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Optimized MASH-SR Divider Controller for
Fractional-N Frequency Synthesizers
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Abstract— The divider controller in a conventional
phase-locked loop fractional-N frequency synthesizer modulates
the instantaneous division ratio of the feedback divider. The
divider controller is typically a digital circuit that performs
quantization of its input signal. Multi-stage noise shaping
digital delta-sigma modulators (MASH DDSMs) and successive
requantizer (SRs) are two representative divider controller
architectures offering lower complexity and better spur
performance, respectively. The MASH-SR, as a hybrid of
these two classes of divider controllers, can achieve both lower
hardware cost than the SR and better performance against spurs
than a MASH DDSM. In this work, we present an optimized
MASH-SR hybrid and compare the design with its conventional
MASH DDSM and SR counterparts.

Index Terms— Multi-stage noise shaping structure-successive
requantizer (MASH-SR) divider controllers, MASH-SQ divider
controllers, phase locked loops, phase noise, quantization noise,
nonlinearity, spurious tones.

I. INTRODUCTION

ADIVIDER-BASED phase-locked loop (PLL) is com-
monly used to implement fractional-N frequency synthe-

sis, as shown in Fig. 1. The divider controller output y[n] mod-
ulates the instantaneous division ratio of the multi-modulus
divider (MMD) around an integer value Nint [1]. When the
divider controller input x[n] is constant, the expected value
of the output of the divider controller is a desired fraction α,
giving:

E(Nint + y[n]) = Nint + α. (1)

The instantaneous integer division ratio deviates from the
exact fractional value, but has the correct long-term average
value. This modulation of the MMD introduces a phase noise
contribution that can be observed in the output spectrum of
the synthesizer.

The quantization error of the divider controller is typically
required to be at least second-order high-pass shaped; this min-
imizes the in-band phase noise contribution from division ratio
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modulation [2]. Conventionally, digital delta-sigma modulators
(DDSMs) are used to generate the control sequence y[n] for
the divider [3]. A multistage noise shaping structure (MASH)
is often preferred due to the inherent stability of higher-order
DDSMs of this kind. MASH DDSM can be constructed using
simple first-order accumulators.

Every physical PLL contains nonlinearities, e.g., the non-
linear transfer characteristic of the phase-frequency detector
(PFD) and charge pump (CP) [4], [5], [6]. The phase devia-
tion introduced by a DDSM-based divider controller will be
distorted by the nonlinearity, resulting in spectral regrowth.
This leads to additional noise and periodic components in the
output phase noise [7], [8], [9]. The periodic components are
termed spurious tones or spurs. These can cause unwanted
noise in a communication system due to the additional up-
or down-conversion when the synthesizer is used as a local
oscillator.

In order to optimize the spur immunity in the presence
of nonlinear distortion, successive requantizers (SRs)1 were
introduced as an alternative to DDSM-based divider con-
trollers [10], [11], [12], [13]. SRs introduce a controlled and
shaped quantization error that is tailored for the presence of
know static nonlinearities based on prescribed state transition
matrices. By choosing the state transition matrices appropri-
ately, a SR can achieve different degrees of spur immunity
as well as noise levels. Since a SR quantizes its input using
identical cascaded stages and relatively complex structures
are required to implement the quantization noise generator,
it has a significantly higher hardware cost than the relatively
simple conventional accumulator-based MASH DDSM divider
controllers.

The MASH-SR is a hybrid between these two classes
of divider controllers. It has a nested-cascaded structure
that consists of a MASH DDSM and cascaded quantization
blocks [14], [15], [16], [17]. The input to the divider con-
troller is partitioned and quantized by a MASH and a SR.
Consequently, fewer quantization blocks are needed to perform
the quantization of the divider controller input. Due to the
dominance of the phase noise contribution from the SR stages
that quantize the most significant bits (MSBs) and the output of
the MASH DDSM, the performance of the MASH-SR, both
in terms of spur immunity and noise contribution, is close
to that of the full-length cascaded SR [14], [15]. Similar to
the SR, a MASH-SR can be optimized by choosing the state
transition matrices.

1Successive requantizer was originally abbreviated as SQ in [10] and later
as SR in [11].
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Fig. 1. Block diagram representation of a CP-PLL fractional-N frequency
synthesizer.

Fig. 2. (a) A MASH DDSM and (b) a constituent error feedback modulator.

In this work, we describe the design of a MASH-SR hybrid
that achieves optimal spur performance in the presence of a
static nonlinearity and low accumulated quantization noise at
low frequencies. Simulation results for the MASH-SR divider
controller are compared with DDSMs and SRs.

The architectures of MASH DDSM and SR are reviewed
in Sec. II and the MASH-SR hybrid structure is described in
Sec. III. The design methodology for the proposed MASH-SR
is described in detail in Sec. IV. The simulated performance
of the divider controllers is presented in Sec. V, followed by
conclusions in Sec. VI.

II. STATE-OF-ART DIVIDER CONTROLLER

ARCHITECTURES: MASH DDSM AND SR

A. MASH DDSM

The most commonly used MASH DDSM divider controller
is shown schematically in Fig. 2. This MASH DDSM con-
sists of identical first-order error feedback modulator (EFM1)
stages, which are inherently stable. The input of the MASH
DDSM x[n] is applied to the first EFM1 stage. Each subse-
quent EFM1 stage accepts the quantization error signal ei [n],
i = 1, 2, . . . , L from the previous stage as its input. The
outputs of the stages are combined in the error cancellation
network, which outputs the control signal y[n].

The output of the MASH DDSM comprises the desired
scaled input and a high-pass shaped quantization error. For
an Lth-order MASH DDSM that consists of L EFM1 stages

Fig. 3. Schematic of (a) a K -bit SR, (b) a quantization block.

Fig. 4. Block diagram of a sd [n] sequence generator which can generate
first, second and third-order high-pass shaped sd [n].

and has an N-bit input, the output is

Y (z) =
(

X (z)

M
− (1 − z−1)L EL(z)

)
, (2)

where Y (z), X (z), EL(z) are the z-transform of the output sig-
nal, the input signal to the MASH DDSM, and the quantization
error signal of the Lth EFM stage, respectively, and M = 2N

is the modulus. Since an EFM1 stage can be implemented
using simple digital accumulators, the MASH DDSM has a
low cost in terms of hardware and power. However, MASH
DDSM-based divider controllers are prone to cause spurious
tones in the output of the fractional-N frequency synthesizer
when nonlinearities are present [18].

B. SR

The SR has been designed to quantize its input by introduc-
ing a controlled quantization error. A K -bit SR consists of K
identical cascaded quantization blocks, as shown in Fig. 3 [10],
[13]. The quantization error signal of the dth block sd [n]
is derived from a sequence generator. The block diagram in
Fig. 4 shows a general sd [n] sequence generator. This structure
provides a quantization error signal sd [n] which can be first,
second, or third-order high-pass shaped, based on the selection
signal Order_SEL. The combinatorial logic output vd [n] is
generated based on the past output vd [n−1], the parity control
signal od [n], and the output of the pseudo-random number
generator (PRNG) rd [n]. For different d and n values, rd [n]
can be regarded as independent, identically, and uniformly dis-
tributed random variables. The combinatorial logic implements
a pair of state transition matrices, Ae and Ao, which dictate
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the probabilities of its output when od [n] is even and odd,
respectively. Denoting the output range of the combinatorial
logic as [−Nv , Nv ], the entries of Ae and Ao of a are defined
as [13]

Ae(i, j) = P(vd [n] = v( j) |vd [n − 1] = v(i), od[n] = 0),

(3)

Ao(i, j) = P(vd [n] = v( j) |vd [n − 1] = v(i), od[n] = 1),

(4)

where Ax(i, j) is the element at i th row and j th column of
matrix Ax, x = e or x = o, and

v = (−Nv −(Nv − 1) . . . Nv

)T
. (5)

The value of the 1-bit od [n] sequence controls the parity
of vd [n]: when od [n] = 0, only values of the same parity as
vd [n − 1] are allowed; when od [n] = 1, only values of the
opposite parity to vd [n − 1] are allowed. Thus,

od [n] = (vd [n] − vd [n − 1]) mod 2. (6)

As the result [13],

Ae(i, j) = 0 ∀ i + j : odd, Ao(i, j) = 0 ∀ i + j : even. (7)

In Fig. 4, the outputs of the first-order difference blocks are
denoted as ∇vd [n], ∇2vd [n], and ∇3vd [n], respectively; they
can be expressed as

∇vd [n] = vd [n] − vd [n − 1], (8)

∇2vd [n] = vd [n] − 2vd [n − 1] + vd [n − 2], (9)

∇3vd [n] = vd [n] − 3vd [n − 1] + 3vd [n − 2] − vd [n − 3].
(10)

For a kth-order sd [n] generator, the quantization error sd [n]
is generated by passing vd [n] through k consecutive first-order
difference blocks. When the generator is of first order, sd [n] =
∇vd [n]; for a second-order generator, sd [n] = ∇2vd [n]; when
the generator is third-order, sd [n] = ∇3vd [n]. In a practical
application as a divider controller, we require sd [n] to be at
least second-order high-pass shaped in order to achieve a low
in-band phase noise contribution.

For a first-order sd [n] generator, to achieve lossless quanti-
zation,

(xd [n] + sd [n]) mod 2 (11)

= (xd [n] + vd [n] − vd [n − 1]) mod 2 (12)

= (xd [n] + od [n]) mod 2 = 0. (13)

It follows that, in a first-order sd [n] generator,

od [n] = (xd [n]) mod 2. (14)

For a second-order sd [n] generator,

(xd[n] + sd [n]) mod 2 (15)

= (xd [n] + vd [n] − 2vd [n − 1] + vd [n − 2]) mod 2

(16)

= (xd [n] + od [n]
+ vd [n − 1] + vd [n − 2]) mod 2 = 0. (17)

TABLE I

NAMING CONVENTION OF SIGNALS IN sd [n] SEQUENCE GENERATOR [13]

Therefore, in a second-order sd [n] generator

od [n] = (xd [n] + vd [n − 1] + vd [n − 2]) mod 2. (18)

In a third-order sd [n] generator,

(xd [n] + sd [n]) mod 2 (19)

= (xd [n] + vd [n] − 3vd [n − 1]
+ 3vd [n − 2] − vd [n − 3]) mod 2

(20)

= (xd [n] + od [n] + vd [n − 2] + vd [n − 3]) mod 2 = 0.

(21)

Thus, for a third-order sd [n] generator,

od [n] = (xd [n] + vd [n − 2] + vd [n − 3]) mod 2. (22)

Since the generation of od[n] is carried out by a modulo
two operation, the LSBs of the signals involved are sufficient
to generate od [n].

In the literature, the naming of the internal signals of a sd [n]
sequence generator differs, depending on its order [10], [12],
[13]. This is because the signal of interest within a quantization
block when the SR is used as a divider controller is the one that
enters the last difference block to generate sd [n]. This signal
is conventionally denoted td [n]. Table I shows the naming
convention for signals within the sd [n] sequence generators
of different orders in the literature in reference to the general
structure in Fig. 4 [13].

With an appropriate choice of the state transition matrices,
the accumulated quantization error of the SR can be immune to
a certain order of nonlinear distortion [12], [13]. Furthermore,
the low-frequency accumulated quantization error, which cor-
responds to the low-frequency phase noise contribution when
the synthesizer is linear, can be optimized [13].

Due to the complex structure that is required in every single
quantization block, an SR divider controller has a much higher
hardware cost than a MASH DDSM with the same input
word length and noise shaping order. For example, the gate
count and area of a 16-bit second-order SR are 12.5 and
6.5 times those of a DDSM with the same input word length
and order [19].

III. MASH-SR ARCHITECTURE

A. Nested MASH-SR Hybrid

The nested MASH-SR hybrid architecture can be repre-
sented by the block diagram in Fig. 5. The N-bit binary input
x[n] is partitioned into two parts. The N2 LSBs of the input
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Fig. 5. Schematic of an N -bit MASH-SR with N1 cascaded quantization
blocks and an N2-bit MASH DDSM.

comprise the input to the MASH DDSM xM [n]. The N1 most
significant bits (MSBs), represented by xS[n], are combined
with the MASH DDSM output yM [n] and the sum is the input
to the chain of N1 quantization blocks. Denoting the modulus
of the SR and the MASH DDSM within the MASH-SR as
M1 = 2N1 and M2 = 2N2 , respectively, the modulus of the
divider controller is M = M1 M2. The input can be expressed
by a weighted sum of the inputs to the MASH DDSM and the
SR as

x[n] = xM [n] + M2xS[n]. (23)

The phase deviation caused by the divider controller is
related to its accumulated quantization error in the analytical
model for a fractional-N frequency synthesizer [2]. The accu-
mulated quantization error of a MASH-SR can be expressed
as [15]

t[n] =
n∑

m=0

(
y[m] − x[m]

M

)
= tM [n] + tS[n], (24)

where

tM [n] = 1

M1

n∑
m=0

(
yM [m] − xM [m]

M2

)
(25)

and

tS[n] =
n∑

m=0

N1−1∑
d=0

1

2N1−d
sd [m] (26)

are the accumulated quantization errors of the MASH DDSM
and the SR, respectively. In a local oscillator (LO) application,
x[n] = X is a constant and this is assumed in the following
analysis. This gives a fractional division ratio of α = X/M .

Notice that the contribution of the accumulated quantization
error from the MASH DDSM part is scaled by a factor 1/M1.
As a result, the accumulated quantization error from the SR
typically dominates the spectral performance [15]. To achieve
a t[n] spectrum that is similar to that of a full SR implementing
the same pair of state transition matrices, it is required that the
order of the MASH DDSM be greater than or equal to that of
the SR [15]. As simulations suggest, with a sufficient number
of quantization blocks, the MASH-SR can achieve a similar
effect in terms of the suppression of fixed spurs induced by
the divider controller, when compared with a MASH DDSM
divider controller [15].

B. Advantages of MASH-SR Hybrid

A MASH-SR hybrid has several benefits over a full SR as
a divider controller.

1) Spur Suppression With Less Hardware: Firstly, compared
with the MASH DDSM of a similar order, the hybrid can
achieve better spur suppression owing to the dominance of
the spectral contribution of the SR [15]. Also, compared
with a conventional SR, the MASH DDSM in a MASH-SR
replaces the front quantization blocks, leading to a significant
reduction in hardware. Considering a 20-bit divider controller,
the MASH-SR implementation with a 16-bit MASH 1-1-1
DDSM and a 4-bit SR is estimated to require only about 22%
the hardware of a full-length 20-stage SR [15].

2) Phase Alignment/Adjustment: In modern synthesizer
products, phase alignment/adjustment is a preferred function,
especially for beam steering applications. Due to the imple-
mentation of the divide-by-two function in the SR, it is difficult
to set an initial condition accurately to realize the phase
adjustment function. Thanks to the MASH DDSM within the
MASH-SR hybrid, phase adjustment can be carried out simply
by setting the initial condition of the MASH.

When a MASH 1-1-1 DDSM is used in a MASH-SR
hybrid, the accumulated quantization error contribution can
be expressed as

tM [n] = 1

M1 M2
(e1[−1] − e3[n] + 2e3[n − 1] − e3[n − 2]) ,

(27)

where e1[−1] is the initial condition of the register in the first
stage EFM1. By setting the value of e1[−1], the DC offset
of the accumulated quantization error of the MASH-SR can
be adjusted. To achieve a change of unity in the DC value
of t[n], which corresponds to a phase offset value of 2π or
360◦, the initial condition should be able to change between
0 and M1 M2. This range is greater than that of e1[n], which
is [0, M1), implying that the corresponding bus widths in the
MASH DDSM and the SR should be increased in order to
perform this function.

3) Lower Latency: In the implementation of an SR quan-
tization block, pipelining is typically applied due to the long
propagation delay of the chain. This results in a latency that is
proportional to the number of quantization blocks of the SR.
Using a MASH-SR can decrease the number of SR stages
needed; this reduces the delay caused by the quantization
blocks compared to a standard SR structure.

IV. DESIGN OF AN OPTIMIZED MASH-SR DIVIDER

CONTROLLER

In this section, the design of an optimized 20-bit MASH-SR
hybrid divider controller with second-order quantization
blocks is presented. For convenience, we consider the signal
notations of a second-order sd [n] signal generator as shown in
Fig. 6, i.e., the notations in the second row of Table I. Thus,

ud [n] ≡ vd [n], td [n] ≡ ∇vd [n], sd [n] ≡ ∇2vd [n]. (28)

To ensure the spectral dominance of the SR stages, a third-
order MASH 1-1-1 DDSM is employed in the MASH-SR; this
corresponds to the MASH DDSM in Fig. 2 with L = 3. The
output range of the MASH 1-1-1 is yM [n] ∈ [−3, 4].
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Fig. 6. Block diagram of a second-order sd [n] sequence generator.

The quantization error of the SR can be expressed as

ss [n] =
N1−1∑
d=0

1

2N1−d
sd [n]. (29)

For ud [n] ∈ [−Nu , Nu ], we have sd [n] ∈ [−4Nu, 4Nu ].
The quantization error, which typically dominates the output,
has the range ss [n] ∈ (−4Nu , 4Nu). For a moderate range
of output and a sufficient number of pairs of state transition
matrices for optimization, Nu = 2 is chosen in this design.
This leads to 5 × 5 Ae and Ao matrices.

For the consideration of hardware cost, each quantization
block in the SR has a PRNG that generates a 4-bit rd [n]
sequence, i.e., Mr = 16 and rd [n] ∈ [0, 15].

A. Input Split of the Nested-Cascade Structure

As introduced in Sec. III, the MASH-SR exploits the spur
immunity of the SR’s accumulated quantization error contri-
bution. In order to achieve this, a sufficient number of quan-
tization blocks is needed. As discussed in [15], at least four
quantization blocks are needed to ensure spectral separation
between the SR contribution and the MASH DDSM-related
contributions, in both the linear case and in the presence of
a strong nonlinearity. Accordingly, the 20-bit MASH-SR is
partitioned into a MASH 1-1-1 DDSM with a 16-bit input
and four SR quantization blocks, i.e., N1 = 4 and N2 = 16.
In this MASH-SR hybrid, the input to the SR has a range
yM [n]+ xS[n] ∈ [−3, 19]. This, together with the range of SR
quantization error of Ss [n] ∈ (−8, 8), gives an output range
of

y[n] = yM [n] + xS[n]
24 + Ss [n] ∈ [−7, 8]. (30)

By comparison, the output ranges for a 20-bit MASH 1-1
DDSM and a second-order SR are [−1, 2] and [−7, 8],
respectively.

B. Finding State Transition Matrices

The state transition matrices can be designed to achieve spur
immunity of tS[n] in the presence of nonlinear distortions.
Such pairs of state transition matrices are of interest and the
SR can be optimized by selecting state transition matrices
among these candidates [13]. The quantization error tS[n] can
be expressed as a weighted sum of td [n]:

tS[n] =
N1−1∑
d=0

1

2N1−d
td [n] (31)

with td [n] = 0 for n ≤ 0. Since the combinatorial logic does
not directly generate td [n], transition matrices from ud [n − 1]
to td [n] are required and they are defined as [13]

Te(i, j) = P(td [n] = t( j) |ud [n − 1] = u(i), od [n] = 0),

(32)

To(i, j) = P(td [n] = t( j) |ud [n − 1] = u(i), od [n] = 1),

(33)

where

u = (−Nu −(Nu − 1) . . . Nu
)T

, (34)

t = (−2Nu −(2Nu − 1) . . . 2Nu
)T

. (35)

With (8) and (28), [13]

Tx(i, j)⎧⎪⎨
⎪⎩

Ax(i, i + j − 2Nu − 1), if 2Nu + 2 − i ≤ j and

j ≤ 4Nu + 2 − i,

0, otherwise

(36)

where x = e or x = o. For Nu = 2, Te and To are
5 × 9 matrices.

Consider t p
S [n], which is the tS[n] sequence after distortion

by a simple pth-order nonlinearity. Two conditions, which are
for odd and even order of distortion p respectively, can ensure
spurious-free performance for all p less than or equal to an
integer ht [13].

Firstly, for spur immunity to odd-order distortion, i.e.,
odd integer p, the Ae and Ao matrices are designed to be
centrosymmetric, i.e., Ax(i, j) = Ax(2Nu +2− i, 2Nu +2− j)
for x = e and x = o [12], [13]. Each row of the matrices
should have a sufficient number of non-zero terms. As (7)
suggests, for a row vector in Ae and Ao, every other entry is
forced to be zero. For the j th row of Ax(i, j), if Ax(i, j) =
0 for i = 1, 3, . . ., then it is termed an even-entries row;
if Ax(i, j) = 0 for i = 2, 4, . . ., then it is called an odd-
entries row. For an odd-entries row, there should be at least
�1 + (Nu + 1)/2	 = 2 non-zero entries. For an even-entries
row, there should be at least �1+ Nu/2	 = 2 non-zero entries.

To ensure that the periodogram of t p
S [n] is immune to

spurious tones for all even positive integer p ≤ ht , it is
required that [10], [12], [13]

AeTet(p) = AeTot(p)

= AoTet(p) = AoTot(p) = cp12Nu+1, (37)

where cp is a constant, 12Nu+1 is a vector of ones which has
a length (2Nu + 1), and

t(p) = (
(−2Nu)p (−2Nu + 1)p . . . (2Nu)p

)T
. (38)

With the requirement for odd-order tS[n] spur immunity
and (7), the Ae and Ao are populated with variables as (39),
shown at the bottom of the next page.

For different ht values, the number of solutions is different.
As proven in [12], the highest order of distortion to which
tS[n] can be immune is ht = (4Nu − 3) = 5. In this case,
we require (37) to hold for p = 2 and p = 4, given the
spur immunity in odd-p cases due to the structures of the Ae
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and Ao. Two valid sets of state transition matrices are found
using an algebraic equation solver,2 namely,

Ae =

⎛
⎜⎜⎜⎜⎝

1/4 0 3/4 0 0
0 5/8 0 3/8 0

1/8 0 3/4 0 1/8
0 3/8 0 5/8 0
0 0 3/4 0 1/4

⎞
⎟⎟⎟⎟⎠ ,

Ao =

⎛
⎜⎜⎜⎜⎝

0 3/4 0 1/4 0
3/16 0 3/4 0 1/16

0 1/2 0 1/2 0
1/16 0 3/4 0 3/16

0 3/4 0 1/4 0

⎞
⎟⎟⎟⎟⎠ (40)

and

Ae =

⎛
⎜⎜⎜⎜⎝

3/4 0 1/4 0 0
0 5/8 0 3/8 0

3/8 0 1/4 0 3/8
0 3/8 0 5/8 0
0 0 1/4 0 3/4

⎞
⎟⎟⎟⎟⎠ ,

Ao =

⎛
⎜⎜⎜⎜⎝

0 11/12 0 1/12 0
11/16 0 1/4 0 1/16

0 1/2 0 1/2 0
1/16 0 1/4 0 11/16

0 1/12 0 11/12 0

⎞
⎟⎟⎟⎟⎠ . (41)

The pair of matrices in (40) was presented in [10], [12], and
[13]. Notice that (41) contains probabilities with a denominator
of 12. When quantizing to 4 bits based on the requirement
imposed by rd [n], errors will be introduced. The limited
number of pairs of Ae and Ao when ht = 5 does not permit
efficient optimization.

2For this work, the MATLAB solve function was used for solving and
simplifying the sets of equations.

In order to increase the number of candidate matrices for
selection, we relax the requirement to ht = 3 and only
consider the set of equations with p = 2. By elimination
and substitution, Ae and Ao can be represented by just two
variables x1 and x2, as shown in (42) and (43), shown at the
bottom of the page. Note that it still has to be ensured that
each row of Ae and Ao contains at least two non-zero values.
For (42) and (43), one can simply let Ae(i, j) ∈ [0, 1) and
Ao(i, j) ∈ [0, 1) to satisfy this requirement.

Notice that x1 and x2 appear alone as entries in (42)
and (43), respectively. To find valid state transition matrices,
a brute-force search with a step size of 1/Mr = 1/16 in x1
and x2 is performed. A thorough search can be conducted
by applying the ranges x1 ∈ [0, 15/16] and x2 ∈ [0, 15/16].
In total, 56 valid pairs of matrices are found. It should be
noted that entries may not be integer multiples of 1/16 in
these matrices, e.g., Ae(1, 1) in (42). Further rounding may
be needed in order to implement some of the matrices.

C. Calculation of tS[n] Distribution

With a given pair of state transition matrices, the distribution
of td [n] can be estimated. Knowing the distribution of td [n],
the distribution of tS[n] can then be estimated.

Since td [n] is the first-order difference of the ud [n] sequence
in a second-order sd [n] generator, we consider the distribution
of ud [n] first. The current state ud [n] is a function of the
parity sequence {od [m], m = 0, 1, . . . , n}, the pseudo-random
sequence {rd [m], m = 0, 1, . . . , n}, and its initial condition
ud [−1], which is assumed zero. As introduced in Sec. II,
rd [n] and r(d+�)[n] are independent sequences with � 
= 0.
Thus, ud [n] and u(d+�)[n] are conditioned on independent

Ae =

⎛
⎜⎜⎜⎜⎝

xe1 0 xe2 0 1 − xe1 − xe2
0 xe3 0 1 − xe3 0

xe4 0 1 − 2xe4 0 xe4
0 1 − xe3 0 xe3 0

1 − xe1 − xe2 0 xe2 0 xe1

⎞
⎟⎟⎟⎟⎠ ,

Ao =

⎛
⎜⎜⎜⎜⎝

0 xo1 0 1 − xo1 0
xo2 0 xo3 0 1 − xo2 − xo3
0 1/2 0 1/2 0

1 − xo2 − xo3 0 xo3 0 xo2
0 1 − xo1 0 xo1 0

⎞
⎟⎟⎟⎟⎠ . (39)

Ae =

⎛
⎜⎜⎜⎜⎜⎝

− 8 x1
2−16 x1+8 x2+7

16 (x1−1) 0 x1 0 −8 x1
2+16 x1+8 x2−9
16 (x1−1)

0 2 x1 + 2 x2 − 5
4 0 9

4 − 2 x2 − 2 x1 0
1
2 − x1

2 0 x1 0 1
2 − x1

2
0 9

4 − 2 x2 − 2 x1 0 2 x1 + 2 x2 − 5
4 0

−8 x1
2+16 x1+8 x2−9
16 (x1−1) 0 x1 0 − 8 x1

2−16 x1+8 x2+7
16 (x1−1)

⎞
⎟⎟⎟⎟⎟⎠ , (42)

Ao =

⎛
⎜⎜⎜⎜⎝

0 − x2
x1−1 0 x1+x2−1

x1−1 0
x2 0 x1 0 1 − x2 − x1

0 1
2 0 1

2 0
1 − x2 − x1 0 x1 0 x2

0 x1+x2−1
x1−1 0 − x2

x1−1 0

⎞
⎟⎟⎟⎟⎠ . (43)
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Fig. 7. Estimated and simulated distribution of t3[n] and tS [n] of the SR within a 20-bit MASH-SR with a 16-bit MASH 1-1-1 and a 4-bit SR. State
transition matrices in (40) are used.

sequences {rd [m], m = 0, 1, . . . , n} and {r(d+�)[m], m =
0, 1, . . . , n}. Since the value of od [n] is partly determined by
the quantization block input xd [n], ud [n] and u(d+�)[n] are not
strictly independent; this imposes constraints on the analysis
of the tS[n] distribution.

For a full SR structure, due to the constant input in the LO
application, the ud [n] distributions are affected by the input
x[n] = X or the output of the preceding stage. However,
in a MASH-SR, the input to the SR quantization blocks
comprises two parts, namely the MASH DDSM output yM [n]
and the MSBs of the input. The output yM [n] contains a
high-pass shaped quantization error; as the result, the input
of the SR is not constant. This gives alternating parities for
all xd [n]. Therefore, in the following analysis, it is assumed
that the od [n] sequence is a balanced 1-bit sequence with
equal probabilities of zeros and ones with {od[n], n =
0, 1, . . .} and {o(d+�)[n], n = 0, 1, . . .} being statistically
independent when � 
= 0. Hence, {ud [n], n = 0, 1, . . .} and
its difference sequence {td [n], n = 0, 1, . . .} are independent
of {u(d+�)[n], n = 0, 1, . . .} and {t(d+�)[n], n = 0, 1, . . .}
when � 
= 0 under this assumption, respectively.

The distribution of ud [n] is first estimated. Since the od [n]
sequence is assumed to have equal probabilities of zeros and
ones, P(od [n] = 0) = P(od [n] = 1) = 0.5. The overall state
transition matrix A can be defined as [13]

A(i, j) = P(ud [n] = u( j) |ud [n − 1] = u(i))

= P(ud [n] = u( j) |ud [n − 1] = u(i), od [n] = 0)

× P(od [n] = 0) +
P(ud [n] = u( j) |ud [n − 1] = u(i), od [n] = 1)P(od [n] = 1)

= Ae(i, j) + Ao(i, j)

2
. (44)

This definition implies that A is stochastic. The vector of
stationary probabilities of the discrete-valued Markov random
sequence ud [n], denoted pu, can be found by solving

puA = pu. (45)

Here pu(i) = P(ud [n − 1] = u(i)) = P(ud [n] = u(i)).
Similarly, the overall state transition matrix from ud [n − 1] to

td [n] can be defined as

T(i, j) = P(td [n] = t( j) |ud [n − 1] = u(i))

= Te(i, j) + To(i, j)

2
. (46)

The probability distribution for td [n], which is denoted pt,
can be evaluated by solving

pt = puT. (47)

By definition, pt(i) = P(td [n] = t(i)).
Under the assumption that td [n] of different stages are

independent, the distribution of the output accumulated quan-
tization error of the SR tS[n] can be computed by the method
described in Appendix A, based on (31). The probability
vector Ptout for tS[n] can be expressed as

Ptout(i) = P

(
tS[n] = −2Nu

(
M1 − 1

M1

)
+ i − 1

M1

)
,

i ∈ [1, 4(M1 − 1)Nu + 1]. (48)

Fig. 7 shows the estimated probability distributions for td [n]
(d = 3) and tS[n] and the simulation results of the 4-bit
SR within the 20-bit MASH-SR. The estimated distributions
match well with the simulation results.

D. Spectra of td [n] and tS[n]
The spectral contribution of tS[n] dominates the accumu-

lated quantization error of the divider controller. As (31)
suggests, the td [n] signals from quantization blocks, which are
assumed to be independent, contribute to the tS[n] spectrum.
Therefore, the spectrum of td [n] is estimated first.

The power spectral density of the ud [n] is computed as

Sud (F) = lim
L→∞ E

(
L−1∑

m=−L+1

Ruu,L[m]e− j2π Fm

)
(49)

where F = k/L, k = 0, 1, . . . , L − 1 and

Ruu,L [m] = 1

L

L−1∑
n=0

ud [n]ud [n + m] (50)
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Fig. 8. Estimated (green) and simulated spectra of u3[n], t3[n], and tS [n] of the SR within a 20-bit MASH-SR with a 16-bit MASH 1-1-1 and a 4-bit SR.
State transition matrices in (40) are used.

is the autocorrelation of ud [n] and L is the length of ud [n]
sequence. Thus, ud [n] = 0 when n < 0 and n > L − 1.
Furthermore, the limit for E

(
Ruu,L [k]) as L → ∞ is [13]

Ruu[m] = lim
L→∞ E

(
Ruu,L[m]) = E(ud [n]ud[n + m])

=
2Nu+1∑

l=1

(
A|m|u

)
(l) · u(l) · pu(l). (51)

This gives

Sud (F) = lim
L→∞

L−1∑
m=−L+1

(
lim

L→∞ E(Ruu,L [m])
)

e− j2π Fm

= lim
L→∞

L−1∑
m=−L+1

Ruu[m]e− j2π Fm (52)

Practically, a finite sequence length L is used to estimate
Sud (k/L):

Sud ,L

(
k

L

)
=

L−1∑
m=−L+1

Ruu[m]e − j2πkm
L

=
L−1∑

m=−L+1

(2Nu+1∑
l=1

(
A|m|u

)
(l) · u(l) · pu(l)

)

× e
− j2πkm

L (53)

Since ud [n] is a Markov process that has a stationary
distribution, the autocorrelation of ud [n] typically decreases
in amplitude with the absolute value of the lag m. Therefore,
Ruu[m] can be approximated by an impulse at m = 0 and the
spectrum Sud (F) can be approximated by white noise.

The spectrum of td [n] can then be estimated by

Std ,L

(
k

L

)
=

∣∣∣1 − e
− j2πk

L

∣∣∣2
Sud ,L

(
k

L

)
. (54)

Under the assumption that td [n] sequences from differ-
ent quantization blocks are independent, the cross-correlation
between the td [n] and t(d+�)[n] is zero for � 
= 0. The power
spectral density for tS[n] can be estimated by

StS,L

(
k

L

)
=

(
N1−1∑
d=0

(
1

2(N1−d)

)2
)

Std ,L

(
k

L

)
. (55)

In this particular design with N1 = 4, the spectral contribu-
tion from tS[n] dominates the spectrum of t[n],

St,L

(
k

L

)
≈ StS,L

(
k

L

)
. (56)

Since a MASH 1-1-1 is employed in this MASH-SR design,
first-order shaped LSB dither can be applied to it, which will
lead to a flat spectral contribution of low amplitude at low
frequencies in the t[n] spectrum.

Examples of simulated and estimated spectra of ud [n], td [n],
and tS[n] of the 4-bit SR within the 20-bit MASH-SR are
shown in Fig. 8. The estimates (53), (54), and (55) can provide
good predictions for the simulated spectra.

E. Optimization of the SR Stages

In the linear case, the contribution of the SR to t[n] is
dominant, as (56) suggests. When a nonlinearity is present, the
tS[n] related spectrum is expected to have a significant impact
on the overall spectral performance. Consider a memoryless
nonlinearity that can be approximated by a polynomial. The
distorted t[n] of the MASH-SR can be written as

t N L [n] = NL(t[n]) =
p∑

k=0

Ck(t[n])k

= NL(tS[n]) + NL(tM [n]) + rc[n], (57)

where rc[n] contains the cross terms. In the MASH-SR with
at least four SR stages, the amplitude of tS[n] is significantly
larger than that of tM [n]. The autocorrelation of NL(tS[n])
is therefore a significant contribution to the autocorrelation of
t N L [n], yielding a major spectral component associated with
it. Optimizing the performance of tS[n] can hence improve the
overall spectral performance of the MASH-SR hybrid.

With the valid state transition matrices found under the
constraint ht = 3, the distributions as well as the spectra
of td [n] and tS[n] can be estimated when each pair of state
transition matrices is applied. The SR stages are optimized by
selecting the state transition matrices based on consideration
of the performance in terms of spurs and noise.

The first aspect of the optimization is the distribution of
td [n] and tS[n]. The range of tS[n] affects the potential
immunity of the SR contribution to nonlinear distortion. The
maximum order of nonlinear distortion to which tS[n] can be
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Fig. 9. Estimated criteria for candidate state transition matrices:
(a) Var(td [n]), (b) Kurt(tS [n]) calculated from (58), (c) CL F N defined in (59),
and (d) CH F N given in (60).

immune is related to its range [20]. However, tS[n] with the
same range but different distributions can behave differently
in the presence of nonlinear distortion. With a given length
of the tS[n] sequence, the tS[n] with a distribution that has
probabilities concentrated around zero will appear to have
a lower range. This leads to a direct degradation of the
performance in terms of spurs. Therefore, instead of selecting
the state transition matrices for the range of tS[n], the variance
of tS[n] is chosen as one of the criteria for optimization. Since
td [n] of different quantization blocks are assumed independent,
(31) indicates that the ratio between the variances of td [n]
and tS[n] is a constant. This means that the variance of td [n]
can be used as a criterion without computing that of tS[n].
Specifically, matrices giving larger variances of td [n] and tS[n]
are preferred.

The estimated variances of td [n] for the valid state transition
matrices, which are indexed based on the order in which they
are found in the brute-force search, are shown in Fig. 9(a).
Note that different pairs of matrices can lead to identical
variances of td [n] and tS[n]. To have an identical variance,
the distribution could have high probabilities for tS[n] values
with small absolute values; alternatively, the probabilities
for all values are more evenly distributed, which results in
higher probabilities for tS[n] values with large absolute values.
Fig. 10 shows the td [n] and tS[n] distributions given by
the pairs of matrices indexed 1 and 38, which both lead
to Var(td [n]) = 3.5; they are examples of the two kinds.
Therefore, the kurtosis of the tS[n] distribution is used as
another criterion for the distribution. It is defined as

Kurt(tS[n]) = E
(
(tS[n] − E(tS[n]))4

)
(Var(tS[n]))2 . (58)

Fig. 10. Estimates of td [n] and tS [n] distributions of the pairs state transition
matrices with index 1 and 38 that give Var(td [n]) = 3.5.

Fig. 11. Simulated histograms of t[n] of a MASH 1-1 and a MASH 1-1-1.

A tS[n] distribution with a low kurtosis value is less tailed
and therefore tends to have more evenly distributed probabil-
ities for tS[n] values. Such a distribution is hence preferred.

Typically, a lower-order MASH DDSM has a narrow range
and the distribution of the accumulated quantization error
with high probabilities for values with small absolute values.
In contrast, a higher-order MASH DDSM has a wider dis-
tribution of the accumulated quantization error with higher
probabilities for values with larger absolute values. Example
t[n] histograms of a MASH 1-1 and a MASH 1-1-1 DDSM
are shown in Fig. 11. As the order of the MASH DDSM
increases, the spur performance is improved. By selecting
matrices based on the values of Var(tS[n]) and Kurt(tS[n]),
the tS[n] can emulate the higher-order MASH DDSM in terms
of its distribution.

Furthermore, the spectral traits of tS[n] will provide other
criteria for optimization. The tS[n] spectral amplitude at
low-frequencies is a concern since it determines the envelope
of tS[n], given the white noise assumption for Sud (F). Equa-
tion (54) suggests that, at a given frequency, the estimated
amplitude of the spectrum of the Std ,L(F) can be related
to Sud ,L(F) by a fixed factor. The low-frequency noise of
Std ,L(F) can therefore be characterized by the criterion [13]

CL F N = Sud ,L(0). (59)

Also, the high-frequency noise of tS[n], which can be
related to the noise floor due to folding [6], is considered as
another criterion for the SR and it is defined as the amplitude
of the spectrum around 0.5 normalized frequency, i.e.,

CH F N = Sud ,L

(
1

2

)
. (60)

In this work, a tS[n] distribution which leads to better poten-
tial performance regarding spurs is preferred. According to the
analysis presented, tS[n] distribution with a large variance and
low kurtosis is desirable. Among the pairs of matrices that lead
to similar tS[n] distribution, lower tS[n] power spectral density
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Fig. 12. Figures of merit calculated using (61) for the candidate matrices.

at low frequencies is favored since it allows lower phase noise
contribution from the divider controller around the synthesizer
bandwidth. Therefore, the figure of merit used to select the
valid candidate matrices is defined as

FoM = Var(td [n])
Kurt(tS[n])CL F N

. (61)

Values of the figure of merit for all candidate matrices are
shown in Fig. 12. The matrices indexed 46, which are

Ae =

⎛
⎜⎜⎜⎜⎝

5/48 0 5/8 0 13/48
0 1/8 0 7/8 0

3/16 0 5/8 0 3/16
0 7/8 0 1/8 0

13/48 0 5/8 0 5/48

⎞
⎟⎟⎟⎟⎠ ,

Ao =

⎛
⎜⎜⎜⎜⎝

0 1/6 0 5/6 0
1/16 0 5/8 0 5/16

0 1/2 0 1/2 0
5/16 0 5/8 0 1/16

0 5/6 0 1/6 0

⎞
⎟⎟⎟⎟⎠ , (62)

yield the highest value of this figure of merit. In order
to implement the probabilities with a 4-bit pseudo-random
number, the matrices are rounded as

Ae =

⎛
⎜⎜⎜⎜⎝

1/8 0 5/8 0 1/4
0 1/8 0 7/8 0

3/16 0 5/8 0 3/16
0 7/8 0 1/8 0

1/4 0 5/8 0 1/8

⎞
⎟⎟⎟⎟⎠ ,

Ao =

⎛
⎜⎜⎜⎜⎝

0 3/16 0 13/16 0
1/16 0 5/8 0 5/16

0 1/2 0 1/2 0
5/16 0 5/8 0 1/16

0 5/6 0 1/6 0

⎞
⎟⎟⎟⎟⎠ , (63)

Notice that this pair of matrices leads to the highest high-
frequency noise, as shown in Fig. 9(d). The power spec-
tral density of tS[n] around the Nyquist frequency can be
related to the noise floor caused by folding in the presence
of nonlinearity [6]. Therefore, the selected state transition
matrices may incur high nonlinearity-induced in-band noise.

V. COMPARISON OF SIMULATED PERFORMANCE

In this section, the simulated performances of the
MASH-SR with the optimized state transition matrices and

Fig. 13. The t[n] spectra of a MASH 1-1 DDSM, a MASH 1-1-1 DDSM,
and MASH-SR with state transition matrices with index 5 and index 46.

its counterparts are presented. For the purpose of comparison,
the matrices giving the minimum figure of merit, which are
indexed 5, namely

Ae =

⎛
⎜⎜⎜⎜⎝

29/32 0 0 0 3/32
0 5/8 0 3/8 0

1/2 0 0 0 1/2
0 3/8 0 5/8 0

3/32 0 0 0 29/32

⎞
⎟⎟⎟⎟⎠ ,

Ao =

⎛
⎜⎜⎜⎜⎝

0 15/16 0 1/16 0
15/16 0 0 0 1/16

0 1/2 0 1/2 0
1/16 0 0 0 15/16

0 1/16 0 15/16 0

⎞
⎟⎟⎟⎟⎠ , (64)

are also considered. To permit the use of a 4-bit rd [n], the Ae
matrix is rounded to

Ae =

⎛
⎜⎜⎜⎜⎝

15/16 0 0 0 1/16
0 5/8 0 3/8 0

1/2 0 0 0 1/2
0 3/8 0 5/8 0

1/16 0 0 0 15/16

⎞
⎟⎟⎟⎟⎠ . (65)

A 20-bit second-order SR in [13] implementing state tran-
sition matrices quantized for a 10-bit rd [n]

Ae =

⎛
⎜⎜⎜⎜⎝

0 0 333
512 0 179

512
0 7

128 0 121
128 0

179
1024 0 333

512 0 179
1024

0 121
128 0 7

128 0
179
512 0 333

512 0 0

⎞
⎟⎟⎟⎟⎠ ,

Ao =

⎛
⎜⎜⎜⎜⎝

0 7
1024 0 1017

1024 0
1

512 0 333
512 0 89

256
0 1

2 0 1
2 0

89
256 0 333

512 0 1
512

0 1017
1024 0 7

1024 0

⎞
⎟⎟⎟⎟⎠ . (66)

is also simulated as a reference.

A. Spectra of t[n]
The spectra of t[n] of a MASH 1-1 DDSM, MASH

1-1-1 DDSM, and MASH-SR with matrices index 5 and 46 are
show in Fig. 13. The MASH-SR with state transition matrices
indexed 5 has high low-frequency noise in comparison to
the other architectures. The t[n] spectrum of the MASH-SR
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Fig. 14. The spectra when tAC [n] of MASH 1-1, MASH 1-1-1, and MASH-SR with state transition matrices indexed 5 and 46 experience third-order
distortion, a PWL nonlinearity with 1% mismatch, and a PWL nonlinearity with 8% mismatch.

with matrices indexed 46 is about 3.8 dB higher than that
of a MASH 1-1 at mid and low frequencies. Comparing the
case where matrices with index 5 are applied, the optimized
MASH-SR has a low-frequency t[n] power spectral density
that is about 14.5 dB lower. Notice the −20 dB/decade spectral
contribution of the zeroth-order shaped LSB dither at very
low frequencies in the spectrum of the MASH 1-1. The
MASH-SR with matrices indexed 46 has the highest power
spectral density around the 0.5 normalized frequency, even
higher than that of the third-order MASH 1-1-1.

B. Spectra of t[n] in the Presence of Nonlinear Distortions

Next, we consider t[n] in the presence of nonlinear distor-
tions. It should be noted that the t[n] of a MASH DDSM and
MASH-SR will contain a DC component as the effect of the
initial condition. In a practical synthesizer, the DC component
will have no effect or only affect the local nonlinearity with
which the phase deviation caused by the divide controller
interacts [5]. To avoid the extra effect of the DC component,
the nonlinearity consider is only applied to the AC component
of t[n], which is

tAC [n] = t[n] − E(t[n]) ≈ t[n] − 1

n + 1

n∑
m=0

t[m]. (67)

The range tAC [n] of the MASH-SRs is (−3.875, 3.875).
For the full SR, tAC [n] ∈ (−4, 4). The ranges of tAC [n] of
the MASH 1-1 and the MASH 1-1-1 are (−1, 1) and (−2, 2),
respectively.

Two types of nonlinearities are considered in the simu-
lations. Since the optimized state transition matrices were
selected from those that are immune to third-order distortion,
spectra of t3

AC [n] for all divider controllers are presented. The
mismatch of charge pump current sources generally exists
and the transfer characteristic of a PFD/CP can be modeled

by a piecewise-linear (PWL) nonlinearity [4]. To represent
minor and severe nonlinearity, mismatches of 1% and 8% are
considered. The simulated PWL nonlinearity can be expressed
by

t N L
AC [n] = tAC [n] + �

2
|tAC [n]| (68)

where � is the mismatch and t N L
AC [n] is the nonlinearly dis-

torted tAC [n]. Fig. 14 shows the nonlinearly distorted tAC [n]
spectra.

In the presence of a third-order nonlinear distortion, the
second and third-order MASH DDSM both lead to obvious
spurs. In contrast, the MASH-SR hybrid with matrices indexed
5 shows a spur with low amplitude due to the rounding error of
the matrix, while the MASH-SR with matrices indexed 46 does
not shown any obvious spurs. When a PWL nonlinearity
with 1% mismatch is present, the MASH-SR with matrices
indexed 46 leads to a most significant spur that is more
than 15 and 3 dB lower than those induced by a MASH
1-1 and MASH 1-1-1 respectively, with no harmonic spurs
observed. Compared with the MASH-SR hybrid with matrices
indexed 5, the application of optimized matrices indexed
46 reduces the most significant spur by about 10 dB. When
the mismatch of the PWL nonlinearity is increased to 8%,
the spur reduction observed in the 1% case is preserved. The
noise floor introduced by the MASH-SR with matrices indexed
46 increases by about 18 dB as the mismatch is increased.
In the presence of the PWL nonlinearity of 1% and 8%
mismatches, the optimized MASH-SR has a noise floor that
is about 3.8 dB higher that that of a MASH 1-1-1 DDSM.
Comparing with the standard 20-bit SR, the spur performance
of the MASH-SR is not compromised. Due to a lower power
spectral density around 0.5 normalized frequency, the noise
floor caused by the MASH-SR is about 1.5 dB lower that of
the SR.
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Fig. 15. Simulated synthesizer output phase noise spectra (blue) when a
MASH 1-1, a MASH 1-1-1, SR, and a MASH-SR with the optimized state
transition matrices (index 46) is employed, respectively. Output phase noise
contribution from the divider controller (red) is overlapped on top. Divider
controllers are 20-bit and the input is X = 605. Square markers highlight the
overlapped spurs in the output phase noise spectra.

C. Fractional-N Mode Fixed Spurs

The spur performance of the optimized MASH-SR divider
controller and its counterparts was simulated using a
closed-loop behavioral model [15], [21]. A Type-II synthe-
sizer with a third-order loop filter has the parameters listed
in Table II has been simulated and results are shown in
Fig. 15 [13].

When the MASH 1-1 is used in the synthesizer, a primary
integer boundary spur of −49 dBc and harmonic tones of
−61 and −68 dBc are observed in the output phase noise
spectrum. The integer boundary spur is reduced to −62 dBc
with an insignificant harmonic spur at −70 dBc when a
MASH 1-1-1 is employed. When an optimized MASH-SR is
applied, the corresponding integer boundary spur is −65 dBc,
with no apparent harmonic tones; this spur performance is
equivalent to that of the full 20-bit SR in the simulation.
Simulations indicate that MASH-SR divider controller will
cause a higher noise floor compared to its MASH DDSM
counterparts. Hence, in a wideband synthesizer whose in-band
noise is significantly affected by the output phase noise
contribution from the MASH-SR divider controller, appropri-
ate linearization techniques should be applied to obtain the
optimum spectral performance.

D. Wandering Spurs

Wandering spurs is a time-varying phenomenon observed in
the short-term output spectrum of a DDSM-based fractional-N
frequency synthesizer [22], [23]. Wandering spurs arise from
the double accumulation of a constant in the DDSM-based
divider controller [21].

Since the SR quantization block does not perform accu-
mulation, the quantization error of a SR is free of wandering
spurs. The dominance of the noise contribution of the SR quan-
tization blocks in the proposed MASH-SR divider controller

Fig. 16. Spectrograms of tAC [n] of 20-bit MASH 1-1-1 DDSM and the
optimized MASH-SR with state transition matrices index 46 in the presence
of PWL nonlinearity with 8% mismatch when input X = 1.

TABLE II

TABLE OF SIMULATION PARAMETERS

structure leads to similar spectral performance. Moreover, the
MASH 1-1-1 DDSM in the MASH-SR has a smaller number
of bits for its input, which leads to faster-moving, lower-
amplitude wandering spurs compared with those arise from
a standard MASH 1-1-1 with a similar input. Fig. 16 shows
the simulated spectrogram of tAC [n] in the presence of a PWL
nonlinearity of 8% mismatch when the MASH 1-1-1 DDSM
input is X = 1. The proposed MASH-SR with the optimized
state transition matrices does not exhibit any wandering spurs.

VI. CONCLUSION

A MASH-SR divider controller is a hybrid of a conventional
MASH DDSM and an SR and it possesses the advantages of
both structures. It can achieve similar spur performance to a
full SR implementing identical state transition matrices with
sufficient number of SR quantization blocks present in the
structure. Compared with a full SR, a MASH-SR counter-
part reduces the amount of hardware needed. Furthermore,a
MASH-SR can be used to perform phase alignment and
adjustment, which cannot be done with a conventional full
length SR. Also, a MASH-SR can also lead to less latency
compared to a full SR.

The spur performance of a MASH-SR can be optimized
by selecting an appropriate pair of state transition matrices.
In this work, the state transition matrices are optimized for
4-bit pseudorandom number generators which are included
in a 20-bit MASH-SQ that consists of a 16-bit MASH 1-1-1
DDSM and four second-order SR quantization blocks. The
selection of the state transition matrices is based on estimates
for the distribution and spectrum of the accumulated quantiza-
tion noise contribution of the SR quantization blocks. The state
transition matrices that lead to an accumulated quantization
noise contribution that is of greater variance and ketosis
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are preferred. In terms of accumulated quantization noise,
pairs of matrices that give less low-frequency accumulated
quantization noise are favored.

As simulations indicate, the optimized state transition matri-
ces achieve similar performance in terms of spur and noise
floor to the state-of-art full SR implementing state transi-
tion matrices for 10-bit pseudorandom number generators.
It reduces the primary integer boundary spur by about 15 and
3 dB when compared to a standard MASH 1-1 and MASH
1-1-1 DDSM in the spectra of the distorted accumulated quan-
tization error in the presence of a PWL nonlinearity. Closed-
loop behavior model simulations confirm the effectiveness
of the proposed MASH-SR divider controller. The simulated
spectral performance of the proposed MASH-SR is close to
that of a reference standard full SR. Furthermore, the proposed
MASH-SR hybrid can effectively mitigate wandering spurs
that occur when using MASH DDSM divider controllers.

APPENDIX A
COMPUTING THE DISTRIBUTION OF tS[n]

Consider two independent discrete random variables X and
Y which have sample space

X ∈ {x1, x2, . . . , xM }, Y ∈ {y1, y2, . . . , yN } (69)

where

xk − xk−1 = yl − yl−1 = c > 0, k ∈ [1, M], l ∈ [1, N].
(70)

The sample space of X + Y is then

X + Y ∈ {x1 + y1, x1 + y1 + c, . . . , xM + yN }. (71)

The probability of the sum of two variables can be evaluated
by the convolution of stochastic vectors

Vx = (
P(X = x1) P(X = x2) . . . P(X = xM)

)
(72)

and

Vy = (
P(Y = y1) P(Y = y2) . . . P(Y = yN )

)
. (73)

Thus,

P(X + Y = x1 + y1 + (l − 1)c)

=
min{l,N}∑

k=max{l+1−M,1}
Vx[l + 1 − k]Vy[k],

l ∈ [1, M + N − 1]. (74)

The distribution of tS[n] can be computed by repeatedly
applying this conclusion. Equation (31) can be written as

tS[n] =
(

· · ·
( (

tK−1[n]
21 + tK−2[n]

22

)
+ tK−3[n]

23

)

+ · · · + t1[n]
2K−1

)
+ t0[n]

2K
. (75)

Define

tc,d [n] = td [n]
2K−d

(76)

and the stochastic describing it as

Vd =
(

P

(
tc,d [n] = − Nt

2K−d

)
P

(
tc,d [n] = − Nt + 1

2K−d

)

. . . P

(
tc,d [n] = Nt

2K−d

) )
= pt (77)

where Nt = 2Nu for a second-order sd [n] generator.
To start the iteration of the convolution, a vector to represent

the sum that is to be added to tc,d [n] in the (K −1−d)th set of
brackets starting from inside in (75) is defined as Vt,(K−1−d).
Therefore, Vt,1 = VK−1 = pt.

Consider the sum in the first set of brackets starting from
inside in (75). To establish sample spaces that have identical
increments, padding of zeroes is performed to Vt,1:

V�
t,1

=
(

P

(
tc,(K−1)[n] = −2Nt

4

)

P

(
tc,(K−1)[n] = −2Nt − 1

4

)

. . . P

(
tc,(K−1)[n] = 2Nt

4

) )
(78)

where P
(
tc,(K−1)[n] = (−2Nt + k)/4

) = 0 for all odd inte-
gers k. Now the sum of V�

t,1 and VK−2, which is by definition
Vt,2, can be computed by convolution following (74):

Vt,2(l)

= P

(
tc,(K−1)[n] + tc,(K−2)[n] = −3Nt + l − 1

4

)

=
min{l,2Nt +1}∑

k=max{l−2Nt ,1}
VK−2[l + 1 − k]V�

t,1[k],

l ∈ [1, 6Nt + 1]. (79)

The step is repeated to compute the distribution of tS[n].
Consider the summation in the (m − 1)th set of brackets. The
zero-padded vector V�

t,(m−1) can be expressed as

V�
t,(m−1) =

(
P

⎛
⎝m−1∑

p=1

tc,(K−p)[n] = − (2m − 2)Nt

2m

⎞
⎠

P

⎛
⎝m−1∑

p=1

tc,(K−p)[n] = − (2m − 2)Nt − 1

2m

⎞
⎠

. . . P

⎛
⎝m−1∑

p=1

tc,(K−p) = (2m − 2)Nt

2m

⎞
⎠)

. (80)

V�
t,(m−1) is convolved with VK−m to generate Vt,m :

Vt,m(l) = P

⎛
⎝ m∑

p=1

tc,(K−p)[n] = (2m − 1)Nt + l − 1

2m

⎞
⎠

=
min{l,(2m+1−4)Nt +1}∑

k=max{l−2Nt ,1}
VK−m[l + 1 − k]V�

t,(m−1)[k],

l ∈ [1, (2m+1 − 2)Nt + 1].
(81)
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The distribution of the tS[n] is found when m = K , i.e.,

Ptout = Vt,K (82)

and it can be expressed as (48).
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