. Note that the purpose
of setting šk0+1šk0+2 · · · šn0 , ǔk0+1ǔk0+2 · · · ǔn0 , . . .,
v̌k0+1v̌k0+2 · · · v̌n0 all 0s is to ensure that the point
((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m)) ∈ U can reach any
point ((s′u′, . . . , v′), (x′1, x

′
2, . . . , x

′
m)) ∈ E at the

same time after n0 = k0 + 2Nm-th iteration. By making
the equation

Gn0

F (((s1s2 · · · sk0 šk0+1šk0+2 · · · šn0s′
1
s′

2 · · · s′n · · · ),
(u1u2 · · ·uk0 ǔk0+1ǔk0+2 · · · ǔn0u′

1
u′

2 · · ·u′n · · · ),
. . . ,

(v1v2 · · · vk0 v̌k0+1v̌k0+2 · · · v̌n0v′
1
v′

2 · · · v′n · · · )),
(x̃1, x̃2, . . . , x̃m))

= ((s′, u′, . . . , v′), (x′1, x
′
2, . . . , x

′
m)) , (18)

hold, we certainly can find the point
((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m) in U , which can reach
any point ((s′u′, . . . , v′), (x′1, x

′
2, . . . , x

′
m)) in E after

n0-th iteration.
4) If after k0-th iteration, inequality

(Gk0

F ((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m)))x1,x2,...,xm

6=(x′1, x
′
2, . . . , x

′
m) ,

holds, set

(Gk0

F ((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m)))x1,x2,...,xm

=(x′′1 , x
′′
2 , . . . , x

′′
m) .

It should be noted that the state transition diagram of GF

is strongly connected, so there is at least one path between
(x′′1, x

′′
2, . . . , x

′′
m) and (x′1, x

′
2, . . . , x

′
m), from k0 +

1-th iteration and then iterate i0 times (i0 is equivalent
to the number of edges traversed by the connected path
between (x′′1, x

′′
2, . . . , x

′′
m) and (x′1, x

′
2, . . . , x

′
m).

Since the maximum number of states in the state tran-
sition diagram of GF is 2Nm, and the number of edges
traversed by the longest path is 2Nm − 1. Since i0 ≤
2Nm − 1, it satisfies k0 + i0 < n0. And its iterative
process is controlled by ŝk0+j , ûk0+j , . . . , v̂k0+j(j =
1, 2, . . . , i0), so that

Gk0+i0
F ((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m))

=((s′, u′, . . . , v′), (x′1, x
′
2, . . . , x

′
m)) .

(19)

holds. Considering (x̃1, x̃2, . . . , x̃m) = (x1, x2, . . . , xm),
the point is found in U as

((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m))

= (((s1s2 · · · sk0 ŝk0+1ŝk0+2 · · · ŝk0+i0 šk0+i0+1

šk0+i0+2 · · · šn0s′1s′2 · · · s′n · · · ),
(u1u2 · · ·uk0 ûk0+1ûk0+2 · · · ûk0+i0 ǔk0+i0+1

ǔk0+i0+2 · · · ǔn0u′1u′2 · · ·u′n · · · ),
. . . ,

(v1v2 · · · vk0 v̂k0+1v̂k0+2 · · · v̂k0+i0 v̌k0+i0+1

v̌k0+i0+2 · · · v̌n0v′1v′2 · · · v′n · · · )),
(x̃1, x̃2, . . . , x̃m))

∈ U ,

(20)

where šk0+i0+1šk0+i0+2 · · · šn0 , ǔk0+i0+1ǔk0+i0+2 · · ·
ǔn0 , . . . , v̌k0+i0+1v̌k0+i0+2 · · · v̌n0 are all 0s.
Similarly, the purpose of setting
šk0+i0+1šk0+i0+2 · · · šn0 , ǔk0+i0+1ǔk0+i0+2 · · · ǔn0 , . . . ,
v̌k0+i0+1v̌k0+i0+2 · · · v̌n0 all 0s is to ensure that the
point ((s̃, ũ, . . . , ṽ), (x̃1, x̃2, . . . , x̃m)) ∈ U can reach
any point ((s′u′, . . . , v′), (x′1, x

′
2, . . . , x

′
m)) ∈ E at the

same time after n0-th iteration, and

Gn0

F (((s1s2 · · · sk0 ŝk0+1ŝk0+2 · · · ŝk0+i0 šk0+i0+1

šk0+i0+2 · · · šn0s′1s′2 · · · s′n · · · ),
(u1u2 · · ·uk0 ûk0+1ûk0+2 · · · ûk0+i0 ǔk0+i0+1

ǔk0+i0+2 · · · ǔn0u′1u′2 · · ·u′n · · · ),
. . . ,

(v1v2 · · · vk0 v̂k0+1v̂k0+2 · · · v̂k0+i0 v̌k0+i0+1

v̌k0+i0+2 · · · v̌n0v′1v′2 · · · v′n · · · )),
(x̃1, x̃2, . . . , x̃m))

=((s′, u′, . . . , v′), (x′1, x
′
2, . . . , x

′
m)) . (21)
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According to Eq.(18) and (21), and considering the arbitrari-
ness of the point ((s′u′, . . . , v′), (x′1, x

′
2, . . . , x

′
m)) in E , we

know
Gn0

F (U) = E (22)

holds. On the basis of the above, GF is topologically mixing
in the metric space (E , d). The proof is as follows:

Although GF : E → E is a many-to-one mapping from an
infinite set to itself, the mapping GF : E → E can be proved to
be surjective. Because according to the definition of surjection,
for every element

(((s′
1
s′

2 · · · ), (u′1u′2 · · · ), . . . , (v′1v′2 · · · )),
(x′1, x

′
2, . . . , x

′
m)) ∈ E ,

in the codomain of GF : E → E , there is at least one element
in the domain of GF , take

(((0s′
1
s′

2 · · · ), (0u′1u′2 · · · ), . . . , (0v′1v′2 · · · )),
(x′1, x

′
2, . . . , x

′
m)) ∈ E .

as an example, so the mapping GF : E → E is surjective.
Thus

GF (E) = E (23)

is satisfied. According to Eq.(22)-(23),

Gn0

F (U)= E ,
Gn0+1

F (U)=GF (Gn0

F (U))=GF (E) = E ,
Gn0+2

F (U)=GF (Gn0+1
F (U))=GF (E) = E ,

...
Gn

F (U)=GF (Gn−1
F (U))= · · ·=GF (E)=E(∀n ≥ n0)

(24)
is obtained. Therefore, for any non-empty open sets U, V ⊂ E ,
there is n0, which always satisfies

Gn
F (U) ∩ V = E ∩ V = V 6= ∅(∀n ≥ n0) (25)

This proves that GF is topologically mixing in the metric
space (E , d).

III. THE LOOP-STATE CONTRACTION ALGORITHM FOR
CONSTRUCTING HDDCS

In this section, the iterative function design is taken as
the entry point. According to the selection method of the
iterative function, the set of all possible iterative functions
S is obtained. Using the loop-state contraction algorithm, an
iterative function F ∈ S is constructed, so that the state
transition diagram of GF is strongly connected, which ensures
that the iterative equation Ek+1 = GF (Ek)(k = 0, 1, 2, . . .)
can meet the requirements of HDDCS.

A. Selection method of iterative function F

For a m-dimensional iterative function, we assume that
Fi(1 6 i 6 m) contains only m items, and the j(1 6 j 6 m)-
th item is an expression containing only one variable xj(1 6
j 6 m), and there are three possibilities for the expression
of this variable xj(1 6 j 6 m). That is the original variable

xj , the inverse variable xj or 0. The operators between them
are bitwise AND “·”, bitwise OR “+” and bitwise exclusive
OR “⊕”. The three operators have the same precedence level
and the order of operation is from left to right. According to
the above selection method of iterative function, the set of all
possible iterative functions S is obtained.

For example, according to the above selection method of
iterative function, a certain three-dimensional iterative function
is obtained as

F1(x1, x2, x3) = x1 ⊕ x2 + x3 ,

F2(x1, x2, x3) = x1 · x3 ,
F3(x1, x2, x3) = x1 + x2 ⊕ x3 .

(26)

In the above function, the first item in F1(x1, x2, x3) is x1,
the second item is x2, and the third item is x3. The operators
between them are bitwise exclusive OR “⊕” and bitwise
OR “+”. The first item in F2(x1, x2, x3) is x1, the second
item is 0, and the third item is x3. The operator between
them is bitwise AND “·”. The first item in F3(x1, x2, x3)
is x1, the second item is x2, and the third item is x3. The
operators between them are the bitwise OR “+” and the
bitwise exclusive OR “⊕”. The selection of the remaining
iterative functions can be deduced by analogy.

B. State transition table, state transition diagram and adja-
cency matrix

For an iterative equation with precision N and dimension m,
the corresponding state number is 2mN . Given finite precision
N and dimension m, the corresponding state transition table,
state transition diagram and adjacency matrix can be further
obtained according to the iterative function.

For example, assume the finite precision N = 1(P =
1, Q = 0, P+Q = N) and the dimension m = 2, first consider
the iterative function uncontrolled by random sequences [25],
as {

xn1 = F1(xn−11 , xn−12 ) = xn−11 ⊕ xn−12 ,

xn2 = F2(xn−11 , xn−12 ) = xn−11 + xn−12 ,
(27)

According to Eq.(27), the corresponding state transition table,
state transition diagram, and adjacency matrix can be obtained,
as shown in Fig. 1. Note that the state transition table,
state transition diagram, and adjacency matrix are different
manifestations of the same thing. The other two forms can
be deduced from one form, namely the adjacency matrix and
the state transition diagram can be deduced from the state
transition table, the state transition table and the state transition
diagram can be deduced from the adjacency matrix, and the
state transition diagram can be deduced separately from state
transition table and adjacency matrix. For convenience, first
obtain the state transition table according to the iterative
equation, and then obtain the state transition diagram and
adjacency matrix according to the state transition table.

According to Eq.(27), the corresponding iterative function
controlled by random sequences is{

xn1 = xn−11 · sn + ((xn−11 ⊕ xn−12 ) · sn) ,

xn2 = xn−12 · un + ((xn−11 + xn−12 ) · un) ,
(28)
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1 1
1 2
n nx x 

1 2
n nx x

The state transition table

00

01

10

11

01

11

11

00

( )a

00 01

1110

The state transition diagram

( )b

( )c

1 2x x

00

01

10
11

1 1
1 2
n nx x 

00 01 10 11

1 2
n nx x

1

1

1
1

The adjacency matrix

0 0 0
000

000

0 0 0

Fig. 1. The corresponding state transition table, state transition diagram and
adjacency matrix to Eq. (27)

where s = s1s2s3 · · · and u = u1u2u3 · · · are two random
sequences. In the same way, the state transition table, state
transition diagram, adjacency matrix, and standardized adja-
cency matrix corresponding to Eq.(28) are obtained, as shown
in Fig. 2.

1 1
1 2
n nx x 

1 2
n nx x

The state transition table

su

00

01

10
11

00

00

01
10

11

01

00

01

10
11

10

00

01
10

11

11

00

01

10
11

01

01
11

10
00

11

10
01

01

11
11

00

( )a

00 01

1110

2

2

2

2

2

1

1

2

1

1

The state transition diagram

( )b

adjacency matrixThe 

1 2x x

00

01
10

11

1 1
1 2
n nx x 

00 01 10 11

1 2
n nx x

2

2
2

1

2

2

1

2

11

( )c

0
0 0
0

0 0

standardized adjacency matrixThe 

1 2x x

00
01

10
11

1 1
1 2
n nx x 

00 01 10 11

1 2
n nx x

( )d

0

0
0

0

1

1

1

1

11

0
0 0
0

0 0

Fig. 2. The corresponding state transition table, state transition diagram and
adjacency matrix to Eq. (28)

It can be seen that the four numbers 2, 2, 2, and 1 on the
main diagonal in the Fig. 2(c) respectively, which indicate that
state 00 has 2 self-loops, state 01 has 2 self-loops, state 10
has 2 self-loops, and state 11 has 1 self-loop in Fig. 2(b).
For the connectivity of the state transition diagram, the self-
loops do not affect the strong connectivity, but they increase
the complexity of the algorithm and may cause the program
to fall into an endless loop. Therefore, all numbers on the
main diagonal in the adjacency matrix should be set to 0. In
addition, according to Fig. 2(b), there are two edges from the
current state 00 to the next state 01, two edges from the current
state 01 to the next state 11, and two edges from the current
state 10 to the next state 11. For the connectivity of the state
transition diagram, the situation that having multiple edges
from the current state to the next state is equivalent to the
situation that having only one edge from the current state to
the next state, so all three numbers should be set to 1. Based
on the above considerations, the corresponding standardized

adjacency matrix is shown in Fig. 2(d). Hereinafter, the
standardized adjacency matrix is abbreviated as the adjacency
matrix.

C. Three theorems on strong connectivity

Theorem 3 ([28]). If there is a loop in the state transition
diagram that passes through each state at least once, it is
strongly connected.

According to Theorem 3, it can be seen that there is no loop
through each state at least once at the state transition diagram
shown in Fig. 1(b), so it is not strongly connected. But for
the state transition diagram shown in Fig. 2(b), there is a loop
that passes through each state at least once, so it is strongly
connected.

Note that when the state transition diagram is relatively sim-
ple, we can directly use it to determine whether it has strong
connectivity, but when it is more complex, we only use the
state transition diagram to determine its strong connectivity,
which is often more difficult. In order to further solve this
problem, in the following discussion, we will use the adjacency
matrix to judge the strong connectivity of the state transition
diagram.

Theorem 4 ([29]). Given a state transition diagram, find a
loop, contract the loop, and then recurse. Only the strongly
connected diagram will eventually contract to a single state.

Theorem 4 was first proposed by Khuller et al. The goal
of their algorithm proposed in [29] is to find the minimum
equivalent graph. In this article, we will judge the strong
connectivity of the state transition diagram corresponding to
the adjacency matrix according to the Theorem 4.

Theorem 5. When the finite precision N = 1, if the operators
between any two items of the iterative function F are all bit-
wise operators, and the corresponding state transition diagram
of GF is strongly connected, then when the finite precision
N > 1, the state transition diagram of GF corresponding to
iterative function F is still strongly connected.

Proof. Use F1, F2, . . . Fm to represent the m-dimensional
iterative function [25], and the binary form of each iteration
value is

x1 =x1,P−1 x1,P−2 · · ·x1,0 . x1,−1 x1,−2 · · · x1,−Q ,
x2 =x2,P−1 x2,P−2 · · ·x2,0 . x2,−1 x2,−2 · · · x2,−Q ,

...
xm=xm,P−1xm,P−2· · ·xm,0.xm,−1xm,−2· · ·xm,−Q ,

(29)
where P +Q = N .

According to Eq.(29), set x1,ix2,i · · ·xm,i is composed of

x1,i, x2,i, . . . , xm,i(i = P − 1, P − 2, . . . , 0,−1, . . . ,−Q),

if the state transition diagram corresponding to one of the
states

x1,jx2,j · · ·xm,j(j ∈ {P − 1, P − 2, . . . , 0,−1, . . . ,−Q})
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is strongly connected, then the corresponding state transition
diagram for the rest of the state

x1,kx2,k· · ·xm,k(k=P−1, P−2,. . ., 0,−1,. . .,−Q; k 6=j)

must also be strongly connected because of the bitwise oper-
ations.

Let’s further prove that if the state transition diagram
corresponding to one of the states

x1,jx2,j · · ·xm,j(j ∈ {P − 1, P − 2, . . . , 0,−1, . . . ,−Q})

is strongly connected, then the corresponding state transition
diagram for x1,P−1x1,P−2 · · ·x1,−Qx2,P−1x2,P−2 · · ·x2,−Q · · ·
xm,P−1xm,P−2 · · ·xm,−Q is also strongly connected. The proof
is as follows:

1) Let us consider the case of finite precision N = 1(P =
1, Q = 0) and suppose the state transition diagram corre-
sponding to GF is strongly connected, that is, there is at
least one path between any two states x̂1,0x̂2,0 · · · x̂m,0

and x̃1,0x̃2,0 · · · x̃m,0.
2) For N = 2(P = 2, Q = 0), there is at least one path be-

tween any two the lowest bit states x̂1,0x̂2,0 · · · x̂m,0 and
x̃1,0x̃2,0 · · · x̃m,0, k0 is set to equal to the number of edges
in the connected path between the state x̂1,0x̂2,0 · · · x̂m,0

and the state x̃1,0x̃2,0 · · · x̃m,0. It means

(Gk0

F ((ŝ, û, . . . , v̂),

(x̂1,1x̂1,0, x̂2,1x̂2,0, . . . , x̂m,1x̂m,0)))x1,x2,...,xm

=(x′1,1x̃1,0, x
′
2,1x̃2,0, . . . , x

′
m,1x̃m,0) .

(30)

If one gets

(x′1,1x̃1,0, x
′
2,1x̃2,0, . . . , x

′
m,1x̃m,0)

=(x̃1,1x̃1,0, x̃2,1x̃2,0, . . . , x̃m,1x̃m,0) ,

it shows that any two states are connected by k0 directed
edges, and the state transition diagram of GF is strongly
connected from Definition 1. If inequality

(x′1,1x̃1,0, x
′
2,1x̃2,0, . . . , x

′
m,1x̃m,0)

6=(x̃1,1x̃1,0, x̃2,1x̃2,0, . . . , x̃m,1x̃m,0) ,

exists, the connected path between be-
tween x′1,1x̃1,0, x

′
2,1x̃2,0, . . . , x

′
m,1x̃m,0 and

x̃1,1x̃1,0, x̃2,1x̃2,0, . . . , x̃m,1x̃m,0 should be considered.
Note that GF is controlled by random sequences, so the
lowest bits of all random numbers in m random sequences
can be set to 0, so that the lowest bits x̃1,0, x̃2,0, . . . , x̃m,0

remain unchanged for the following iterations, and only
the highest bits x′1,1, x

′
2,1, . . . , x

′
m,1 continue to

participate in the update operation. And because the
state formed by the highest bit is x1,1x2,1 · · ·xm,1, its
corresponding state transition diagram is also strongly
connected because of the bitwise operations, there
is at least one path between x′1,1x

′
2,1 · · ·x′m,1 and

x̃1,1x̃2,1 · · · x̃m,1, after another iteration of i0 times,
where i0 is equal to the number of edges in the

connected path between the state x′1,1x′2,1 · · ·x′m,1 and
x̃1,1x̃2,1 · · · x̃m,1. Equality

(Gk0+i0
F ((ŝ, û, . . . , v̂),

(x̂1,1x̂1,0, x̂2,1x̂2,0, . . . , x̂m,1x̂m,0)))x1,x2,...,xm

=(x̃1,1x̃1,0, x̃2,1x̃2,0, . . . , x̃m,1x̃m,0)

(31)

holds, which shows that any two
states x̂1,1x̂1,0x̂2,1x̂2,0 · · · x̂m,1x̂m,0 and
x̃1,1x̃1,0x̃2,1x̃2,0 · · · x̃m,1x̃m,0 are connected, and
the state transition diagram of GF is strongly connected
from Definition 1.

3) Consider the case of finite precision N > 2, the current
state gradually approaches the target state from the lowest
bit (i.e. −Q bit) to the highest bit (i.e. P −1 bit) through
the control of some random sequences, and finally the
path between any two states is found, thereby obtaining
the conclusion that the state transition diagram of GF

corresponding to function F is still strongly connected.

According to Theorem 5, we do not need to use finite
precision N > 1 to analyze the strong connectivity of the
state transition diagram of GF corresponding to the iterative
function F , and N > 1 makes the corresponding number of
states 2mN � 2m and greatly increases the complexity of
the algorithm. We only need to use finite precision N = 1 to
analyze the strong connectivity of the state transition diagram
of GF corresponding to the iterative function F , it makes the
corresponding number of states 2mN = 2m the smallest, and
also can greatly reduce the complexity of the algorithm.

D. Loop-state contraction algorithm

According to Theorem 3-5, several criteria for determining
whether the state transition diagram is strongly connected and
the contraction algorithm of the adjacency matrix are further
given, and finally the flow chart of the loop-state contraction
algorithm is obtained.

Judgment criteria 1. The necessary condition for the state
transition diagram corresponding to the uncontracted adja-
cency matrix to be strongly connected is that there is at least
one 1 in each row and each column. Otherwise, it is not
strongly connected. Conversely, if there is at least one 1 in
each row and each column of the adjacency matrix before
contraction, it cannot guarantee that the corresponding state
transition diagram is strongly connected.

The description of Judgment criteria 1 is as follows: it is
necessary to note that there is a row of all 0s in the adjacency
matrix, indicating that there is no directed edge from the state
corresponding to this row in the state transition diagram. There
is a column of all 0s in the adjacency matrix, indicating that
there is no directed edge that reaches the state corresponding
to this column in the state transition diagram.

For example, there is the third row of all 0s in the adjacency
matrix as shown in Fig. 3(a), and the state corresponding to
the third row is 10. So, it can be seen that there is no directed
edge from state 10 in the state transition diagram in Fig. 3(b).
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Therefore, the diagram is not strongly connected in Fig. 3(b).
According to Fig. 3(c), there is the third column of all 0s
in the adjacency matrix, and the state corresponding to the
third column is 10, so it can be seen that there is no directed
edges to state 10 in the state transition diagram in Fig. 3(d).
Therefore, the state transition diagram shown in Fig. 3(d) is
not strongly connected.

1 2x x

00

01
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11

1 1
1 2
n nx x 

00 01 10 11

1 2
n nx x

1

1
1

1

adjacency matrixThe 

0 0 0
000

000
0 0 0

( )c

00 01

1110

The state transition diagram

( )d

1 2x x
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1 1
1 2
n nx x 
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1 2
n nx x

1

1

0
1

adjacency matrixThe 

0 0 0
000

000

0 1 0

( )a

00 01

1110

The state transition diagram

( )b

Fig. 3. The adjacency matrix with the third row of all 0s and the third column
of all 0s

In addition, the order of the uncontracted adjacency matrix
satisfies O = 2m(m = 2, 3, 4, . . .) in Judgment criteria 1. Note
that for an adjacency matrix with order 2m(m = 2, 3, 4, . . .),
even if there is at least one 1 in each row and each column of
the adjacency matrix before contraction, there is no guarantee
that the corresponding state transition diagram is strongly
connected.

Judgment criteria 2. If the order of the contracted adjacency
matrix satisfies 1 < O < 4 and also satisfies that there is at
least one 1 in each row and each column of the matrix, the
corresponding state transition diagram is strongly connected.
If the order of the contracted adjacency matrix satisfies O = 1,
the state transition diagram is strongly connected. Otherwise,
it is not strongly connected.

In Judgment criterion 2, if the order of the contracted
adjacency matrix O = 1, according to Theorem 4, the state
transition diagram is strongly connected. If the order of the
contracted adjacency matrix O = 2, when it is satisfied that
there is at least one 1 in each row and each column of the
matrix, the corresponding state transition diagram must be
strongly connected. If the order of the contracted adjacency
matrix is O = 3, when there is at least one 1 in each row and
each column of the matrix, the corresponding state transition
diagram is also strongly connected.

Contraction algorithm for the adjacency matrix. The ad-
jacency matrix is contracted once, and the contracted block
matrix B is

B =

[
0 P
Q R

]
(32)

where the order of the block matrix B is O = k + 1, and k
represents the total number of the states not in the loop. The P

in the block matrix B is a 1×k matrix. After the contraction,
the values in the matrix P are the column sums (logical or) of
the elements whose row number is in the loop and the column
number is not in the loop. The Q in the block matrix B is a
k×1 matrix, and the values in Q are the row sums (logical or)
of the elements whose column number is in the loop and the
row number is not in the loop. The R in the block matrix B is
a k×k matrix, and the values in R are the original values of
the elements whose row number and column number are not
in the loop.

According to Judgment criterion 1-2 and the contraction
algorithm for the adjacency matrix, the flow chart of the loop-
state contraction algorithm is shown in Fig. 4.

Yes

Start

Given a standardized 
adjacency matrix

Check the existence 
of 1 in each row and 

column of the 
adjacency matrix

There is 1 in every row and every column?
No

Find a loop

Yes

Use the found loop and the loop -state  
contraction  algorithm to contract the loop 

of the adjacency matrix

Yes

Bigger than third order?

Strongly 
connected

No

Yes

Check the existence 
of 1 in each row and 

column of the 
adjacency matrix

Not strongly 
connected

No

Get the matrix after
contracting once

End

Does the loop contain all states?      

No

Yes

Not strongly 
connected

Strongly 
connected

Does the loop exist?
No

There is 1 in every row and every column?

Fig. 4. The flow chart of the loop-state contraction algorithm

In Fig. 4, for a given uncontracted standardized adjacency
matrix, first according to Judgment criterion 1, if there is a
row or a column of all 0s in the adjacency matrix, the state
transition diagram corresponding to the adjacency matrix is
not strongly connected. If there is at least one 1 in each row
and each column, the adjacency matrix is contracted according
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to Contraction algorithm for the adjacency matrix until the
order of the contracted adjacency matrix satisfies O < 4. Then
according to Judgment criterion 2, further check the strong
connectivity of the adjacency matrix whose order satisfies O <
4. In addition, in the Contraction algorithm for the adjacency
matrix, a depth-first search (DFS) algorithm is used to find
a loop. Specifically, the process of finding a loop is to start
from a certain state and arrive at the next adjacent state that
has not been visited in sequence, so as to explore as deeply
as possible until a loop with a state number greater than two
is found. If no loop is found with a state number greater than
2, then go back to the previous state, select another state that
has not been visited as the starting point, and then repeat the
above process until a loop with a state number greater than
2 is found. Fig. 5 shows the loop search process in the 8th
order adjacency matrix. Start searching from state 000 and find
the first unvisited adjacency state 001. The number of states
in this loop is 2, so it should be discarded, and backtracking
goes to state 000, find another unvisited adjacent state 100,
and continue to search as deeply as possible. By analogy, the
loop search process is obtained in Fig. 5, where the dotted line
indicates that the loop with the number of states equal to 2 is
discarded.

1 2 3 000 001 010 011 100 101 110 111

000 0 1 0 0 1 1 0 0

001 1 0 0 0 1 1 0 0

010 0 0 0 0 0 0 1 0

011 0 1 0 0 0 0 0 0

100 0 0 0 0 0 0 1 0

101 0 1 0 0 0 0 0 0

110 0 0 0 0 1 1 0 1

111 1 1 1 1 1 1 1 0

x x x

 
 
 
 
 
 
 
 
 
 
 
  

1 1 1

1 2 3

n n nx x x  

1 2 3

n n nx x x

Fig. 5. Depth-first search a loop for the adjacency matrix

Here are some examples of using the flow chart of the loop-
state contraction algorithm shown in Fig. 4 to analyze and
judge whether the adjacency matrix is strongly connected.

Example 1. The adjacency matrix corresponding to Eq. (27)
is shown in Fig. 1(c), and the flow chart of the loop-state
contraction algorithm shown in Fig 4 is used for analysis. The
third column in the adjacency matrix before contraction is all
0, so it is not strongly connected.

Example 2. The adjacency matrix corresponding to Eq. (28)
is shown in Fig. 2(d), and the flow chart of the loop-state
contraction algorithm shown in Fig. 4 is used for analysis, and
then the process is shown in Fig. 6-7. The Fig. 6 indicates that
a loop found as

(00, 01)→ (01, 11)→ (11, 00)→ (00, 01)

Fig. 7 shows that further using the found loop , according to
the loop-state contraction algorithm, there is at least one 1
in each row and each column of the 2nd order matrix after
contraction. It can be seen that the state transition diagram

1 2x x

00

01

10

11

00 01 10 11

1

1

1

1

0 0 0

000

000

1 1 0

1 1

1 2

n nx x 

1 2

n nx x

Fig. 6. The adjacency matrix with one found loop
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11

00 01 10 11

1

1

1

1

0 0 0

000

000

1 1 0
10

10

10

01

*V

*V1 2x x
1 1

1 2

n nx x 

1 2

n nx x

0 0 1 1  

0 0 1 1  

Fig. 7. Contracting the 4th order adjacency matrix to the 2nd order adjacency
matrix according to the loop-state contraction algorithm

of GF is strongly connected, which can ensure that Eq. (28)
meets the requirements of HDDCS.

Example 3. It is known that the iterative equation of a three-
dimensional digital system that is not controlled by random
sequences is

xn1 = F1(xn−11 , xn−12 , xn−13 ) = xn−11 · xn−12 + xn−13 ,

xn2 = F2(xn−11 , xn−12 , xn−13 ) = xn−11 ⊕ xn−12 · xn−13 ,

xn3 = F3(xn−11 , xn−12 , xn−13 ) = xn−11 ⊕ xn−12 ⊕ xn−13 ,
(33)

According to Eq. (33), the corresponding iterative function
controlled by random sequences is

xn1 = xn−11 · sn + (xn−11 · xn−12 + xn−13 ) · sn ,

xn2 = xn−12 · un + (xn−11 ⊕ xn−12 · xn−13 ) · un ,
xn3 = xn−13 · vn + (xn−11 ⊕ xn−12 ⊕ xn−13 ) · vn ,

(34)

where s = s1s2s3 · · · , u = u1u2u3 · · · , v = v1v2v3 · · ·
are three random sequences. First, the standardized 8th order
adjacency matrix corresponding to Eq. (34) is obtained as
Fig. 8(a). Secondly, according to the loop-state contraction
algorithm, the 8th order adjacency matrix is contracted for the
first time to obtain the 4th order adjacency matrix as shown
in Fig. 8(b). Finally, according to the loop-state contraction
algorithm, the 4th order adjacency matrix is further contracted
at the second time into a 2nd order adjacency matrix, as shown
in Fig. 8(c). It can be seen that the state transition diagram
of GF is strongly connected, which can ensure that Eq. (34)
meets the requirements of HDDCS.

E. Construct an iterative functions F to meet the requirements
of HDDCS by the loop-state contraction algorithm

In this section, we use the loop-state contraction algorithm
to construct iterative functions F that meets the requirements
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Fig. 8. The 8th order adjacency matrix is contracted twice to a 2nd order
adjacency matrix according to the loop-state contraction algorithm

of HDDCS, which can ensure that the state transition diagram
of GF is strongly connected.

According to the selection method of the iterative function
in Section III-A, the exhaustive method is firstly used to get
all possible iterative functions F ∈ S with the corresponding
GF . On this basis, all possible iterative equations controlled
by random sequences Ek+1 = GF (Ek)(k = 0, 1, 2, . . .) can
be further obtained. Secondly, according to the method shown
in the Fig. 2, all possible adjacency matrices corresponding
to Ek+1 = GF (Ek)(k = 0, 1, 2, . . .) are found. Then,
according to the loop-state contraction algorithm shown in
Fig. 4, all these possible adjacency matrices are analyzed to
determine which has the strongly connected state transition
diagram of GF . Finally, find out some iterative functions,
which corresponding to Ek+1 = GF (Ek)(k = 0, 1, 2, . . .) can
meet the requirements of HDDCS. Part of the 2-5 dimensional
iterative functions F constructed in this way are shown in
Table I.

IV. CHAOTIC ESN AND ITS APPLICATION IN
MACKEY-GLASS TIME SERIES PREDICTION

This section uses the adjacency matrix corresponding to
HDDCS to construct the chaotic ESN to predict the Mackey-
Glass time series. The experimental results show that the
chaotic ESN constructed by the higher-dimensional system
has better predictive performance than the chaotic ESN con-
structed by the lower-dimensional system when the size of
reservoir is fixed.

A. Chaotic ESN and its construction method

Traditional ESN uses a reservoir composed of randomly
sparsely connected neurons as the hidden layer. The input and
feedback weights are initialized to random values, and the
spectral radius of the reservoir is pre-defined to guarantee the
stability of the network. During network training, only the
connection weights from the hidden layer to the output layer

need to be trained. Assuming that the number of neurons in the
input layer, reserve pool, and output layer of the ESN network
are 1, M, and 1, respectively. The state update equation of the
traditional ESN is

Z(t) = tanh(WZ(t−1) +W inI(t) +W fbO(t−1) +V (t)) ,
(35)

where t = 1, 2, 3, . . ., Z(t) = (Z1(t), Z2(t), . . . , ZM (t))
T is

the M -dimensional reservoir state vector at time t with Zi(t) ∈
(−1,+1), i = 1, 2, . . . ,M , Z(t − 1) is the M -dimensional
reservoir state vector at time t− 1, Z(0) is the pre-set initial
value, tanh(·) is a vector-valued nonlinear activation function,
W is the M × M reservoir weight matrix with a spectral
radius smaller than unity, W in is the M × 1 input weight
matrix, W fb is M -dimensional weight vector for feedback
connections from the output neuron to the reservoir, the value
of each element in W in and W fb obeys a uniform distribution
in the interval [−1,+1), note that the matrix W,W fb,W in

are determined before training and remain unchanged during
training and prediction, I(t) is the 1-dimensional input signal
at time t, O(t) is the 1-dimensional output signal at time t,
O(0) is the pre-set initial value, and V (t) is M -dimensional
noise vector uniformly distributed in [−1.0 × 10−10,+1.0 ×
10−10).

In Eq.(35), the output O(t) is

O(t) = tanh(W out(Z(t), I(t))) , (36)

where I(t) and O(t) are both 1-dimensional signals at time
t, (Z(t), I(t)) = (Z1(t), Z2(t), . . . , ZM (t), I(t))

T is the
M -dimensional reservoir state vector, W out is (M + 1)-
dimensional weight vector for connections from the reservoir
to the output neuron. Note that W out is determined after the
training.

In Eq. (35), the reservoir weight matrix W is

W = k(WR �WS/|λmax|) , (37)

where � means that the elements of the same row and
column in two matrices WR and WS are multiplied, WR

is a random matrix with the values uniformly distributed
in intervalv [−0.5,+0.5), WS is a matrix with randomly
generated elements with values of 0 or 1, λmax is the largest
eigenvalue of the matrix WR �WS , k is the spectral radius
of W , 0 < k < 1 is set to guarantee the reservoir to work in
a stable region.

It is well-known that the richer the dynamic behaviors of
the ESN, the better the performance of corresponding network
is, and the dynamic behaviors of the network are related to the
network structure of the reservoir. Note that in the traditional
ESN represented by Eq.(35)-(37), the reservoir weight matrix
W is confirmed by calculation WR�WS , because the matrix
WR and WS are random matrices, so W usually does not
guarantee the strong connectivity. In order to obtain better
performance, according to Eq. (37), we use the adjacency
matrix AM×M corresponding to GF in HDDCS designed in
Section III to replace the WS in Eq. (37), where AM×M is
a square matrix with order M = 2mN , m is the dimension
of GF , and N is the finite precision. For given m and
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TABLE I
PART OF THE 2-5 DIMENSIONAL ITERATIVE FUNCTIONS F CONSTRUCTED WITH THE LOOP-STATE CONTRACTION ALGORITHM

〈1〉
{

F1(x1, x2) = x1 ⊕ x2

F2(x1, x2) = x1 · x2
〈6〉
{

F1(x1, x2) = x1 + x2

F2(x1, x2) = x1 · x2
〈11〉

 F1(x1, x2, x3) = x1 ⊕ x2 · x3

F2(x1, x2, x3) = x1 · x2 + x3

F3(x1, x2, x3) = x1 ⊕ x2 ⊕ x3

〈16〉


F1(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 · x4

F2(x1, x2, x3, x4) = x1 · x2 + x3 ⊕ x4

F3(x1, x2, x3, x4) = x1 + x2 + x3 · x4

F4(x1, x2, x3, x4) = x1 ⊕ x2 + x3 ⊕ x4

〈2〉
{

F1(x1, x2) = x1 ⊕ x2

F2(x1, x2) = x1 · x2
〈7〉
{

F1(x1, x2) = x1 ⊕ x2

F2(x1, x2) = x1 · x2
〈12〉

 F1(x1, x2, x3) = x1 + x2 · x3

F2(x1, x2, x3) = x1 ⊕ x2 + x3

F3(x1, x2, x3) = x1 ⊕ x2 + x3

〈17〉


F1(x1, x2, x3, x4) = x1 · x2 ⊕ x3 · x4

F2(x1, x2, x3, x4) = x1 ⊕ x2 + x3 ⊕ x4

F3(x1, x2, x3, x4) = x1 · x2 ⊕ x3 · x4

F4(x1, x2, x3, x4) = x1 + x2 · x3 · x4

〈3〉
{

F1(x1, x2) = x1 · x2

F2(x1, x2) = x1 ⊕ x2
〈8〉
{

F1(x1, x2) = x1 · x2

F2(x1, x2) = x1 · x2
〈13〉


F1(x1, x2, x3, x4) = x1 · x2 ⊕ x3 · x4

F2(x1, x2, x3, x4) = x1 · x2 ⊕ x3 ⊕ x4

F3(x1, x2, x3, x4) = x1 ⊕ x2 + x3 · x4

F4(x1, x2, x3, x4) = x1 · x2 ⊕ x3 ⊕ x4

〈18〉


F1(x1, x2, x3, x4) = x1 · x2 ⊕ x3 + x4

F2(x1, x2, x3, x4) = x1 ⊕ x2 + x3 ⊕ x4

F3(x1, x2, x3, x4) = x1 · x2 ⊕ x3 · x4

F4(x1, x2, x3, x4) = x1 · x2 + x3 ⊕ x4

〈4〉
{

F1(x1, x2) = x1 ⊕ x2

F2(x1, x2) = x1 + x2
〈9〉
{

F1(x1, x2) = x1 · x2

F2(x1, x2) = x1 ⊕ x2
〈14〉


F1(x1, x2, x3, x4) = x1 · x2 ⊕ x3 + x4

F2(x1, x2, x3, x4) = x1 ⊕ x2 · x3 ⊕ x4

F3(x1, x2, x3, x4) = x1 · x2 ⊕ x3 · x4

F4(x1, x2, x3, x4) = x1 + x2 + x3 ⊕ x4

〈19〉


F1(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 ⊕ x5

F2(x1, x2, x3, x4, x5) = x1 + x2 ⊕ x3 ⊕ x4 · x5

F3(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 ⊕ x5

F4(x1, x2, x3, x4, x5) = x1 + x2 + x3 ⊕ x4 + x5

F5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 ⊕ x5

〈5〉
{

F1(x1, x2) = x1 ⊕ x2

F2(x1, x2) = x1 + x2
〈10〉

 F1(x1, x2, x3) = x1 ⊕ x2 + x3

F2(x1, x2, x3) = x1 · x3

F3(x1, x2, x3) = x1 + x2 ⊕ x3

〈15〉


F1(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 + x4

F2(x1, x2, x3, x4) = x1 ⊕ x2 + x3 ⊕ x4

F3(x1, x2, x3, x4) = x1 + x2 ⊕ x3 · x4

F4(x1, x2, x3, x4) = x1 + x2 + x3 ⊕ x4

〈20〉


F1(x1, x2, x3, x4, x5) = x1 + x2 + x3 ⊕ x4 ⊕ x5

F2(x1, x2, x3, x4, x5) = x1 + x2 ⊕ x3 ⊕ x4 ⊕ x5

F3(x1, x2, x3, x4, x5) = x1 ⊕ x2 + x3 · x4 ⊕ x5

F4(x1, x2, x3, x4, x5) = x1 + x2 ⊕ x3 ⊕ x4 + x5

F51(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 ⊕ x5

N , according to the iterative function given in the table I,
the corresponding HDDCS and the corresponding adjacency
matrix AM×M can be obtained, and according to Theorem 5,
it can be ensured that the corresponding adjacency matrix
AM×M under arbitrary N is still strongly connected. The
literature [38] has proved that the ESN constructed by the
adjacency matrix AM×M with strong connectivity satisfies the
chaotic definition of Devaney. Therefore, when we use the
adjacency matrix AM×M to replace the WS in Eq.(37), the
traditional ESN expressed by Eq.(35)-(36) is transformed into
a chaotic ESN.

B. Mackey-Glass time series prediction

Time series data often have the characteristics of high
noise, randomness and nonlinearity. Its modeling, analysis
and prediction problems have always been the hotspots of
academic research. Typically, in order to predict time series
more accurately, time series models are required to have
both good nonlinear approximation capabilities and good
memory capabilities. In order to solve this problem, artificial
intelligence methods such as support vector networks and
neural networks have been introduced into the field of time
series analysis. The Mackey-Glass time series prediction has
now become a typical benchmark problem for verifying the
processing capabilities of neural networks [37].

The Mackey–Glass time series is deduced from a time-delay
differential system with the form [36]

dP (t)

dt
=

βP (t− α)

1 + P (t− α)
10 − γP (t) , (38)

where α, β, γ are real numbers.
According to [34], the values standardly employed in most

of the Mackey–Glass time series prediction literature are α =
17, β = 0.2, and γ = 0.1. Then through Eq.(38), we can get
the time series data P (1), P (2), . . . , P (3000) containing 3000
time points. Among them, noise V (t) is added to the data of
the first 2000 time points, which is used to train the chaotic
ESN to determine the value of W out. However, no noise V (t)
is added to the data at the following 1000 time points, which
is used for Mackey-Glass time series prediction.

According to Eq. (35)-(38), in the training stage, the number
of training time points is usually selected to be 2000. First set
Z(0) = 0, I(1) = I(2) = · · · = I(2000) = 0.02, and O(0) =
0, O(1) = P (1), O(2) = P (2), . . . , O(2000) = P (2000), then
iteratively get Z(1), Z(2), . . . , Z(2000) by Eq. (35). Let U be
a matrix of order (M + 1)× 2000, namely

U =


Z1(1) Z1(2) . . . Z1(2000)
Z2(1) Z2(2) . . . Z2(2000)

...
...

. . .
...

ZM (1) ZM (2) . . . ZM (2000)
I(1) I(2) . . . I(2000)

 .

Then according to Eq.(36), we have

(tanh−1(O(1)), tanh−1(O(2)), . . . , tanh−1(O(2000)))

=W outU ,
(39)

Finally, using the pseudo-inverse operation of the matrix, the
output 1× (M + 1) weight matrix W out is

W out

=(tanh−1(O(1)), tanh−1(O(2)), . . . , tanh−1(O(2000)))U+ ,
(40)

where U+ represents the pseudo-inverse operation of the (M+
1)×2000 matrix U . After the operation, the order of the matrix
is 2000× (M + 1).

According to Eq. (35)-(36), in the prediction stage, first set
I(2001) = I(2002) = · · · = I(3000) = 0.02, O(2000) =
P (2000) and V (2001) = V (2002) = · · · = V (3000) = 0, and
substitute the Z(2000) obtained from the training stage into
Eq. (35) to get Z(2001), and then substituting Z(2001) into
Eq. (36) to get O(2001). Substitute the obtained Z(2001) and
O(2001) into Eq. (35)-(36) to get the corresponding outputs
Z(2002) and O(2002), the rest can be deduced by analogy.
Through this iterative method, the available Mackey-Glass
time prediction sequence is O(2001), O(2002), . . . , O(3000).

Fig. 9(a)-(b) respectively show the prediction results ob-
tained by traditional ESN and chaotic ESN after 2000 training
time points. The iterative function 〈13〉 from Table I is used
to obtain the corresponding HDDCS, then the adjacency
matrix AM×M corresponding to the above HDDCS is used to
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TABLE II
COMPARISONS OF PREDICTION PERFORMANCE FOR MAKEY-GLASS TIME SERIES USING CHAOTIC ESN WITH DIFFERENT ITERATIVE EQUATIONS

HDDCS and the adjacency matrix RMSE

Size of the reservoir M

28 29 210 212

 xn
1 = xn−1

1 · sn + ((xn−1
1 ⊕ xn−1

2 ) · sn)

xn
2 = xn−1

2 · un + ((xn−1
1 · xn−1

2 ) · un)
⇒ A

〈1〉
M×M 4.76× 10−3 None 4.81× 10−4 4.06× 10−4

 xn
1 = xn−1

1 · sn + ((xn−1
1 ⊕ xn−1

2 ) · sn)

xn
2 = xn−1

2 · un + ((xn−1
1 · xn−1

2 ) · un)
⇒ A

〈2〉
M×M 1.61× 10−2 None 1.23× 10−3 3.45× 10−4

 xn
1 = xn−1

1 · sn + ((xn−1
1 · xn−1

2 ) · sn)

xn
2 = xn−1

2 · un + ((xn−1
1 ⊕ xn−1

2 ) · un)
⇒ A

〈3〉
M×M 4.34× 10−2 None 2.27× 10−4 2.87× 10−4


xn
1 = xn−1

1 · sn + ((xn−1
1 ⊕ xn−1

2 · xn−1
3 ) · sn)

xn
2 = xn−1

2 · un + ((xn−1
1 · xn−1

2 + xn−1
3 ) · un)

xn
3 = xn−1

3 · vn + ((xn−1
1 ⊕ xn−1

2 ⊕ xn−1
3 ) · vn)

⇒ A
〈11〉
M×M None 5.71× 10−4 None 1.28× 10−4


xn
1 = xn−1

1 · sn + ((xn−1
1 + xn−1

2 · xn−1
3 ) · sn)

xn
2 = xn−1

2 · un + ((xn−1
1 ⊕ xn−1

2 + xn−1
3 ) · un)

xn
3 = xn−1

3 · vn + ((xn−1
1 ⊕ xn−1

2 + xn−1
3 ) · vn)

⇒ A
〈12〉
M×M None 1.10× 10−3 None 2.75× 10−4



xn
1 = xn−1

1 · sn + ((xn−1
1 · xn−1

2 ⊕ xn−1
3 · xn−1

4 ) · sn)

xn
2 = xn−1

2 · un + ((xn−1
1 · xn−1

2 ⊕ xn−1
3 ⊕ xn−1

4 ) · un)

xn
3 = xn−1

3 · vn + ((xn−1
1 ⊕ xn−1

2 + xn−1
3 · xn−1

4 ) · vn)

xn
4 = xn−1

4 · wn + ((xn−1
1 · xn−1

2 ⊕ xn−1
3 ⊕ xn−1

4 ) · wn)

⇒ A
〈13〉
M×M 1.90× 10−3 None None 1.08× 10−4

construct the network structure of the reservoir, which makes
ESN be a chaotic ESN.

As m = 4 and N = 3, the order of the adjacency matrix
AM×M corresponding to the iterative function 〈13〉 from
Table I is M ×M = 4096 × 4096. In Fig. 9(a), the black
solid line is correct continuation of the Mackey-Glass time
series, the blue dotted line is the chaotic ESN prediction of
the Mackey-Glass time series, and the red dashed line is the
traditional ESN prediction of the Mackey-Glass time series.
It should be noted that the 1000 time points of both the
traditional ESN prediction and the chaotic ESN prediction all
fit the correct continuation of the Mackey-Glass time series
well. Fig. 9(b) illustrates the prediction error O(t) − P (t)
development on long prediction runs for the traditional ESN
and chaotic ESN, both of them can achieve high prediction
accuracies within 500 time points, but the long-term prediction
performance of chaotic ESN is relatively better.

We select the iterative functions 〈1〉, 〈2〉, 〈3〉, 〈11〉, 〈12〉,
and 〈13〉 from Table I, and get the corresponding HDD-
CSs as shown in the first column of Table II (s, u, v, w
in a HDDCS are some independent random sequences).
On the basis of the HDDCSs, the corresponding adjacency
matrix A〈1〉M×M , A

〈2〉
M×M , A

〈3〉
M×M , A

〈11〉
M×M , A

〈12〉
M×M , A

〈13〉
M×M are

obtained, where M = 2mN , m is the dimension of GF

and N is the finite precision. WS in Eq. (37) is replaced
with A

〈1〉
M×M , A

〈2〉
M×M , A

〈3〉
M×M , A

〈11〉
M×M , A

〈12〉
M×M , A

〈13〉
M×M re-

spectively, so that the chaotic ESNs are constructed and then
the root mean square error (RMSE) are obtained as shown in
the Table II, where None means this adjacency matrix AM×M
corresponding to the above HDDCS can not construct that size
of the reservoir. Note that the order of the square matrix in
Table II is very large, and it is not convenient to give a specific
A
〈i〉
M×M , so it is omitted here.

(a) Prediction of the Mackey-Glass time series for the traditional ESN
and chaotic ESN

(b) Prediction error O(t)− P (t) of the Mackey-Glass time series for
the traditional ESN and chaotic ESN

Fig. 9. Prediction and Prediction error O(t)− P (t)

In Table II, RMSE is

RMSE =

√√√√ 1

1000

3000∑
t=2001

(P (t)−O(t))
2 (41)

According to Table II, as M = 2mN increases, RMSE
decreases, which indicates that the accuracy of the predictions
is improved as M = 2mN increases. On the base of given
M = 2mN , higher-dimensional systems have higher prediction
accuracy than lower-dimensional systems.

V. CONCLUSION

The literature [25] introduced and studied HDDCS and
proved that HDDCS is chaotic in the Devaney’s definition of
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chaos. This article further provides the proof of topological
mixing for HDDCS. In particular, this article constructs an
iterative function F according to the loop-state contraction
algorithm, so that the state transition diagram of GF in
HDDCS is strongly connected, thus a general design method
for constructing HDDCS is found. The adjacency matrix corre-
sponding to HDDCS constructed by the loop-state contraction
algorithm are applied to build the chaotic ESN, and the
Mackey-Glass time series is predicted, and relatively good
prediction results are obtained. In short, this article expands
the theoretical research of HDDCS, and also provides more
construction methods and practical applications for HDDCS.
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