
1

A Novel ASIC Design Flow using Weight-Tunable
Binary Neurons as Standard Cells

Ankit Wagle, Gian Singh, Member, IEEE, Sunil Khatri, Senior Member, IEEE, Sarma Vrudhula, Fellow, IEEE

Abstract—In this paper, we describe a design of a mixed-
signal circuit for a binary neuron (a.k.a perceptron, threshold
logic gate) and a methodology for automatically embedding such
cells in ASICs. The binary neuron, referred to as an FTL (flash
threshold logic) uses floating gate or flash transistors whose
threshold voltages serve as a proxy for the weights of the neuron.
Algorithms for mapping the weights to the flash transistor
threshold voltages are presented. The threshold voltages are
determined to maximize both the robustness of the cell and its
speed. The performance, power, and area of a single FTL cell are
shown to be significantly smaller (79.4%), consume less power
(61.6%), and operate faster (40.3%) compared to conventional
CMOS logic equivalents. Also included are the architecture and
the algorithms to program the flash devices of an FTL. The
FTL cells are implemented as standard cells, and are designed
to allow commercial synthesis and P&R tools to automatically
use them in synthesis of ASICs. Substantial reductions in area
and power without sacrificing performance are demonstrated on
several ASIC benchmarks by the automatic embedding of FTL
cells. The paper also demonstrates how FTL cells can be used
for fixing timing errors after fabrication.

Index Terms—Artificial Neuron, Perceptron, Neural Circuits,
Threshold Logic, Floating Gate, Flash, Low Power, High Perfor-
mance

I. INTRODUCTION AND MOTIVATION

In this paper, we introduce a new programmable ASIC
primitive, referred to as a flash threshold logic (FTL) cell,
and show how it can be used to substantially improve the area
and power consumption of an ASIC, without increasing its
delay. An FTL cell and its use in an ASIC is different from
any other type of ASIC component previously reported. It is a
mixed-signal circuit that is designed as a standard cell, so that
it is fully compatible with conventional CMOS logic synthesis,
technology mapping, and place-and-route tools.

An FTL cell of n inputs realizes any threshold function of
n or fewer variables. A threshold function f(x1, · · · , xn) [1]
is a unate Boolean function whose on-set and off-set are
linearly separable, i.e. there exists a vector of weights W =
(w1, w2, · · · , wn)1 and a threshold T such that

f(x1, x2, · · · , xn) = 1⇔
n∑

i=1

wixi ≥ T, (1)

Authors A. Wagle, G. Singh, and S. Vrudhula are with the School of
Computing and Augmented Intelligence, Arizona State University, Tempe,
AZ, USA (e-mail: (awagle1,gsingh58,vrudhula)@asu.edu)

Author S. Khatri is with the Dept. of Electrical and Computer Engineer-
ing, Texas A&M University, College Station TX, USA (e-mail: sunilkha-
tri@tamu.edu)

The research was supported in part by NSF PFI award #1701241, #1361926.
Copyright © 2022 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

1W.L.O.G, weights can be assumed to be positive integers [2], and for a
given truth table of a threshold function, there is a weight vector whose sum
is minimum [2].

where
∑

here denotes the arithmetic sum. A threshold
function can be equivalently represented by (W , T) =
(w1, w2, · · · , wn;T).

Fig. 1: (a) FTL Schematic, (b) Functional equivalent
Figure 1(a) shows a block diagram of an FTL cell, in which

the weights W are shown as internal parameters of the cell
and Figure 1(b) shows its functional equivalent. The schematic
is meant to convey that the input-output behavior of an FTL
cell may be viewed as an edge-triggered, multi-input flip-
flop, whose output is the value of a threshold function, that is
internally latched at the rising edge of the clock signal CLK.

A distinctive characteristic of the FTL cell design is that the
actual threshold function realized by an FTL instance within
an ASIC is programmed after the circuit is manufactured. An
FTL-based ASIC integrates flash or floating gate [3] transistors
along with conventional MOSFETs within the FTL cell. Thus,
unlike many of the emerging technologies [4], [5], [6], [7],
an FTL cell employs mature IC technologies (CMOS and
Flash) that are routinely integrated today and commercially
manufactured with high yields.

A. FTL in ASIC Design – Overview
Before proceeding to the details of FTL design, it will be

instructive to understand how it can be used in an ASIC [8],
and how it can improve performance, power, and area.

Consider the logic netlist shown in Figure 2(a) which has
two registered outputs F and G. Suppose that the transitive
fan-in (TFI) cones of F and G are traversed and two subcir-
cuits labeled A and B (see Figure 2(b)) are found, such that A
and B are threshold functions of their inputs. The remaining
subcircuit is labeled as C. Suppose that subcircuits A and B
are replaced by FTL cells, which are to be later programmed
to realize A and B. This replacement is shown in Figure 2(c),
where the FTL cells are shown as black boxes. Now, subcircuit
C would be re-synthesized to account for the changes in the
delay of FTL cells and the new loads that the inputs of the
FTL cells present to the outputs of C. There are two reasons
why the circuit in Figure 2(c) would have improved power,
performance and area.

1) Subcircuits A and B and the two flip-flops are each re-
placed by an FTL cell which has much fewer transistors,
resulting in a significant reduction in area and power.

ar
X

iv
:2

20
4.

08
07

0v
1

 [
cs

.E
T

]
 1

7
A

pr
 2

02
2

(a) A logic netlist.
(b) Identifying threshold functions in TFI
cones of flip-flops (c) An FTL-CMOS logic hybrid

Fig. 2: Use of FTL in ASIC design.

2) The clock-to-Q delay of FTL cells turns out to be much
less than the total delay (combinational logic delay plus
clock-to-Q delay of DFF) of subcircuits A and B, which
results in creating a substantial amount of slack (required
time minus arrival time) on the outputs of subcircuit C.
This in turn will allow synthesis and technology mapping
tools to reduce the logic area of subcircuit C. The extent
of the improvement depends on how the logic is absorbed
into the FTL cell.

Note that the reason why the FTL cells are shown as black
boxes in Figure 2(c) is to convey the fact that their functions
are not known at the time of fabrication because the flash
transistors are programmed after the chip is manufactured.

B. Main Contributions

1) An FTL cell is a mixed-signal circuit that is implemented
as a standard cell. The new design incorporates flash
transistors, which allow its function to be programmed
after fabrication.

2) The set of threshold voltages of the flash transistors in
an FTL cell serve as a proxy for the weights [W , T].
The weights can be realized with great fidelity because
the flash transistors can be programmed with high preci-
sion [3]. However, the relationship between the weights
and threshold voltages is a non-linear and multi-valued
mapping that depends on the complex electrical and
layout characteristics of the MOSFETs and flash tran-
sistors. We present a new algorithm called the modified
perceptron learning algorithm (mPLA) [9] that works
in concert with HSPICE and learns a mapping between
the weights and threshold voltages. The mPLA algorithm
also maximizes the noise tolerance and robustness of the
FTL cell in the presence of process and environmental
variations.

3) We present an efficient architecture and methodology
for programming the threshold voltages of each flash
transistor within each FTL cell that is embedded in
an ASIC. We also demonstrate how the post-fabrication
threshold voltage assignment capability can be used to
improve functional yield and correct timing errors.

4) FTL cells are designed as standard cells to be compatible
with existing CMOS design methodologies and tools.

We demonstrate this compatibility by using commercial
CAD tools to perform synthesis, technology mapping,
and place-and-route of several complex function blocks
with FTL cells included in the cell library. The results
show that automatic embedding of FTL cells results in
substantial improvements in the area, power, and wire-
length, without sacrificing performance.

The remainder of the paper is organized as follows. Sec-
tion II gives a very brief overview of threshold logic and
flash transistor technology. Sections III, IV, V and VI contain
the main body of this work. The architecture and operation
of the FTL cell are described in Section III. Section IV
explains the mechanism for programming FTL cells once
they are embedded in an ASIC, using a separate scan chain
reserved for that purpose. Section V describes the mapping
between the weights of a threshold function and the threshold
voltages of the flash transistors in the FTL, considering factors
such as robustness to noise, process variations and circuit
delay. Section VI contains an extensive set of experimental
results, demonstrating the significant improvements in PPA of
FTL cells over their CMOS equivalents both at cell-level and
when they are integrated into ASICs. It also includes results
validating several uses of post-fabrication programming/tuning
of the flash devices. Conclusions appear in Section VII.

II. BACKGROUND

A. Threshold Logic

Threshold functions are an interesting and valuable subset
of Boolean functions. They were first proposed in 1943 as
simple models of neurons [10], which generated a vast number
of papers on neural networks – a subject that has been
revived recently with the emergence of machine learning. The
use of threshold logic in digital design and synthesis was
extensively investigated in the 1960s and 1970s, culminating
in two authoritative works [11], [1]. Since then there has been
a substantial body of work on new circuit architectures and
implementations of threshold logic. Surveys of designs prior
to 2003 appear in [12], [13], [14], detailing over fifty different
implementations.

The earlier works and even later ones such as [15],
[16], [17], [18], [19], [20], [5], have not been integrated into
mainstream VLSI design. It is, however, still is very valuable

2

to develop efficient implementations of threshold functions.
This is due to the fact that many Boolean functions that require
large AND/OR networks can be realized by smaller, fixed
depth threshold networks [2] and nearly 70% of the functions
in two standard cell libraries (observed in a 65nm and a 40nm
library from different vendors) are threshold functions.

Recently, [8] reported an architecture of a threshold gate
and showed how it can be integrated with the standard-cell
ASIC design methodology using commercial tools. Unlike
our approach, [8] uses only CMOS devices. In addition, they
reported significant improvements in PPA of an actual silicon
implementation of ASIC with threshold gates [21]. Their
architecture, however, severely limits the number of threshold
functions that can be implemented because the width of the
transistors are made proportional to the weights. This limits the
fan-in and consequently, only 12 of the 117 threshold functions
of 5 or fewer inputs were implemented in [8]. In contrast, our
work implements all 117 threshold functions of 5 or fewer
inputs because of the use of flash transistors.

B. Flash Transistors

A flash transistor is functionally similar to a field effect
(FET) transistor, except that it is made to have an additional
layer of charge between the control gate and the channel
as a means to adjust the threshold voltage (V T) of the
transistor. Programming and erasing these devices correspond
to increasing and decreasing V T , and this is achieved by
electrons tunneling into or out of the charge layer via Fowler-
Nordheim (FN) tunneling [22]. In general, programming is
performed by applying a sequence of high voltage pulses (the
duration and magnitude of which determines V T) [23] to the
control gate and holding the bulk, source, and drain terminals
at 0V . Erasure is achieved by holding the control gate at 0V
and allowing the source and drain to float [23]. In a flash
memory, the value of V T , which is determined by sensing
the current, represents the state or stored value, and this can
be retained for more than ten years [23], while the bulk is
driven to a high voltage. Several variants of flash transistors
with different structures and materials have been investigated
over the past two decades to reduce the programming voltage,
improve reliability, encode multiple bits, reduce the number
of fabrication steps, and improve the yield.

(a) Floating gate Transistor (b) Charge Trap Transistor
Fig. 3: Cross section of flash transistors.

Figure 3 shows a cross-section of the two common types of
flash transistors: (a) the floating gate transistor (FGT), which
has an additional buried and un-contacted floating gate, and
(b) the charge trapping transistor (CTT) which has an oxide-
nitride-oxide (ONO) layer between the gate and the substrate.
Floating gate technology (Figure 3(a)) is fully compatible with

and used along with CMOS, and because of its dominant
role as NVM in flash drives and solid-state drives (SSD), its
design and fabrication has been continuously improved over
two decades. However, it still has several drawbacks, including
the need for additional masks, the requirement of higher
voltages for programming and erasure, and most importantly,
the difficulty in scaling its dimensions below 40nm due to poor
scaling of the thin oxide.

In CTTs (Figure 3(b)), the electrons are trapped in the insu-
lating nitride layer whereas in FGTs they are in the conducting
floating gate. There are several variants of CTT device such as
SONOS [24], MONOS[25] and High-K Metal Gate (HKMG)
[26]. All have been successfully scaled to 14nm/16nm CMOS
FinFET technology. Additionally, the HKMG device can be
programmed to multiple V T levels [27] and the SONOS
device can be programmed up to 128 V T levels [28]. One
important advantage of the HKMG CTTs is that they do not
require any additional processes or masks and operate at logic-
compatible voltages.

In summary, flash transistors, including FGTs and all vari-
ants of CTTs can co-exist with CMOS transistors on the
same substrate, in a high-yield, cost-effective manufacturing
flow. In this paper, their use will be for realizing logic
as opposed to just storage. The use of flash transistors in
logic design was described in [29], [30], [31], [32], where
the authors demonstrated substantial improvements in power,
performance, and area over conventional CMOS standard-
cell based design and resilience to aging by reprogramming
the V T s of the flash transistors when aging-related speed
degradation occurred. The main drawbacks of the approach are
(1) the circuit structures are not compatible with the standard-
cell based design flow that is practiced in industry and (2) they
are potentially subject to the similar read/write disturb issues
found in memory applications.

In this paper, we describe how flash transistors can be
used to realize threshold logic gates. The flash devices are
used as resistors (by varying their threshold voltages) and the
resistances serve as a proxy for the weights in a threshold
function. This concept first appeared in [33]. Their design was
a stand-alone, custom-designed analog circuit to realize a 16-
input threshold function. In contrast, threshold gates described
in this paper are designed as standard cells, and automatically
incorporated in large-scale ASIC design using commercial
tools.

III. FLASH THRESHOLD LOGIC (FTL) CELL

Figure 4 shows the architecture of the FTL cell. It has five
main components: (i) the left input network (LIN), (ii) the
right input network (RIN), (iii) a sense amplifier (SA), (iv) an
output latch (LA), and (v) a flash transistor programming
logic (PL). The LIN and RIN consist of two sets of inputs
(`1, · · · , `n) and (r1, · · · , rn), respectively, with each input in
series with a flash transistor. In our implementation, `i = ri =
xi for all i. The conductance of the LIN and RIN is determined
by the state of the inputs and the threshold voltages of the flash
transistors. The assignment of signals to the LIN and RIN is
done to ensure sufficient difference in their conductance across
all minterms.

3

Fig. 4: FTL Cell Architecture showing LIN, RIN, Sense Amplifier (SA), Latch (LA), and Programming Logic (PL).

There are two differential signals N1 and N2 in an FTL
cell, which serve as inputs to an SR latch. When [N1, N2] =
[0, 1] ([1, 0]), the latch is set (reset) and the output Y = 1(0).
The magnitudes of the two sides of the inequality in the
definition of a threshold function (see Equation 1) are mapped
to the conductance GL of the LIN and GR of the RIN. Ideally,
the mapping is such that [N1, N2] = [0, 1]⇔ GL > GR and
[N1, N2] = [1, 0] ⇔ GL < GR. As stated earlier, the flash
transistor threshold voltages serve as a proxy to the weights of
the threshold function – the higher the weight, the lower will
be the threshold voltage. For a given threshold function, this
non-linear monotonic relationship is learnt using a modified
perceptron learning algorithm described in Section V.

The FTL cell has four modes: regular, erase, programming
and scan-testing mode. The V T values of the flash transistors
are set in the programming mode and erased in the erase mode.
The logic operation of an FTL cell takes place in regular mode.
FTL Regular Mode: (PROG = ERASE = 0, TE = 0,HiV =
0). Assume that the V T s of the flash transistors have been
set to appropriate values corresponding to the weights of the
threshold function, and their gates are being driven to 1 by
setting FTi to VDD. When CLK = 0, the circuit is reset.
In this phase, the nodes N5 and N6 of LIN and RIN are
connected to the supply, N5 = N6 = 0, and N1 = N2 = 1.
Therefore, the output Y remains unchanged.

Assume now that an on-set minterm is applied to the inputs
in the LIN and RIN. With properly assigned V T values to
the flash transistors, suppose that GL > GR for the given
minterm. When CLK : 0 → 1, both the LIN and RIN will
conduct, and N5 and N6 will both transition from 0 → 1.
Assuming GL > GR, N5 rises faster than N6, and hence N5
will make M7 active before N6 makes M8 active. This will
start to discharge N1 before N2. When N1 falls below the
threshold voltage of M6, it will stop further discharge of N2,
and turn on M3, resulting in N2 : 0 → 1. Finally, [N1,N2]
= [0,1] sets the SR latch, resulting in Y = 1. For an off-
set minterm, GL < GR, and [N1, N2] = [1, 0] resulting in
Y = 0.

FTL Program, Erase and Scan-testing mode: Figure 4
shows a circuit block labeled PL (programming logic) that
generates the signals to select and program the FTL cells at
the chip-level. Details of the programming architecture and
protocol are given in Section IV. During flash-programming
of a single FTL, the PL redirects HiV to FT i, to program
the ith flash transistor.
FTL Programming Mode: (ERASE=0, PROG=1, CLK=0,
HiV=20V, TE=0). The ERASE and PROG signals turn on M12
and M13 and turn off M14. In this state, the source of the flash
transistor is floating while the drain and bulk are connected
to the ground. Activating the appropriate signals in the PL
unit causes high voltage pulses to be applied to the HiV line
and the gate of the flash transistor to set the desired threshold
voltage (V T).
FTL Erase Mode: (ERASE=1, PROG=1, CLK=0, HiV=-20V,
TE=0). M12 is turned off by the ERASE signal. Both the
source and drain of the flash transistors are floating in this
state, while the bulk is connected to the ground. Using the
PL unit, the gate terminals of all the flash transistors in the
FTL are connected to HiV . A negative high voltage pulse at
HiV in this state will tunnel the charge from the floating gate,
thereby erasing the flash transistor.
FTL Scan-testing Mode: (ERASE=0, PROG=0, CLK=0,
HiV=0, TE=1). The scan-testing mechanism in the FTL cells
is implemented in the same way as described in [8]. It uses
the test enable (TE) and test input (TI and T̄ I) signals. In this
mode, TE acts as the clock with the main clock CLK = 0.
Hence the scan-testing chains for the D flip-flops and FTL
cells are kept separate. The procedure to inject data into the
scan-testing chain of FTL cells is straightforward. On each
TE cycle, the bit to be scanned in is applied to TI . Then
TE : 0→ 1, which causes the either N1 or N2 to discharge
resulting in the output latch being set or reset. This process
is repeated to load all FTLs with the data in a test vector.
Transistors M26 and M27 block potential DC paths from
VDD to VSS during testing.

Note that the problem of read and write disturb [34], [35]

4

Fig. 5: Programming Scan Chain for FTL cells in an ASIC.

found in NAND flash memories does not exist with an FTL
cell because there is only one flash transistor in each stack in
the input network. Also the problem of write endurance [36]
in flash memories, which refers to a limit on the number of
writes (from 10K - 100K cycles), is not an issue with FTL
cells, because an FTL cell would be programmed or erased
only a handful of times over the life of the design.

IV. ARCHITECTURE FOR PROGRAMMING FTL CELLS

In this section, we describe the programming architecture
used for FTL cells embedded in an ASIC. This architecture
individually addresses the flash transistors of the FTL cells and
then redirects HiV pulses to them. Although this architecture
is a part of the ASIC, its use ends once the FTL cells are
programmed. Therefore, its design must meet its functional
requirements without severely impacting the overall area and
wirelength of the ASIC. This is achieved by a scan-chain
programming architecture.

Figure 5 shows the structure of the programming scan chain.
Each stage of this chain consists of an FTL cell with its
programming logic and a select cell that identifies the FTL
cell to be programmed. Suppose that the FTL cells realize all
threshold functions of n or fewer variables.2 Then each such
cell has 2n + 2 flash transistors. Suppose further that there
are N FTL cells. Initially, all Qis are set to 1. Then cell i is
selected by making Qi = Qi−1 = 0, while all other Qs remain
at 1. Thus, clocking in the appropriate sequence using PCLK
selects cell i. Since each FTL cell has 2n + 2 flash cells, a
global decoder with log(2n + 2) inputs and 2n + 2 outputs
is used. These outputs of the decoder activate the appropriate
path for the HiV pulses to the inputs of the flash transistors
of the selected FTL cell.

The programming architecture involves the use of high
voltage nets. In the physical layout, the high voltage wires
are bundled, and wire-shielding [37] is used to avoid any
cross-talk due to high voltage signals to the other low voltage
lines and transistors. Programming is done with a dedicated
scan chain, and all the associated high voltage nets are
systematically bundled and shielded. This results in reducing
the total wirelength of those nets. Furthermore, since it is
a linear iterative array, it easily scales to accommodate any
number of cells.

Assuming that FTL cells use floating gate transistors, the
program and erase modes require +20V and -20V (HiV) pulses

2In the experimental results, n = 5.

to be applied to their inputs (see Section II-B). Note that
other flash technologies such as SONOS [24], MONOS[25]
and High-K Metal Gate (HKMG) [26] require similar infras-
tructure for programming and erasure, but may differ in the
voltage levels of the pulses.

V. COMPUTING THE RELATIONSHIP BETWEEN THE
WEIGHTS AND THE VT VALUES FOR AN FTL CELL

A. Overview

Let V T`(f) = (V T`0(f), · · · , V T`n(f)), and V Tr(f) =
(V Tr0(f), · · · , V Trn(f)) denote the threshold voltages of the
flash transistors in the LIN and RIN of an FTL, respectively
(see Figure 4). Further, let V T (f) = (V T`(f),V Tr(f)).
In this section, we present an algorithm to determine these
voltages for an FTL to realize a given threshold function f
having a weight vector [W , T].

To configure an FTL, the method described herein deter-
mines V T (f) for each f a priori, using models that include
circuit parasitics and global and local process variations in
the device and circuit parameters. This is to ensure that an
overwhelming majority (� 99%) of the FTL instances on a
chip can be programmed by attempting at most a few pre-
computed values of V T (f). The remaining small fraction of
FTLs for which a feasible, model-based V T (f) could not be
found, can be programmed directly on the chip.

Let GL(x|V T (f)) and GR(x|V T (f)) for x ∈ Bn, denote
the conductance of the LIN and RIN as functions of a minterm
x of f and the flash transistor threshold voltages. Henceforth,
for clarity, we refer to GL(x|V T (f)) and GR(x|V T (f)) as
GL and GR respectively.

The problem is to find a V T (f) that determines a mapping
between the Boolean space Bn and the conductance space
(GL, GR) such that, in the ideal case,

GR < GL, if f(x) = 1

GR > GL, if f(x) = 0.
(2)

This mapping, depicted in Figure 6, is one-to-many, since
there can be many (an uncountable number) feasible values
of V T (f) for a given f with a weight vector [W , T].

In practice, to avoid variations due to parasitics which could
make the circuit behavior erroneous, we require finding a
subset of the feasible set where

GR < GL −∆L, if f(x) = 1

GR > GL + ∆R, if f(x) = 0
(3)

5

Fig. 6: Transformation from Boolean space to conductance space.

for some some sufficiently large ∆L ∈ (0, GL) and ∆R ∈
(0, GR). Note that ∆L and ∆R are related due to the con-
straints imposed by the truth table.

Our approach to find V T (f) consists of three steps
which are implemented by Algorithms mPLA0, mPLA+, and
mPLA++. These are described in the following sections.

B. Algorithm mPLA0

Algorithm mPLA0 is a modified version of the classical
perceptron learning algorithm (PLA) [9] that works in concert
with HSPICE (for verifying the truth table of f) to search
through the space of values of V T (f) until each minterm
(a point in the (GL, GR) space) of f is correctly classified.
It does this by iteratively adjusting the threshold voltages of
flash transistors such that points in the conductance space
that correspond to the on-set and off-set minterms satisfy the
constraints in Equation 3 (see Figure 6). It calls HSPICE
(line 3 of Algorithm mPLA0) to determine whether any
point falls above or below the lines corresponding to these
inequalities. Since a layout extracted FTL circuit is being
used, the circuit parasitics are accounted for in the HSPICE
simulation. Consequently, Algorithm mPLA0 implicitly finds
values of ∆L and ∆R.

Algorithm mPLA0 Modified Perceptron Learning Algorithm

Input: Truth table TT of threshold function f
Output: V T0 to program FTL cells with f

1: Initialize V T0

2: for k = 0 to kmax− 1 do
3: OT = SPICE(V T0) // Truth table from simulation
4: if TT and OT disagree on some minterm m then
5: if TT(m)==1 then
6: Update V T0: decrement (increment) the V T of every

active transistor in LIN (RIN) that is ’1’ in m by δ
7: else
8: Update V T0: increment (decrement) the VT of every

active transistor in LIN (RIN) that is ’1’ in m by δ
9: end if

10: else
11: Break
12: end if
13: end for

Given the truth table (TT) of f , mPLA0 applies all the
minterms of f to the FTL cell and records the HSPICE

response in OT (output table). If TT (m) 6= OT (m), for
some minterm m, then the constraint in Equation 3 was not
satisfied. In such a case, mPLA0 adjusts the values of V T 0(f)
(Algorithm mPLA0 line 4-9) associated with the active input
transistors within the interval [δ, VDD − δ], by a minimum
increment δ, according to Equation 4. Here, m` (mr) is a
binary vector that identifies the active input transistors in the
LIN (RIN).

VTk+1
` =

{
VTk

` − δm` if m ·W ≥ T
VTk

` + δm` if m ·W < T

VTk+1
r =

{
VTk

r + δmr if m ·W ≥ T
VTk

r − δmr if m ·W < T

(4)

The term δml (or δmr) is a vector which has a value δ
at all locations in LIN (RIN) which are 1 for a minterm
m, and zero elsewhere. For instance, consider the threshold
function b + c ≥ a + T . Let m = 110 be an on-set
minterm that was incorrectly evaluated. If TT (m) 6= OT (m)
then GR > GL − ∆L. Therefore GL needs to be increased
(threshold voltages corresponding to the flash transistors of
b and c will be decreased) and GR needs to be decreased
(threshold voltages corresponding to the flash transistors of a
and T will be increased) for minterm m. Consequently, the
threshold voltages of all the flash transistors associated with
the active input transistors should be decreased (increased) by
δ in the LIN (RIN). A similar change is made if m is an off-set
minterm. This is what is expressed in Equation (4). V T 0(f)
is the value returned by Algorithm mPLA0.

If a given set of points in Bn is linearly separable (i.e. a
threshold function), then the PLA algorithm will terminate in a
finite number iterations [2], [10]. Similarly, given a threshold
function f , a sufficiently small δ and an FTL instance for
which there exists a feasible V T (f), Algorithm mPLA0 will
terminate in a finite number steps (see [2] for proof of
termination). For an n-input threshold function, the upper
bound on the number of iterations of the PLA given in [2]
becomes kmax = 2(n+1)||V T 0(f)||2/δ2. For instance, with
n = 5 and δ = .02V , kmax = 3000||V T 0(f)||2.

C. Algorithm mPLA+: Improving Noise Tolerance

Algorithm mPLA0 does not consider the relative location
of the points with respect to the metastability region defined
by the lines GR = GL − ∆L and GR = GL + ∆R (see
Figure 6b). Even though minterms are classified correctly, they
can be arbitrarily close to the metastability region. The further
a minterm is from this region, the easier (and faster and more
robust) it will be for the sense amplifier to detect the difference
between N5 and N6, and discharge the appropriate side (N1
or N2) first. Thus, maximizing ∆L and ∆R within the feasible
set will maximize its noise tolerance.

Algorithm mPLA+ repeatedly calls mPLA0 to maximize
∆L and ∆R. It does this by introducing a hypothetical capac-
itance C1 on node N5 (which is introduced in HSPICE) when
classifying an on-set minterm, and determining the maximum
value of C1 for which Algorithm mPLA0 converges. This
modification handicaps node N5 and directs the algorithm

6

to find a solution, that will result in an increased gap between
GL and GR. Similarly, we add a capacitance C0 on node N6,
when classifying an off-set minterm. Since the values of ∆L

and ∆R are linearly proportional to C1 and C0 respectively,
the separation between the lines GR = GL − ∆L and
GR = GL + ∆R increases, which in turn forces the training
algorithm to produce a threshold voltage assignment V T+(f)
in a more robust (and also faster) FTL cell. Note that C1 and
C0 are only used during HSPICE simulations, and are not part
of the actual FTL cell.

Figure 7 shows the results of running Algorithms mPLA0

and mPLA+ on a test function ([1]) f115(a, b, c, d, e) :
(W , T) = [4, 1, 1, 1, 1; 5] = a(b + c + d + e). It is plot of
the minterms in the conductivity space that was obtained by
using HSPICE after programming the FTL using V T 0(f)
and V T+(f). The largest values of C1 and C0 for which
a feasible solution was obtained was 0.1fF . The plot shows
that training with the hypothetical capacitance values separates
the two closest on-set and off-set minterms in the conductivity
space by more than five times. Furthermore, the delay of an
FTL programmed with V T+(f) will be smaller than the one
that is programmed with V T 0(f).

Fig. 7: Conductance GL and GR of FTL cell programmed for f =
[4, 1, 1, 1, 1; 5] using mPLA0 and mPLA+ ([TT, 0.9V, 25◦C]).

D. Algorithm mPLA++: Optimizing Yield

The threshold voltages V T+(f) computed by the mPLA+

are aimed at achieving maximal separation between the on-
set and off-set minterms based on model-based estimates of
parasitics. This has the twin advantages of increasing the noise
margin and reducing the delay. Despite this, inevitable manu-
facturing variations can still result in reducing the difference
between GL and GR associated with V T+(f) of the two
closest minterms, which may result in the incorrect evaluation
of the intended threshold function. In this section we present
a predictive technique to pre-compute a small set of V T s(f)
for each threshold function f which would cover a very high
percentage of manufactured variations.

Among the N manufactured FTL cells programmed to real-
ize function f using V T+(f), suppose that Ne were erroneous
and let {FTL1(f),FTL2(f), · · · ,FTLNe(f)} be the erroneous
instances. The problem is to find individual threshold voltage
assignments for each of these Ne instances so that each

will correctly realize f . Our approach is motivated by two
observations.

First, each erroneous function in {fei , 1 ≤ i ≤ Ne} is
itself a threshold function. This is simply due to the fact
that by construction, an FTL cell only computes threshold
functions (see Figure 1). Second, our experiments show that
a large number of different instances of an FTL cell, which
are reprogrammed with V T+(f) and are to realize the same
function f , realize the same erroneous function fe. This
suggests that all the erroneous FTL cell instances can be
grouped into a few equivalence classes, called error-types, with
two FTLs belonging to the same error-type if they realize the
same erroneous function.

Given a threshold function f , Algorithm mPLA++ first
generates a set of NMC Monte Carlo (MC) instances of
an FTL cell and identifies the Ne erroneous instances (i.e.
those when programmed with V T+(f) do not realize f).
The Ne erroneous instances are grouped into Mf error-types.
Let fei , 1 ≤ i ≤ Mf , denote the logic functions of the
distinct error-types observed in a sample of N FTLs. Algo-
rithm mPLA++ selects one MC instance from each error-type
class and computes one V T+(f) assignment for that instance
using mPLA+. It returns a set of threshold assignments,

V T++(f) = {V T+(fe1),V T+(fe2), · · · ,V T+(feMf
)},

(5)
one for each error-type for each function f .

Algorithm mPLA++ Modified Perceptron Learning Algorithm
accounting for process variations

Input: TT of f , NMC

Output: V T++(f) to program FTL cells with f
1: Execute mPLA+ to compute V T+(f)

2: Using MC sampling of the parameter space, generate NMC(f)
instances of an FTL cell, and program them with V T+(f).

3: Among the set of NMC instances, let Ne be the number of
instances, which when programmed with V T+(f), realize a
function other than f , and among these Ne, let Mf be the number
of erroneous functions that are distinct.

4: Execute the mPLA+ on one MC instance from each of the Mf

erroneous functions to obtain
{V T++(f)} = {V T+(fe

1), · · · ,V T+(fe
Mf

).}

Results presented in Section VI show that using the
V T+(fei) computed for one FTL instance from ith error-
type (1 ≤ i ≤ Mf) resulted in all the instances of the same
error-type correctly realizing f . This works because instances
that have the same error-type share similar parasitic variations.
Thus, all instances of our sample of FTL cells were correctly
programmed using one distinct V T+(fei) for each error-type.

There is no guarantee that the set of erroneous functions
found in a sample set NMC will capture all manufacturing
outcomes. This means that there may be some manufactured
FTLs that could not be correctly programmed using any of the
threshold voltage vectors computed by Algorithm mPLA++.
For these remaining FTLs, our approach is to apply Algo-
rithm mPLA0 directly on the chip. In each iteration of mPLA0,
the step that adjusts the threshold voltages of flash transistors

7

is replaced by the application of an appropriate number of
positive or negative pulses to the FTL cell on the chip using
the programming scan chain. This capability of correcting
the function of a cell after fabrication to increase yield is a
signature attribute of the proposed design methodology.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

An FTL cell with n = 5 (see Figure 4 in Section III) was
designed and a complete layout (including the programming
devices) was created using the TSMC 40nm LP library. It
was laid out as a double height cell requiring 24 tracks. The
flash transistor models were obtained from [30] and were
suitably modified to reflect the characteristics and variations
of the TSMC 40nm LP library. The design rules for the flash
transistors were obtained from ITRS. The standard cell area
of the FTL was15.6 µm2.

There are a total of 117 distinct positive-form threshold
functions of five or fewer variables. A numbered list of these
is given in [1] and can also be accessed at [38]. The one cell
that was designed was copied 117 times, and each was trained
to realize one of the 117 threshold functions. In this section,
we use the same numbering scheme as in [1] to identify the
functions. The FTL cell trained to implement the threshold
function numbered n in [1] will be referred to as FTLn, and
the corresponding CMOS implementation will be denoted as
CMOSn. The threshold function itself will be denoted as fn.
Note: In all the bar charts shown in this section, the numbers
on the x-axis identify the threshold function. Function f0 is a
buffer and is omitted because this would correspond to a DFF,
which by itself would never replaced by an FTL in an ASIC.
The first function shown is f1, which is a two-input AND.

B. Training Iterations

mPLA+ was used to train the FTL cell for robustness (see
Section V-C) for all 117 functions. Figure 8 shows the number
of iterations needed for training of each of the 117 functions.
The actual number of iterations was about 10X lower than the
theoretical upper bound, presented in Section V-B.

Fig. 8: Iteration count for mPLA+ for all 117 functions of 5 or fewer
variables.

C. Individual Cell Area, Delay and Power Comparison

All 117 threshold functions of five or fewer variables were
implemented using FTL cells. These functions were also syn-
thesized by Cadence Genus [39] and placed and routed using
Cadence Innovus [39], using the conventional TSMC 40nm
LP standard cells. Two sets of experiments were performed

to compare the CMOS equivalent designs to the FTL cells:
(1) delay optimal and (2) area optimal synthesis. The results
comparing the total delay (sum of logic delay, setup-time, and
clock-to-Q delay), area, and power of these circuits and the
corresponding FTL implementations are shown in Figures 9(a)
and 9(b), respectively.

The results show that FTL cells have the advantage of speed.
Optimizing their CMOS equivalents to meet the delay of the
corresponding FTL cells forces the synthesis algorithms to use
high drive strength cells (larger area) for the combinational
logic and larger DFFs. As the FTL implementations are
faster than the fastest CMOS equivalent implementation, delay
optimal synthesis results in an across-the-board improvement
in all FTL cells in delay, area, and power.

When synthesizing individual cells for minimum area, FTL
cells are still uniformly faster. However, the synthesis algo-
rithm now uses the smallest combinational cells and DFFs
in the CMOS equivalents. In this case, although the CMOS
implementations of simpler functions are much smaller than
their FTL equivalents (see Figure 9(b)), the FLT versions are
still smaller for 74 out of 117 functions because the logic
absorbed by the FTL cell results in greater area savings than
the smaller drive strength cells used in the CMOS equivalents.

The dynamic power of every FTL implementation is higher
than its CMOS equivalent for area optimal synthesis. The
reasons for this are (1) an FTL cell resets and then evaluates
its function on every clock cycle and (2) the much smaller
switched capacitance of the low-drive strengths of the com-
binational logic in the CMOS equivalents. Figure 9(a) shows
that FTL cells have a much lower power-delay product (i.e.
energy) when their CMOS equivalents are synthesized for
minimum delay. Figure 9(c) shows that this also true for the
majority of the CMOS equivalents when they are synthesized
for minimum area. Hence, FTL cells are, in general, more
energy efficient.

Figures 9(d) and 9(e) show a comparison of the leakage
power of FTL cells and their CMOS equivalents. The leakage
of FTL cells is practically independent of the function, and in
the case of delay optimal synthesis, it is far lower than every
CMOS equivalent circuit. Exactly the opposite is true for the
area optimal synthesis due to reduced sizes of the combina-
tional cells and DFFs. In these plots the circuit indices are
ordered by increasing area. The area trend lines show that the
leakage increases with area for the CMOS implementations.

D. Delay Distributions

This experiment compares the distributions of delays of
FTL and CMOS implementations. We show the results for
the threshold function f35 with a weight vector [W ;T] =
[3, 3, 2, 1, 1; 8]. The PVT corner setting was [TT, 0.9V, 25◦C].
100K Monte Carlo instances were generated for both FTL35

and CMOS35. Each of the 100K FTL instances was verified
against the truth table for functional correctness, for both
FTL35 and CMOS35. Figure 10 shows the histogram of de-
lays for both circuits. These demonstrate the delay advantage
of the FTL cell over its CMOS equivalent, even in the presence
of process variations. The difference in standard deviation

8

Fig. 9: PPA improvements of FTL over CMOS implementations. Simulations done at 25◦C assuming a 20% input switching activity.

between the two is insignificant. Note that the FTL instances
with large delays can be re-programmed to reduce the delay
further. This capability is not possible for the CMOS versions.

Fig. 10: Delay histogram of FTL35 and CMOS35 with 100K
Monte Carlo simulations. PV T = [TT, 0.9V, 25◦C].

E. Dynamic Voltage Scaling

Voltage scaling is a common mechanism to trade off per-
formance against power. Table I shows the results of training
FTL35 at 0.9V . The FTL cell was programmed with the de-
termined set of flash threshold voltages, and then operated over
the voltage range [0.8V, 1.1V]. To ensure proper operation
across all voltages, the gate voltages of the flash transistors
were scaled accordingly. This result demonstrates how a single
V T+(f) assignment can be used for dynamic voltage scaling.
The delay of the FTL35 varies by 2.5X (its CMOS equivalent

by 2.8X), power varies by 5.9X (CMOS equivalent by 1.9X),
and the PDP (energy) varies by 2.3X (CMOS equivalent by
1.43X), as the supply voltage varies over [0.8V, 1.1V].

Supply
Voltage (V)

Flash Gate
Voltage (V)

Power
(uW)

Delay
(ps) PDP

0.8 0.8 14.3 198.1 2837.1
0.85 0.825 20.5 157.6 3228.7
0.9 0.85 26.1 130.2 3396.9

0.95 0.875 40.3 111.2 4482.7
1 0.9 53.1 97.0 5148.6

1.05 0.925 76.0 86.4 6562.9
1.1 0.95 85.0 78.2 6644.0

TABLE I: Delay, total power and power-delay-product (PDP) of
FTL35, trained at VDD = 0.9V , and C0 = C1 = 0.1fF .

F. Number of programming pulses

Figure 11 shows the number of high voltage pulses needed
to program the 117 threshold functions. The number of high
voltage pulses is estimated, assuming that each high voltage
pulse would increment the threshold voltage of a flash transis-
tor by 20mV. This assumption will vary across flash transistors.
As shown in Figure 11, the number of high voltage pulses
needed to program a given FTL cell increases with an increase
in the number of variables of the threshold function being
implemented.

9

Fig. 11: Number of high voltage (HiV) pulses needed to program
the FTL cells with all 117 threshold functions of up to 5 inputs

G. Experiments on Training for Robustness

In this section, we present the results of Algorithms
mPLA+, and mPLA++ for training FTL cells taking into
account parasitics and manufacturing variations. The test
functionf35(a, b, c, d, e) : (W , T) = [3, 3, 2, 1, 1; 8] = ab(c +
de) was chosen for this evaluation as this function generated
the most number of error-types (Mf=61) out of all the 117
threshold functions when Monte Carlo simulations were run
on 20K training samples.

The first experiment consisted of training FTL35 using
mPLA+ for various values of the capacitances C1 and C0,
and for each solution, extracting the delay values. The results
for this experiment are as shown in Table II. There are two
important observations to be made here. First, even though
the weights of the inputs d and e are equal, the corresponding
flash transistors (V4 and V5) may be assigned different thresh-
old voltages. This is because mPLA+ compensated for the
irregular layout parasitics of both the flash transistors using
threshold voltages to realize equal weights. Second, the delay
improves with increasing robustness, as discussed earlier in
Section V-C. This is because the separation between the lines
GR = GL−∆L and GR = GL + ∆R increases with increase
in C1 and C0. This increased separation results in a higher
voltage difference at the inputs of the sense amplifier, which
leads to a faster evaluation of the FTL cell.

C1, Average Vt Values (V) Delay
C0 (V1, V2, V3, V4, V5;Vl0, Vr0) (ps)
0 0.64, 0.64, 0.66, 0.70, 0.72; 1.00, 0.58 224
0.01 0.60, 0.60, 0.64, 0.68, 0.70; 1.00, 0.50 178
0.02 0.60, 0.60, 0.64, 0.68, 0.70; 1.00, 0.50 178
0.05 0.60, 0.60, 0.64, 0.70, 0.70; 1.00, 0.50 172
0.1 0.56, 0.56, 0.60, 0.66, 0.66; 1.00, 0.42 163
0.15 0.52, 0.54, 0.58, 0.64, 0.64; 1.00, 0.34 154

TABLE II: Delay values of FTL35 = [3, 3, 2, 1, 1; 8], trained for
robustness using various capacitor values (fF).

The second experiment was aimed at validating mPLA++.
We used f35 as a test function. The first step is to create
the database {V T++(f35)}. Algorithm mPLA++ was given
f35 and NMC = 20K as inputs. The erroneous instances were
grouped into Mf35 = 61 error-types. Algorithm mPLA++ gen-
erated {V T++(f35)} = {V T+(fe35,1), · · · ,V T+(fe35,61)}.

Next, 100K new MC instances were generated and pro-
grammed first with V T+(f35). Among the erroneous in-
stances, 99.96% of them were one of 61 error-types that

were previously found. When each FTL cell in group j, (1 ≤
j ≤ 61) was programmed with the threshold voltage set
V T+(f35,j), all the erroneous instances correctly computed
f35. The remaining .04% of the 100K were correctly pro-
grammed by executing mPLA0 directly to the chip, starting
with V T+(f35). This required fewer than five iterations on
the average for the instances. Since f35 had the most number
of failure types, all of the other 117 functions, which exhibit
fewer failure types, would be equally easy to program correctly
in the presence of variations. Thus, all errors caused by process
variations were corrected, with the vast majority requiring a
single, precomputed VT set and a small fraction requiring on-
chip programming.

Stage Procedure Yield (%)
Training (20K instances)

Mf=61 mPLA++ 100%

Testing (100K instances) mPLA++ 99.96%
mPLA0 (On-chip) 100%

TABLE III: Yield when mPLA++ and mPLA0 (on-chip) are used
for programming instances of FTL35 = [3, 3, 2, 1, 1; 8].

H. Robustness Against PVT Variations

Figure 12 shows the delay variations in delay of five
sample threshold functions [38] w.r.t process, temperature and
temperature variations. As expected, FTL cells are slowest
in the SS corner and fastest in the FF corner. Furthermore,
as the process moves from the SS corner to the FF corner,
the delay improves, as expected. When the voltage increases
from 0.81 V to 0.99 V, the delay improves. The FTL cells
were also tested for reliability for the consumer temperature
range of 0◦C, 25◦C, and 55◦C. This result demonstrates that a
V T+(f) solution, generated using TT 0.9V 25◦C can reliably
work with PVT variations.

I. Robustness Against V T Drift

Over the lifetime of an FTL cell, the charge stored in the
gate of flash transistors eventually leaks into the channel due
to the deterioration of thin oxide layer [40], signal distur-
bances [41], etc. This leakage effectively changes the V T of
the flash transistors. By extension, it also changes the weights
programmed on the FTL cell. Table IV shows the effect of
decreasing V T on the threshold functions programmed on the
FTL cells. All 117 FTL cells operated correctly with a V T
drift of up to 5mV . Beyond 5mv, some cells failed. However,
after testing, their V T s can be reprogrammed to compensate
for this drift. Furthermore, all the FTL cells that were selected
by Genus when synthesizing ASIC designs (See Section VI-K)
operated correctly with 20mV drift in V T .

Vt Drift (mV) % FTL cells operated correctly
1 100
2 100
5 100
10 96.55

TABLE IV: Robustness against VT drift for FTL cells programmed
with all 117 threshold functions of up to 5 inputs.

10

Fig. 12: Delay of an FTL cell for threshold functions, with process
(SS, TT, FF), voltage (0.81 V, 0.9 V, 0.99 V), and temperature (0◦C,
25◦C, 55◦C) variations.

J. Post-fabrication Timing Correction

The experiments described in Sections VI-G, VI-D and VI-E
demonstrate the flexibility of FTL due to the possibility of
configuring its function after fabrication. This characteristic
can also be used to correct timing errors.

Fig. 13: Datapath to Demonstrate Post-Fabrication Timing Correc-
tions.

Figure 13 shows a small datapath that was constructed to
demonstrate how to correct setup-time and hold-time viola-
tions after fabrication in an FTL design. The datapath con-

Fig. 14: Post-fabrication setup-time correction using an FTL cell.

Fig. 15: Post-fabrication hold-time correction using an FTL cell.

sists of clock-to-Q (C2Q) delay, combinational delay (D2D)
and DFF specifications for setup (DFF setup) and hold
(DFF hold) times. The clock is skewed by an appropriate
amount ∆, to generate either a setup-time or a hold-time
violation. The violations are corrected by reprogramming the
FTL cell to produce different C2Q values.

Figure 14(a) shows how the data launched from FTL X
misses the target clock edge at DFF Y, thereby violating setup-
time. Figure 14(b) then shows that decreasing the C2Q of FTL
X fixes the setup-time violation. Similarly, Figure 15(a) shows
how the data launched from FTL X is captured by the target
clock edge at DFF Y one cycle early, thereby violating hold-
time. Figure 15(b) then shows that increasing the C2Q of FTL
X fixes the setup-time violation. Note that we can extend post-
fabrication VT adjustment to also mitigate delay increases due
to aging.

K. Delay Optimal Synthesis of ASICs with FTLs

In this section, we show how commercial design tools
can accommodate FTL cells in synthesis, and placement and
routing. Five circuit blocks were synthesized using the 40nm
TSMC standard cell library, which was augmented with FTLs
to realize 117 positive forms of all 5-input threshold functions.
This was done by creating one cell and making 117 copies and
then determining the VT s of the flash transistors and signal
assignments to realize each threshold function. Then each FTL
standard cell was characterized in the conventional way. Only
the positive forms of the threshold functions were included in
the library to keep the increase in the library size to a minimum
(about 7%) and to exploit the capability of Genus to recognize
NPN equivalents of the cells (see below).

The ASIC benchmarks are: 1) 32-bit Wallace multiplier
(Mul), 2) 28-bit FIR filter (FIR), 3) 64-bit floating-point unit
multiplier, 4) 16-bit Fast Fourier Transform (FFT), and 5)

11

Conventional FTL-integrated Improvements

Design
Freq.

(MHz)
Std.
Cells DFF

Area
(µm2)

Power
(mW)

Wire-
length
(µm)

Std.
Cells DFF/FTL

Area
(µm2)

Power
(mW)

Wire-
length
(µm)

Area Power
Wire-
length

Prog.
Time

(µsec)
Mul 417 19536 343 51855 6.00 118906 11493 272/71 32339 4.64 88592 37.6% 22.7% 25.5% 204.3
Filter 406 53588 529 157482 36.26 436000 41711 281/248 107420 28.41 322400 31.8% 21.6% 26.1% 585.8
FPU 392 48992 1734 132655 27.82 484096 40937 1693/41 98879 24.14 406091 25.5% 13.2% 16.1% 113.2
FFT 667 156242 9614 443356 100.14 1405565 140650 9286/328 368509 86.62 1199160 16.9% 13.5% 14.7% 807.1
SHA 308 33204 2161 109170 15.95 396267 26511 2147/14 66001 13.23 343852 39.5% 17.1% 13.2% 47.9
Avg. 139290 25 425689 96468 21 343504 30.7% 17.7% 19.3% 351.7

TABLE V: Improvement in area, power, and wirelength improvement in ASICs with FTL integrated, over conventional ASICs,
without trading off performance. Average improvements are calculated using the geometric mean.

512-bit Secure Hash Algorithm (SHA). Designs were syn-
thesized using Cadence Genus and then placed and routed
using Cadence Innovus. Standard cell libraries for FTL cells
were characterized using Synopsys HSPICE and generated in
Liberty format. Timing checks were performed using cross-
corner analysis at {SS, 125C, 0.81V}, {TT, 25C, 0.9V} and
{FF, 0C, 0.99V} corners. After placement and routing, the
select cells and the FTL programming logic cells (see Figure 5
are paired. Then engineering change order (ECO) commands
stitch the programming scan chain. Since the latter uses high
voltage nets, shielding nets are added to protect neighboring
nets from high voltage signals. Both versions of each ASIC
were verified using Cadence Conformal.

The results of synthesis and P&R, summarized in Table V,
demonstrate significant improvements in the area (30.7%),
power (17.7%), and wirelength (19.3%) averaged over the
designs. These improvements include the overhead of the pro-
gramming infrastructure described in Section IV, which was
less than 5% in the worst case. Note that these across the board
improvements were obtained under delay-optimal synthesis.
This would not be the case for area-optimal synthesis.

Wherever it was beneficial to improve timing, Genus found
and replaced threshold logic cones (not necessarily maximal
fanout-free cones) driving DFFs with the appropriate FTL
cell. This led to a reduction in the number of standard cells.
It ranged from 10% to 42%. There are two causes for this
reduction. First is the absorption of part of the fanin cone that
is a threshold function driving the DFF into the FTL. This
eliminates all those cells. A second source is the reduction
of the subcircuit (e.g. C in Figure 2(b)) that feeds the fanin
cone. The significant speed advantage of the FTL cell creates
large positive slack at the outputs of the feeder subcircuit.
Consequently, to meet timing, Genus re-synthesizes the feeder
with slower logic. Standard logic primitives such as inverters,
2-input gates, 3-input gates, inverters, and even AOI/OAI
gates are reduced and the number of complex cells increased,
reducing the total cell count.

The last column of Table V shows estimates of the time
(i.e., number of pulses) required to program the FTL cells,
which increases linearly with the number of FTLs. Although
the actual programming time will depend on the technology,
it is expected to be on the order of microseconds [23].

Table VI shows the run-time of Genus during synthesis,
for all the ASIC designs. While the inclusion of all the
117 FTL cells increases the library size slightly (about 7%),
FTL cells allow faster timing closure by generating positive

slack. Table VI also shows the peak memory usage of Genus
during synthesis, for all the ASIC designs. The peak memory
requirements are almost identical even after adding the 117
threshold functions in the library.

Runtime(sec) Peak memory (MB)
Conv. FTL-integ. Conv. FTL-integ.

Multiplier 1451 636 1269 1292
Filter 2596 2893 1401 1439
FPU 2947 2724 1273 1262
FFT 3102 2653 1421 1416
SHA 1838 1790 1297 1292

TABLE VI: Runtime and Peak memory usage for the synthe-
sis of ASIC designs.

To demonstrate that Genus can recognize NPN equivalences
of positive-form threshold functions, we selected a number
of threshold functions and negated and permuted their in-
puts and negated their output. Table VII shows the result
of one of the more complex functions. The interpretation
of Table VII is as follows. Consider the threshold function
ab+ ace+ ade+ bcd+ acd. The weight-threshold description
is [4, 3, 2, 2, 1; 7] = 4a + 3b + 2c + 2c + d ≥ 7, which
is an FTL93. When Genus found a sub-circuit with input
negation, āb + āc̄e + āde + bcd + ac̄d, , it replaced it
with an FTL93 with ā and c̄ driving inputs a and c. The
last row shows that Genus can detect output negation and
maps it to a different cell FTL94 whose positive form is
[4, 3, 2, 2, 1; 6] = 4a+ 3b+ 2c+ 2c+ d ≥ 6. In each case, the
synthesis tool detected the threshold functions and their NPN
equivalents, and added inverters as necessary, without using
any additional standard logic gates such as AND, OR, etc.

The last experiment conducted was aimed at discovering
what threshold functions would be detected if there were
no area or delay constraints. Figure 16 shows all possible
threshold functions that could be detected in the 32-bit Wallace
tree multiplier. The multiplier has 343 DFFs. Excluding the 64
input DFFs, all 279 remaining DFFs and cones of logic feeding
them were replaced by FTL cells, showing that complex multi-
level logic circuits that are threshold functions frequently occur
in logic circuits and synthesis tools can recognize them.

12

Threshold
function Verilog description of NPN equivalent Synthesis result

ab+ace+ade
+bcd+acd y <= ((4*a) + (3*b) + (2*c) + (2*d) + (1*e)) >= 7 ? 1:0; FTL 93 (4,3,2,2,1;7)

[4,3,2,2,1;7] y <= ((4*(!a)) + (3*b) + (2*(!c)) + (2*d) + (1*e)) >= 7 ? 1:0; FTL 93 (4,3,2,2,1;7) and
two inverters for ”a” and ”c”

y <= !((4*(!b)) + (3*c) + (2*(!d)) + (2*a) + (1*e)) >= 7 ? 1:0; FTL 94 (4,3,2,2,1;6) and
three inverters for ”a”, ”c” and ”e”

TABLE VII: Detection of NPN equivalents of threshold functions using a library of 117 5-input FTL cells.

Fig. 16: Distribution of threshold functions in 32-bit multiplier
when synthesized using FTL cells with zero-delay zero-power.

VII. CONCLUSION

In this paper we demonstrated that there could be substantial
value in going beyond the traditional use of flash technology
as memory and using it in CMOS logic. Unlike the many
emerging memory technologies, flash technology is mature
and compatible with CMOS fabrication. Using flash transistors
in conjunction with CMOS transistors, we developed a design
of a binary neuron, referred to as FTL, that can realize a
large number threshold functions in a single standard cell. We
demonstrated several novel features of an FTL cell: (1) it is a
configurable standard cell, whose function can be configured
after fabrication; (2) the configuration is achieved by con-
ventional techniques of tuning the threshold voltages of flash
transistors with high fidelity; (3) its design could be optimized
to make it very robust in the presence of circuit parasitics
and improving robustness also improves its performance; (4)
the ability to tune its performance after fabrication provides
a novel way to improve the yield in the presence of process
variations and correct timing errors; (5) it was designed so
that it can automatically be embedded within ASICs using
commercial CAD tools, and resulting in significantly improved
area and power while still operating at the maximum possible
frequency.

REFERENCES

[1] S. Muroga. Threshold Logic and its Applications. John Wiley & Sons,
1971.

[2] K. Siu, V. Roychowdhury, and T. Kailath. Discrete Neural Computation:
A Theoretical Foundation. Prentice-Hall, Inc., 1995.

[3] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Threshold voltage
distribution in MLC NAND flash memory: Characterization, analysis,
and modeling. In 2013 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1285–1290, March 2013.

[4] R. Perricone, I. Ahmed, Z. Liang, M. G. Mankalale, X. S. Hu, C. H.
Kim, M. Niemier, S. S. Sapatnekar, and J. Wang. Advanced spintronic
memory and logic for non-volatile processors. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017, pages 972–977,
March 2017.

[5] J. Yang, N. Kulkarni, S. Yu, and S. Vrudhula. Integration of threshold
logic gates with RRAM devices for energy efficient and robust operation.
In 2014 IEEE/ACM International Symposium on Nanoscale Architec-
tures (NANOARCH), pages 39–44. IEEE, July 2014.

[6] P. Gupta and N.K. Jha. An Algorithm for Nanopipelining of RTD-Based
Circuits and Architectures. IEEE Transactions On Nanotechnology,
4(2):159–167, Mar 2005.

[7] K.S. Berezowski and S. Vrudhula. Automatic design of binary and
multiple-valued logic gates on RTD series. In 8th Euromicro Conference
on Digital System Design (DSD’05), page 139–142, Aug 2005.

[8] N. Kulkarni, J. Yang, J. Seo, and S. Vrudhula. Reducing Power, Leakage,
and Area of Standard-Cell ASICs Using Threshold Logic Flip-Flops.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(9):2873–2886, September 2016.

[9] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 1958.

[10] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. In James A. Anderson and Edward Rosenfeld,
editors, Neurocomputing: Foundations of Research. MIT Press, 1988.

[11] A. A. Mullin. Threshold Logic: A Synthesis Approach. SIAM Review,
8(3):405–406, Jul 1966.

[12] V. Beiu, J.M. Quintana, and M.J. Avedillo. VLSI implementations of
threshold logic- a comprehensive survey. IEEE Transactions on Neural
Networks, 14(5):1217–1243, Sep 2003.

[13] V. Beiu. A survey of perceptron circuit complexity results. In
Proceedings of the International Joint Conference on Neural Networks,
2003., volume 2, pages 989–994. IEEE, 2003.

[14] P. Celinski, S. D. Cotofana, J. Lopez, S. F. Al-Sarawi, and D. Abbott.
State of the art in CMOS threshold logic VLSI gate implementations
and applications. In VLSI Circuits and Systems, volume 5117, pages
53–64. SPIE, 2003.

[15] C. Lageweg, S. Cotofana, and S. Vassiliadis. A full adder implemen-
tation using SET based linear threshold gates. In 9th International
Conference on Electronics, Circuits and Systems, volume 2, pages 665–
–668. IEEE, 2002.

[16] S.N. Mozaffari, S. Tragoudas, and T. Haniotakis. A Generalized
Approach to Implement Efficient CMOS-Based Threshold Logic Func-
tions. IEEE Transactions on Circuits and Systems I: Regular Papers,
65(3):946–959, March 2018.

[17] R. Zhang, P. Gupta, L. Zhong, and N.K. Jha. Threshold Network
Synthesis and Optimization and Its Application to Nanotechnologies.
IEEE Transaction On Computer-Aided Design Of Integrated Circuits
And Systems, 24:107–118, 2005.

[18] V. Annampedu and M.D. Wagh. Decomposition of threshold functions
into bounded fan-in threshold functions. Information and Computation,
227:84–101, Jun 2013.

[19] S.N. Mozaffari and S. Tragoudas. Maximizing the Number of Threshold
Logic Functions Using Resistive Memory. IEEE Transactions on
Nanotechnology, 17(5):897–905, September 2018.

[20] S. Kaya, H.F.A. Hamed, D.T. Ting, and G. Creech. Reconfigurable
threshold logic gates with nanoscale DG-MOSFETs. Solid-State Elec-
tronics, 51(10):1301–1307, October 2007.

[21] J. Yang, J. Davis, N. Kulkarni, J. Seo, and S. Vrudhula. Dynamic and
leakage power reduction of ASICs using configurable threshold logic
gates. In 2015 IEEE Custom Integrated Circuits Conference (CICC),
pages 1–4. IEEE, September 2015.

[22] R. Fowler and L. Nordheim. Electron Emission in Intense Electric
Fields. Proc. Royal Soc. of London. Series A, 119(781), May 1928.

13

[23] D. Richter. Fundamentals of Non-Volatile Memories, page 5–110.
Springer Series in Advanced Microelectronics. Springer Netherlands,
2014.

[24] K. Nii, Y. Taniguchi, and K. Okuyama. A Cost-Effective Embedded
Nonvolatile Memory with Scalable LEE Flash®-G2 SONOS for Secure
IoT and Computing-in-Memory (CiM) Applications. In 2020 Interna-
tional Symposium on VLSI Design, Automation and Test (VLSI-DAT),
pages 1–4, Aug 2020.

[25] S. Tsuda, Y. Kawashima, K. Sonoda, A. Yoshitomi, T. Mihara,
S. Narumi, M. Inoue, S. Muranaka, T. Maruyama, T. Yamashita, and
et al. First demonstration of FinFET split-gate MONOS for high-
speed and highly-reliable embedded flash in 16/14nm-node and beyond.
In 2016 IEEE International Electron Devices Meeting (IEDM), pages
11.1.1–11.1.4. IEEE, Dec 2016.

[26] F. Khan, D. Moy, D. Anand, E.H. Schroeder, R. Katz, L. Jiang,
E. Banghart, N. Robson, and T. Kirihata. Turning Logic Transistors into
Secure, Multi-Time Programmable, Embedded Non-Volatile Memory
Elements for 14 nm FINFET Technologies and Beyond. In 2019
Symposium on VLSI Technology, pages T116––T117. IEEE, Jun 2019.

[27] F. Khan, E. Cartier, J.C.S. Woo, and S.S. Iyer. Charge Trap Tran-
sistor (CTT): An Embedded Fully Logic-Compatible Multiple-Time
Programmable Non-Volatile Memory Element for High- k -Metal-Gate
CMOS Technologies. IEEE Electron Device Letters, 38(1):44–47, Jan
2017.

[28] V. Agrawal, V. Prabhakar, K. Ramkumar, L. Hinh, S. Saha, S. Samanta,
and R. Kapre. In-Memory Computing array using 40nm multibit
SONOS achieving 100 TOPS/W energy efficiency for Deep Neural
Network Edge Inference Accelerators. In 2020 IEEE International
Memory Workshop (IMW), page 1–4, May 2020.

[29] M. Abusultan and S.P. Khatri. A flash-based digital circuit design
flow. In 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–6, November 2016.

[30] M. Abusultan and S.P. Khatri. Implementing low power digital circuits
using flash devices. In 2016 IEEE 34th International Conference on
Computer Design (ICCD), pages 109–116, October 2016.

[31] M. Abusultan and S.P. Khatri. A Ternary-Valued, Floating Gate
Transistor-Based Circuit Design Approach. In 2016 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 719–724, July 2016.

[32] M. Abusultan and S.P. Khatri. Design of a Flash-based Circuit for Multi-
valued Logic. In Proceedings of the on Great Lakes Symposium on VLSI
2017, page 41–46. ACM, May 2017.

[33] V. Bohossian, P. Hasler, and J. Bruck. Programmable neural logic.
IEEE Transactions on Components, Packaging, and Manufacturing
Technology: Part B, 21(4):346–351, November 1998.

[34] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to
flash memory. Proceedings of the IEEE, 91(4):489–502, Apr 2003.

[35] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu. Read Disturb Errors in MLC
NAND Flash Memory: Characterization, Mitigation, and Recovery. In
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, page 438–449. IEEE, Jun 2015.

[36] S. Boboila and P. Desnoyers. Write endurance in flash drives: measure-
ments and analysis. In Proceedings of the 8th USENIX conference on
File and storage technologies, FAST’10, page 9. USENIX Association,
Feb 2010.

[37] M. Mehri and N. Masoumi. A thorough investigation into active
and passive shielding methods for nano-VLSI interconnects against
EMI and crosstalk. AEU - International Journal of Electronics and
Communications, 69(9):1199–1207, Sep 2015.

[38] https://sites.google.com/view/threshold-functions/home/.
[39] Cadence. http://www.cadence.com.
[40] R. Degraeve, B. Kaczer, and G. Groeseneken. Degradation and

breakdown in thin oxide layers: mechanisms, models and reliability
prediction. Microelectronics Reliability, 39(10):1445–1460, Oct 1999.

[41] G. Bersuker, Y. Jeon, and H.R. Huff. Degradation of thin oxides during
electrical stress. Microelectronics Reliability, 41(12):1923s–1931, Dec
2001.

[42] S. Dechu, M.K. Goparaju, and S. Tragoudas. A Metric of Tolerance
for the Manufacturing Defects of Threshold Logic Gates. In 2006 21st
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, page 318–326, Oct 2006.

[43] A. Neutzling, J.M. Matos, A. Mishchenko, A. Reis, and R.P. Ribas.
Effective Logic Synthesis for Threshold Logic Circuit Design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 38(5):926–937, May 2019.

Ankit Wagle (M’17) received the B.S. degree in
Electronics and Telecommunication from the Uni-
versity of Pune, Maharashtra, India, in 2013, and the
M.S. degree in VLSI Design from Vellore Institute
of Technology, Vellore, TN, India, in 2015. He spent
his graduate research internships at Intel, Bangalore,
KA, India in 2015 and Maxlinear, Carlsbad, CA,
USA in 2017. He also worked with Open-Silicon,
Bangalore, KA, India from 2015 to 2016. He is
currently pursuing the Ph.D. degree with the School
of Computing and Augmented Intelligence (SCAI),

Arizona State University, Tempe, AZ, USA since 2016. His current research
interests include new circuit architectures and design algorithms using thresh-
old logic gates, and their applications to the design of energy efficient digital
application-specified integrated circuit, field-programmable gate array, and
neural network accelerators.

Gian Singh (M’19) received his B.Tech degree
in Electronics and Communication Engineering
from the National Institute of Technology (NIT-H),
Hamirpur, India, in 2017. He worked as Project As-
sociate at NIT-H under SMDP-C2SD project spon-
sored by the Govt. of India from 2017 to 2018. He
started his Ph.D. degree at the School of Computing
and Augmented Intelligence (SCAI), Arizona State
University, Tempe, AZ, the USA in Fall 2018. He
spent Fall’19 as an SoC Tech intern at Maxlinear
Inc., Carlsbad, CA, USA and Summer’20 at Qual-

comm Inc., San Jose, CA, USA as a Hardware Engineering intern. His current
research interest includes the design of threshold logic gates, In-memory
computing, near memory processing enabling high throughput and energy-
efficient systems for data-intensive applications.

Sunil Khatri received the B.Tech. degree in elec-
trical engineering from IIT Kanpur, Kanpur, India,
the M.S. degree in electronics and communication
engineering from The University of Texas at Austin,
Austin, TX, USA, and the Ph.D. degree in elec-
trical engineering and computer sciences from the
University of California at Berkeley, Berkeley, CA,
USA. He is currently a Professor of Electronics
and Communication Engineering at Texas A&M
University, College Station, TX, USA. He has au-
thored or coauthored more than 250 peer-reviewed

publications. Among these papers, five received a best paper award, while
six others received best paper nominations. He has coauthored nine research
monographs and one edited research monograph, three book chapters, and
13 invited conference papers or workshop papers. He holds six U.S. patents.
He was invited to serve as a Panelist at a conference seven times and have
presented two conference tutorials. His current research interests include
VLSI IC/system-on-a-chip design [including energy efficient design of custom
ICs and field-programmable gate arrays (FPGAs), radiation and variation
tolerant design, clocking], algorithm acceleration using hardware (FPGA as
well as custom IC based) and software (uniprocessor and GPU based), and
interdisciplinary extensions of these topics to other areas.

Sarma Vrudhula (M’85-SM’02-F’16) is a Pro-
fessor of Computer Science and Engineering with
Arizona State University, and the Director of the
NSF I/UCRC Center for Embedded Systems. He
received the B.Math. degree from the University of
Waterloo, Waterloo, ON, Canada, and the M.S.E.E.
and Ph.D. degrees in electrical and computer engi-
neering from the University of Southern California,
Los Angeles, CA, USA.His work spans several areas
in design automation and computer aided design for
digital integrated circuit and systems, focusing on

low power circuit design, and energy management of circuits and systems.
Specific topics include: energy optimization of battery powered computing
systems, including smartphones, wireless sensor networks and IoT systems
that rely on energy harvesting; system level dynamic power and thermal
management of multicore processors and system-on-chip (SoC); statistical
methods for the analysis of process variations; statistical optimization of
performance, power and leakage; new circuit architectures of threshold logic
circuits for the design of ASICs and FPGAs.

14

	I Introduction and Motivation
	I-A FTL in ASIC Design – Overview
	I-B Main Contributions

	II Background
	II-A Threshold Logic
	II-B Flash Transistors

	III Flash Threshold Logic (FTL) Cell
	IV Architecture for programming FTL cells
	V Computing the relationship between the weights and the VT values for an FTL cell
	V-A Overview
	V-B Algorithm mPLA0
	V-C Algorithm mPLA+: Improving Noise Tolerance
	V-D Algorithm mPLA++: Optimizing Yield

	VI Experimental Results
	VI-A Experiment Setup
	VI-B Training Iterations
	VI-C Individual Cell Area, Delay and Power Comparison
	VI-D Delay Distributions
	VI-E Dynamic Voltage Scaling
	VI-F Number of programming pulses
	VI-G Experiments on Training for Robustness
	VI-H Robustness Against PVT Variations
	VI-I Robustness Against VT Drift
	VI-J Post-fabrication Timing Correction
	VI-K Delay Optimal Synthesis of ASICs with FTLs

	VII Conclusion
	References
	Biographies
	Ankit Wagle
	Gian Singh
	Sunil Khatri
	Sarma Vrudhula

