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Hardware Topologies for Decentralized Large-Scale
MIMO Detection Using Newton Method
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Abstract— Centralized Massive Multiple Input Multiple Out-
put (MIMO) uplink detection techniques for baseband processing
possess severe bottleneck in terms of interconnect bandwidth and
computational complexity. This problem has been addressed in
the current work by adapting the centralized Newton method
for decentralized MIMO uplink detection leveraging several
Base Station antenna clusters. The proposed decentralized
Newton (DN) method achieves error-rate performance close to
centralized Zero Forcing detector as compared to other decen-
tralized techniques. Two hardware topologies, namely the ring
and the star topologies, are proposed to assess and discuss
the trade-off among interconnect bandwidth and throughput,
in comparison with contemporary decentralized MIMO uplink
detection techniques. As such the following findings are elabo-
rated. On BS antenna cluster scaling for different MIMO system
configurations, the ring topology provides high throughput at
constant interconnect bandwidth, while the star topology provides
lower latency with a deterministic variation in the hardware
resource consumption. Due to strategic optimizations on the
hardware implementation, additional user equipment can be
allotted at a fractional increase in Field Programmable Gate
Array resource consumption, improved energy efficiency, and
increased transaction of bits per Joule. The ring topology can
process additional subcarrier at a fractional increase in latency
and improved system throughput.

Index Terms— MIMO uplink detection, Newton method,
FPGA, decentralized processing, hardware topology, interconnect
bandwidth.

I. INTRODUCTION

BEING a promising concept for future cellular networks,
Massive Multiple Input Multiple Output (MIMO) tech-

nology has now made its way to 5G as one of the means to
substantially improve both spectral and energy efficiencies [1],
[2]. Future trends for 6G suggest the use of Extremely
Large Aperture Array (ELAA) to provide order-of-magnitude
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higher area throughput compared to what massive MIMO with
compact arrays can ultimately deliver [3]. It is possible for a
BS to service several UEs simultaneously within the same
time-frequency resources using hundreds or thousands of BS
antennas. Centralized linear processing techniques for MIMO
uplink signal detection like Zero Forcing (ZF), Minimum
Mean Square Error (MMSE), and Maximum Ratio Combin-
ing (MRC) estimate the UE’s signals by Gram matrix inversion
but have caveats on hardware implementation due to high
computational complexity and impose severe bottleneck in
terms of interconnect bandwidth as well [1].

A. Related Work

Digital signal processing architecture design with practical
system constraints for the next generation Massive MIMO
uplink detection techniques is presented in [4]. For a 16-QAM
MIMO system configuration with 128 BS antennas (B) and
8 UEs (U ), the system parameters for centralized techniques
evaluated on a FPGA are compared hereafter. MIMO uplink
detection based on Neumann Series (NS) [5] achieves a
throughput of 402 Mbps and high error-rate performance for
large B/U ratio, however this method scales to computational
complexity of O(U3) for 3 series expansion terms. Conjugate
Gradient (CG) based MIMO uplink detection method [6]
achieves a throughput of 13 Mbps with lower FPGA resource
utilization and lower error-rate performance as compared to
NS method. By efficiently implementing centralized New-
ton method [7], the MIMO uplink detector implementation
achieves a staggering throughput of 610 Mbps. Co-ordinate
Descent (CD) algorithm has been adapted for MIMO uplink
detection in [8], achieving a throughput of 250 Mbps at low
computational complexity of O(BU). To alleviate the high
computational complexity of NS method, Gauss Seidel (GS)
algorithm has been adapted for MIMO uplink detection in [9]
and achieves a throughput of 32 Mbps. An improved version
of GS [10] method, that uses multiple parallel sub-carrier
instances by hardware interleaving, achieves a throughput
of 488 Mbps. An efficient implementation of MMSE detec-
tion has been presented in [11] and achieves a throughput
of 205 Mbps. By using adaptive Successive Over Relaxation
(A-SOR) to achieve fast convergence, the hardware implemen-
tation in [12] achieves a throughput of 135 Mbps with O(U2)
computational complexity. For high energy efficiency, ASIC
based implementations [11], [13] are more advantageous over
FPGA based implementations [5]–[10], [12].
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Centralized baseband processing techniques are feasible on
hardware for a small number of UE and a low number of BS
antennas for real-time processing. However, as the number
of UE grows, more BS antennas are required to achieve
optimal performance which increases interconnect bandwidth
between BS antennas and BS central processing unit [3]. Also,
all Channel State Information (CSI) has to be transferred
from BS antennas to the BS central processing unit which
increases computational complexity and latency at BS, thereby
decreasing system throughput [14] and possess a bottleneck to
ELAA implementation [3]. To address this bottleneck, several
decentralized baseband processing algorithms and accompa-
nying architectures for MIMO uplink detection have been
proposed, where the baseband processing of MIMO uplink
signal detection is shared by several BS antenna clusters.
Decentralized Co-ordinate Descent (DCD) [15] based MIMO
uplink detection computes partial uplink signal at every dis-
tributed BS antenna cluster using co-ordinate descent method.
Partial signal estimates are scaled by BS antenna cluster
variance and fused to produce the final uplink signal at the
BS. Decentralized Alternating Direction Method of Multipliers
(D-ADMM) [16] is a high computational complexity method
based on consensus exchange, providing near MMSE perfor-
mance with few iterations for low UE load with respect to
BS antenna cluster. ADMM-GS [17] embeds Gauss-Siedel
iteration in ADMM for performance enhancement in terms
of error rate. This method is suited for high SNR and high
UE load scenarios and is robust to channel estimation errors.
The Decentralized Conjugate Gradient (D-CG) [16] method
provides near MMSE performance with few iterations in high
UE load scenarios per BS antenna cluster. MIMO uplink
detection with Stochastic Gradient Descent (SGD) [18] uses
fully decentralized architecture in Daisychain topology. In this
technique, the central cluster does not have to be reconfigured
when adding new BS antenna clusters, and the interconnect
bandwidth between two clusters remains constant for a given
number of UE.

Maximum A Posteriori (MAP) estimate based decentral-
ized algorithms like large-MIMO approximate message pass-
ing (LAMA) with two architectures one for partially decen-
tralized (LAMA-PD) and another one for fully decentralized
(LAMA-FD) [19] and Expectation Propagation (EP) [20], [21]
provide high error-rate performance at expense of increased
algorithm computational complexity. MIMO uplink detection
using LAMA-PD and LAMA-FD [19] equalization provides
optimal performance given channel matrix H has i.i.d dis-
tribution and profiled with the variance of 1/B , where B
represents the number of BS antennas. However, LAMA is
not robust for realistic channel environments [22]. MIMO
uplink detection using EP [20] is a comparable algorithm to
LAMA and involves explicit matrix inversion, which increases
its computational complexity. MIMO uplink detection using
EP with Log Likelihood Ratio (LLR) [21] provides improved
performance than LAMA, especially at high SNR, but requires
high interconnect bandwidth. MAP methods incur additional
computing overheads to improve numerical stability for vari-
ance computation from noise statistics. Also, the partial local
estimates have to be fused and processed using a soft-detector

for uplink signal estimation in MAP methods, an improvement
has been suggested by [23]. Tree K-ary based MIMO uplink
detection architecture [24] discusses a decentralized scalable
BS system, where interconnect links grow logarithmically
on the addition of BS antenna clusters. Most of these tech-
niques are used herein as benchmarks to discuss the error
rate performance, throughput, interconnect bandwidth and the
computational complexity.

B. Contributions

The choice of a MIMO uplink detection technique is based
on MIMO system requirements [2] and it is a non-trivial
task. Hence, there is a trade-off between error-rate per-
formance, hardware computational complexity, latency, and
system throughput based on the wireless propagation envi-
ronment parameters [25]. With advancements in computing
and RF technology, massive MIMO will gradually evolve into
extremely large-scale MIMO systems where BS will function
with thousands of antennas and in such scenarios, decentral-
ized architectures would be more favorable. With such large
MIMO antenna configurations, even the MAP methods with
high computational complexity show diminishing benefits[25].
In the evolving communication standards towards 6G [26],
factors of interconnect bandwidth and energy efficiency would
also play a prime role along with throughput and latency
for large MIMO systems. In the current work, the following
contributions are presented:

• The adaptation of the centralized Newton method [27],
[28] for decentralized processing of MIMO uplink detec-
tion is achieved by constructing novel local objective
functions over decentralized BS antenna clusters (which
we refer to as clusters for brevity). The proposed decen-
tralized Newton (DN) algorithm provides close to the ZF
symbol-error rate performance as compared to contem-
porary decentralized MIMO uplink detection techniques,
specifically in low SNR regime and 3GPP radio channel
environment.

• At the system level, novel proposition of ring and star
topological architectures for VLSI hardware implementa-
tion to achieve gradient and Hessian sampling for the DN
method, leveraging decentralized clusters at the circuit
level to achieve trade-off among throughput, latency,
energy efficiency and interconnection bandwidth.

• Analytical analysis of the interconnect bandwidth of the
star and ring topologies with contemporary decentralized
MIMO uplink detection techniques at the system level.
The star topology provides lower interconnect bandwidth
than EP, EP-LLR and ADMM-GS. The ring topology
has lower interconnect bandwidth than the star topology
and maintains constant interconnect bandwidth on MIMO
configuration scaling.

• Analysis of computational complexity of the star and ring
topologies with contemporary MIMO uplink detection
techniques at the circuit level. Interestingly, the DN
algorithm’s computational complexity is in order in the
number of UEs and avoids signal variance computation.
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• At the system level, design space exploration for the
hardware implementation of the star and ring topologies
on FPGA and analysis of the effect of MIMO config-
uration scaling on system throughput, latency, energy
efficiency and hardware resource consumption. The star
topology provides low latency while the ring topology
provides higher throughput. The implementation of the
ring topology with additional sub-carrier requires a frac-
tional increase in hardware resource consumption.

• Provide a comparative analysis of hardware implemen-
tation of the star and ring topologies with hardware
architectures of contemporary MIMO uplink detection
techniques at the system level. The star and ring topolo-
gies are feasible to implement on FPGA with high energy
efficiency.

For notations, uppercase bold letter represents a matrix and
lowercase bold letter represents a column vector. (t) denotes tth

iteration. L2 vector norm is represented as ||.||2. ∇x represents
first degree gradient operator w.r.t to x. ∇2

x represents second
degree gradient operator w.r.t to x. E represents expectation
operator. For a matrix A ∈ CB×U , [a1 a2 a3 . . . aU ]
represents A as set of column vectors, where ai ∈ C

B×1. For
a matrix A, AH represents complex conjugate transpose of
A. The operation diag(.) extracts major diagonal of a square
matrix as a column vector. The operation diagdiag(.) is the
inverse of diag(.) and constructs diagonal matrix with given
column vector as a major diagonal.

The paper is organized as follows; Section I.A discusses
related work on Massive MIMO uplink detection techniques,
specifically motivating the need for decentralized processing
techniques. Section I.B presents the novel contributions of
the current work. Section II lays the foundation for the
decentralized Newton-based MIMO uplink detection technique
and derives topological architectures for hardware implemen-
tation. Section III provides a comparative analysis against
interconnect bandwidth for contemporary decentralized MIMO
uplink detection techniques. Section IV analyses the com-
putational complexity of contemporary decentralized MIMO
uplink detection techniques. Section V discusses simulation
and error rate performance analysis for decentralized MIMO
uplink detection techniques. Section VI provides hardware
implementation for the ring and star topologies and draws
detailed hardware implementation analysis for both topologies,
with comparative analysis with other decentralized MIMO
uplink detection techniques. Section VII ends the discussion
with the conclusion and future potential of ring and star
topologies.

II. PROPOSED TECHNIQUE

For the pre-processing of the DN method, local objective
function fc for c = 1, 2, . . . ,C at every cluster is constructed.
For a generic BS model, a BS with B antennas serving U
number of UEs is considered. Without loss of generality,
every UE is assumed to be equipped with a single antenna.
Expression y=Hx+n represents MIMO uplink signal at BS,
where y ∈ CB×1 is the vector representing receive signal
over B antennas of the BS, x ∈ CU×1 being signal estimate,

which is transmitted from the UEs to BS. H ∈ CB×U

is the wireless channel model. n ∈ CB×1 is the channel
noise. x is mapped to Q bits symbol which form 2Q -QAM
modulation. As shown in Fig. 1, B antennas, H and y are
equally distributed into C clusters such that every cluster c
is characterized by local antennas Bc, local channel matrix
Hc ∈ CBc×U and local received signal vector yc ∈ CBc×1.
The total number of antennas for the BS is represented as
B = ∑C

c=1 Bc. Hc = [h1,c h2,c h3,c . . . hu,c] where u =
1, 2, 3 . . .U ; c = 1, 2, 3 . . .C . Hc and yc are known locally
only to the cluster c and are not exchanged within clusters.
Lemma 1: Given Hc and yc for c = 1, 2, 3 . . .C , uplink

estimate at t th iteration can be computed as:

x(t) = x(t−1) − (D)−1

(
C∑
c=1

(HH
c Hcx(t−1) − HH

c yc)

)
(1)

The detailed derivation of eq. (1) is postponed to the
Appendix whereas Topologies 1 and 2 show the DN algorithm
(c.f. Appendix) using two different hardware topologies as
depicted in Fig. 1. The algorithm is terminated at iteration
t = T to obtain x(T ), which is processed using QAM decoder
to obtain the uplink signal estimate. While computing eq. (1)
it is important to note quantities that are static for a specific
interval. In MIMO uplink signal transmission, the channel
statistical characteristics remain constant during a specified
interval of time. This time interval is called coherent time and
Hc for c = 1, 2, 3 . . .C remains constant during the coherent
time interval. Hence, the Gram matrix HH

c Hc for each cluster
and the approximate Hessian diagonal matrix D at apex cluster
C have to be computed once every coherent time interval.
Thus matrix multiplication of D−1 with eq. (5) involves U
complex divisions, which is insignificant as compared to the
total complex multiplications involved in overall algorithm.

On a single cluster, eq. (10) is implemented to obtain
an uplink signal estimate. However, it is essential to design
architectures that can be implemented to accumulate local
computations at a single cluster.

In essence, the ring and star topologies for the DN algo-
rithm for the MIMO uplink detection algorithm are proposed.
These topological architectures enable the provision of explicit
trade-offs among system latency, throughput, interconnect
bandwidth, energy efficiency and hardware resource consump-
tion. Fig. 1 shows the implementation of both topological
architectures. Partial computations in a cluster are represented
in eq. (6) and (5).

The ring topology is characterized by clusters organized in
daisy-chain fashion. Every cluster is exactly connected to two
adjacent clusters. Except the apex cluster, all the clusters are
identical in functionality. Thus, every cluster receives partial
computations from prior cluster, appends its local partial
computations and sends resultant computations to the next
cluster in the daisy-chain. All the cluster interconnections are
unidirectional. As shown in Fig. 1.a, cluster C acts as an apex
cluster. The apex cluster provides partial computations and
also computes eq. (10) to produce x(t) at the tth iteration.
To facilitate the flow of partial computations between the
interconnected clusters, the interconnect variables p ∈ CU×1
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Fig. 1. DN based MIMO uplink detector implemented using a) ring topology with C clusters and interconnect variables as p ∈ CU×1, q ∈ CU×1 and b)
star topology with C clusters and interconnect variables as pc ∈ CU×1, qc ∈ CU×1, where c = 1, 2, 3, . . . ,C − 1. Every antenna cluster c with Bc antennas
is responsible for processing local partial computations. Hc and yc is local to every cluster and is not exchanged between clusters.

Topology 1 DN Ring Topology
Input: Hc, yc c = 1, 2, 3 . . .C
Output: x(T )

Initialization:
Calculate Dc from Hc using eq.(8) for c = 1, 2, 3 . . .C
Initial iteration t = 1
for c = 1 to C do

xc ← D−1
c (HH

c yc)
p ← p + diag(Dc) {Accumulate: eq.(9)}
q ← q + (HH

c Hcxc − HH
c yc) {Accumulate: eq.(5)}

if c = C then
D = diagdiag(p) {Local store D at cluster C}
x(1) ← xc − D−1q {Evaluate: eq.(10)}
p ← x(1) {Broadcast x(1)}
q ← 0 {Flush}

end if
end for
for t = 2 to T do

for c = 1 to C do
q ← q + (HH

c Hcp − HH
c yc) {Accumulate: eq.(5)}

if c = C then
x(t) ← x(t−1) − D−1q {Evaluate: eq.(10)}
p ← x(t) {Broadcast x(t)}
q ← 0 {Flush}

end if
end for

end for

and q ∈ CU×1 are considered. For the initial iteration
t = 0, the variable p accumulates diagonal vector of Dc

from non-apex clusters to the apex cluster C . The aggregate
of Dc for c = 1, 2, 3 . . .C is available as D at the apex
cluster and does not need to be computed until the next
coherence time interval (since Hc remains constant during
the coherent time interval.) For the next subsequent iterations
t = 2, 3, . . . T , the variable p is set with x(t) at the apex
cluster to be broadcasted and utilized for (t + 1)th iteration
in the computation of eq. (5). Since x(t) is available at the
end of iteration t , xc is the local estimate used by cluster c
in the computation of eq. (5) for t = 0. Initial estimate xc

Topology 2 DN Star Topology
Input: Hc, yc c = 1, 2, 3 . . .C
Output: x(T )

Initialization:
Calculate Dc from Hc using eq.(8) for c = 1, 2, 3 . . .C
Initial iteration t = 1
for c = 1 to C do

xc ← D−1
c (HH

c yc)
pc ← diag(Dc)
qc ← (HH

c Hcxc − HH
c yc)

if c = C then
p = ∑C

c=1(pc) {Accumulate: eq.(9)}
q = ∑C

c=1(qc) {Accumulate: eq.(5)}
D = diagdiag(p) {Local store D at cluster C}
x(1) ← xc − D−1q {Evaluate: eq.(10)}
pc ← x(1) {Broadcast x(1)}
qc ← 0 {Flush}

end if
end for
for t = 2 to T do

for c = 1 to C do
qc ← (HH

c Hcpc − HH
c yc)

if c = C then
q = ∑C

c=1(qc) {Accumulate: eq.(5)}
x(t) ← x(t−1) − D−1q {Evaluate: eq.(10)}
pc ← x(t) {Broadcast x(t)}
qc ← 0 {Flush}

end if
end for

end for

is computed from Matched Filter HH
c yc and the approximate

Hessian Dc. For all the iterations, variable q accumulates first
gradient as partial computations of eq. (5). The DN algorithm
for MIMO uplink detection mapped onto the ring topology is
outlined in Topology 1.

The star topology is characterized by clusters connected to a
single central processing cluster. The central processing cluster
is the apex cluster denoted by C . The apex cluster is connected
to other C−1 non-apex clusters. While every non-apex cluster
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Fig. 2. Comparison of interconnect bandwidth for different decentralized
MIMO uplink detection techniques with U = 8, Bc = 32 and T = 3.

is only connected to the apex cluster, the partial computations
from all non-apex clusters are parallelly accumulated at the
apex cluster. All the cluster interconnections are bidirectional.
Similar to the ring topology, apex cluster provides partial
computations along with eq. (10) to compute x(t) at the t th

iteration. For interconnect transfers, the variables pc ∈ C
U×1

and qc ∈ CU×1 for clusters c = 1, 2, 3 . . .C are considered,
which handle interconnection transfer between the apex cluster
and non-apex clusters. Partial computations for pc and qc for
apex cluster c = C are done internally. For initial iteration
t = 0, the variable pc accumulates diagonal vector of Dc

from all non-apex clusters at the apex cluster to form D,
which remains constant for the coherent time interval. For the
next subsequent iterations, pc broadcasts x(t) to all non-apex
clusters c = 1, 2, 3, . . .C −1 at the (t +1)th iteration. Similar
to the ring topology, eq. (5) is computed using the local
estimate of xc for the initial iteration t = 0. For all the itera-
tions, the variable qc for c = 1, 2, 3 . . .C accumulates partial
computations of eq. (5) to the apex cluster. The proposed DN
algorithm for MIMO uplink detection mapped onto the star
topology is outlined in Topology 2.

III. INTERCONNECT BANDWIDTH

In centralized MIMO detection techniques, data from B
antennas have to be transferred to the computing circuit
of the apex cluster, which becomes a bottleneck when the
detection technique is scaled to very large B as the bandwidth
between antennas and computing circuit is dependent on B .
So, decentralized MIMO detection techniques are employed,
where B antennas are distributed into C clusters, and every
cluster performs local partial computations. Local partial com-
putations are aggregated over to the apex cluster to produce
uplink signal estimation. For the apex cluster, the interconnec-
tion bandwidth is independent of B in decentralized MIMO
uplink detection techniques, thereby mitigating for high data
transfer between clusters. Fig.2 evaluates average intercon-
nect transaction occurring during the coherent time interval
of 1.0 millisecond (mapped to Ncoh = 14 symbols) at the
apex cluster.

TABLE I

COMPARISON OF INTERCONNECT BANDWIDTH

For interconnect bandwidth analysis, every real entity is
denoted as a word and a complex number is comprised of 2
words[14]. Interconnect bandwidth is measured by average
words transferred during a coherence interval. On considering
a prominent scenario for which the estimated channel in
the uplink is static across a coherent time interval of Ncoh

contiguous symbols, T be the number of total iterations and
C be the total number of clusters. For calculating words
transacted by apex cluster for a decentralized algorithm, input
and output signals are taken into account for every iteration.
Interconnect transfer for LAMA-PD and LAMA-FD is given
in [14]. For DN method, approximate local Hessian needs
to be transmitted to the apex cluster once every coherent
interval, which comprises of U words (real-valued diagonal
elements). Accordingly, the apex cluster in the ring topology
receives an aggregate of (2Ncoh + 1)U words during the
first iteration considering all symbols in coherence interval.
During subsequent iterations, the apex cluster transmits an
aggregate of 4Ncoh(I − 1)U words and receives an aggregate
of 2Ncoh(I −1)U words for all symbols in coherence interval.
For the star topology, the apex cluster receives an aggregate
of (2Ncoh + 1)CU words during the first iteration considering
all symbols in coherence interval. For subsequent iterations,
the apex cluster transmits an aggregate of 2Ncoh(I − 1)U
words and receives an aggregate of 2Ncoh(I − 1)U words for
all symbols in coherence interval. The average interconnect
transfer for the ring and star topologies for coherence time
interval is the average of total words transmitted and received
for Ncoh symbols for all iterations T , which is outlined
in Table. I.

EP-LLR has the highest interconnect bandwidth. The inter-
connect bandwidth of the star topology is lower than ADMM-
GS, EP and EP-LLR. For low number of BS antennas, DCD
has a lower interconnect bandwidth than the ring topology.
However, as the number of BS antennas increase, bandwidth of
DCD also increases and surpasses that of constant bandwidth
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of ring topology. DCD has a lower symbol-error rate per-
formance with higher apex cluster computational complexity
as compared to DN, which can be used to trade-off with
DN even at lower number of BS antennas. LAMA-PD and
LAMA-FD also have lower interconnect bandwidth than star
topology, however, comparatively they have higher compu-
tational complexity and are less robust in practical wireless
channel environments as investigated in [22]. The interconnect
bandwidth for the star topology, EP, EP-LLR, LAMA-PD,
LAMA-FD and DCD depends on the number of the clusters.

To improve upon the interconnect bandwidth performance
for the DN algorithm, the ring topology exhibits lower inter-
connect bandwidth than LAMA-PD. The interconnect band-
width of Daisychain SGD is lower than the ring topology,
however it has a lower symbol-error rate performance by at
least 3 dB and has a limitation of a single antenna per cluster.
K-ary is a generic topology and has the lowest interconnect
bandwidth which is provided for reference. The ring topology,
Daisychain SGD and K-ary maintain constant interconnect
word transfer on scaling the BS for large B antennas and
the apex cluster does not have to be hardware reconfigured
while varying B . Adapting the proposed DN algorithm for
K-ary topology to further reduce the interconnect bandwidth
is a non-trivial task and is part of ongoing research.

IV. COMPLEXITY ANALYSIS

The computational complexity of an algorithm is mainly
characterized by the number of complex multiplication and
division operations. It is important to evaluate the computa-
tional complexity of MIMO uplink detection algorithms when
the parameters of U, B, C, Bc, and T are varied for different
MIMO system configurations. As Bc and T are fixed in scaling
MIMO configuration, the critical parameters to be considered
are U, B and C for analyzing the computational complex-
ity. The MAP based MIMO uplink detection techniques of
LAMA-FD, LAMA-PD, EP and EP-LLR involve exponential
operation to compute the signal variance. Hence, for deriving
VLSI architectures based on these algorithms, it is critical to
explicitly account for the computational complexity for the
implementation of exponential operation to ensure numerical
stability. The performance of MAP based MIMO uplink detec-
tion algorithms depends on numerical stability, specifically at
high SNR when variance becomes infinitesimally small.

The computational complexity of decentralized MIMO
uplink detection algorithms is evaluated in Table. II. The order
of computational complexity for the proposed DN algorithm is
not affected by the choice of the topology. The EP algorithm
has the highest computational complexity of third order at
the non-apex clusters due to explicit matrix inversion. The
LAMA-FD, LAMA-PD and ADMM-GS exhibit computa-
tional complexity of second order, however ADMM-GS does
not involve the computation of the exponential operations.
The Daisychain SGD exhibits second order computational
complexity in terms of U and depends on the number of BS
antennas B , uniform across all clusters. The proposed DN,
DCD and EP-LLR exhibit linear computational complexity
across the apex cluster. The DN algorithm’s computational

TABLE II

COMPLEXITY COMPARISON

complexity is dominantly affected by computation of Gram
matrix HH

c Hc at the non-apex clusters. However, as compared
to DCD and EP-LLR, the computational complexity of the DN
algorithm is lower at apex cluster.

V. ERROR RATE PERFORMANCE ANALYSIS

Decentralized MIMO detection techniques are compared
by performing simulation of BS with 128 antennas servicing
8 UEs in Gaussian i.i.d and 3GPP SCM as channel models.
Also, each of these system configurations is simulated with
16-QAM to analyze the effect of modulation scheme over
symbol error-rate performance. DN method is simulated with
the floating-point as well as fixed-point (inline with HLS
analysis). For the simulation, 32-bit data type with 16-bit
for the real part and 16-bit for the imaginary part of com-
plex number representation is used, both for floating and
fixed-point analysis. Since, the ring and the star topologies
are architectures for VLSI hardware implementations, they do
not affect the symbol error-rate performance of the proposed
DN algorithm since both equate eq. (1) using the algorithm
outlined in Appendix X. All arithmetic operations for the sim-
ulation are performed using Python Numpy [31] and Python
Mpmath [32].

Fig. 3.a and 3.b compares the symbol-error rate performance
of the MIMO detection techniques with i.i.d Gaussian channel
model. For a realistic channel model, the statistical model of
a correlated fading channel model[33] for the channel matrix
Hc is represented by Hc = �

1/2
BS Ai.i.d�

1/2
UE , where Ai.i.d ∈

CB×U represents i.i.d Rayleigh fading channel, while �BS ∈
CB×B and �UE ∈ CU×U are correlation matrices for BS
and UE respectively. Using the correlated fading model, 3GPP
SCM channel correlation matrices are generated [34], [35] for
BS and UE. An urban scenario with micro cell distribution is
assumed for channel matrix generation, where the users are
randomly distributed within a cell radius of 500m. The carrier
frequency is set to 3.5GHz while the BS antenna elements
spacing is half the wave length. Fig. 3.c and 3.d compares
symbol-error rate performance of MIMO detection techniques
for 3GPP Spatial Channel Model.

Overall, EP algorithm provides the best symbol-error rate
performance, while Daisychain SGD requires the highest SNR
to converge. EP algorithm provides optimal performance at
cost of high interconnect bandwidth at low SNR. Output
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Fig. 3. Performance comparison of MIMO uplink detection algorithms for MIMO system configuration of B = 128, U = 8, C = 4 for 16-QAM modulation
in i.i.d Gaussian channel model with 3 iterations (a) and 4 iterations (b) and in 3GPP Spatial Channel Model with 3 iterations (c) and 4 iterations (d).

equalization by EP is followed by soft-output detection [25],
involving noise statistics computation. ADMM-GS is a second
order algorithm which achieves fast convergence with increase
in T . LAMA-PD and LAMA-FD do not converge for realistic
3GPP SCM[22]. DCD has linear computational complexity
and achieves slower convergence as compared to ADMM-GS
with increase in T . For the proposed DN method, the Hessian
is approximated using diagonal dominance characteristics of
the matrix HH

c Hc for c = 1, 2, 3, . . .C , which saves intercon-
nect bandwidth and provides close to ZF performance using
hard-output detection.

VI. HARDWARE IMPLEMENTATION PERFORMANCE

ANALYSIS

An FPGA is a reconfigurable computing technology for
VLSI implementation, the design flow being different than

ASIC. For the ring and star topologies, the XILINX VIRTEX-
7 FPGA device is used for VLSI hardware implementation
analysis. The fundamental pre-verified resource elements of an
FPGA for VLSI implementation are Flip-Flops (FF), Look-up
Tables (LUT), Digital Signal Processor slices (DSP48E),
Block RAM of 18kB (BRAM_18K). Analysis of system
parameters of throughput, resource consumption, latency, and
energy efficiency for the ring and star topologies is performed
on FPGA. As the ring topology with additional sub-carrier
processing demands more FPGA resources, XILINX VIR-
TEX ULTRASCALE+ FPGA device is used for this analy-
sis. Vivado HLS [36] is a high-level synthesis (HLS) tool
used for VLSI hardware prototyping. In the implementation,
HLS datatype x_complex [36] is used, which performs arith-
metic bit alignment operations implicitly for complex arith-
metic operations. Implementing an algorithm on FPGA and
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Fig. 4. The architecture diagram of MIMO uplink detection technique using the DN method. The star topology’s apex cluster is shown in b) inherits the
functionality of the star topology non-apex cluster shown in a). Similarly, the apex cluster for ring topology shown in d) inherits the functionality of the ring
topology’s non-apex cluster shown in c). All the clusters for a particular topology are implemented in a single FPGA fabric for evaluation.

TABLE III

FPGA HARDWARE RESOURCE ESTIMATES FOR DN RING TOPOLOGY, SINGLE SUB-CARRIER WITH 16-QAM AND Bc = 32 IMPLEMENTED ON XILINX
VIRTEX-7 (XC7VX690T)

optimizing for performance using Vivado HLS is a non-trivial
task.

HLS optimizations are applied strategically on specific
arithmetic operations in the hardware architecture [37] to
achieve trade-off in system latency, throughput and FPGA
hardware resources utilization. HLS optimizations are applied

on algorithm loop iteration or functional units. Hence,
the architecture diagram for a cluster implementation of the
ring and star topologies is provided in Fig. 4 for behav-
ioral analysis, where critical arithmetic operations involving
loop iterations and functional units are identified. The Gram
matrix computation is the key operation with significant
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computational complexity. Also, the key interconnect variables
are identified between different functional units in the archi-
tecture to analyse the dependency on loop iterations.

For every cluster c, local memory registers are synthesized
by BRAM_18K or LUT on the FPGA. Every cluster involves
Gram Matrix (HH

c Hc) and Matched Filter (HH
c yc) computa-

tions, which are computed parallelly. Hc is stored in local
memory and utilized for every iteration. The Gram Matrix
is computed at every channel coherence time interval, while
Matched Filter is computed for every uplink symbol detection.
Every cluster caches data from interconnect variables (p and
q for the ring topology, and pc and qc, where c = 1, 2, 3 . . .C
for the star topology) using local buffers. The buffers are syn-
thesized using BRAM_18K/LUT and operate in FIFO fashion.
For the star topology, the input and the output buffers are
routed to a single interconnect link, since the data flow in the
interconnect variables are bidirectional. For the ring topology,
the input and the output buffers are routed to separate input
and output interconnect link as the data flow in interconnect
variables is unidirectional.

Vivado HLS provides a pragma directive for optimizing
hardware implementation [37] on FPGA to achieve a trade-off
between system latency and FPGA hardware resource con-
sumption.

A. Hardware Implementation Strategies

In Register Transfer Level (RTL) implementation, a non-
apex cluster unit is built as a sub-function. For the first gradient
calculation, the matrix multiplier IP core from HLS linear
algebra library [36] is optimized for x_complex data-type
with a fully unrolled outer row loop using pragma directive
HLS UNROLL. In both topologies, every cluster (apex and
non-apex) is allocated with matrix multiplier IP core with
inline optimization using pragma directive HLS INLINE [37].
Inline optimization reduces processing latency of the matrix
multiplier IP core at the expense of an increase in FPGA hard-
ware resource consumption, as it constructs dedicated RTL
implementation for every instance of the cluster. Dual port
RAM resource implementation is used to store local channel
matrix Hc and local receive signal yc. Read access to HH

c Hc

and Hc are completely array partitioned in the first dimension
using pragma directive HLS ARRAY_PARTITION [37]. Array
partition optimization allows parallel access for every row vec-
tor of HH

c Hc and Hc, which is unrolled with factor of U using
pragma directive HLS UNROLL. Also, every cluster instance
is pipelined using pragma directive HLS_PIPELINE [37],
which reduces cluster initiation interval [36] and critical path
of the cluster. In the star topology, the non-apex cluster unit
only transmits pc and qc to the apex cluster unit. In the ring
topology, every cluster unit also consists of an accumulator
processing for p and q for gradient processing.
The apex cluster is built as a separate sub function and embeds
functionality of non-apex cluster to calculate first gradient
and the Hessian approximation. Additionally, the apex cluster
performs computation of eq. (10) for every iteration t. In the
star topology, the apex cluster also accumulates pc and qc

for c = 1, 2, 3, . . .C available from the non-apex cluster,

before evaluating x(t) for tth iteration. Thus, the apex cluster
in the star topology has C links for each pc and qc where
c = 1, 2, 3, . . .C . Complex division for eq. (10) performed
at apex cluster C for both topologies is fully unrolled using
pragma directive HLS UNROLL with factor of U, which
creates dedicated RTL division logic to handle each user
computation of elements of x parallelly. All variables are
implemented using dual port RAM optimized by pragma
HLS RESOURCE with RAM_2P. RTL logic is realized using
Configurable Logic Blocks (CLB) in FPGA [38], [39]. For the
current work, the ring and star topologies are implemented
on single FPGA fabric, which uses programmable intercon-
nects between Configurable Logic Blocks (CLB) for routing
algorithm.

In the ring topology, the top-level HLS synthesis function
instantiates apex cluster and non-apex clusters and creates
dedicated RTL implementation for every iteration of cluster
instantiation. This is achieved by completely unrolling the
top-level HLS synthesis function by using pragma directive
HLS UNROLL [37]. Variables p and q are updated after every
cluster processing for every iteration as outputs and become
inputs to the next cluster in ring order. This dependence is
explicitly enforced on the interconnect variables p and q using
pragma HLS DEPENDENCE with Read-After-Write (RAW)
option, which ensures these variables are read by the next
cluster only after the write operation is performed by the
current cluster. The sequential nature of ring topology enables
complete unrolling of ring topology implementation to process
additional sub-carrier in parallel.

In the star topology, non-apex clusters are connected to
the apex cluster using dedicated variables pc and qc where
c = 1, 2, 3, . . .C . In the top-level HLS synthesis function,
all non-apex clusters are instantiated with dedicated RTL
logic using pragma HLS UNROLL. Every non-apex cluster
c updates associated pc and qc parallelly and is conveyed
back to apex cluster for computing p and q and thereby x(t)

for the tth iteration. The assembly of the non-apex clusters
and the apex cluster is unrolled for every iteration using
pragma HLS UNROLL directive. Interconnect variables pc

and qc for non-apex clusters are enforced with RAW depen-
dence using pragma HLS DEPENDENCE for subsequent
iterations.

After running the behavioral simulation for the ring and
the star topologies, the respective architecture is synthe-
sized taking account of the HLS optimizations in the RTL.
After resolving critical paths, the cluster computing is time
scheduled as given in Fig. 5 for MIMO configuration of
U = 8, B = 128, C = 4 and t = 3. For ring topology time
scheduling as shown in Fig. 5.a, owing to inter-dependency
among the interconnect variables, the clusters are scheduled
sequentially for every iteration t = 1, 2, 3 . . . T . For the star
topology, the time schedule as shown in Fig. 5.b, the non-
apex clusters are scheduled parallelly since every non-apex
cluster has dedicated interconnect variables with no inter-
dependency. After every time interval of the non-apex cluster
computation, the apex cluster computes x(t) for every iteration
t. The channel matrix Hc is accessed from the local memory
and yc is accessed from the RF frontend at initial iteration
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Fig. 5. The scheduling diagram from Vivado HLS Schedule viewer for the ring topology as shown in a) and the star topology as shown in b) for MIMO
system configuration of B = 128, U = 2, C = 4, Bc = 32 and T = 3. For both topologies, Hc and yc are accessed by each cluster during the initial
iteration. The clusters are unrolled using pragma HLS UNROLL for each iteration t .

t = 0. After time scheduling, the maximum clock frequency
for the architecture is estimated by the static timing analysis.

B. Hardware Implementation Performance Analysis

In hardware analysis, evaluation of the system parameters of
latency, throughput, and on-chip power consumption for vari-
ous MIMO system configurations for star and ring topologies
is done. Specifically, a comparison between MIMO BS with
B = 64 and B = 128 is drawn, which provides insights into
change in system parameters with a change in clusters. Within
particular MIMO BS, insights are provided into MIMO system
configuration with UEs as U = 2, 4, 6 and 8 to evaluate the
change in system parameters with the change in the number of
UEs serviced by the system. Fig. 5 describes cluster scheduling
for the star and ring topology for specific MIMO system
configuration. Latency in terms of the clock cycles changes
with MIMO system configuration, however, the characteristic
scheduling order remains constant. For power profiling, Xilinx
Power Estimator [41] is used to estimate the worst-case on-
chip power consumption for different MIMO configurations
presented here. For profiling, ambient temperature (25◦C) and
250 Linear Feet per Minute (LFM) air supply with heat sinking
as environment variables are configured. Clock toggle rate
of 12.5% and enable rate of 50% is used for clock simulation.
Hardware implementation for ring topology and star topology
presented in Table. III and Table. IV, respectively.
1) Ring Topology Resource Analysis: Table. III gives com-

parative analysis for the ring topology for the system parame-
ters. When the system with B = 64 (T = 3) is scaled from
U = 2 configuration to support U = 8 configuration, overall
system throughput increases by 2.2×, however throughput per
UE suffers a decrease of 21%. On scaling from B = 64 to
B = 128 (T = 3), throughput variation remain similar for
system to that of B = 64 (T = 3) from U = 2 to U = 8.
When star topology with B = 64 (T = 3) is scaled from
U = 2 configuration to support U = 8 configuration, overall
system throughput increases by 2.4×, however throughput per
UE suffers a decrease of 15.4%. On scaling from B = 64

to B = 128 (T = 3), throughput variation remain similar to
that of B = 64 (T = 3) from U = 2 to U = 8. There is
no throughput variation for both topologies on increasing the
number of iteration.

For the ring topology, by scaling the BS station to support
additional UEs, FPGA hardware resources per UE increase
fractionally. When the system with B = 64 (T = 3) is scaled
from U = 2 configuration to support U = 8 configuration,
there is drastic change in FPGA resource consumption per
UE from U = 2 to U = 8 as 72% decrease in DSP48E,
51.7% decrease in FF, 40.7% decrease in LUT but 50%
increase in BRAM is observed. On comparing FPGA resource
consumption per UE for specific U , DSP48E and BRAM
usage gets doubled for B = 128 than that for B = 64.
However, for FF and LUT consumption per UE for specific
U , a higher number of UE requires less increase in FF and
LUT as compared to the lower number of UE, when the
system is scaled from B = 64 to B = 128. For example,
from B = 64 to B = 128, FF and LUT increases by 45.4%
and 33.8% respectively for U = 8 as compared to 73.9%
and 58% increase respectively for U = 2. For B = 64
and B = 128, adding an iteration with the same throughput
increases DSP48E, FF, and LUT by an average of 33% with no
additional BRAM requirement, for all UE cases. When system
is scaled from B = 64 to B = 128 with T = 3 for specific
number of UE, latency increase is more for higher number of
UE (58% for U = 2 as compared to 69.7% for U = 8). For
B = 64 (T = 3), addition of 2 UE to U = 2 increases latency
by 22.3% as compared to addition of 4 UE to U = 4 with
just 2% increase. Whereas for B = 128, addition of 2 UE to
U = 2 and 4 UE to U = 4 costs 26.3% and 6% increase in
latency respectively. Thus, as the number of UE increase for a
particular BS, additional UE can be added at a lower increase
in latency. Implementing additional iteration causes an 30%
average increase in latency across B = 64 and B = 128 for
all UE cases.

2) Star Topology Resource Analysis: Star topology com-
parative analysis is presented in Table. IV. By scaling BS
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TABLE IV

FPGA HARDWARE RESOURCE ESTIMATES FOR DN STAR TOPOLOGY, SINGLE SUB-CARRIER WITH 16-QAM AND Bc = 32 IMPLEMENTED ON XILINX
VIRTEX-7 (XC7VX690T)

station to support additional UE, FPGA hardware resources
per UE increase fractionally. On the contrary, there is a drastic
change in FPGA resource consumption per UE from U = 2
to U = 8 as a 70.6% decrease in DSP48E, a 61.54% decrease
in FF, 58.20% decrease in LUT is observed. FPGA resource
consumption per UE for specific U, DSP48E usage gets
doubled for B = 128 than that for B = 64. However, for FF
and LUT consumption per UE for specific U, system servicing
a higher number of UE requires less increase in FF and LUT
as compared to system servicing a lower number of UE, when
two clusters are added to the system with B = 64. For
example, from B = 64 to B = 128, FF and LUT increases by
73% and 69.15% respectively for U = 8 as compared to 90%
and 82.8% increase respectively for U = 2. For B = 64 and
B = 128, adding an iteration with same throughput increases
DSP48E, FF and LUT by an average of 33%, 30% and 28%
respectively, for U = 2, 4 and 8. When system is scaled from
B = 64 to B = 128 with three iteration, latency increase
is constant at 6 clock cycles for all UE cases. Relatively,
addition of two clusters to B = 64 costs 2.5%, 2.34% and
2.0% increase in latency for U = 2, 4 and 8 respectively.
Implementing additional iteration causes an average of 30.5%
increase in latency across B = 64 and B = 128 for all UE
cases.

3) Power Consumption Analysis: For ring topology,
although total power consumption increases with the number
of UE, the power consumed per UE decreases, and bits per
Joule increase with the number of UE for a particular BS.
For instance, from scaling U = 2 to U = 8 (T = 3), power
consumption per UE drops by 64% for B = 64 and 66.4%
for B = 128, whereas bits per Joule increase by 1.23× for
B = 64 and 1.32× for B = 128, making it more power-
efficient. The addition of cluster increases power consumption
fractionally. By scaling from B = 64 to B = 128 (T = 3),

TABLE V

FPGA HARDWARE RESOURCE ESTIMATES FOR DN RING TOPOLOGY,
MULTIPLE SUB-CARRIERS WITH 16-QAM, Bc = 32, B = 128, U =

8 AND C = 4 ON XILINX VIRTEX ULTRASCALE+ (XCVU13P)

power consumption per UE increases by 49.5%, 46.3% and
41.2% for U = 2, 4 and 8 respectively, which causes drop in
bits per Joule by 33.1%, 31.6% and 29.21% for U = 2, 4 and
8 respectively. Addition of iteration to three iteration system
increases power consumption per UE by an average of 22.4%
for B = 64 and 25.6% for B = 128, whereas decreases bits
per Joule by an average of 18.2% for B = 64 and 20.36%
for B = 128 for all UE cases. Ring topology with a single
sub-carrier can process additional sub-carrier at approximately
30% reduced latency as shown in Table. V. While process-
ing the second sub-carrier, FPGA resource consumption for
DSP48E, FF, and BRAM has almost doubled while LUT
consumption increases by 53%. Throughput is increased by
1.39× for two sub-carrier as compared to single sub-carrier
processing, with a 61% increase in power consumption per
UE and a 53% increase in bits per Joule.
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TABLE VI

COMPARISON OF DECENTRALIZED MASSIVE MIMO UPLINK DETECTION TECHNIQUES

For the star topology, although power consumption increases
with the number of UEs, the power consumed per UE
decreases, and bits per Joule increase with the number of UE
for particular BS similar to the ring topology. For instance,
from scaling U = 2 to U = 8 (T = 3), power consumption
per UE drops by approximately 70% for B = 64 and B = 128,
whereas bits per Joule increase by approximately 1.8× for
B = 64 and B = 128. The addition of clusters increases
power consumption and causes a decrease in bits per Joule.
By scaling from B = 64 to B = 128 for T = 3, power
consumption per UE increases by 69%, 69% and 66.5% for
U = 2, 4 and 8 respectively, which causes drop in bits per
Joule by 37.52%, 37.00% and 36% for U = 2, 4 and 8
respectively. Addition of iteration to three iteration system
increases power consumption per UE by an average of 19.6%
for B = 64 and 24.6% for B = 128, whereas decreases bits
per Joule by an average of 16.4% for B = 64 and 19.4% for
B = 128.

4) Comparative Performance Analysis: On comparing the
ring and star topologies, the choice of topology is dependent
on the trade-off among interconnect bandwidth, throughput,
energy efficiency and latency. On comparing similar MIMO
configurations between the ring and star topologies, ring topol-
ogy provides more throughput at expense of increased latency
as compared to the star topology for B = 64 and B = 128 for
all UE cases. Ring topology maintains constant interconnect
bandwidth on the addition of clusters, with no RTL recon-
figuration required for the apex cluster or non-apex clusters
on scaling MIMO configuration for B . For similar MIMO
configurations, star topology provides low latency as compared
to the ring topology at the expense of reduced throughput.
Also, the star topology provides a more deterministic latency
increase by scaling MIMO configuration by the number of UE
or clusters as compared to a ring topology. On the contrary,
the ring topology processes additional sub-carrier (Table. V)
at a fractional increase in latency and power consumption
per UE as compared to the star topology, providing high
throughput gain at the expense of twice the FPGA resource
consumption.

Table. VI compares decentralized MIMO detection
techniques implemented as FPGA and GPU prototypes.
FD-LAMA [40] is a variant of LAMA-FD, which implements
a hyperbolic tangent function for LAMA iterations, thereby
increasing algorithm computational complexity. LAMA
algorithm is not robust for a realistic channel environment[22].
On the application note, the star topology is favorable for
a 3GPP SCM scenario that needs to be scaled with a
large number of clusters at low latency at expense of high
interconnect bandwidth. On the contrary, the ring topology is
favorable for a 3GPP SCM scenario that requires scaling for
a large number of clusters at constant interconnect bandwidth
and high throughput, at expense of increased latency.

VII. CONCLUSION AND FUTURE WORK

In this work, decentralized Newton (DN) algorithm for
decentralized MIMO uplink is presented, which is a novel
adaptation of the centralized Newton method. Also, two novel
hardware architectures for hardware implementation are pro-
posed. Also, a comparative analysis of scaling effects on para-
meters of throughput, latency, FPGA resource consumption,
and on-chip power consumption for both topologies is carried
out. The star topology is suited for MIMO configuration
scenarios that demand low-latency, while ring topology can
be implemented in MIMO configuration scenarios demanding
higher throughput and lower interconnect bandwidth. Interest-
ingly, it is possible to switch between topologies using smart
routing hardware to route the resource blocks allocated to
enhanced mobile broadband (eMMB) services and those ded-
icated to Ultra-High Reliability and Low Latency (URLLC)
services accordingly. In terms of scaling system for thousand
of BS antennas, the ring topology maintains low and constant
interconnect bandwidth as compared to star topology. Also,
the ring topology can process additional sub-carrier at a
fractional increase in the latency and power consumption.
The star topology can be scaled for a huge number of
clusters without incurring high latency. DN is a comparatively
low complexity algorithm providing close to ZF performance
which can be implemented feasibly on FPGA. FPGA is
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inherently power efficient as compared to GPU, which makes
FPGA implementation of DN algorithm power-efficient than
GPU implementation of other decentralized MIMO uplink
detection algorithms [15], [19].

In the future work, there is scope to implement and analyze
the ring and star topologies of DN method based MIMO uplink
detection using multiple FPGA, which would make the decen-
tralized implementation more modular. Although clusters with
an equal number of antennas per cluster are considered, both
topologies can be implemented with non-uniform distribution
of BS antennas among clusters.

APPENDIX

A. Proof of Lemma 1

fc(x) with fc : CU×1 → R is considered as local cost
function of cluster c and define it as:
fc(x) = ||Hcx − yc||22 = xHHH

c Hcx − 2yH
c Hcx + yH

c yc (2)

With ensemble of sample function fc(x) with respect to
c, F(x) is constructed as system objective function given as
F : CU×1 → R >= 0 for robust stochastic optimization [29],
defined such that:

F(x) = E ( fc(x)) = 1

C

C∑
c=1

fc(x) c = 1, 2, 3 . . .C (3)

By adapting Newton Method [27] to evaluate x(t), where
iteration t = 1, 2, 3 . . . T :

x(t) = x(t−1) −
(
∇2

x(t−1)F(x(t−1))
)−1 ∇x(t−1)F(x(t−1)) (4)

where,

∇x(t−1)F(x(t−1)) = ∇x(t−1)E

(
fc(x(t−1))

)

= 1

C

C∑
c=1

(
∇x(t−1) fc(x(t−1))

)

= 2

C

C∑
c=1

(
HH

c Hcx(t−1) − HH
c yc

)
(5)

and,

∇2
x(t−1)F(x(t−1)) = ∇2

x(t−1)E

(
fc(x(t−1))

)

= 1

C

C∑
c=1

(
∇2

x(t−1) fc(x
(t−1))

)

= 2

C

C∑
c=1

(
HH

c Hc

)
(6)

HH
c Hc is symmetrical positive-semidefinite and is decom-

posed arithmetically as:
HH

c Hc = Dc + Lc + LH
c (7)

where Dc, Lc and LH
c are diagonal, strictly lower triangular

and strictly upper triangular matrices. As HH
c Hc is a U × U

matrix, it needs U ×U dimensional interconnect between the
clusters. But, as HH

c Hc is diagonally dominant and its column
vectors being mutually orthogonal, it can be approximated as

HH
c Hc ≈ Dc [25], [30]. With this approximation, column

vector comprising diagonal of Dc can be exchanged and
accumulated between clusters as U × 1 dimensional column
vector, thus reducing interconnect bandwidth between clusters.
Accordingly, column vectors of Hc are used to calculate Dc.

(Dc)i j =
{

||hu,c||22 when i = j = u

0 otherwise
(8)

With approximation of Dc, second gradient is calculated as:

∇2
x(t−1)F(x(t−1))= 2

C

C∑
c=1

(
HH

c Hc

)
≈ 2

C

C∑
c=1

(Dc)�
2

C
D (9)

While using eq. (5) and eq. (9) for evaluating eq. (4), factor
2
C gets canceled:

x(t) = x(t−1) − (D)−1

(
C∑
c=1

(HH
c Hcx(t−1) − HH

c yc)

)
(10)
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