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Abstract— In this paper, the adaptive fuzzy control of switched
stochastic nonlinear systems with set-time prescribed perfor-
mance based on event-driven mechanism is studied. The creative
part of this paper is that based on the set-time performance
function, a modified event-triggered strategy that considers asyn-
chronous switching to deteriorate system performance without
strict assumptions is presented, which avoids Zeno behavior and
saves communication resources. Then, by using backstepping
recursive design technique, Itô’s differential lemma and mode-
dependent average dwell time (MDADT) method, a novel adap-
tive performance control scheme is proposed, which can ensure
that all the variables in the system are semiglobally uniformly
ultimately bounded (SGUUB) in probability and the tracking
error gets into prescribed boundary no later than an arbitrarily
adjusted setting time. Finally, the proposed algorithm is applied
to a RLC circuit and its practicability is verified via simulation
results.

Index Terms— Fuzzy logic system, event-triggered scheme,
multiple Lyapunov function techniques, switched nonlinear
system.

I. INTRODUCTION

IN RECENT decades, the electrical circuits and its control
methods have been researched deeply in reports [1]–[4].

It is worth noting that the existence of nonlinear dynam-
ics in electrical circuit systems can not be ignored, so the
controller design of nonlinear systems has aroused great
interest of scholars, and massive excellent achievements have
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emerged based on neural network or fuzzy approximation
approach [5]–[9]. However, the above control schemes are
mainly applied for nonstochastic nonlinear systems. An enor-
mous number practical engineering systems are subject to
stochastic uncertainty, such as biological system, financial
system and chemical reaction process and so on. For non-
triangular multi-input and multi-output (MIMO) stochastic
nonlinear systems, an adaptive tracking control scheme based
on a new stochastic finite-time stability theorem was proposed
in [10]. Then, Liu et al. [11] studied the control design
of nonlinear stochastic systems with state constraints for
the first time by constructing two different forms of barrier
Lyapunov functions. For discrete-time stochastic nonlinear
systems, an adaptive neural control scheme that mitigates the
communication burden and improves the tracking accuracy
was developed in [12]. Furthermore, for stochastic systems
with unmeasurable states, some effective state observers were
elegantly designed in [13]–[15] to estimate the unmeasured
states.

Unexceptionally, the above researches are both interesting
and challenging, but their conclusions are only valid for
nonswitched systems. Due to the fact that most systems are
difficult to be described by one model in practice. Multi-
model switching control have capacious developed foreground
in practical systems. For the stability analysis and controller
design of switched systems, massive outstanding achievements
have been popping up (see [16]–[24]). Especially, the MDADT
of milestone was proposed in [24] to analyze the stability
of switched systems, which aroused the attention of many
scholars. Since then, such method is extended to many kinds
of switched systems to relax the restrictions of switching
signals and realize the stability of system. To just name a
few, Yang et al. [25] developed a transition probability-based
MDADT switching mechanism for dynamic systems with
mixed delays by designing a multiple Lyapunov-Krasovskii
functional. In [26], the exponential stability was studied for
discrete-time switched positive systems under the framework
of MDADT. It was first reported in [27] that the adaptive
control scheme for switched nonlinear lower triangular sys-
tems under MDADT switching. Nevertheless, up to now, the
investigation of the adaptive control for switched nonlinear
systems with random noises under MDADT switching is
seldom.
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Furthermore, the transient performance of controlled sys-
tems is not considered in the above articles. The prescribed
performance control (PPC) method was first proposed in [28]
and quickly applied to various nonlinear systems, such as
large-scale nonlinear systems [29], MIMO nonlinear sys-
tems [30], and stochastic nonlinear systems [31], ect. Sub-
sequently, for the convergence time of closed-loop systems,
their finite-time adaptive neural networks and fuzzy PPC meth-
ods were studied in [32], [33], which effectively solved the
problems of slow convergence and low accuracy of traditional
adaptive PPC method. Although the above PPC schemes have
satisfactory control effects, they have a common disadvantage,
that is, the initial value of the performance function depends on
the reference signal and the system output. But many industrial
systems do not have constraints at the initial time, after the
system runs for a certain time, there will be constraints on the
system performance, that is, in [0, T ], there are no constraints
on the system; and after t > T , the system has constraints.
Therefore, how to design an effective adaptive PPC scheme to
deal with this more complex constraint situation is worthy of
further research.

On the other hand, event-triggered communication con-
trol (ETCC) has attracted widespread attention due to its
important role in networked control system [34]–[38]. For
the ETCC of the switched systems, an enormous challenge
is that the asynchronous switching between the subsystem
and the controller is proving elusive. Asynchronous switching
is caused by the switch within two consecutive triggering
instants. Most of the existing results evade this problem or
make strict assumptions about the maximum asynchronous
duration, resulting in a lot of restrictions on the applicability of
the results in practice, e.g., [39]–[41]. Recently, some excellent
reports [42], [43] have been published to solve asynchro-
nous switching to ensure system performance. Unfortunately,
the above schemes do not consider stochastic disturbances.
In other words, these event-triggered controllers do not be
directly applied to switched stochastic nonlinear systems.

In conclusion, we find that the event-triggered fuzzy con-
trol methods for switched stochastic nonlinear systems are
numbered. Also, the existing methods do not ensure the
transient performance of the controlled plant under asynchro-
nous switching. In this paper, a fuzzy set-time PPC scheme
is proposed for switched stochastic nonlinear systems. The
innovations of this article can be embodied in the following
points.

1) By introducing the set-time performance function into
the controller design, the proposed adaptive fuzzy set-
time PPC scheme not only ensures that the tracking error
gets into the predefined constraint region no later than
a settable time T , but also eliminates the “initial condi-
tion” of the constrained variable e1 in the traditional PPC
scheme.

2) A novel mode-dependent event-triggered mecha-
nism (MDETM) is designed for switched nonlinear systems
with random noises considering the impact of asynchro-
nous switching on system performance. The proposed control
scheme achieves the expected control effect while mitigating
the communication burden.

Fig. 1. Schematic diagram of RLC circuit.

3) By using the lower bound of the control gain func-
tions of each subsystem, the individual Lyapunov function is
constructed, and a novel event-triggered fuzzy performance
controller is designed so that all the variables in the system
are bounded.

II. PRELIMINARIES AND PROBLEM FORMULATIONS

A. Basic Knowledge

Definition 1 [13]: Consider the stochastic system dx =
f (x(t))dt + g(x(t))dw. Define the differential operator � for
C2 function V (x) as:

�V = ∂V

∂ t
+ ∂V

∂x
f + 1

2
T r{gT ∂

2V

∂x2 g} (1)

where Tr(A) is the trace of A.
Lemma 1 [10]: Let f (Z) be a continuous function defined

on a compact set �̄. Then for any τ > 0, there exists a fuzzy
systems ψT S(Z) such that

sup
Z∈�̄

| f (Z)− ψT S(Z)| ≤ τ.

Lemma 2 [8]: For ∀ ω1 > 0 and ω2 ∈ R, the following
result hold

0 ≤ |ω2| − ω2 tanh(
ω2

ω1
) ≤ 0.2785ω1. (2)

B. Problem Statement

Consider switched Itô stochastic nonlinear systems⎧⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎩

dxi = (li,σ (t)(x̄i )xi+1 + fi,σ (t)(x̄i))dt

+gT
i,σ (t)(x̄i )dw, i = 1, 2, · · · , n − 1,

dxn = (ln,σ (t)(x̄n)u + fn,σ (t)(x̄n))dt

+gT
n,σ (t)(x̄n)dw,

y = x1

(3)

where x̄i = [x1, · · · , xi ]T ∈ Ri , i = 1, 2, · · · n, y ∈ R
are the system states, output, respectively. σ(t) : [0,∞) →
M = {1, 2, · · · , d} is a switching signal. li,p(x̄i ) is known
control gain funcation. fi,p(x̄i ) and gi,p(x̄i )(1 ≤ i ≤ n,
p ∈ M) are unknown smooth nonlinear functions satisfying
local Lipschitz. w ∈ Rr denotes standard Brownian motion.

Remark 1: The above-mentioned switched stochastic non-
linear system can be applied to the RLC circuit with stochastic
perturbations in the capacitor and the inductor. For example,
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a RLC circuit is shown in Fig. 1, where L is the inductor, R
the resistor, C1,C2 the two mutual switching capacitor.

Define the tracking error as e1 = y − yd with yd being
the reference signal. In this paper, the tracking error need to
satisfy

−ξ1(t) < e1 < ξ1(t), t ≥ T > 0 (4)

where T is a time parameter, ξ1(t) is called the set-time
performance function and is defined as

ξ1(t) = (ξ0 − ξ∞)e−κ1(t−T ) + ξ∞ (5)

where ξ0 > ξ∞ > 0, κ1 ≥ 0 are the design parameters.
Remark 2: Whether it is the traditional PPC schemes pro-

posed in [29]–[31] or the finite-time PPC schemes proposed
in [32], [33], the performance function requires “initial con-
dition”, that is, ξ1(0) satisfies −ξ1(0) < e1(0) < ξ1(0).
Obviously, ξ1(0) introduced in this paper is independent of the
initial conditions of the system output and the desired signal.

Our control objectives are as follows:
1) All signals of the controlled systems are SGUUB in

probability under MDADT method;
2) The tracking error e1 gets into a prescribed boundary no

later than a settable time T ;
3) The designed MDETM is Zeno-free.
To this end, the following mapping is proposed:

χ1 = tanh(e1) (6)

meanwhile, the following indirect performance function ξ2(t)
is adopted

−ξ2(t) < χ1 < ξ2(t), t ≥ 0 (7)

where

ξ2(t) = Ne−κ2 t (s(t)− s1)

s0
+ tanh(ξ1),

s(t) =
⎧⎨
⎩ (s0 − t

T
)e1− t

T −t + s1, 0 ≤ t < T,

s1, t ≥ T

and N ≥ 1, κ2 ≥ 0, s0 ≥ 0 s1 ≥ 0 are the design parameters.
Remark 3: According to the expression of ξ2, it can be seen

from N ≥ 1, when t = 0, we have ξ2(0) ≥ 1. Then from
−1 < χ1(0) < 1, it follows that −ξ2(0) ≤ χ1(0) ≤ ξ2(0). And
the proposed method removes the “initial condition” imposed
on the tracking error e1.

Specially, the following assumptions are imposed.
Assumption 1: (Slow Switching)
(1) There exists a number τ ∗

d > 0 (called a dwell time) such
that any two switches are separated by at least τ ∗

d > 0;
(2) There exist numbers τap > τ ∗

d (called a mode-dependent
average dwell time) and N0p ≥ 1 such that

Nσ p(T, t) ≤ N0p + Tp(T, t)

τap
, ∀T ≥ t ≥ 0 (8)

where Nσ p(T, t) is the numbers of times the pth subsystem
is activated on [t, T ], Tp(T, t) is the total running time of the
pth subsystem on [t, T ].

Assumption 2: There are two constants b p
i,m , b p

i,M such that
0 < b p

i,m ≤ |li,p(x̄i )| ≤ b p
i,M . Without losing generality,

we assumes that sign(li,p(x̄i )) > 0.
Assumption 3: The reference signal yd(t) and its

derivatives y(i)d (t), i = 1, 2, · · · , n are known and
bounded.

III. ADAPTIVE FUZZY CONTROL DESIGN SCHEME

The development of backstepping design starts by defining
the following coordinate transformations⎧⎨

⎩
z1 = tan(

πχ1

2ξ2
),

zi = xi − αi−1, i = 2, 3, · · · , n
(9)

where αi−1 denotes the virtual control signal. To simplify the
backstepping process, the virtual signal αi and the adaptive
law Ŵi are chosen as

α1 = −ρ2

ρ1
(c1z1 + z3

1Ŵ1

πa2
1

ST
1 (Z1)S1(Z1)), (10)

αi = −ci zi − z3
i Ŵi

2a2
i

ST
i (Zi )Si (Zi ), i = 2, 3, · · · , n, (11)

˙̂Wi = li z6
i

2a2
i

ST
i (Zi )Si (Zi )− li Ŵi , i = 1, 2, · · · , n (12)

where ρ1 = 1 − tanh2(e1), ρ2 = ξ2 cos2(πχ1
2ξ2
), ai ,

ci , li represent positive design parameters. Z1 = [x1, ξ2, ξ̇2,

yd , ẏd ]T , Zi = [x̄i , Ŵ1, Ŵ2, · · · , Ŵi−1, ξ2, ξ̇2, · · · , ξ (i)2 , yd ,

y(i)d ]T (i ≥ 2). Define Wi = maxp∈M { 	ψi,p	2

bi,min
} with bi,min =

minp∈M {b p
i,m}, W̃i = Wi − Ŵi , Ŵi is the estimation of Wi .

Step 1: From (3) and (9), it follows that

dz1 = π

2ρ2
(ρ1l1,p(x̄1)(z2 + α1)+ ρ1( f1,p(x̄1)− ẏd)

− χ1ξ̇2

ξ2
)dt + πρ1

2ρ2
g1,p(x̄1)dw. (13)

The Lyapunov function candidate for the pth switching
subsystem is defined as

V1,p = 1

4
z4

1 + b p
1,m

2l1
W̃ 2

1 . (14)

Thus, �V1,p is given as

�V1,p = πz3
1

2ρ2
(ρ1l1,p(x̄1)(z2 + α1)+ ρ1( f1,p(x̄1)

− ẏd)− χ1ξ̇2

ξ2
)− b p

1,m

l1
W̃1

˙̂W1

+ 3π2ρ2
1

8ρ2
2

z2
1gT

1,p(x̄1)g1,p(x̄1). (15)

By using Young’s inequality, one has

πρ1

2ρ2
z3

1l1,p(x̄1)z2 ≤ 3

4
(
π

2
)4/3l1,p(x̄1)z

4
1ρ

4/3
1 ρ

3/4
2

+ 1

4
l1,p(x̄1)z

4
2, (16)
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3π2ρ2
1

8ρ2
2

z2
1gT

1,p(x̄1)g1,p(x̄1)≤ 3π4ρ4
1

16ρ4
2

a−2
1 z4

1	g1,p(x̄1)	4+ 3

16
a2

1 .

(17)

Therefore, (15) can be rewritten as

�V1,p ≤ πρ1

2ρ2
z3

1l1,p(x̄1)α1 + 1

4
l1,pz4

2 + z3
1 f̄1,p(Z1)

− 3

4
z4

1 − b p
1,m

l1
W̃1

˙̂W1 + 3

16
a2

1 (18)

where f̄1,p(Z1) = ρ1 f1,p(x̄1) + 3π4ρ4
1

16ρ4
2

a−2
1 z4

1	g1,p(x̄1)	4 −
ρ1 ẏd + 3

4 z1 + 3
4 l1,p(x̄1)z4

1ρ
4/3
1 ρ

4/3
2 − χ1 ξ̇2

ξ2
. By using fuzzy logic

system ψT
1,p S1(Z1) approximate f̄1,p(Z1), we have

f̄1,p(Z1) = ψT
1,p S1(Z1)+ δ

p
1 (Z1) (19)

where |δ p
1 (Z1)| ≤ τ1 with τ1 > 0. According to Young’s

inequality, it can be given

z3
1 f̄1,p(Z1) ≤ b p

1,mz6
1W1

2a2
1

ST
1 (Z1)S1(Z1)+ 1

2
a2

1

+ 3

4
z4

1 + 1

4
τ 4

1 . (20)

Substituting (10), (12) and (20) into (18) yields

�V1,p ≤ −π
2

c1b p
1,mz4

1+b p
1,mW̃1Ŵ1+ 1

4
l1,p(x̄1)z

4
2 + ϒ̃1 (21)

whereϒ̃1 = 11
16 a2

1 + 1
4τ

4
1 .

Step i (2 ≤ i ≤ n − 1): From (3) and (9), one has

dzi = (li,p(x̄1)(zi+1 + αi )+ fi,p(x̄i )− �αi−1)dt

+ (gi,p(x̄i )−
i−1�
j=1

∂αi−1

∂x j
g j,p(x̄ j ))dw (22)

where

�αi−1 =
i−1�
j=1

∂αi−1

∂x j
(l j,p(x̄ j )x j+1 + f j,p(x̄ j ))

+
i−1�
j=0

∂αi−1

∂ y( j )
d

y( j+1)
d +

i−1�
j=1

∂αi−1

∂Ŵ j

˙̂W j

+ 1

2

i−1�
j,s=1

∂2αi−1

∂x j∂xs
gT

j,p(x̄ j )gs,p(x̄s).

The following Lyapunov function candidate is defined

Vi,p = Vi−1,p + 1

4
z4

i + b p
i,m

2li
W̃ 2

i (23)

and then, we have

�Vi,p = �Vi−1,p + z3
i (li,p(x̄i )(zi+1 + αi )+ fi,p(x̄i )− �αi−1)

− b p
i,m

li
W̃i

˙̂Wi + 3

2
z2

i φ
T
i,p(x̄i )φi,p(x̄i ) (24)

where φi,p(x̄i ) = gi,p(x̄i ) −
i−1�
j=1

∂αi−1
∂x j

g j,p(x̄ j ). By utilizing

Young’s inequality, the following inequality holds

z3
i li,p(x̄i )zi+1 ≤ 3

4
li,p(x̄i )z

4
i + 1

4
li,p(x̄i )z

4
i+1, (25)

3

2
z2

i φ
T
i,pφi,p ≤ 3

4
a−2

i z4
i 	φi,p	4 + 3

4
a2

i . (26)

Using (25)-(26), (24) can be rewritten as

�Vi,p ≤ �Vi−1,p + z3
i li,p(x̄i )αi + 1

4
li,p(x̄i )z

4
i+1

+ z3
i f̄i,p(Zi )− 3

4
z4

i − b p
i,m

li
W̃i

˙̂Wi

+ 3

4
a2

i − 1

4
li−1,p(x̄i−1)z

4
i (27)

where f̄i,p(Zi ) = fi,p(x̄i ) + 3
4 a−2

i zi	φi,p	4 − �αi−1 + 3
4 zi +

3
4 li,p(x̄i )zi + 1

4 li−1,p(x̄i−1)zi . Same as (19), it can be given

f̄i,p(Zi ) = ψT
i,p Si (Zi )+ δ

p
i (Zi ) (28)

where |δ p
i (Zi )| ≤ τi with τi > 0. Furthermore, the following

inequality can be obtained

z3
i f̄i,p(Zi ) ≤ b p

i,m z6
i Wi

2a2
i

ST
i (Zn)Si (Zn)+ 1

2
a2

i

+ 3

4
z4

i + 1

4
τ 4

i . (29)

Substituting (11), (12) and (29) into (27) result in

�Vi,p ≤ −π
2

c1b p
1,mz4

1 −
i�

j=2

(c j b
p
j,mz4

j )+
i�

j=1

b p
j,mW̃ j Ŵ j

+ 1

4
li,p(x̄i )z

4
i+1 +

i�
j=1

ϒ̃ j (30)

where ϒ̃ j =
i�

j=1
( 5

4 a2
j + 1

4τ
4
j ).

Step n: First, let 
k
0 = tk , 
k

r+1 = tk+1, 
k
1,
k

2, · · · ,
k
r

are the switching times on [tk, tk+1). The MDETM is designed
as follows

u p(t) = −(1 + λ)(αn tanh(
z3

nl p
n (x̄n)αn

ρ p
)

+ h̄1 tanh(
z3

nl p
n (x̄n)h̄1

ρ p
))

− (1 + λ

1 − λ
)Tw tanh(

z3
nl p

n (x̄n)Tw
ρ p ), (31)

u(t) = uσ(tk)(tk), tk ≤ t < tk+1, (32)

tk+1 = inf{t ∈ R||βσ(t)(t)| ≥ λ|uσ(tk)(tk)|
+ � + Tw}, (33)

Tw =
�

|uσ(tk)(
k
1)− uσ(
k

1)(
k
1)|, t ∈ [
k

1,
k
2),

0, otherwise
(34)

where βσ(t)(t) = uσ(tk)(tk) − uσ(t)(t), h̄1 > �
1−λ . � > 0,

ρ p > 0 and 0 < λ < 0.5 are design parameters.
Remark 4: For the studied switched stochastic nonlinear

systems, the MDETM that relies on switching signals is
cleverly designed, which not only mitigates the communica-
tion burden, but also eliminates the impact of asynchronous
switching on the system performance.

Remark 5: It can be seen that the triggering error of the
designed MDETM is discontinuous at the switching moment,
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and switching may cause additional continuous triggers, which
may lead to Zeno behavior. The introduction of variable Tw
effectively avoids the above problems.

From (3) and (9), one has

dzn = (ln,p(x̄1)u + fi,p(x̄n)− �αn−1)dt

+ (ln,p(x̄n)−
n−1�
j=1

∂αn−1

∂x j
l j,p(x̄ j ))dw (35)

where

�αn−1 =
n−1�
j=1

∂αi−1

∂x j
(l j,p(x̄ j )x j+1 + f j,p(x̄ j ))

+
n−1�
j=0

∂αi−1

∂ y( j )
d

y( j+1)
d +

n−1�
j=1

∂αi−1

∂Ŵ j

˙̂W j

+ 1

2

n−1�
j,s=1

∂2αi−1

∂x j∂xs
gT

j,p(x̄ j )gs,p(x̄s).

Define the Lyapunov function candidate

Vn,p = Vn−1,p + 1

4
z4

n + b p
n,m

2ln
W̃ 2

n . (36)

From (35) and (36), we have

�Vn,p = �Vn−1,p + z3
n(ln,pu + fn,p(x̄n)− �αn−1)

− b p
n,m

ln
W̃n

˙̂Wn + 3

2
z2

nφ
T
n,p(x̄n)φn,p(x̄n) (37)

where φn,p(x̄n) = gn,p(x̄n) −
n−1�
j=1

∂αn−1
∂x j

g j,p(x̄ j ). By utilizing

Young’s inequality, the following inequality holds
3

2
z2

nφ
T
n,pφn,p ≤ 3

4
a−2

n z4
n	φn,p	4 + 3

4
a2

n . (38)

By substituting (38) into (37), it gets

�Vn,p ≤ �Vn−1,p + z3
nln,p(x̄n)u + z3

n f̄n,p(Zn)− 3

4
z4

n

− b p
n,m

ln
W̃n

˙̂Wn + 3

4
a2

n − 1

4
ln−1,p(x̄n−1)z

4
n (39)

where f̄n,p(Zn) = fn,p(x̄n)+ 3
4 a−2

n zn	φn,p	4 −�αn−1 + 3
4 zn +

1
4 ln−1,p(x̄n−1)zn . Same as (19), one has

f̄n,p(Zi ) = ψT
n,p Sn(Zn)+ δ

p
n (Zn) (40)

where |δ p
n (Zn)| ≤ τn with τn > 0.

By applying Young’s inequality, we have

z3
n f̄n,p(Zn) ≤ b p

n,mz6
n Wn

2a2
n

ST
n (Zn)Sn(Zn)+ 1

2
a2

n

+ 3

4
z4

n + 1

4
τ 4

n . (41)

By using (41), (39) can be converted into

�Vn,p ≤ �Vn−1,p + b p
n,m z6

nWn

2a2
n

ST
n (Zn)Sn(Zn)

+ z3
nln,p(x̄n)u − b p

n,m

ln
W̃n

˙̂Wn + 5

4
a2

n

+ 1

4
τ 4

n − 1

4
ln−1,p(x̄n−1)z

4
n . (42)

Next, we will divide the system dynamics into two parts
for discussion based on whether the pth subsystem is syn-
chronized with the candidate controller within the triggering
interval [tk, tk+1).

Part 1: synchronous interval.
At this time, σ(t) = σ(tk) = p, Tw = 0. From (31)-(33),

we have u p(t) = (1 +ϑ1(t)λ)u p(tk)+ϑ2(t)�, ∀t ∈ [tk, tk+1),
where ϑ1(t) ∈ [−1, 1], ϑ2(t) ∈ [−1, 1]. Then, the actual
controller can be expressed as

u = u p(tk) = u p(t)

1 + ϑ1λ
− ϑ2�

1 + ϑ1λ
. (43)

Therefore, (42) can be repeated as

�Vn,p ≤ �Vn−1,p + b p
n,mz6

n Wn

2a2
n

ST
n (Zn)Sn(Zn)+ 5

4
a2

n

+ 1

1 + ϑ1λ
z3

nln,p(x̄n)u
p(t)− ϑ2�

1 + ϑ1λ
z3

nln,p(x̄n)

− b p
n,m

ln
W̃n

˙̂Wn + 1

4
τ 4

n − 1

4
ln−1,p(x̄n−1)z

4
n . (44)

Based on z3
nl p

n (x̄n)u p(t)
1+ϑ1λ

≤ z3
nl p

n (x̄n)u p(t)
1+λ , l p

n (x̄n)| ϑ2�
1+ϑ1λ

| ≤
l p
n (x̄n)

�
1−λ , h̄1 >

�
1−λ , it follows that

�Vn,p ≤ �Vn−1,p + b p
n,mz6

n Wn

2a2
n

ST
n (Zn)Sn(Zn)− b p

n,m

ln
W̃n

˙̂Wn

− 1 + λ

1 + ϑ1λ
z3

nln,p(x̄n)(αn tanh(
z3

nl p
n (x̄n)αn

ρ p
)

+ h̄1 tanh(
z3

nl p
n (x̄n)h̄1

ρ p
))− ϑ2�

1 + ϑ1λ
z3

nln,p(x̄n)

+ 5

4
a2

n + 1

4
τ 4

n − 1

4
ln−1,p(x̄n−1)z

4
n

≤ �Vn−1,p + b p
n,mz6

n Wn

2a2
n

ST
n (Zn)Sn(Zn)− b p

n,m

ln
W̃n

˙̂Wn

+ 5

4
a2

n + 1

4
τ 4

n − 1

4
ln−1,p(x̄n−1)z

4
n + 0.557ρ p

+ z3
nln,p(x̄n)αn. (45)

Using a process similar to Step i, it gets

�Vn,p ≤ −π
2

c1b p
1,mz4

1 −
n�

j=2

(c j b
p
j,mz4

j )+
n�

j=1

b p
j,m W̃ j Ŵ j

+
n−1�
j=1

ϒ̃ j + 5

4
a2

n + 1

4
τ 4

n + 0.557ρ p. (46)

By means of Young’s inequality, we get
n�

j=1

b p
j,m W̃ j Ŵ j ≤ −1

2

n�
j=1

b p
j,mW̃ 2

j + 1

2

n�
j=1

b j,maxW 2
j (47)

where b j,max = maxp∈H{b p
j,M}. Then, (46) becomes

�Vn,p ≤ −π
2

c1b p
1,mz4

1 −
n�

j=2

(c j b
p
j,mz4

j )

− 1

2

n�
j=1

b p
j,m W̃ 2

j +�p (48)

where �p =
n−1�
j=1

ϒ̃ j + 1
2

n�
j=1

b j,maxW 2
j + 5

4 a2
n + 1

4τ
4
n +0.557ρ p.
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Part 2: asynchronous interval.
1� If σ(tk) �= p, σ(t) = p with t ∈ [
k

1,
k
2). At this

moment, the MDETM (33) can ensure that

|uσ(tk)(tk)− u p(t)| ≤ λ|uσ(tk)(tk)| + Tw + �. (49)

Similar to the derivation in Part 1, we have

z3
nl p

n (x̄n)u(t) = z3
nl p

n (x̄n)u
σ(tk)(tk) ≤ z3

nl p
n (x̄n)u p(t)

1 + λ

+ |z3
nl p

n (x̄n)
� + Tw
1 − λ

|. (50)

Take the same steps as Part 1 to get

�Vn,p ≤ −π
2

c1b p
1,mz4

1−
n�

j=2

(c j b
p
j,mz4

j )−
1

2

n�
j=1

b p
j,m W̃ 2

j +�p

+ | z3
nl p

n (x̄n)Tw
1 − λ

| − z3
nl p

n (x̄n)Tw
1 − λ

tanh(
z3

nl p
n (x̄n)Tw
ρ p

)

≤ −π
2

c1b p
1,mz4

1 −
n�

j=2

(c j b
p
j,mz4

j )− 1

2

n�
j=1

b p
j,m W̃ 2

j

+�p + 0.557ρ p. (51)

2� This interval is nonempty only if r > 1. At this time,
σ(tk) �= p, σ(t) = p with t ∈ [
k

i ,
k
i+1), i = 2, · · · , r . The

MDETM (33) is the same as Part 1 to ensure

|uσ(tk)(tk)− u p(t)| ≤ λ|uσ(tk)(tk)| + �. (52)

Then, using the similar derivation given in Part 1, we get

z3
nl p

n (x̄n)u(t) = z3
nl p

n (x̄n)u
σ(tk)(tk) ≤ z3

nl p
n (x̄n)u p(t)

1 + λ

+ z3
nl p

n (x̄n)
�

1 − λ
. (53)

It can be obtained by using the same procedure as in Part 1

�Vn,p ≤ −π
2

c1b p
1,mz4

1 −
n�

j=2

(c j b
p
j,mz4

j )

− 1

2

n�
j=1

b p
j,mW̃ 2

j +�p. (54)

The synchronous/asynchronous discussion between the sub-
system and the candidate controller is completed. Next,
by selecting the Lyapunov function candidate Vp = Vn,p , we
have

�Vp ≤ −ηpVp +� (55)

where ηp = min{2πc1b p
1,m, 4ci b

p
i,m , l1, li , i = 2, 3, · · · , n},

� = max{�p + 0.557ρ p, p ∈ M}.
Theorem 1: For the switched stochastic nonlinear

systems (3) under Assumptions 1-3. The actual controller (32),
the adaptive law (12) and the MDETM (31)-(34) are
constructed for σ(t) with MDADT τap ≥ τ ∗

ap = lnμp
ηp

,

μp = max{ b p
i,m

bk
i,m
, 1, i = 1, 2, · · · , n,∀k ∈ M}, it can ensure

the following:
1) All the resulting system signals are SGUUB in

probability.

2) The tracking error e1 gets into a prescribed boundary no
later than a setting time.

3) The designed MDETM is Zeno-free.
Proof. First of all, we prove that all signals of the control

system are bounded, and the discussion is divided into two
cases.

Case 1: When μp = 1(p ∈ M), we get Vp = Vq ,∀p,
q ∈ M . Therefore, the common Lyapunov function V = Vp

for all subsystems satisfies (55), which means

E{V (t)} ≤ V (0)+ �

ηmin
∀t ≥ 0 (56)

where ηmin = min{ηp, p ∈ M}. Therefore, it can be concluded
that all the signals in the control system are SGUUB.

Case 2: When ∃μp,q > 1(p, q ∈ M). There are
functions γ , γ ∈ K∞, such that γ (	Y	) ≤ Vp(Y ) ≤
γ (	Y	), for an arbitrary T > 0, let t0 = 0 and
t1, t2, · · · , ts , ts+1, · · · , tNσ (0,T ) are the switching times on

[0, T ], in which Nσ (T, 0) =
d�

p=1
Nσ p(T, 0), p ∈ M .

Consider the piecewise continuous function H (t) =
eλσ(t)t Vσ(t)(Y (t)). From (55), on each interval [t j , t j+1), one
has

Ḣ(t) ≤ λσ(t)e
λσ(t)t Vσ(t)(Y (t))+ eλσ(t)t V̇σ(t)(Y (t)). (57)

Invoking the fact E[dw(t)] = 0, we have

E

�	 t j+1

t j

Ḣ (t)dt



= E{H (t−j+1)} − E{H (t j)}

≤ E

�	 t j+1

t j

eλσ(t) t�dt



. (58)

It is shown from Vp(Y (t)) ≤ μpVq(Y (t)), one has

E{H (t j+1)} ≤ μσ(t j+1)E
�

e(ησ(t j+1)−ησ(t j ))t j+1 H (t−j+1)
�

≤
j

i=0

μσ(ti+1)E

⎧⎨
⎩e

j�
i=0

(ησ(ti+1)−ησ(ti ))ti+1
H (t0)

⎫⎬
⎭

+ E

⎧⎨
⎩

j�
l=0

�
Q1,l

	 tl+1

tl
eησ(tl )

t
�dt

�⎫⎬
⎭ (59)

where Q1,l =
j�

i=l
μσ(ti+1) exp

�
j�

i=l
(ησ(ti+1) − ησ(ti ))ti+1



.

Hence

E{H (T −)} ≤ E{Q2 H (0)} + E

�	 T

tNσ (T ,0)

�eησ(tNσ (T ,0))t dt




+ E

⎧⎨
⎩

Nσ (T ,0)−1�
l=0

�
Q2,l

	 tl+1

tl
eησ(tl )t�dt

�⎫⎬
⎭

(60)

where

Q2 =
Nσ (T ,0)−1

i=0

μσ(ti+1) exp

�Nσ (T ,0)−1�
i=0

(ησ(ti+1)−ησ(ti ))ti+1

�
,
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Q2,l =
Nσ (T ,0)−1

i=l

μσ(ti+1) exp

�Nσ (T ,0)−1�
i=l

(ησ(ti+1)−ησ(ti ))ti+1

�
.

Then get from (60) that

E{Vσ(T −)(Y (T ))}
≤ E

�
Q3Vσ(0)(Y (0))

�
+ E

⎧⎨
⎩

Nσ (T ,0)−1�
s=0

�
Q3,l

	 tl+1

tl
eησ(tl )t�dt

�⎫⎬
⎭

+ E

�
e−ησ(tNσ (T ,0))T

	 T

tNσ (T ,0)

�eησ(tNσ (T ,0))t dt




≤ E{Q̄3Vσ(0)(Y (0))}

+ E

⎧⎨
⎩

Nσ (T ,0)−1�
l=0

�
Q̄3,le

−εmintl+1

	 tl+1

tl
eεmint�dt

�⎫⎬
⎭

+ E

�
e−εminT

	 T

tNσ (T ,0)

�eεmint dt




≤ E
�

Q̃3Vσ(0)(Y (0))
�

+ E

⎧⎨
⎩

Nσ (T ,0)−1�
l=0

�
Q̃3,le

−εmintl+1

	 tl+1

tl
eεmint�dt

�⎫⎬
⎭

+ E

�
e−εminT

	 T

tNσ (T ,0)

�eεmint dt



(61)

where

Q3 =
Nσ (T ,0)−1

j=0

μσ(t j+1) exp

� Nσ (T ,0)−1�
j=0

(ησ(t j+1)

− ησ(t j ))t j+1 − ησ(tNσ (T ,0))
T + ησ(t0)t0

�
,

Q3,l =
Nσ (T ,0)−1

i=l

μσ(ti+1) exp

� Nσ (T ,0)−1�
i=l

(ησ(ti+1)

− ησ(ti ))ti+1 − ησ(tNσ (T ,0))
T

�
,

Q̄3 =
d

p=1

μ
Nσ p
p exp

�
−

H�
p=1

[ηp

�
l∈φ
(tl+1 − tl)]

− ησ(tNσ )(T − tNσ )

�
,

Q̄3,l =
Nσ (T ,0)−1

i=l

μσ(ti+1) exp

� Nσ (T ,0)−1�
i=l

(ησ(ti+1)

− ησ(ti ))ti+1 − ησ(tNσ )T + ησ(tl )tl+1

�
,

Q̃3 = exp

� d�
p=1

N0p lnμp

�
exp

� d�
p=1

Tp

τap
lnμp −

d�
p=1

ηpTp

�
,

Q̃3,l =
d

p=1

μ
Nσ p (T ,tl+1)
p exp

�
−

d�
p=1

ηpTp(T, tl+1)

�
,

φ(p) stands for the set of l satisfying σ(tl) = p, tl ∈
{t0, t1, · · · ts, ts+1, · · · tNσ−1}, and εmin = min{εp, p ∈ M}
with εp ∈ (0, ηp − lnμp/τap).

Then, from τap ≥ (lnμp/ηp) together with (8) get

E{Vσ(T −)(Y (T ))}

≤ E{Q4Vσ(0)(Y (0))} + E

�
e−εminT

	 T

tNσ (T ,0)

�eεmint dt




+ E

� Nσ (T ,0)−1�
l=0

� d
p=1

μ
N0p
p e

d�
p=1

(ηp−εp)Tp(T ,tl+1)

· e
−

d�
p=1

ηpTp(T ,tl+1)

e−εmintl+1

	 tl+1

tl
eεmint�dt

��

≤ E{Q4Vσ(0)(X (0))} + E

�
e−εminT

	 T

tNσ (T ,0)

�eεmint dt




+ E

� Nσ (T ,0)−1�
l=0

⎛
⎝ d

p=1

μ
N0p
p e−εmin(T−tl+1)

· e−εmintl+1

	 tl+1

tl
eεmint�dt

��
≤ E{Q4Vσ(0)(Y (0))}

+ E

⎧⎨
⎩

d
p=1

μ
N0p
p e−εminT

	 T

0
�eεmint dt

⎫⎬
⎭

≤ e

d�
p=1

N0p lnμp

e
max
p∈M

((lnμp/τap)−ηp)T
E{γ (	Y (0)	)}

+
H

p=1

μ
N0p
p

�

εmin
(62)

where Q4 = exp{
H�

p=1
N0p lnμp} exp{

H�
p=1
(

Tp
τap

− ηp)Tp}.
Therefore, all signals in the control system are SGUUB

under MDADT method. Furthermore, we need to prove that
−ξ1(t) < e1 < ξ1(t), t ≥ T > 0. With the help of the
boundedness of z1 and tan(±π

2 ) = ∞, it follows that

−ξ2(t) < χ1 < ξ2(t). (63)

From (6) and (7), we have

−ξ2(t) < tanh(e1) < ξ2(t). (64)

According to the expression of ξ2(t), when T ≥ t , we can
obtain

0 < ξ2(t) = tanh(ξ1(t)). (65)

Upon using (64) and (65), it is shown that −ξ1(t) < e1 <
ξ1(t), t ≥ T .

Finally, according to the number of switches between two
continuous triggering instants, three cases are used to prove
that the designed MDETM is Zeno-free.

Case 1 Triggering Interval With No Switch: Let σ(t) = p
for all t ∈ [tk, tk+1). Upon utilizing the definition of β p(t),
one has

d
dt |β p| = sign(β p)β̇ p ≤ |u̇ p(t)|.
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With the help of (31), it follows that u p is differentiable
and u̇ p is bounded. From β p(tk) = 0 and lim

t→tk+1
β p(t) =

(λ|u p(tk)| + �) to get tk+1 − tk ≥ (λ|u p(tk)| + �)/�1 > 0,
where �1 is a positive constant satisfying |u̇ p| ≤ �1.

Case 2 (Triggering Interval With One Switch): Assume that
the switch occurs at 
k

1 ∈ (tk, tk+1). Noting that, it can be
seen from |uσ(tk)(tk)− u
k

1(
k
1)| < λ|uσ(tk)(tk)| + � + Tw that

no additional trigger will be generated at 
k
1. From case 1,

d
dt |βσ(tk)| ≤ �1 can be obtained in (tk,
k

1). As in case 1, it can

be guaranteed that d
dt |βσ(


k
1)| ≤ �2 in (
k

1, tk+1), where �2 is
a positive constant. It is shown from the above analysis that
tk+1 − tk ≥ (λ|uσ(tk)(tk)| + �)/{max�1, �2} > 0.

Case 3 (Triggering Interval With Multiple Switches): Nk

is the number of switches on the kth triggering interval, and
obviously tk+1 − tk ≥ Nkτ

∗
d > 0.

Based on the above analysis, the designed MDETM is
Zeno-free. The proof is completed.

Remark 6: To prove the stability of the switched system
based on the multiple Lyapunov function techniques, it is
important to construct the relationship between any two Lya-
punov functions. In this paper, the cumulative relationship of
two Lyapunov functions is found by using uniform coordinate
transformation and common adaptive law for all subsystems.

IV. SIMULATION EXAMPLES

In this section, the effectiveness of the proposed theoretical
results is verified by numerical example and practical example.

Example 1: Consider the following numerical example⎧⎨⎨⎨⎨
⎨⎨⎨⎩

ẋ1 = (l1,σ (t)(x̄1)x2)dt,

ẋ2 = (l2,σ (t)(x̄2)u + f2,σ (t)(x̄2))dt

+ gT
2,σ (t)(x̄2)dw,

y = x1

(66)

where σ(t) : [0,∞) → M = {1, 2}, l1,1 = 1 + 0.3 cos(x1),
l1,2 = 1 + 0.5 cos(x1), l2,1 = 1 + 0.7 sin(x1x2), l2,2 =
1 + 0.6 cos(x1x2), f2,1 = 0.1 sin(x1), f2,2 = 0.1 cos(x2

1),

gT
2,1 = x1 sin(x1), gT

2,2 = sin(x1). The desired signal yd(t) =
0.7 sin(t). The following membership functions are selected:

μF1
i = e−0.5(xi+1.5)2, μF2

i = e−0.5(xi+1)2,

μF3
i = e−0.5(xi+0.5)2, μF4

i = e−0.5(xi )
2
,

μF5
i = e−0.5(xi−0.5)2, μF6

i = e−0.5(xi−1)2,

μF7
i = e−0.5(xi−1.5)2 .

The initial conditions are [x1(0), x2(0)]T = [−0.5, 0.4]T ,
Ŵ1(0) = 15, Ŵ2(0) = 4. The design parameters are chosen as
a1 = 10, c1 = 5, l1 = 0.8, a2 = 10, c2 = 1, l2 = 0.7, λ = 0.3,
h̄1 = 5, � = 2, ρ1 = 1, ρ2 = 0.8, ξ0 = 0.1, ξ∞ = 0.01, κ1 =
0.7, s0 = 5, s1 = 3, κ2 = 20, N = 10 and the setting time
T = 2s. Furthermore, it is shown from μ1 = 1.4, η1 = 0.7,
μ2 = 1.3, η2 = 0.7 that τa1 ≥ 0.4807, τa2 ≥ 0.4110.

The simulation results are shown in Figs. 2-8. Fig. 2 displays
the tracking performance of the output y. Fig. 3 depicts
the control effect of tracking error e1, and e1 gets into a
prescribed boundary no later than a setting time T = 2s

Fig. 2. Responses of tracking performance in Example 1.

Fig. 3. Responses of control effect in Example 1.

Fig. 4. Responses of x2 in Example 1.

without −ξ1(0) ≤ e1(0) ≤ ξ1(0). The system state x2 and the
adaptive parameters Ŵ1, Ŵ2 are described in Figs. 4 and 5,
respectively. The trajectory of control input u is shown in
Fig. 6. Fig. 7 gives the time interval of event-triggered. Finally,
the responses of the switching signal is illustrated in Fig. 8.

Example 2: In order to verify the practicability of the
proposed control method, the RLC circuit given in [16] is
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Fig. 5. Responses of Ŵ1 and Ŵ2 in Example 1.

Fig. 6. Responses of control input u in Example 1.

Fig. 7. Inter-event times in Example 1.

considered.⎧⎨
⎩

ẋ1 = x2dt,

ẋ2 = (u − 1

Cσ(t)
− R

L
x2)dt + 1

L
x2 sin(x1)dw

(67)

where L = 1H , C1 = 0.5F , C1 = 0.8F , R = 0.1�. Define
x1 = qc, x2 = φL .

Fig. 8. Responses of switching signal in Example 1.

Fig. 9. Responses of tracking performance in Example 7.

Fig. 10. Responses of control effect in Example 2.

The membership functions are the same as Example 1. The
initial conditions are [x1(0), x2(0)]T = [1, 0.8]T , Ŵ1(0) = 1,
Ŵ2(0) = 1. The design parameters are chosen as a1 = 1, c1 =
25, l1 = 0.5, a2 = 5, c2 = 5, l2 = 0.1, λ = 0.3, h̄1 = 0.25,
� = 0.1, ρ1 = 1, ρ2 = 0.8, ξ0 = 0.1, ξ∞ = 0.01, κ1 = 0.7,
s0 = 5, s1 = 3, κ2 = 20, N = 10 and the setting time
T = 3s. Especially, we get μ1 = μ2 = 1, which means that
a common Lyapunov function can be found for system (67),
and Theorem 1 holds under arbitrary switching signals.
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Fig. 11. Responses of x2 in Example 2.

Fig. 12. Responses of Ŵ1 and Ŵ2 in Example 2.

Fig. 13. Responses of control input u in Example 2.

The simulation results for the RLC circuit are shown in
Figs. 9-15. From Figs. 9-10, we can see that e1 can be
constrained in performance function no later than a setting
time T = 3s without −ξ1(0) ≤ e1(0) ≤ ξ1(0). Figs. 11-13
display the boundedness of x2, Ŵ1, Ŵ2 and u. The trajectories
of the trigger time interval and the system signal are shown
in Figs. 14 and 15. Simulation results verify the practicality
of the proposed control algorithm.

Fig. 14. Inter-event times in Example 2.

Fig. 15. Responses of switching signal in Example 2.

V. CONCLUSION

Based on the event-triggered strategy, this paper solves the
problem of fuzzy control for stochastic switched nonlinear
systems with set-time predefined performance. Combined with
MDADT method and Lyapunov function stability analysis,
a fuzzy performance algorithm is proposed. The contribution
of this study is to introduce the MDETM into the performance
control design of switched stochastic nonlinear systems. The
proposed control algorithm can not only ensure that the track-
ing error enters the predefined region no later than a setting
time, but also overcome the adverse impact of asynchronous
switching on the system performance. Finally, the theoretical
results are verified by two simulation examples. In the future,
we will study the set-time PPC design of MIMO systems,
large-scale systems and multi-agent systems.
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