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Abstract— Analog implementation of Oscillatory Neural
Networks (ONNSs) has the potential to implement fast and ultra-
low-power computing capabilities. One of the drawbacks of
analog implementation is component mismatches which cause
desynchronization and instability in ONNs. Emerging devices
like memristors and VO are particularly prone to variations.
In this paper, we study the effect of component mismatches on the
performance of differential ONNs (DONNSs). Mismatches were
considered in two main blocks: differential oscillatory neurons
and synaptic circuits. To measure DONN tolerance to mismatches
in each block, performance was evaluated with mismatches
being present separately in each block. Memristor-bridge circuits
with four memristors were used as the synaptic circuits. The
differential oscillatory neurons were based on VO;-devices. The
simulation results showed that DONN performance was more
vulnerable to mismatches in the components of the differential
oscillatory neurons than to mismatches in the synaptic circuits.
DONNs were found to tolerate up to 20% mismatches in
the memristance of the synaptic circuits. However, mismatches
in the differential oscillatory neurons resulted in non-uniformity
of the natural frequencies, causing desynchronization and insta-
bility. Simulations showed that 0.5% relative standard deviation
(RSD) in natural frequencies can reduce DONN performance
dramatically. In addition, sensitivity analyses showed that the
high threshold voltage of VO2-devices is the most sensitive
parameter for frequency non-uniformity and desynchronization.

Index Terms— Componnts mismatch, hopfield neural network,
memristor, oscillatory neural networks, sensitivity analysis, VO2
device.

I. INTRODUCTION

NSPIRED by the synchronization phenomenon in the

biological brain, oscillatory neural networks (ONNs) are
processing architectures consisting of oscillators coupled with
synaptic circuits [1]. In ONNS, data is encoded in the oscillator
phase and processed through oscillator phase synchronization
and phase difference. In ONNs with binary values, oscillators
synchronize either in-phase or anti-phase, which are equivalent
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to values 1 and 0. Data encoding in the oscillator phase allows
low amplitude oscillators to be used for processing, resulting in
low power computations. Emerging low power and nano-scale
devices like vanadium dioxide (VO3) [2] and memristor [3]
also make it feasible to implement oscillators and synaptic
circuits efficiently. For instance, a basic oscillator circuit can
be made from the series connection of a VO, device and
a resistor or a CMOS transistor [4]. As a coupling compo-
nent, a memristor can be used to interconnect the oscillators.
Differential ONNs (DONNSs) have recently been introduced
that use differential oscillators, each providing one in-phase
and one anti-phase signal [5]. Differential outputs allow a
memristor-bridge synaptic circuit to be used to implement
positive, negative, or zero weights [6].

Although the use of emerging devices is efficient as a
means of implementing ONNs in hardware, variability in these
components constitutes a serious constraint. VO, devices,
for example, are prone to device-to-device and cycle-to-cycle
variability in resistances and threshold voltages [4], [7]. This
variability is the main problem for large-scale implemen-
tations of coupled oscillators [4], [8]. On the other hand,
memristors also suffer from device-to-device and cycle-to-
cycle variations [9], [10]. While device-to-device variability
is related to fabrication processes such as differences in film
thicknesses [10], cycle-to-cycle variations are associated with
the memristor’s random physical operating mechanisms, such
as conductive filament variations [11]. Variability in basic
components (resistors and capacitors) is inevitable, not only
in emerging devices but also even in modern technologies.
It is therefore essential to consider the device variability of all
components in an ONN’s hardware.

It is worth mentioning that theoretical analysis shows that
ONNs require quasi-perfect synchronization for computing
purposes [12], [13], which can be affected by device mis-
matches. For instance, in [14], it is shown that the syn-
chronization of spin torque oscillators (STOs) is sensitive to
device variations. In [15] and [16], the robustness to noise
and devices’ non-idealities is studied in ONNs architectures
that are based on the Kuramoto model (sinusoidal oscillators).
To the best of our knowledge, a precise study of device
mismatches in VO,-based ONNs has not been provided in
the literature.

This paper studies the effect of device variability (mis-
matches) on DONN performance. Mismatches were con-
sidered in all components of the main blocks (differential
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oscillatory neurons and synaptic circuits). First, they were
applied to each block separately to study their effect. Sen-
sitivity analysis was then used to find the components and
parameters most critical to performance degradation. Simu-
lation results showed that a mismatch in the components of
differential oscillatory neurons, especially in the high threshold
voltage of VO, devices, was more critical for performance
degradation in terms of desynchronization and instability than
a mismatch in the synaptic connections. Finally, design space
exploration was conducted to study DONN tolerance to mis-
matches when the VO, parameters are varied.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief introduction to ONNSs, VO, devices, and memris-
tors. Section 3 reviews DONN architecture, storing patterns,
and retrieving patterns, and also introduces the method used
to apply mismatches to the components. Section 4 presents
the simulation results, sensitivity analyses, and design space
exploration (DSE), and some conclusions are drawn in
Section 5.

II. BACKGROUND

ONNs are dynamic systems made up of weakly connected
oscillatory neurons. They are described through Ordinary
Differential Equations (ODEs) ) [1], [17]

n
)'ci:fi(xi)—i-Zwijgij(xi,xj),i=1,2,...,n (1)

j=1
where n is the number of the oscillatory neurons and x; is the
state vector of oscillatory neuroni (x; € R, m > 2). Function
fi(x;) describes the dynamic behavior of oscillatory neuron
i and is usually formulated using m-dimensional differential
equations. Parameter w;; is the adjustable weight between
oscillatory neurons i and j. Synaptic function g;;(x;x;)
defines the effect of oscillatory neuron j on oscillatory neu-
ron i. Broadly speaking, ONNs comprise two main blocks:
oscillatory neurons f;(x;) and adjustable synaptic functions
w;jgij(xi,xj). In the following subsections, the hardware

implementation of these two blocks is reviewed.

A. Oscillatory Neurons

Function f;(x;) describes the dynamic behavior of oscil-
latory neurons that can be implemented using VO, devices.
A VO, device is a two-terminal component based on a
phase change material that presents insulator-to-metal (IMT)
and metal-to-insulator (MIT) transitions [2]. The transitions
are temperature-driven, caused by in-device joule heating in
the presence of an applied voltage. Increasing the device
temperature causes a change from a high resistance (Rpy)
state to a low resistance (Ry) state. Conversely, there is a
transition from a low to a high resistance state when the device
temperature decreases. From a circuit analysis point of view,
this local in-device temperature dependence can be understood
more simply as a simple terminal voltage dependence [2], [4],
[8], [18]. In [18], a SPICE model for VO, devices is introduced
where the transitions are related to a high threshold voltage
Vi and a low threshold voltage V. Fig.1(a) shows the R-V
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Fig. 1. (a) R-V characteristic of a a VO2 device. (b) A single-ended oscillator
circuit and its output. (c) Circuit of the differential oscillatory neuron capable
of producing differential signals. In these simulations, the parameters values
are Rg = 1/Gg = 6 kQ, Cp = C, = C = 109 nF, Cc =109 nF, Vg3 =
2.5V, Vg =2V, Vi = 1V, Ry = 1kQ, Ry = 100kQ, and z = 100ns. The
initial voltage of C= C), = €, and Cc is zero.

characteristic of a VO, device. When an increasing applied
voltage reaches Vg, the resistance switches from its high
resistance value Ry = 1/G, to its low resistance value R; =
1/Gp. When a decreasing applied voltage drops below Vi,
there is a transition from the low resistance state to the high
resistance state. The time constant of the transitions is 7. In this
paper, simulations are based on the VO; model introduced in
[18] (see the appendix for more details). Default values of the
parameters are Vg = 2V, Vp, =1V, R = 1kQ, Ry = 100kQ,
and r = 100ns.

Fig.1(b) shows a single-ended oscillator comprising the
series connection of a VO, device and a resistor with a
capacitance load. Differential oscillatory neurons are designed
by coupling two single-ended oscillators through a capacitor
(Fig.1(c)). The coupling capacitor forces the positive branch
p and negative branch n to stay in anti-phase, thus producing
two signals of opposite phase (the time difference between the
peak time of signal v, and v, is around half of the oscillators’



RI

Fig. 2. (a) Memristor-bridge circuit. (b) Equivalent circuit of two differential
oscillatory neurons coupled through a memristor-bridge circuit.

period). The oscillator differential output is defined as
vP-v" and the oscillator period is determined by the following
relation [5] which comprises two terms of rising time and
falling time:

TZC*X[( 1 )ln(vmax_VL)

GL + Gs Vmax - vH
1 Vinin — V.
+ ( ) ln( min H):| (2)
GH + Gs Vmin - VL
where Viyux = GsVdd - ond Vinin = g S‘_/chd. Parameter C*

G+Gy s
is the capacitance at the output nodes of the differential

oscillatory neurons and is approximately considered as C* ~
C + C,. The capacitance of an output node is the capacitance
of an equivalent capacitor between the oscillator output and
ground.

B. Synaptic Circuit

Synaptic circuits can be designed using resistors to imple-
ment function w;; g;; (x;,x;). Depending on the architecture of
the oscillator circuit, they can be single-resistor circuits (com-
patible with single-ended oscillators) or Wheatstone-bridge
circuits (compatible with differential oscillators). The resistors
can be replaced by memristors to make the synaptic circuits
adjustable. A memristor is a two-terminal resistive device
whose resistance is adjustable. In addition to its application
as an analog memory, memristor can be used in different
applications such as machine learning [19] and dynamical
systems [20], [21]. A memristor-bridge circuit is a counterpart
of the Wheatstone-bridge circuit, which is compatible with dif-
ferential oscillatory neurons, and can have positive, negative,
or zero weights. Fig. 2(a) shows a memristor-bridge circuit in
which the differential terminals allow differential oscillatory
neurons to be connected. Fig. 2(b) is an equivalent memristor-
bridge circuit coupling two differential oscillatory neurons.
Conductance gl.(f) is located between the positive branches
(negative branches), tending to put positive branches (negative
branches) in phase. When the positive branches (negative
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Fig. 3. Hardware architecture of the fully connected DONN. Differential
neurons are implemented with a pair of VO, oscillators, oscillating in anti-
phase. Synapses are implemented using memristor-bridge circuits.

branches) are in phase, then the two differential oscillatory
neurons are considered to be in phase. On the other hand,
(c) . .. .
conductance g; ;18 located between a positive and a negative
branch, thus tending to put them in phase while the positive
branches (negative branches) will tend to be in anti-phase.
When the positive branches (negative branches) are anti-phase,

then the two differential oscillators are considered to be anti-

phase. Depending on the relative values of gl.(;l) and gl.(jc), two

coupled differential oscillatory neurons tend to be in phase or

@ @

anti-phase. When g’ > gl.(jc) (g < gi(;)) they tend to be

in-phase (anti-phase). It is therefore possible to implement a

coupling circuit with a positive (if gl.(;l) > g}?), negative (if

gl.(j(.i) < gl.(;)), or zero (if g-(d)

— ,© :
i =& ) weight.

III. DIFFERENTIAL ONNS (DONNS)

DONNs comprise differential oscillatory neurons and
memristor-bridge circuits, as shown in Fig. 3. Their fully
connected architecture is an oscillatory counterpart of the
Hopfield Neural Network [22] which can be used as an
associative memory to store and retrieve patterns.

A. Storing Patterns

Here, a learning rule was used to store patterns, adjusting
the synaptic weights accordingly. A pattern was represented by
a vector with N elements (pixels). Only binary values were
considered. Once the weights were known, a mapping rule
was used to obtain the physical resistances for the memristor-
bridge synapses. To store patterns in a DONN, we used the
following Hebbian rule to calculate the weights [23]

P
1
wij = NZbi(k)b;k)i,j € {1.2.3,..., Lo e (—1,+1)
k=1

3)

where P was the number of stored pattern, N was the number
of pixels in each pattern (equal to the number of neurons in
the DONN), and bi(k) is the binary element i of pattern k.
Elements bl.(k) and b® of all stored patterns were used to
calculate weight w;;. Using the Hebbian rule, the weight
between the neurons that were corresponding to the pixels
with the same value was increased. In other words, for a given



pattern, if pixel i and j had the same value (either —1 or +1),
the weight between neuron i and j would be increased. On the
other hand, if the value of pixel i and j was different, the
weight between the corresponding neurons decreased.

The following rules were used to map the sign and value of
the above weights to the memristors’ resistances. Weights w;;
were mapped to the g;; values using the following relation [5]

80
, wij #0
gij = +,§Ox X |ml]|n0rm B 4)
1+ B8 xP’ Y

where parameter f was a small positive value (e.g., 0.2)
that controlled the mapping range for conductance g;;. Value

|mi i |n0rm was the Min-Max normalization of the matrix M =

(|%ij|) € RE*E. To obtain the Min-Max normalization, the
following relation is used

1

—| —min
ZU”

= 5)

norm max — nin

‘ 1
wij

where min and max are the minimum and maximum values
of |1/w;;| among all non-zero weights, respectively. A larger
value for £ provided a larger difference between the values
of conductance g;;. In other words, for a given number
of patterns P, there were discrete values of weights w;;
and ’m,-j‘norm. By increasing £, the difference between the
discrete results of the denominator in (4) was increased, and
consequently the difference between the different values of
conductance g;; was increased.

The following mapping rule was also used to map the
weight signs to resistance values gi;l and gi(jc)

d
agl-(j) = gl(;)wij <0
d
d
agfj) = agi(;)w,-j =0

where o > 1 was a constant value. The default value of a is
1.8 for all simulations.

Parameter go is the maximum conductance (inverse of the
minimum resistance) of memristors g, and was determined
using the following conditions [5]

GsVaa+sN—-D VL
(Gs+GL+(N—-1g)
GsVaa +g(N —1)Vy
(Gs+Gu+(N-1)g)
where N was the number of differential oscillatory neurons.
These conditions guaranteed that the voltage of the oscillators

would not reach stable points, resulting in permanent oscilla-
tion [24]. For more details see [5].

Vi )

VL ®)

B. Applying Test Patterns and Retrieving Stored Patterns

Input patterns were applied to DONNs via phase initial-
ization of the differential oscillatory neurons. Each pixel of
the input pattern was applied to the corresponding differential
oscillatory neuron. Depending on the binary pixel value, the
power supply was applied first to one of the branches of the

Applied
pattern

Retrieved
pattern

®

Fig. 4. (a) Application of an input pattern. For white pixels, the power
supply is applied first to the positive branch of the corresponding neuron and
then, after a one-half period, to the negative branch. (b) After convergence,
the phase of the positive branches is compared with the phase of the reference
neuron to determine which neurons are in-phase or anti-phase, corresponding
to the white and black pixels of the retrieved pattern, respectively.

differential oscillatory neuron, and then, after a specific delay,
to the second branch. The applied delay time had to be half of
the oscillators’ period. Fig. 4(a) shows an example of applying
the first and last pixels of a pattern to the corresponding
differential oscillatory neurons. The first pixel is white (equiv-
alent to binary value 1) and the power supply was applied
first to the positive branch of the corresponding differential
oscillatory neuron and then, after a one-half period, to the
negative branch. In contrast, for the black pixel (equivalent to
binary value —1), the positive branch was powered up after
the negative branch.

When an input pattern is applied to a trained DONN,
differential oscillatory neurons start to change their phases
and synchronize with each other either in-phase or anti-phase,
depending on the stored patterns. By identifying the phase
of the neurons with respect to a reference neuron (the first
neuron), the retrieved pattern is determined. For a given neuron
that is in-phase (anti-phase) with the reference neuron, a white
(black) pixel value is assigned. In this study, a pattern and
its complement were interchangeable. Fig. 4(b) shows the
retrieval of a stored pattern in which the positive voltages were
compared with the reference neuron to determine whether the
neurons were in-phase or anti-phase.

C. Evaluation

To evaluate DONN performance, three specifications were
considered: retrieval accuracy, synchronization level, and sta-
bility rate. Retrieval accuracy was the number of correct
retrieved patterns against the total number of applied patterns.
Synchronization level was defined to measure the degree to
which the differential oscillatory neurons were synchronized
either in phase or in anti-phase. For an input pattern p, the



m=m(At)

< » At
T 314 -T2 -TA 0 JZ] 2 3t4 T

Fig. 5. Function m = m(Ar) used to map a time difference to a value
between 0 and 1.

synchronization level in cycle ¢ was a value in the range of
[0 1] that showed how much the neurons were synchronized
with each other, either in-phase or anti-phase. When the
neurons were not exactly in-phase or anti-phase, a value less
than 1 was assigned, depending on the phase difference. For
an input pattern p, the synchronization level in cycle ¢ was
calculated using the following relation [5]

1 N
SYNp (©) =<~ D m(PTi () = PTres (©)) > (9)

i=1

The SYNj(c) value shows the synchronization level at
cycle ¢, which is related to the time difference between the
peak time of signal i at cycle ¢, PT;(c), and the peak time of
the reference signal PT;.r(c) (the signal of positive branches
vf was used for calculations). Function m = m(At) maps a
time difference At to a value between O to 1 (Fig. 5.).

Stability rate was defined as a value in the range of [0 1]
corresponding to the number of applied patterns resulting in

stable outputs divided by all the applied patterns.

#Psrable
#Papplied

STB = (10)

where #Ps;qp10 1s the number of patterns that result in a stable
output and #Pyppiieq is the number of all applied patterns.
The output was stable if, after a pattern retrieval, the
retrieved pattern did not change (i.e., the phase of the neurons
did not change with respect to each other). On the other hand,
for an unstable output, the extracted pattern changes over time.

D. Applying Mismatches

Mismatches between the parameters of identical devices
are the result of random processes that occur during the
fabrication phase. In this paper, mismatches were considered
in the parameters of all devices and DONN performance was
evaluated in the presence of those mismatches. In this regard,
for a given parameter x, samples with normal distribution were
generated by

X~N(x,0) (11)
where X is a set of samples that are normally distributed with
mean x and variance o 2. For a given parameter, the number
of samples equaled the number of the corresponding devices

in the DONN’s architecture. The device parameters are listed
in Table I.

TABLE I
PARAMETERS OF DONNS WITH FREQUENCY OF F=1/T=1MHz

Parameters Value
Number of neurons N 8, 16
Supply voltage vdd 2.5V
Vi 2V
VO, parameters Vi Lv
Ru=1/G¢ 100kQ
Ri=1/Gu 1kQ
Series resistance Rs=1/Gs 6kQ
Mapping parameters ¢ 1.8
s 0.2
Coupling capacitor Cc 10.9 pF
Parallel capacitor C 109 pF
IV. RESULTS

This section describes the simulation of the DONNSs in
a SPICE simulator, with mismatches in the main blocks
(synaptic circuits and differential oscillatory neurons). The
effects of mismatches in each block were studied separately to
evaluate the DONN’s tolerance. Sensitivity analysis was then
used to obtain the components and most critical parameters
for performance degradation.

A. Mismatches in the Synaptic Circuits

In this part of the study, mismatches were considered in
the synaptic circuits, caused by deviations in the resistance
of memristors. It was assumed that memristors were already
programmed to the desired resistance and they were treated
as resistors with mismatches. Random resistance values with
normal distribution were generated using Eq. (11), in which
the mean value x was the nominal value of a given resistance.
As an example, Fig. 6 shows the resistance histogram for
the synaptic circuits of a DONN when the resistance relative
standard deviation (RSD) o was 5%. In this case, the number
of neurons was N = 16 and the number of stored patterns was
P = 3. Note that for N = 16, the number of memristors was
2N.(N — 1) = 480. In addition, only four different nominal
memristor resistance values were obtained using the Hebbian
rule and mapping rule (see Fig. 6).

To evaluate DONN performance (N = 8, 16), independent
simulations were performed 10 times for each resistance RSD
value (for each simulation, mismatches are different). Other
DONN parameters are summarized in Table I. Fig. 7(a)-(b)
shows DONN performance (N = 8, 16) in terms of syn-
chronization level, retrieval accuracy, and stability rate for
different resistance RSDs. Synchronization level and stability
were both above 90% when RSD was less than 20%. Retrieval
accuracy was also robust up to 15% mismatches but then
fell as RSD continued to increase. These results show that
differential oscillatory neurons can synchronize in the presence
of relatively large mismatches in synaptic weights (up to 20%).
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Fig. 7. DONN performance (N = 8, 16) in the presence of mismatches in
the memristors of the synaptic circuits. (a)-(b) The DONN’s synchronization
level, retrieval accuracy, and stability rate change according to the resistance
RSD.

Instability arose when the mismatches were further increased.
Fig. 8 shows an unstable operation when the resistance RSD
was 30%. The top figure shows the voltages of the positive
branches and the bottom figure includes the input pattern, the
1% cycle pattern, the synchronization level, and the evolution
of the retrieved pattern. The output pattern did not converge
to a specific pattern but altered continuously.

B. Mismatches in the Differential Oscillatory Neurons

In general, mismatches in natural frequencies prevent
oscillators from synchronizing. For instance, two coupled
Kuramoto oscillators can only tolerate limited mismatches
of natural frequencies dependent on the coupling strength
[25]. The same constraint also exists for DONNs. Differ-
ential oscillatory neurons comprise VO, devices, resistors,
and capacitors, and mismatches change the specifications of
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Fig. 8. Simulation of a DONN with N = 16 with a resistance RSD of 30%,
showing unstable behavior.

TABLE 11
MAPPING BETWEEN RSD AND ASD RANGES IN FIG. 9

nominal RSDumin  RSDmax ASDmin ASDmax
Natural v 0% 0.6% 0 6KHz
freq.
Vu 2V 0.03% 0.17% 0.6mV  3.4mV
Vi 1V 0.13% 1% 0.13mV  9.7mV
Ru 100k 0.8% 5% 0.8kQ 5kQ
R 1kQ 1% 5.3% 10Q2 53Q
R 6kQ 0.1% 0.7% 6Q2 420
C 109pF 0.12% 1% 0.13pF 1.1pF
Cc 10.9pF 1% 7.5% 0.11pF  0.82pF

the neurons, specifically their natural frequency. Considering
Eq. (2), the natural frequency of differential oscillatory neu-
rons is related to the main component parameters, which are
listed in Table. II. Variations of each parameter directly cause
variation in the natural frequency of neurons. Non-uniformity
of frequencies can prevent oscillators from synchronizing, and
consequently cause instability in DONNS.

This work studied the effect on DONN performance of mis-
matches in the components of differential oscillatory neurons.
To do so, DONNs with different numbers of neurons (N = 6,
8, 12, 14, 16) were designed. For a given size of DONN (N),
random patterns were generated and stored in DONNs where
the number of stored patterns was 2 for N = 6, 8, and 3
for N = 12, 14, 16. Random test patterns were also gener-
ated for evaluation (the number of test patterns was 1.5N).
Mismatches were then applied to the component parameters
separately. The seven parameters shown in Table II correspond
to the differential oscillatory neurons. For a given parameter,
Eq. (11) was used to generate M random values with normal
distributions where M was the number of components used in
a DONN with N neurons (number of components are: #Mem-
ristor = 2N(N-1), #Capacitor_C = 2N, #Capacitor_Cc = N,
#Resistor = 2N, #VO; = 2N). The nominal value of the
parameter was used as the mean value u, and the standard
deviation ¢ was increased to evaluate the tolerance of DONNs
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Fig. 10. Sensitivity of the natural frequency to the component parameters (a).

Dependence of S{,v to the parameters of the VO, device in planes Ry-Ry,
(b) and V-V (c).

to the component mismatches. Simulations were performed
with the aforementioned variables (N and component RSD)

0.01C

oscillatory neuron synaptic circuit

Fig. 11. A conventional ONN with four single ended oscillatory neurons.

and test patterns were used for evaluation. Finally, the average
results were calculated for each given component RSD by
applying the test patterns to the network of different size N.
The results are shown in Fig. 9. Table II maps the RSD
ranges in Fig. 9 to the corresponding ASD (absolute standard
deviations) used in this study. In each figure, the top horizontal
axis shows a parameter RSD and the bottom axis is the
natural frequency RSD. Each data point is the average of
simulations with different number of neurons (N = 6, 8, 12,
14, 16) and random patterns (1.5N) for a specific RSD value.
The results show that the DONN’s performance, in terms of
synchronization level, retrieval accuracy, and stability rate,
decreased when the parameter RSD and, equivalently, the
natural frequency RSD increased. The last figure is the average
of all the results, showing the performance of the DONN
with respect to the natural frequency RSD. Here, performance
dropped dramatically when the natural frequency RSD was
above 0.5%, showing that DONNs are more vulnerable to
neuron mismatches than to synaptic circuit mismatches. The
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cases and the output is retrieved correctly for both cases.

overall effect of mismatches in differential oscillatory neu-
rons could also be considered as frequency deviation, with
performance degradation being caused by the non-uniformity
of frequencies. It was therefore worth subjecting the natural
frequency of neurons to sensitivity analysis to determine the
most critical parameters. The sensitivity analysis is described
in the next subsection.

C. Sensitivity Analysis

Fig. 9 shows that performance degradation is related to
natural frequency RSD. Natural frequency RSD also depends
on parameter RSD. One of the differences between the para-
meters is how they impact the natural frequency RSD. Some
parameters, such as Vg, have a stronger impact on the natural
frequency RSD, while others have less impact. With this in
mind, sensitivity analysis was performed to determine the
impact of each parameter variation on the natural frequency
variation. One approach to sensitivity analysis is to take the
partial derivative of the output (frequency f) with respect to
an input (parameter x)

0
S){_i_f

T (12)

where x and f are the nominal value of a parameter and
the natural frequency of the isolated oscillators, respectively.
The ratio x/f was introduced to normalize the sensitivity

coefficient Sxf .

Fig. 10 (a) shows the sensitivity of the natural frequency
with respect to the component parameters, calculated using
Eq. (2) and Eq. (12) around the nominal frequency f = 1MHz.
The sensitivity analysis showed that the most critical parameter
was the high threshold voltage of the VO, devices (Vy), while
the low resistance R; and the coupling capacitance C¢ had
the least impact on frequency variation.

Sensitivity coefficient S‘CH was also calculated when the
main parameters of VO, devices were altered. Figs. 10(b)-(c)
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Simulation of ONNs with differential oscillatory neuron (a) and single-ended neuron (b). The input pattern and stored pattern were same for both

show S‘];H in planes Ry-R; and Vy-Vp, respectively. As can

be seen in Figs. 10(a)-(b), S‘CH was lower for larger Ry and
Ry and lower Vy and V.

D. Mismatches in Single-Ended ONNs

In this subsection, a conventional ONN [26] based on
the single-ended oscillatory neuron is studied (Fig. 11). The
parameter values of the single-ended oscillatory neuron were
the same as the nominal values of the differential oscillatory
neurons listed in Table. II. The synaptic circuit was comprised
of a memristor in parallel with a capacitor. The capacitor had
a fixed value while the synaptic weights were mapped to the
resistance of the memristor.

The target ONN included four neurons and one pattern
was stored in it. The synaptic weights were calculated using
the Hebbian rule, then each weight was mapped into the
values of the memristor and capacitor in the corresponding
synaptic circuit. Due to the storage of one pattern, there
were two distinct values for the synaptic weights (a negative
and a positive value). The value of the capacitor in the
synaptic circuit was 0.01C for both negative and positive
weights. The resistance of the memristor was 8k€Q and 180k€2
for the positive and negative synaptic weights, respectively.
To compare the results, a DONN counterpart with four neurons
was simulated, accordingly.

Fig. 12 shows the simulation results when a random input
is applied to the ONN and DONN. In this simulation, mis-
matches were not applied to the components. In both networks,
the stored pattern was retrieved correctly.

To show the effect of the mismatches, random varia-
tions were applied to parameter Vg as a critical parame-
ter using (11). RSDyy (RSD of Vy) was changed from
0.001 to 0.005 and 10 independent simulations were per-
formed for each value of RSDy . Fig. 13(a)-(b) shows simula-
tion results for the DONN and single-ended ONN. The bottom
horizontal axis is the natural frequency RSD corresponding to
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the RSDy g (in the figures the range of the natural frequency
RSD is shown from 0 to 0.6%). The results show that the
single-ended ONN is much more vulnerable to mismatches in
comparison to DONN. Although in this case, the DONN was
more tolerant to the mismatches compared to the single-ended
ONN, its performance dropped dramatically when the larger
size of the network was increased (see Section. IV (B)).

E. Design Space Exploration

Design Space Exploration (DSE) is the methodical exam-
ination and elimination of undesirable design points based
on relevant criteria. During DSE, variety of different design
parameters can be explored, such as effective parameters
of devices. Multiple optimization objectives, such as per-
formance, power consumption, and cost, are considered
simultaneously.

In this paper, the main parameters of VO, devices were
explored. For this purpose, parameters Vg, Vi, Ry, and

Ry were varied. The other parameters had default values
and are summarized in Table I. The performance in terms
of synchronization level, stability rate, and retrieval accuracy
was considered as optimization objective. Performance was
optimized in presence of mismatches of parameter Vg as a
critical parameter.

For simplicity, DSE was conducted in two steps. First,
parameters Vy and Vp were varied and the best values for
them were selected to give maximum performance in terms of
synchronization level, stability, and accuracy. Then parameters
Ry and Ry were altered and performance was evaluated. The
number of neurons was then N = 8, 16 and the number of the
stored patterns was 2 for N = 8 and 3 for N = 16. Random
test patterns were also generated for evaluation (the number
of test patterns was 1.5N).

Figs. 11 (a-f) illustrates DONN performance when para-
meters Vg, Vi, were varied. Vg was made larger than Vp,
(Vg = Vp40.4V) and RSDyy (RSD of Vgy) was changed
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from 0.001 to 0.005 (three values are shown in the figures).
Fig. 14 (a) and Fig. 14 (d) show the synchronization levels
for N = 8 and N = 16, respectively. When RSDy g
increased, the synchronization level decreased accordingly.
The synchronization level also dropped when Vg increased.
It is worth to mention that Vg, is constant and equal to 2.5V.
Similar results were also observed for stability (Fig. 14(b)
and Fig. 14(e)). However, accuracy (Fig. 14(c) and Fig. 14(f))
was low for small Vg and V; values. It was observed that
oscillatory neurons usually stuck at their initial state and their
phases were not changed when Vg and Vi values are small.
To select the best values for Vg and Vj, the maximum value
for RSDy p at each point was obtained in which the synchro-
nization level, stability, and accuracy were larger than 80%.
Fig. 14 (h) (N = 8) and Fig. 14 (i) (N = 16) show
the maximum RSDy gy values at each point that satisfied the
abovementioned condition. Considering these figures, Vg and
V1. would have to be selected from those values corresponding
to the maximum RSDypgy to obtain the highest level of
robustness to Vg variations. In Fig. 14(h), the optimum point
was obtained with Vg=1.4 and V1 =0.6, allowing a maximum
RSDy gy of 0.75%. Similarly, in Fig. 14(i), the optimum was
obtained with Vg values ranging from 1.4V to 1.8V and
Vi =0.6V, which gave the maximum RSDy y =0.25%. Thus,
the best point for satisfying the abovementioned condition was
with Vg =1.4V and Vp =0.6V, allowing maximum RSDy g
values of 0.75% and 0.25% for N=8 and N=16, respectively.
Equivalently, the maximum ASDy g would be 15mv and Smv
for N=8 and N=16, respectively. In the case study illustrated
in Table II and Fig. 9 (Vyg=2 and Vy=1), the maximum
RSDypy (ASDypg) for satisfying the condition was 0.1%
(2mV). Using the optimum values (Vg=1.4 and V7=0.6),

25

Retrieval accuracy
[T

o

Retrieval accuracy
= »
in =] in

robustness therefore improves over a factor of 7.5 and 2.5 for
N = 8 and N = 16, respectively.

In the next step, parameters Ry and R; were altered
and DONN performance was evaluated. Fig. 15 illustrates
DONN performance when parameters Ry, Ry, were varied.
RSDyy was changed from 0.001 to 0.005 (three values are
shown in the figures). Fig. 15 (a) and Fig. 15 (d) show the
synchronization levels for N = 8 and N = 16, respectively.
The synchronization level did not change much when Ry
changed from 100KQ to 500KQ. It was reduced, however,
when Ry was increased from 0.5KQ to 1.5 KQ. Stabil-
ity (Figs. 12 (b)-(e)) and retrieval accuracy (Figs. 12 (c)-(f)
attained maximum robustness at R; =1KQ and Ry =100KQ.

V. CONCLUSION

This paper studies the effect of mismatch on DONN
performance. Mismatches were considered in synaptic cir-
cuits and differential oscillatory neurons, separately. Mem-
ristor variations in the synaptic circuits caused performance
degradation in terms of synchronization level, stability, and
retrieval accuracy. Simulation results showed that DONNs are
tolerant to up to 20% of mismatches in the memristors of the
synaptic circuits. Mismatches in the components of differential
oscillatory neurons, however, have a more adverse effect on
DONN performance. These variations cause non-uniformity
in the natural frequency of the differential oscillatory neurons,
resulting in desynchronization and instability with 0.5% of
natural frequency RSD. It is worth mentioning that as far as
the simulation time was reasonable, we increased the number
of neurons and altering parameters to improve the generality
of the results.
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VO3 model [18].

Sensitivity analysis showed that the factor which most
affected the non-uniformity of natural frequencies was the high
threshold voltage of VO, devices. It is therefore important
to adopt suitable control measures in the fabrication process
of VO, devices, with special attention to high threshold
parameter Vg, to mitigate the adverse effects of mismatches.
In addition, circuit designers can focus on circuit design tech-
niques to reduce the sensitivity of frequency to VO, devices,
specifically parameter V. Calibration would also be another
solution in which calibration techniques (either during device
fabrication like laser trimming or adding tunable materials or
compact calibration circuit) can be used in this regard. This
opens many possibilities and future research avenues, but it is
beyond the scope of this paper.

VI. APPENDIX

In this section, the VO, model is reviewed which has been
introduced in [18]. Fig. 16 shows the circuit equivalent of the
model in which the insulator or metal state is decided by a
voltage comparator and is stored in capacitor C,. The output
voltage of the comparator ranges from 0 to 1 and is defined
by

V, =0.5(1 + tahnQa(VT — V7)) (13)

where o determines the slope of the comparator transition
curve. The device current is given by

I =1f=GsVy (14)

In the insulator state, the comparator output is Vo =1V,
Ve = 0, and Ry = Rp. By increasing V beyond Vy, the
comparator output is changed from 1 to O which results in
the changing of V. from O to 1, and consequently, device
resistance Ry changes from Ry to Ry (IMT). In this state
(the metal state), if V gradually decreases below Vi, the
comparator output is changed from O to 1 which results in
the changing of V. from 1 to 0, and consequently, device
resistance Ry changes from R; to Ry (MIT). The time
constant of the changing of V. from 0 to 1 (1 to 0) is
7, = R,.C, which determines the time constant of IMT (MIT).
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