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Abstract— This article presents a wide-band suppression
technique of flicker phase noise (PN) by means of a gate–drain
phase shift in a transformer-based complementary oscillator.
We identify that after naturally canceling its second-harmonic
voltage by the complementary operation itself, third-harmonic
current entering the capacitive path is now the main cause
of asymmetry in the rising and falling edges, leading to the
1/ f noise upconversion. A complete 1/ f 3 PN analysis for the
transformer-based complementary oscillator is discussed. By tun-
ing gate–drain capacitance ratio, a specific phase-shift range is
introduced at the gate and drain nodes of the cross-coupled pair
to mitigate the detrimental effects of ill-behaved third-harmonic
voltage, thus lowering the flicker PN. To further reduce the area
and improve the PN in the thermal region, we introduce a new
triple-8-shaped transformer. Fabricated in 22-nm FDSOI, the
prototype occupies a compact area of 0.01 mm2 and achieves 1/ f 3

PN corner of 70 kHz, PN of −110 dBc/Hz at 1 MHz offset, figure-
of-merit (FoM) of −182 dB at 9 GHz, and 39% tuning range
(TR). It results in the best FoM with normalized TR and area
(FoMTA) of −214 dB at 1 MHz offset.

Index Terms— Transformer-based oscillator, gate–drain phase
shift, passive gain, complementary oscillator, flicker noise upcon-
version, electromagnetic interference, compact area, FDSOI.

I. INTRODUCTION

W ITH the CMOS devices scaling down, their worsening
1/ f noise [1], [2] leads to the increase of flicker phase

noise (PN) in oscillators. This has become a serious problem,
attracting extensive research [3]–[14]. Hajimiri and Lee [3]
first explained the 1/ f noise upconversion mechanisms using
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Fig. 1. Survey of 1/ f 3 PN corner versus FoMTA (emphasizing tuning range
and area) in LC-tank and ring oscillators.

an impulse sensitivity function (ISF), which suggests that a
symmetric oscillation waveform could suppress any 1/ f noise
from upconversion. The original ISF theory works well in
explaining flicker PN in ring oscillators [4], [15], [16], but does
not clearly explain the origins of the asymmetric waveform in
LC-tank oscillators and their flicker PN mechanisms.

Bonfanti et al. [7] and Pepe et al. [8] claimed that the 1/ f 3

PN in LC-tank oscillators is caused by the third-harmonic
current (i.e., IH3) entering the capacitive path of LC-tank,
while Shahmohammadi et al. [9] demonstrated that it is the
second-harmonic current (i.e., IH2), rather than IH3, enter-
ing the non-resistive path, causing waveform asymmetries,
which ultimately leads to the flicker PN. Recently, these
two pioneering but obviously conflicting explanations were
unified in [12] concluding that both ill-behaved second- and
third-harmonic voltages (i.e., VH2 and VH3) result in the
flicker noise upconversion, but VH2 dominates over VH3 in
nMOS-only oscillators, while in complementary oscillators,
VH3 is an order-of-magnitude larger than VH2. Compared
with its nMOS-only counterpart, the complementary oscilla-
tor is more favorable for applications requiring low-power
consumption, limited swing (avoiding thick-oxide devices),
elimination of additional biasing, and supporting standard
supply voltages [14]. However, a detailed quantitative analy-
sis of a common-mode (CM) return path and flicker noise
upconversion in a conventional complementary oscillator is
still missing.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 2. (a) Conventional sw-cap tuning unit. (b) Model of a conventional 11 GHz LC-tank complementary oscillator. (c) DM current IH1 return path. (d) DM
current IH3 return path. (e) CM current IH2 return path.

Several flicker PN reduction mechanisms have been identi-
fied [12]: 1) second-harmonic resonance [9], [10], [17]–[20];
2) narrowing of the conduction angle (i.e., class-C)
[11], [21]–[25]; 3) gate–drain phase shift based on an RC
delay [8], [26]. However, the second-harmonic resonance is
a narrow-band suppression technique, the narrowing of a
conduction angle needs a careful consideration of start-up,
and the gate–drain phase shift based on an RC delay suf-
fers from process, voltage, and temperature (PVT) variations.
Thus, a new flicker PN suppression technique that is wide-
band and PVT-robust would be highly sought, especially
for supporting 5G/6G communications or other emerging
applications [27]–[37].

Concurrently, saving the silicon area has always been
desired by IC designers. This is especially true for
LC-tank oscillators since the passive devices cannot scale
down with the technology advancements [31], [38]–[42].
Although some researchers put active devices underneath the
inductive structures at the cost of quality (Q)-factor degra-
dation [31], [41], [42], customarily, a sufficient separation
between the inductive devices and other sensitive blocks
should be kept to mitigate the electromagnetic interference
(EMI). An 8-shaped inductor is a favorable solution to relieve
the EMI, but at the cost of a larger area and the Q-factor
degradation [43]. In [38] and [40], an ultra-compact 8-shaped
transformer-based oscillator was proposed with the switched-
capacitor (sw-cap) banks placed in the EMI-free regions to
save the area, but the long and ill-defined differential-mode
(DM) return path of the transformer significantly worsens its
Q-factor. On the other hand, ring oscillators benefit from
the CMOS technology scaling, occupying a compact area

with a wide TR, and are not susceptible to magnetic pulling.
However, both their thermal and flicker PN are much worse
than in the LC oscillators, and they are highly susceptible to
the supply noise (i.e., high supply pushing).

In this article, we propose a complementary oscillator
using a triple-8-shaped transformer, simultaneously featuring
a compact area of 0.01 mm2, wide tuning range (TR) of 39%,
1/ f 3 PN corner of 70 kHz, and electromagnetic compatibility,
combining both benefits of LC-tank-based and inverter-ring-
based oscillators (see the survey in Fig. 1) [14]. The rest of
the paper is organized as follows. Section II discusses in
detail the CM return path in a conventional complementary
LC oscillator and analyzes quantitatively its flicker noise
upconversion mechanism.

Section III presents a complete theory of the transformer’s
gain and phase shift. Section IV discloses the proposed
transformer-based complementary oscillator design, fully clar-
ifying the flicker noise upconversion mechanism in a com-
plementary class-F operation, and reveals how the gate–drain
phase shift can suppress it. Experimental results are shown in
Section V.

II. FLICKER NOISE UPCONVERSION AND CM RETURN

PATH IN COMPLEMENTARY OSCILLATORS

For the purpose of fully clarifying the mechanism of flicker
noise upconversion in complementary oscillators, a conven-
tional 11 GHz complementary class-B oscillator was designed
in 22-nm FDSOI CMOS, as shown in Fig. 2(b). It comprises
the complementary cross-coupled switching pairs (M1-M2 &
M3-M4) providing transconducance Gm, main inductor Ldiff,
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Fig. 3. Effect of oscillating amplitude on phase shift of various harmonic
currents in nMOS and pMOS transistors mimicking M1 (or M2) and M3
(or M4) in Fig. 2(b). (a)(c) Simulation test-benches for pMOS and nPMOS
transistor, respectively. (b)(d) Simulated phase shifts for pMOS and nPMOS
transistor, respectively, for VDD = 0.8V (phase degrees are calculated from
cosines).

and switched-capacitor (sw-cap) banks [see Fig. 2(a)], modeled
by Cdiff and the parasitic single-ended capacitance Cse (shown
in both ON and OFF modes). The Cdecap, Ldecap, and Lbond
components model the decoupling capacitor with its parasitic
inductance, and bonding-wire inductance, respectively. Two
off-chip supplies are used: VDD_Aoff-chip, VDD_Doff-chip,
sharing the global ground VSSoff-chip. The “analog” power
domain (VDD_A/VSS_A) is for the Gm transistors, while
the “digital” power domain (VDD_D/VSS_D) is for the sw-
cap banks. The separation of two power domains intends
to avoid unwanted coupling from the sw-cap banks to the
oscillator’s core when incorporating this oscillator in a PLL.
It could further improve thermal PN by reducing parasitic
CM capacitance of sw-cap banks seen by an nMOS-only
oscillator’s CM path [10].

A. CM Return Path in Complementary Oscillators

Since the non-resistive terminations of CM currents (e.g.,
IH2) are the main contributor to the flicker noise upconver-
sion in nMOS-only class-B oscillators [10], [44], it would
be interesting to study the CM return path in its com-
plementary counterparts by figuring out the relationship
between the CM currents generated by the pMOS and nMOS
coupled-pairs.

A test-bench [see Fig. 3(a) and (c)] is set up where the
pMOS and nMOS transistors [modeling M3 & M1 in Fig. 2(b)]
are given similar operating conditions as in Fig. 2(b). For
example, assuming VD ≈ 0.5VDD + VH1cos(ω0t) and VG ≈
0.5VDD + VH1cos(ω0t + π), Fig. 3(b) and (d) reveal the phase

of each harmonic current at the drain nodes of pMOS and
nMOS (i.e., � IH1–3,pMOS and � IH1–3,nMOS), respectively. Due
to the oscillator’s complementary configuration in Fig. 2, VH1
is saturated at around 0.5VDD (i.e., ≈ 0.4V), resulting in a rail-
to-rail output swing for the single-ended output of Vout, p or
Vout, n. As shown in Fig. 3(b) and (d), when VH1 = 0.4 V, both
IH1,pMOS and IH1,nMOS in the pMOS and nMOS coupled-pairs
are out-of phase of VDS, demonstrating that the coupled-pairs
will behave like “negative” Gm in the oscillator. Interestingly,
the phase � IH2,pMOS is around 0◦ (see Fig. 3(b)), while phase
� IH2,nMOS is −180◦ (see Fig. 3(d)), when VH1 = 0.4V. With
the consideration of their own opposite reference directions,
their CM current will be ultimately in-phase, as shown in
Fig. 2(e). In other words, the CM current generated by the
nMOS cross-coupled pair will be almost entirely absorbed
by the pMOS cross-coupled pair with proper sizing of the
transistor width ratio WpMOS/WnMOS.

Furthermore, the complementary oscillator provides a well-
defined CM return path due to the short physical distance
between the local supplies of VDD_A and VSS_A, result-
ing in the parasitic inductance (i.e., Ldecap) of decoupling
capacitor (i.e., Cdecap) close to zero. Considering that Cdecap
can be large and also thanks to the low impedance of
1/Gm of M1–M4, the CM voltage (e.g., VH2) is an order-of-
magnitude smaller than in an nMOS-only oscillator. Thus, the
ill-behaved VH2 is no longer the main contributor to the flicker
noise upconversion, while the IH3 entering the capacitive
path1 (see Fig. 2(d)), generating VH3, now starts playing a
critical role.

B. Flicker Noise Upconversion and Numerical Verification

To quantitatively study how VH3 affects the flicker noise
upconversion in the complementary oscillator of Fig. 2,
we increase the width WnMOS from 20μm to 100μm, while
properly sizing WpMOS/WnMOS to fully suppress VH2 and
reducing the power supply level [see Fig. 4(a)] to maintain the
same power consumption. As shown in Fig. 4(b), the VH3/VH1
ratio increases from 4% to 13%, but VH2/VH1 remains much
lower than 1% and VH1 keeps relatively constant [around
VDD/2 = 0.4 V, see subfigure (a)]. The waveform shaping of
VDS caused by IH3 entering the capacitive nature of the DM
tank can be modeled by [12] and [13]

VDS ≈ VH0 + VH1cos(ω0t) + VH3cos(3ω0t + π

2
) (1)

which models VDS at the representative point:
WnMOS =100μm [see Fig. 4(d)]. Obviously, the strong VH3
will cause steeper falling edges and less steep rising edge,
introducing waveform asymmetries. The actual simulated VGS
and VDS of M1 in Fig. 4(e) (including all harmonics) for the
point confirm the observation.

Fig. 4(c) shows that PN at 10 kHz offset gets worsened
significantly with the increase in VH3/VH1. Thus, the claim
in [9] and [45] that the capacitive terminations of IH3 do

1Interestingly, IH1 will partially enter the inductive path (see Fig. 2(c)),
generating a little positive imaginary energy to balance the negative imaginary
energy due to IH3 entering capacitive path (i.e., “Law of Conservation of
Energy”).
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Fig. 4. (a) Simulated VH1 and corresponding VDD that keeps the power consumption constant, (b) simulated harmonic contents at the drain nodes,
and (c) calculated and simulated PN at 10 kHz offset with increasing WnMOS (Conditions: for each WnMOS, WpMOS is sized properly to suppress VH2).
(d) Characterization of VDS using only VH1 and VH3 [see (1)]. (e) Waveforms of VGS, VDS (including all harmonics) and the corresponding rms value of
flicker current noise I1/ f, rms(t) at a 10 kHz offset. (f) Non-normalized ISF hDS and hDS · I1/ f, rms.

not contribute to the flicker noise upconversion is clearly not
applicable to the complementary oscillator. To quantitatively
study the flicker noise upconversion, we employ the theory
framework in [10]–[13], where the flicker PN could be calcu-
lated by

L1/ f 3(�ω) =
�

1

2
·

√
2

�ωT0

� T0

0
hDS(t) · I1/ f, rms(t)dt

�2

(2)

where I1/ f, rms(t) is the periodically modulated rms value
of flicker noise current at a low offset frequency �ω (e.g.,
2π×10 kHz), T0 (= 2π/ω0) is the oscillation period, and
hDS(t) is the non-normalized ISF associated with VDS of
M1–M4 in Fig. 2(b). As shown in Fig. 4(f), the “less steep”
rising part of VDS is more vulnerable to the noise impulse
injection than is its falling part. Thus, the flicker noise
I1/ f, rms(t) introduces more positive phase change in its rising
part (i.e., more positive area of effective non-normalized ISF
hDS(t) · I1/ f, rms(t)) than in its falling part, leading to the
flicker noise upconversion. The above analysis is numerically
verified with simulations covering different transistor widths
of WnMOS and WpMOS, as shown in Fig. 4(c), thus proving the
effectiveness of the method.

III. GATE–DRAIN PHASE SHIFT IN TRANSFORMER-BASED

COMPLEMENTARY OSCILLATORS

To be able to further improve both the thermal and flicker
PN in the complementary oscillator, we replace the inductor
in the conventional topology of Fig. 2(b) with a transformer
(e.g., its turns ratio = 1:2), as shown in Fig. 5(a). A “2-port”
topology is employed to avoid two possible oscillation modes
(i.e., low-frequency mode at ωL and high-frequency mode
at ωH) in a transformer-based “1-port” topology [46]–[49].

Fig. 5. (a) Schematic of the proposed transformer-based complementary
oscillator and its CM return path. (b) T -model of the transformer-based
resonator for the DM signal (M = km

√
LDLG).

That is, the drain tank (i.e., LD, CD) is connected to the drain-
nodes of M1–4, while the gate tank (i.e., LG, CG) is cross-
connected to their gate-nodes. Both tanks are coupled by a
coupling factor km. Lbond, Cdecap, local, and Ldecap, local (≈ 0)
model the wire-boning inductance, local decoupling capacitor
and its parasitic inductance, respectively. To provide the dc
operating points for M1–4, the center taps of the primary coil
LD and of the secondary coil LG are connected. The oscillation
frequency ω0 (= ωL) of the proposed topology can be
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Fig. 6. (a) Calculated normalized oscillation frequency �. Calculated and simulated (b) gate–drain passive gain AGD and (c) phase shift φGD of the proposed
transformer-based resonator (n ≈ 1.65, km ≈ 0.67).

expressed as [50], [51]

ω0 =
�

1 + n2 X − �
(1 + n2 X)2 − 4n2 X (1 − k2

m)

2(1 − k2
m)

ωG (3)

where ωG (= 1/
√

LGCG) represents the resonating frequency
of the gate tank (i.e., secondary tank),

n =
�

LG

LD
(4)

is the “effective turns ratio” (different from the “turns ratio”),
and

X = CG

CD
(5)

is the gate–drain capacitance ratio, which adds a degree-
of-freedom and a critical “knob” to affect the oscillator’s
performance for a given transformer and oscillating frequency
range. For example, some specific X will enable a class-F
operation [52] for third-harmonic extraction to generate low-
PN mmW carrier [10], [53]. Besides, the passive gain AGD
and gate–drain phase shift φGD for the fundamental oscillating
waveform in the transformer-based resonator [see Fig. 5(b)]
also depend on X , which has a large influence on both thermal
PN and flicker PN of oscillators.

A. Gate–Drain Passive Gain AGD

Compared with an inductor-based oscillator, the passive gain
in a transformer-based oscillator could amplify the effective
negative resistance “−Gm” by AGD times. Thus, for the same
start-up condition, the thermal PN part caused by 4kTγ gm
noise in a transformer-based oscillator is AGD times smaller
than that in an inductor-based oscillator. The relationship
between AGD and X is derived based on a T -model [54]
of the transformer-based resonator [see Fig. 5(b)], where M
(= km

√
LD LG) is the mutual inductance, VG- and VD- are

assumed as DM ac ground. Applying Kirchhoff’s law, the
voltage transfer function of VG/VD can be derived as [52]

H (s) = VG

VD
= Ms

α3s3 + α2s2 + α1s + α0
(6)

where α3 = CG LD LG(1 − k2
m), α2 = CG(LG RD + LD RG),

α1 = LD + CG RD RG, and α0 = RD.
Substituting s = jω0 and the quality factors of two coils

at ω0 as QD = ω0 LD/RD and QG = ω0 LG/RG into (6), the

frequency response of the transformer-based resonator for the
drain fundamental waveform VD,H1 can be written as

H ( jω0) = nkm

(1 − k2
m − 1

QD QG
)�2 − 1 + j ( 1

QD
− QD+QG

QDQG
�2)

(7)

where

�(X) = ω0

ωG

=
�

1 + n2 X − �
(1 + n2 X)2 − 4n2 X (1 − k2

m)

2(1 − k2
m)

(8)

is the normalized oscillation frequency on ωG, and2⎧⎨
⎩

lim
X→0

�(X) = 0

lim
X→∞ �(X) = 1.

(9)

Fig. 6(a) shows the relationship between � and X for the
given transformer’s n (e.g.,

√
LG/LD ≈ 1.7) and km (≈ 0.7).

Once X is large enough (e.g., > 2), � is close to 1, meaning
the oscillation frequency will be dominated by the resonance
frequency of the gate tank (i.e., ω0 ≈ ωG). Accordingly, the
amplitude response AGD for the drain’s fundamental waveform
VD,H1 is given by [see Fig. 5(b)]

AGD(X) = |H ( jω0)|
= nkm
��

1
QD QG

+ k2
m − 1

�
�2 + 1

�2 +
�

1
QD

− QD+QG
QDQG

�2
�2

≈ nkm

1 − (1 − k2
m)�2 (10)

where the terms related to 1/Q2
D, 1/Q2

G, and 1/(QD QG) could
be disregarded since they are inversely proportional to the
square of the quality factors of the coils. It can be proven
that AGD would increase with � and X , and⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lim
X→0, �→0

AGD ≈ nkm

lim
X→1/n2,�→1/

√
1+km

AGD ≈ n

lim
X→∞, �→1

AGD ≈ n

km
.

(11)

2See Appendix for the proof of limX→∞ �(X) = 1.
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Fig. 7. (a) Transformer layout introduced in [40]. (b) Proposed triple-8-shaped transformer layout and (c) its 3-D illustration with parameters.

Fig. 6(b) visualizes (10) for a given n and km of the trans-
former. Note that when X > 2, AGD is almost saturated. The
transformer-based oscillator can thus operate in the passive
gain saturation region.

B. Gate–Drain Phase Shift φGD

The transformer could also introduce a phase shift φGD
between VG,H1 and VD,H1 [see Fig. 5(b)], which is associated
with a potential reduction in the flicker PN in [14]. φGD can
be expressed as

φGD(X) = � H ( jω0)

= arctan

⎛
⎝ 1

QD
− QD+QG

QD QG
�2�

1
QD QG

+ k2
m − 1

�
�2 + 1

⎞
⎠ . (12)

Similarly, we get⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim
X→0, �→0

φGD = arctan

�
1

QD

�
> 0

lim
X→X0, �→�0

φGD = 0

lim
X→∞, �→1

φGD ≈ − arctan

�
1

k2
mQG

�
< 0

(13)

where

X0 = k2
m QG

2 + QD QG

n2(QD
2 + QD QG)

≈ 1

n2

1 + k2
m

2
≤ 1

n2 (14)

with an assumption of QD ≈ QG.
Clearly, the transformer-induced phase shift is mainly

caused by its limited quality factors of QD and QG achiev-
able in CMOS radio-frequency integrated circuits (RFICs).
As shown in Fig. 6(c) and (13), either a positive or negative
phase shift of φGD can be implemented in the transformer
by tuning X . Intuitively, with large capacitance at the gate
nodes, the phase of the fundamental waveform is delayed from
the primary coil coupling to the secondary coil. In summary,
for a given transformer, AGD and φGD can be well-controlled
by gate–drain capacitance ratio X (i.e., = CG/CD) in the
resonator, which is independent of the tuned oscillation fre-
quency ω0. Simulation (based on EMX S-parameter model)

and theoretical results reach a good agreement as shown in
Fig. 6, demonstrating the efficacy of the above analysis.

IV. PROPOSED OSCILLATOR WITH A COMPACT

TRIPLE-8-SHAPED TRANSFORMER

In this section, we propose an ultra-compact complementary
oscillator based on a triple-8 shaped transformer. Its flicker
PN is suppressed by inducing a positive phase shift in the
transformer.

A. Design of Triple-8 Shaped Transformer With Compact Area

An 8-shaped transformer was proposed in [38] and [40] to
substantially reduce the DCO area. However, its actual DM
return path, including its VDD, VB lines, was neglected in
the analysis in [40], see Fig. 7(a). The excessively long VDD,
VB lines significantly limit the DM quality factors of both
the primary and secondary coils. Furthermore, they may also
introduce an additional magnetic flux, as shown in Fig. 7(a).

The proposed 1:2 triple-8-shaped transformer-based oscil-
lator is revealed in Fig. 7(b). 3D view and parameters of
the transformer are shown in Fig. 7(c). There are no sur-
rounding VDD and VB lines, thereby ensuring a well-defined
DM return path and high Q for the compact occupied area
(i.e., 0.01 mm2). The proposed transformer is constructed
in a coplanar interwound manner with three thick metal
layers (called JA, OI, and LB in FDSOI), and a native
layer (BFMOAT) is used to increase the high resistivity of the
substrate, decreasing the eddy currents and further increasing
the Q. Its coil width of 3.6 μm and inner space of 1.8 μm
are optimized in a 100 × 100μm2 area, yielding the primary
quality factor Qp ≈ 9, the secondary quality factor Qs ≈ 6.5,
and km ≈ 0.7 for the intended frequency range. Two sw-
cap banks are placed on the EMI-suppressed area, where
the magnetic fluxes cancel each other due to the property
of 8-shaped coils.

To further save the area and provide a defined local CM
return path, the required minimum capacitance for the on-
chip decoupling capacitors should be considered. For a ring
oscillator, a large decoupling capacitance (e.g., ∼100 pF) may
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Fig. 8. Simulated (a) PN at 10 kHz and (b) VH2/VH1, VH3/VH1 with
different local decoupling capacitance Cdecap,local for X = 0.2.

Fig. 9. (a) Simulated input impedance Zin of the transformer-based resonator
with different X . (b) Simulated VH3/VH1, VH2/VH1 with different X .

be required to prevent the supply noise (especially, low-
frequency components) from converting to PN due to the ring
oscillator’s considerable supply pushing effects (typically, sev-
eral GHz/V) [15], [55], [56]. However, in transformer-based
oscillators, since they naturally feature low supply pushing
(typically <100 MHz/V) [52], [57], the on-chip decoupling
capacitance is mainly to provide the local CM return path.
Fig. 8 suggests that once the local decoupling capacitance
Clocal,decap for the proposed transformer-based complementary
oscillator is larger than ∼10 pF, it can effectively suppress the
second-harmonic voltage VH2 (also resulting in lower VH3),
thus improving the flicker PN.

B. 1/ f 3 Phase Noise in Complementary Class-F Oscillators

As per conclusions in Section II, the flicker PN in com-
plementary oscillators is mainly caused by the third-harmonic
current entering the capacitive path, while VH2 is suppressed
by the complementary operation itself. Thus, to reduce the
flicker PN, we may force the third-harmonic current IH3 to
enter a resistive load, resulting in a complementary class-F
topology (i.e., ωH ≈ 3ω0). The additional resonance frequency
ωH of the transformer-based resonator as [48]

ωH

ω0
=

����1 + n2 X + �
(1 + n2 X)2 − 4n2 X (1 − k2

m)

1 + n2 X − �
(1 + n2 X)2 − 4n2 X (1 − k2

m)
. (15)

To study how X affects the PN of the proposed oscillator,
we sweep X from 0.2 to 1.6 while maintaining the same
oscillation frequency ω0 and power consumption for a fair PN
comparison. Fig. 9(a) plots the resonator’s input impedance
Z in for three values of X while Fig. 9(b) shows the har-
monic voltage ratios (i.e., VH2/VH1, VH3/VH1) across X . Both
ωH and Z in(ωH) increase with rising X ; specifically, when

X ≈ 1.2, the class-F operation is achieved. The simulated
thermal PN (e.g., PN at 10 MHz offset) and flicker PN (e.g.,
PN at 10 kHz offset) across X are plotted in Fig. 10(e).

Interestingly, the exact class-F operation (i.e., ωH = 3ω0)
is not necessary to help improve PN, but it will be useful for
the third harmonic extraction at mm-wave frequencies [10],
[29], [53]. As shown in Fig. 10(e), the PN at 10 MHz offset
keeps almost constant from X = 0.6 to X = 1.6, not
significantly improved by enhancing VH3 (i.e., X = 1.2). This
phenomenon can be explained by our analysis in the previous
section that the improvement of thermal PN in the transformer-
based oscillators depends on the reduction in 4kTγ gm noise
by the gate–drain passive gain AGD (rather than by class-F
itself), which would be saturated when X is large enough.
On the other hand, there is a sudden, and rather unexpected,
flicker PN degradation in the complementary class-F oscil-
lator, even though its VDS waveform becomes squarish and
symmetric [see Fig. 10(a)] due to the class-F operation and
the ill-behaved VH2 (the main contributor of flicker noise
upconversion in nMOS-only class-F oscillators [9], [10]) being
minimized by the complementary topology. To understand this
special 1/ f noise upconversion mechanism, we simulate the
corresponding I1/ f,rms and the effective non-normalized ISF
hDS · I1/ f,rms when X = 1.2 (i.e., class-F operation), as shown
in Fig. 10(c) and (d). Due to the negative phase shift φGD
of VGS against VDS by the transformer [i.e., φGD = −4◦,
see Fig. 6(c) and Fig. 10(a)], the peak of VGS moves a bit
closer to the rising edge of VDS, leading to the higher I1/ f,rms
[see Fig. 10(c)] getting exposed to the rising edge of VDS.
Ultimately, it causes more positive area of effective ISF,
hDS · I1/ f,rms, see Fig. 10(d), resulting in the flicker noise
upconversion.

C. 1/ f 3 Phase Noise Reduction by the Deliberate φGD

To compensate for the more positive phase change caused
by I1/ f,rms in the complementary class-B [see Fig. 4(f)] or
class-F oscillator [see Fig. 10(d)], we could introduce a pos-
itive gate–drain phase shift3 (i.e., φGD) in the transformer
(see Fig. 6(c)). Per (12), with X decreasing, the peak of
VGS moves towards the falling edges of VDS [see Fig. 10(b)],
increasing the exposure of I1/ f,rms to the falling edges of
VDS [see Fig. 10(b)], consequently resulting in a null area of
effective ISF hDS · I1/ f,rms [i.e., no flicker noise upconversion,
see Fig. 10(d) and (e)]. It is worth noting that to get a
positive drain-to-gate phase shift, some passive gain needs
to be sacrificed (see Fig. 6(b) and (c)), which is the reason
that PN at 10 MHz offset is worsened in the small X region
(e.g. X < 0.15). Practically, the proposed complementary
oscillator operates in the region of X < 0.3, achieving low
PN, low flicker PN, and wide TR, simultaneously. Fig. 10(e)
also illustrates the numerical verification of PN at 10 kHz with
different X . The agreement between the calculations based
on (2) and simulations demonstrates the efficacy of the above
analysis. Furthermore, Fig. 11 shows the post-layout simulated

3Further, we predict that a negative phase shift of VGS against VDS could
suppress the 1/ f 3 PN in an oscillator with steeper rising edges of VDS
(e.g. IH2 entering the inductive termination) [12].
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Fig. 10. Simulated full cycle of VGS, VDS of M1/2, and the harmonic contents of VDS with: (a) X = 1.2 (i.e., class-F operation) and (b) X = 0.2.
(c) Simulated rms value of periodically modulated flicker current noise at 10 kHz, I1/ f,rms(t). (d) Effective non-normalized ISF, hDS(t) · I1/ f,rms(t). (e) PN
vs. X (keeping the same frequency and power consumption) and its numerical verification. (f) Simulated PN profile comparison between the conventional
complementary class-B oscillator and the proposed oscillator.

Fig. 11. Post-layout simulations of FoM at 10 kHz and FoM at 10 MHz with
different process corners and temperature.

FoM at 10 kHz and at 10 MHz with different process corners
and across temperature. FoM at 10 kHz varies much less than
FoM at 10 MHz, demonstrating the robustness of the proposed
flicker phase noise suppressing technique against process and
temperature variations.

To further demonstrate the benefits of the proposed tech-
nique, the simulated PN profile comparison between the
proposed transformer-based complementary oscillator and
the conventional inductor-based complementary oscillator is
shown in Fig. 10(f). The proposed oscillator can achieve 19 dB
better PN in the flicker PN region (e.g., PN at 10 kHz),
while 2.6 dB improvement in the thermal PN region (e.g.,
PN at 10 MHz).

V. EXPERIMENTAL RESULTS

The prototype of the proposed oscillator is fabricated in
GlobalFoundries 22-nm FDSOI. The chip microphotograph

Fig. 12. Chip micrograph and zoomed-in view of the layout.

is shown in Fig. 12, occupying a core area of 0.01 mm2. Its
PN is evaluated using an R&S 2-Hz–85-GHz FSW Signal
and Spectrum Analyzer. The 5-bit coarse tuning bank at
the drain nodes of the oscillator, covering the measured
TR from 9 to 13.34 GHz (39%), while the fine-tuning bank
locates at the gate nodes. When operating at 9 GHz [see
Fig. 13(a)], the measured PN is −110.2 dBc/Hz at 1 MHz
offset, with an excellent 1/ f 3 PN corner of 70 kHz, while
consuming only 6 mW. At the highest frequency of 13.34 GHz,
as shown in Fig. 13(b), it achieves −107.1 dBc/Hz at 1 MHz
offset, with 250 kHz flicker PN corner, while consuming 5mW,
consequently resulting in FoM of −182.6 dB at 1MHz offset.
Compared with [40], the proposed oscillator achieves 9 dB
improvement in the FoM at 10 MHz offset with occupying
30% smaller area.

Fig. 14(a) and (b) show the measured 1/ f 3 noise corner
and PN at 1 MHz offset across the whole 39% TR, respec-
tively, demonstrating that the proposed gate–drain phase shift
technique is wide-band in suppressing the flicker PN. The
measured 1/ f 3 PN corner and PN at 1 MHz offset versus



CHEN et al.: FLICKER PN REDUCTION USING GATE–DRAIN PHASE SHIFT IN TRANSFORMER-BASED OSCILLATORS 981

TABLE I

PERFORMANCE SUMMARY AND COMPARISON WITH STATE-OF-THE-ART

Fig. 13. Measured phase noise at (a) 9 GHz, and (b) 13.34 GHz.

supply voltage are illustrated in Fig. 14(c) and (d), demon-
strating its robustness against supply variation from 0.85 V to
0.95 V. The supply frequency pushing effect is measured at
two carrier frequencies, as shown in Fig. 14(e) and (f). The
proposed oscillator exhibits a great supply pushing around
80 MHz/V, which is two orders-of-magnitude better than that
in any ring oscillator [15].

The performance of the proposed oscillator is summa-
rized in Table I and compared with other recently published

Fig. 14. Measured (a) 1/ f 3 PN corner, and (b) PN at 1 MHz offset over TR.
Measured (c) 1/ f 3 PN corner, and (d) PN at 1 MHz offset over supply voltage
at 9.13 GHz carrier. Measured frequency pushing (e) at 9.13 GHz carrier, and
(f) 10.43 GHz carrier.

state-of-the-art oscillators featuring a small area. To the best
of the authors’ knowledge, it achieves a record FoM with nor-
malized TR and area (FoMTA [58], [59]) of −214 dB at 1 MHz
offset.
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VI. CONCLUSION

In this paper, we establish that in a complementary class-
B oscillator, the ill-behaved second-harmonic voltage can be
fully suppressed by the complementary operation itself, while
the third-harmonic current entering the capacitive path is
now the main contributor to the flicker noise upconversion.
For the complementary class-F oscillator, it is the negative
gate–drain phase shift causing excess of flicker noise I1/ f,rms
exposure to the rising parts of VDS, leading to the flicker phase
noise. A robust and wide-band (39% TR) flicker PN suppress-
ing technique was proposed, employing a gate–drain phase
shift (adjusted by the capacitance ratio) in a compact (i.e.,
0.01 mm2), triple-8-shaped transformer-based complementary
oscillator. The prototype achieves best FoM with normalized
TR and area (FoMTA) of −214 dB at 1 MHz offset, com-
bining both benefits of LC-tank-based and inverter-ring-based
oscillators.

APPENDIX: PROOF OF limX→∞ �(X) = 1

The upper limit of the numerator in the square root of (8)
is expressed as

lim
X→∞

�
1 + n2 X −

�
(1 + n2 X)2 − 4n2 X (1 − k2

m)

�

= lim
X→∞

⎛
⎝1 + n2 X − (1 + n2 X)

�
1 − 4n2 X (1 − k2

m)

(1 + n2 X)2

⎞
⎠ .

(16)

When X → ∞, 4n2 X (1 − k2
m)/(1 + n2 X)2 → 0, we have the

following Taylor series as:�
1 − 4n2 X (1 − k2

m)

(1 + n2 X)2 = 1 − 1

2

4n2 X (1 − k2
m)

(1 + n2 X)2 + · · · . (17)

Substituting (17) into (16), we get

lim
X→∞

�
1+n2 X −(1+n2X)

�
1 − 1

2

4n2 X (1 − k2
m)

(1 + n2 X)2 + · · ·
��

= lim
X→∞

�
2n2 X (1 − k2

m)

1 + n2 X

�
= 2(1 − k2

m). (18)

Therefore,

lim
X→∞ �(X) =

�
2(1 − k2

m)

2(1 − k2
m)

= 1. (19)
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