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Abstract—This paper proposes a special-purpose system to 

achieve high-accuracy and high-efficiency machine learning (ML) 

molecular dynamics (MD) calculations. The system consists of 

field programmable gate array (FPGA) and application specific 

integrated circuit (ASIC) working in heterogeneous 

parallelization. To be specific, a multiplication-less neural network 

(NN) is deployed on the non-von Neumann (NvN)-based ASIC 

(SilTerra 180 nm process) to evaluate atomic forces, which is the 

most computationally expensive part of MD. All other calculations 

of MD are done using FPGA (Xilinx XC7Z100). It is shown that, 

to achieve similar-level accuracy, the proposed NvN-based system 

based on low-end fabrication technologies (180 nm) is 1.6× faster 

and 102-103×  more energy efficiency than state-of-the-art vN-

based MLMD using graphics processing units (GPUs) based on 

much more advanced technologies (12 nm), indicating superiority 

of the proposed NvN-based heterogeneous parallel architecture. 

 
Index Terms—Molecular dynamics, machine learning, non-von 

Neumann architecture, heterogeneous parallel 

I. INTRODUCTION 

OLECULAR dynamics ( MD), as a computer 

simulation technique for complex systems modelled 

at the atomic level [1, 2], is widely used in many 

fields, including physics [3], chemistry [4], material science [5], 

semiconductor [6], nanotechnology [7], and biology [8], etc. 

The dilemma of accuracy versus efficiency has plagued the MD 

simulations for a long time. On one hand, density functional 

theory (DFT)-based ab-initio molecular dynamics (AIMD) is 

accurate, but its high computational cost limits its application 

in large systems [9-11]. Empirical force fields (EFF)-based 

classical MD (CMD) is efficient, but the manually-crafted EFF 

may deviate from the physical reality, leading to accuracy 

problems[12, 13]. 

The emerging machine learning (ML) MD (MLMD) has 

been proved to alleviate the long-standing dilemma between 

accuracy and efficiency [14-19]. By using the results of ab-

initio calculations to train the neural network (NN) model, the 

MLMD can be several orders of magnitude faster than AIMD, 

while ensuring accurate MD calculations. 

 

 
This work is supported by the National Natural Science Foundation of China 

(#61804049); the Fundamental Research Funds for the Central Universities of 

P.R. China; Huxiang High Level Talent Gathering Project (#2019RS1023); the 

Key Research and Development Project of Hunan Province, P.R. China 
(#2019GK2071); the Fund for Distinguished Young Scholars of Changsha 

(#kq1905012); the National Natural Science Foundation of China (#62104067); 

 
Fig. 1. Block diagram of the proposed MLMD computing system. The 

FPGA is responsible for feature extraction and integration, while the 

ASIC is in charge of implementing the resource-saving NN (a 

multilayer perceptron (MLP)). In addition, the proposed system 

requires a central processing unit (CPU) for initialization and control. 

 

However, when running MD calculations, using von 

Neumann (vN) architecture computer is the only choice for 

most researchers, since vN architecture has been the dominating 

paradigm for many decades [20, 21]. Unfortunately, in the vN 

architecture, computing units (e.g., central processing unit 

(CPU) and graphics processing unit (GPU)) and storage units 

are separated from each other, so the majority (> 90%) of the 

total computation time and power consumption is actually 

consumed in the frequent data shuttling [22, 23]. Only a small 

fraction of time and power is used to perform useful arithmetic 

and logic operations. This is commonly known as the “vN 

bottleneck” (i.e., “memory wall bottleneck”) [22, 23], seriously 

restricting the computing performance. 

Although some special-purpose computers have been 

developed to accelerate MD calculations [24-26], they are all 

based on CMD, which makes their accuracy questionable in 

many important applications [27, 28]. Recently, by leveraging 

MLMD algorithms and NvN architecture, an MD computing 

system named NVNMD has been developed by Mo et al [29-

31]. The NVNMD proves that the specially designed NvN-

based MLMD computing system has higher computational 

speed and higher energy efficiency than the vN-based system 

by deploying on field programmable gate array (FPGA), 

providing a good hardware solution for accurate and efficient 

MLMD calculations. However, FPGA-based hardware 
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architecture development limits the further improvement of the 

computational efficiency for MLMD computing systems due to 

its limited hardware resource and clock frequency, which come 

from FPGA being born in semi-custom application scenarios. 

By contrast, application specific integrated circuit (ASIC) has 

merits of more abundant hardware resources, higher clock 

frequency and lower power consumption than FPGA under the 

same process node [32, 33]. Thus, ASIC has better potential to 

further enhance the computational speed and energy efficiency 

of MLMD computing systems.  

In this paper, a heterogeneous parallel ASIC-and-FPGA-

based MLMD computing system (Fig. 1) is proposed and 

implemented, to boost the development of the NvN-based 

computing system for MLMD from the FPGA-based phase to 

the ASIC-based phase. The MLMD algorithm adopted in this 

paper consists of three modules, namely feature extraction, 

multilayer perceptron (MLP), and integration (see Section II), 

in which the MLP module is the most computationally 

expensive one. Our analysis shows that the execution of the 

MLP module accounts for the majority of the total calculation 

time by using either CPU or GPU machines, especially when 

the MLP size is large enough, the proportion can reach more 

than 90%. Therefore, deploying the MLP on an ASIC is the key 

to accelerate computing. Importantly, to reduce the physical 

resources for its hardware implementation, the MLP uses shift 

operations in place of multiplications during training stage, in 

conjunction with the specially designed lightweight activation 

function. 

The resource-saving MLP is deployed on a carefully-

optimized special-purpose NvN-based prototype, which is 

fabricated in SilTerra 180 nm process, with an area occupation 

of 1.73 mm2 and a power dissipation of 1.9 W, to compute the 

atomic forces of a water molecule. Except for NN, the feature 

extraction module and integration module are implemented on 

a NvN-based Xilinx XC7Z100 FPGA. Overall, as shown in Fig. 

1, the MLMD computing system consists of ASIC and FPGA, 

and an additional CPU is required for initialization and control. 

As a result, we demonstrate that the computational error of the 

proposed system is sufficiently small by measuring various 

physical properties of the water molecule. Moreover, compared 

to the state-of-the-art MLMD method relying on vN-based 

GPU with 12 nm process, the proposed system, measured at a 

low clock frequency of 25 MHz, returns 1.6× speedup and 102-

103× energy efficiency.  

This work is a preliminary attempt to explore the substantial 

acceleration of NVNMD by ASIC, and the main purpose is to 

prove the feasibility. The remaining of the paper is organized as 

follows. Section II introduces MLMD. Section III discusses the 

optimization details of MLP module. Section IV introduces the 

architecture design and hardware implementation. Section V 

shows the measured results of the proposed system. Section Ⅵ 

and Ⅶ present a brief discussion and conclusion. 

II. MACHINE LEARNING MOLECULAR DYNAMICS 

The procedure of MLMD calculations is introduced in this 

section. Firstly, the overall design of MLMD is briefly 

introduced (Section II-A). Then, the calculation flowchart is 

introduced in three modules (Section II-B): (i) the feature 

extraction module, (ii) the multilayer perceptron module, and 

(iii) the integration module. 

A. Overall Design 

MLMD uses MLP to model energy or atomic force [15, 34, 

35]. The input of the model is the local environment 

information related to the atomic position, also known as the 

feature. The output of the model is the energy or atomic force. 

If energy is the output, the force is calculated according to the 

energy derivative relative to the atomic position. In this work, 

MLP is used to predict the force directly, which can complete 

the MD calculations more efficiently. 

MD is typically used to calculate the trajectories, ri(t) 

(i=1,2,…,Na), of Na atoms in a system under certain conditions 

(e.g., temperature, pressure, etc.) [11]. Here, t denotes time, ri 

denote atomic coordinates in the Cartesian space.  

The schematic flow of MLMD adopted in this paper is 

presented in Fig. 2. Each MD step (time length dt) includes the 

following three modules. (i) Given the atomic coordinates at 

time t, ri(t), the features, Di(t), are computed. (ii) Using Di(t), 

the atomic forces, Fi(t), are evaluated by MLP. (iii) Based on 

Fi(t), through integrating Newton equation Fi=miai, ai=d2ri/dt2, 

atomic coordinates at the next MD step, ri(t+dt), can be 

calculated. It should be noted that, to evaluate Fi, we only need 

to consider Ncut neighbor atoms near atom i, whose locations, rj, 

satisfy |rj- ri|<rcut, where rcut is a cut-off radius, which can reduce 

the size of features. The full atomic trajectories can be obtained 

by repeating the above steps for a certain time. 

 
Fig. 2. Schematic flow adopted in this work to compute one MD step, 

which consists of three consecutive modules: (i) feature extraction, (ii) 

multilayer perceptron (MLP) force evaluation, and (iii) integration. 

Here, t is time; Di(t)=(D1, D2, …, Dn) are features associated with atom 

i (i=1,2,…, Na); n denotes the number of features; Na denotes the total 

number of atoms in the system; and mi, Fi, and vi are mass, force, and 

velocity of atom i, respectively. 

 

B. Calculation Flowchart 

Feature Extraction Module: As shown in the module (i) in 

Fig. 2, the atomic coordinates ri are converted into the features 

Di, to preserve the translation, rotation and permutation 

symmetries [34]. 
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…

…
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Multilayer Perceptron Module: As shown in the module (ii) 

in Fig. 2, the MLP takes the features Di as the input to compute 

the atomic forces Fi=(Fx, Fy, Fz). It is worth noting that the 

mapping from Di to Fi is a complex high-dimensional problem, 

which is a challenge to compute both accurately and efficiently 

[14]. 

As we all know, MLP is mathematically capable of fitting 

arbitrarily complicated functions with arbitrary precision [36]. 

This mathematical conclusion provides a theoretical basis for 

us to map from Di to Fi using MLP. 

The MLP consists of L+2 layers, including an input layer 

(denoted as l=0), L hidden layers (denoted as l=1, 2, ..., L), and 

an output layer (denoted as l=L+1). The output of the lth layer is 

1l l l l

j jk k j

k

a w a b − 
= + 

 
  (1) 

where aj
l is the output of the jth neuron of the lth layer; wjk

l  is the 

weight connecting the kth neuron of the (l-1)th layer and the jth 

neuron of the lth layer; bj
l
 is the bias of the jth neuron of the lth 

layer; ϕ is the predefined nonlinear activation function; and l=1, 

2, …, L+1. By setting the input of the MLP as features and the 

output as forces, the weights and biases can be trained using the 

DFT samples. 

Integration Module: As shown in Fig. 2, the module (iii) 

computes atomic coordinates ri(t+dt) by using atomic forces 

Fi(t) through 

( ) ( ) ( )i i it dt t t dt+ = + r r v  (2) 

and 

( ) ( )
( )i

i i

i

t
t t dt dt

m
= − + 

F
v v  (3) 

where vi and mi are the velocity and the mass of atom i, 

respectively [2]. 

Ⅲ. RESOURCE-SAVING NEURAL NETWORK 

To achieve high computational efficiency with limited 

hardware resources, we adopt quantized NN (QNN) instead of 

continuous NN (CNN) (Section Ⅲ-A). Two main optimizations 

are employed in QNN: Designing a lightweight nonlinear 

activation function (Section Ⅲ-B); Using shift operation in 

place of multiplication operation to realize multiplication-less 

neural network (Section Ⅲ-C). The effects of optimizations on 

the accuracy and hardware overhead are discussed in detail. 

A. Quantized Neural Network 

Accurate calculations of the atomic forces by MLP is the key 

to perform accurate MD simulations. In traditional processors 

(e.g., CPUs and GPUs), MD simulations adopt high-precision 

floating-point numbers. However, continuous NN (CNN) based 

on floating-point numbers is very hardware resource-

consuming in the implementation of the dedicated digital chip. 

Therefore, we use QNN to reduce the power and resource 

consumption of hardware design [37-39]. In the QNN, the 

weights and activations are quantized by using signed fixed-

point numbers instead of floating-point numbers, so that integer 

arithmetic can be used to realize real number operations. 

B. Nonlinear Activation Function 

The NN applied to regression problems usually uses 

hyperbolic tangent nonlinear activation function (i.e., tanh(x)) 

[40], which is based on trigonometric function. If it is directly 

implemented, it will be very hardware resource-consuming 

[41]. Here, we design a hardware-friendly nonlinear activation 

function 

( )

1 2

2 2
4

1 2

x

x x
x x x

x







= − −  


−  −


 (4) 

with fewer calculations. We can use the right shift to divide, for 

that the parameter in the denominator is the exponent of 2. The 

most complex operation in ϕ(x) is just multiplication. 

Compared with tanh(x), the hardware implementation of ϕ(x) is 

simpler, which can reduce the hardware overhead and improve 

the computational speed. 

 
Fig. 3. (a) The curves of tanh(x) and ϕ(x). The tanh(x) and ϕ(x) are 

similar at the numerical value. (b) The number of transistors consumed 

by the tanh(x) and ϕ(x). The results are evaluated by using Synopsys 

Design Compiler (DC). 

TABLE I 
ACCURACY* COMPARISON OF NEURAL NETWORKS BASED ON TWO 

ACTIVATION FUNCTIONS 

Systems tanh(x) ϕ(x) Difference** 

Water 25.04 24.83 0.21 

Ethanol 29.33 29.84 -0.51 

Toluene 53.15 52.70 0.45 

Naphthalene 46.45 46.63 -0.18 

Aspirin 74.85 75.20 -0.35 

Silicon 67.10 67.28 -0.18 

*The root mean square errors (RMSEs) of atomic forces (meV/Å) of 

six tested datasets. **Difference between tanh(x)-based MLP and ϕ(x)-

based MLP. 

 

Accuracy: The curves of tanh(x) and ϕ(x) are compared in 

Fig. 3(a). Obviously, tanh(x) and ϕ(x) are similar at the 

numerical value. In order to quantitatively analyze the influence 

of ϕ(x) on the fitting accuracy of MLP, using tanh(x) and ϕ(x), 

we train and test on six systems, including five molecule 

systems (i.e., water, ethanol, toluene, naphthalene, and aspirin), 

and one bulk system (i.e., silicon). The fitting accuracy of 

atomic forces obtained on the six datasets is shown in TABLE 

I. When compared against the DFT results, the atomic forces 

root mean square errors (RMSEs) (meV/Å) of tanh(x)-based 

tan(x)
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MLP and that of ϕ(x)-based MLP shows a very small difference, 

as indicated in the last column of TABLE I. In other words, 

replacing tanh(x) with ϕ(x) will hardly bring accuracy loss. 

Hardware overhead: We design and model the functions 

tanh(x) and ϕ(x) by using the hardware description language 

(HDL) Verilog code [42], where tanh(x) is implemented using 

the coordinate rotation digital computer (CORDIC) algorithm 

[43]. The register translation level (RTL) code is then converted 

into gate-level circuits using Synopsys logic synthesis tool 

Design Compiler (DC) [44], and the number of transistors 

consumed by the circuit is estimated based on the generated 

report. As indicated in Fig. 3(b), the tanh(x) consumes 50418 

transistors, while the ϕ(x) requires only 4098 transistors. It 

means that the hardware overhead of ϕ(x) is only 8% of that of 

tanh(x), which greatly reduces the hardware overhead. 

C. Multiplication-Less Neural Network 

The key operation in the neural network (NN) is the multiply-

accumulation (MAC). On traditional computing chips such as 

CPUs and GPUs, the calculation of MAC is very hardware 

resource-consuming and time-consuming. If the MAC 

operation is directly implemented in a dedicated digital circuit, 

it will also lead to large hardware overhead and power 

consumption [45-47].  

In this paper, we propose a multiplication-less NN that 

reduces hardware overhead and power consumption by 

replacing multiplication operations with shift operations. 

Specifically, during training the model, we quantize the 

floating-point weights as sums of integer powers of 2 through  

( ) ( )q Kw s w Q w=   (5) 

where, w represents the floating-point weight; wq represents the 

quantized weight; s(·) is the sign function represented as  

1 0

( ) 0 0

1 0

w

s w w

w




= =
− 

 (6) 

QK(·) is the quantization function given by 

( )( )1 max ( )  0 ( ) 1
( )

( ) 1

K

K

Q w Q w Q w K
Q w

Q w K

−
 − + 

= 
=

，
 (7) 

where, K stands for the number of integral powers of 2; max(x, 

y) means take the larger between x and y; |·| is the absolute value 

function; and the basis function,  

2log ( /1.5)
( ) 2

w
Q w

  =  (8) 

is used to quantize value to exponent of 2, where ⌈·⌉ means 

ceiling function to round a number to upper integer. 

During inference stage, Eq. (5) can also be represented as 

1

2 k

K
n

q

k

w s
=

=   (9) 

where s is the sign of weight w, obtained by Eq. (6); nk is the 

exponent, obtained by Eq. (7) and Eq. (8). Therefore, in the 

hardware implementation, the multiplication between weights 

and layer inputs will be replaced by a base-2 shift-sum 

operation, such that 

1 1

2 ( ,  )k

K K
n

q q q q k

k k

w x s x s P x n
= =

 =   =    (10) 

where, xq represents the quantized layer input using fixed-point 

numbers; and 

0

( ,  ) 0

0

x n n

P x n x n n

x n




= − 
 =

 (11) 

is the shift function. 

Obviously, after the above quantization design, the MAC 

operation in the NN will be completely replaced by the shift 

accumulate operation, which is very friendly to digital circuit 

implementation and can greatly reduce the complexity of the 

circuit. 

Before quantitative analysis of accuracy and hardware 

overhead, some underlying conditions need to be stated. Firstly, 

the nonlinear activation function used in all models here is ϕ(x), 

based on the analysis in Section III-B. Secondly, we employ a 

pre-training strategy to improve the accuracy of QNN. Thirdly, 

for the same dataset, the corresponding CNN and QNN have 

the same size to ensure the fairness of comparison. Fourthly, for 

different datasets, the model size is different according to the 

complexity of the datasets. For the six datasets tested, the 

complexity of water, ethanol, toluene, naphthalene, aspirin, and 

silicon increases sequentially, resulting in a sequential increase 

in the corresponding network sizes.  

Accuracy: Compared with the NN that solves the 

classification problem, the NN applied to the regression 

problem requires higher numerical precision and is more 

sensitive to the error caused by quantization. However, the 

accuracy and hardware cost of the NN are a dilemma with 

respect to the number of shifts (i.e., K in Eq. (9)). On the one 

hand, ASIC implementation minimizes hardware cost with 

decrements of the number of shifts used to approximate a 

multiplication. On the other hand, NN tends to maximize 

accuracy with increments of the number of shifts. To find the 

appropriate K value, we explore various evaluations for the 

following two models: 

1) CNN: a baseline model using 32-bit floating-point 

numbers, which is a continuous standard MLP based on 

multiplication. 

2) QNN: load the pre-trained CNN baseline model, 

quantify the weights according to Eq. (5)-(8), consider 

5 different K values (i.e., 1, 2, 3, 4 and 5), and train the 

model based on the pre-trained model. 

The comparison between the accuracy of CNN and that of 

QNN is shown in Fig. 4. When K=1 or 2, the QNN  has a serious 

accuracy loss, while from K=3, the loss tends to converge and 

the accuracy is gradually consistent with that of CNN. 

Furthermore, by calculating the ratio of RMSE of CNN to 

QNN, when K=3, the accuracy loss of QNN relative to CNN is 

between 6.5% and 12%.  
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Fig. 4. Accuracy comparison between CNN and QNN. (a), (b), (c), (d), (e) and (f) are the results tested on the datasets of water, ethanol, toluene, 

naphthalene, aspirin and silicon, respectively. Each figure includes the force RMSE of CNN and QNN, as well as the RMSE ratio of CNN to 

QNN. With the increase of the number of shifts (i.e., K, whose value is 1 to 5), the accuracy of QNN gradually converges to that of CNN.  

 
Fig. 5. The ratio of the number of transistors consumed by the SQNN to the FQNN. Here, Nm denotes the number of transistors consumed by 

multiplication-based FQNN using 16-bit fixed-point quantization, and NK
s  denotes the number of transistors consumed by shift-based SQNN. For 

each of the six datasets, the K of SQNN is considered from 1 to 5.

Hardware overhead: Considering that the strategy widely 

used of deploying NN into hardware is to adopt fixed-point 

quantization schemes [48, 49], we perform 16-bit fixed-point 

quantization on CNN. We name the quantized CNN as FQNN 

to distinguish it from shift-based QNN (renamed as SQNN). 

For fair comparison, the layer input, bias and activation 

function of SQNN also use 16-bit fixed-point quantization 

except that the weight is quantized as the sum of powers of 2. 

By logically synthesizing the Verilog codes corresponding to 

SQNN and FQNN, the number of transistors consumed in the 

hardware implementation of SQNN and FQNN for six datasets 

is evaluated. We set the number of transistors consumed by 

multiplication-based FQNN with 16-bit fixed-point numbers as 

Nm  and the number of transistors consumed by shift-based 

SQNN as NK
s . Then, the value, NK

s /Nm×100%, is calculated, as 

shown in Fig. 5. It can be obtained that the more complex the 

system is, the more hardware overhead can be saved by using 

SQNN. Combined with the analysis in terms of accuracy, for 

the value of K when accuracy tends to converge (i.e., K=3), the 

SQNN can save about 50% to 70% of the hardware overhead 

relative to FQNN. At this time, increasing the K (i.e., K=4 or 5) 

will not significantly improve the accuracy, but will increase 

the hardware cost by about 10% to 20%. Thus, K=3 is a more 

appropriate choice to the trade-off between accuracy and 

hardware overhead.  

Ⅳ. ARCHITECTURE DESIGN AND HARDWARE 

IMPLEMENTATION 

This section introduces the architecture design and hardware 
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implementation. The three modules of MLMD (Section II) are 

designed using non-von Neumann (NvN) architecture (Section 

Ⅳ-A). The MLP model applied to a single water molecule is 

designed and implemented in ASIC (Section Ⅳ-B). With the 

feature extraction module and the integration module 

implemented on FPGA, a heterogeneous parallel MLMD 

computing system is constructed by using ASIC and FPGA 

(Section Ⅳ-C). 

A. Non-von Neumann Architecture 

 
Fig. 6. Schematic of calculation step by adopting NvN architecture. 

Equation (1) is used as an example to shows the calculation process of 

NvN architecture. Here, xl, wl, bl, and ϕl are input, weight, bias, and 

nonlinear activation function of the lth layer, respectively; gl = xl × wl; 

hl = bl + gl. 

As described in Section I, there are “memory wall 

bottlenecks” in vN architecture, which seriously restrict the 

improvement of MD computing performance. In this work, we 

adopt the NvN architecture, which is very important to improve 

the computational efficiency, especially to accelerate the MLP 

module with the highest computational density. The logical 

computing unit and the storage unit are integrated to avoid the 

repeated data shuttling. For instance, to calculate the lth layer of 

MLP, the weights wl and biases bl are stored in the locally 

distributed memory, directly participate in the calculation near 

it, and save the results in the nearby register. As shown in  

Fig. 6, the result xl+1 of this layer is directly used as the input 

of the next layer, without saving the intermediate result to the 

off-chip memory. To compute a long MD trajectory of a 

particular material, wl and bl are only initialized once before 

MLP inference, and then kept unchanged during MD 

calculation of the full trajectories. We implement pipeline 

computing in the NvN architecture without data shuttling 

latency, so that the computational time is purely used for useful 

logic operations, improving the computational efficiency, and 

thus solving the “memory wall bottleneck” problem. 

Similar to the MLP module, both feature extraction module 

and integration module are implemented using NvN 

architecture. All the calculations described in Section II-B are 

completed without back-and-forth data shuttling. 

B. Implementation of Multilayer Perceptron Chip 

We design and tape-out an ASIC for the MLP module, the 

most computationally intensive module among the three 

modules in the MLMD. 

In order to verify the feasibility of our proposed method, we 

take the force prediction of a single water molecule as an 

example to train the model and implement it in ASIC. The 

process consists of 3 steps. 

First, training samples are generated. AIMD is run to obtain 

the atomic trajectories, ri(DFT), using density functional theory 

(DFT) code SIESTA [50]. The AIMD is run in a 2×2×2 nm 

supercell; Γ-point is used to sample Brillouin zone; double-zeta 

plus polarization (DZP) linear combination of atomic orbitals 

are used; plane wave cutoff is 100 Ry. To improve the MD 

calculation accuracy, a generalized gradient approximation is 

used to account for exchange-correlation effects [51]. The MD 

timestep dt is set to as 2 fs. The atomic forces, Fi(DFT), at each 

MD step are calculated using the Hellman-Feynman theorem 

[52]. 

Second, an MLP model is trained. After the atomic 

coordinates ri(DFT) are converted into features Di (see Section II 

-B), the MLP is trained using Di and Fi(DFT). Our training work 

is based on TensorFlow [53]. All simplified and quantized 

methods introduced in Section III are adopted in the training 

stage. Using 80% of the DFT samples as the training set and the 

remaining 20% as the test set, the atomic forces, Fi(MLP), 

predicted by the MLP can accurately reproduce the DFT results 

Fi(DFT). Here, we trained an MLP model to predict the forces on 

the hydrogen atom. The number of input neurons is 3, and the 

number of output neurons is 2. The model contains 2 hidden 

layers, and each hidden layer contains 3 neuron nodes. The 

forces on the oxygen atoms can be solved according to 

Newton's third law, to reduce the complexity of our design. 

Third, the digital circuit of the MLP model is designed and 

implemented. The MLP mainly consists of two computationally 

expensive parts: weight matrix multiplication and evaluation of 

nonlinear activation function. In Section Ⅲ-C, it has been 

introduced that the multiplication in MAC operation is replaced 

by shift operation, which is more suitable to realize processing 

in memory (PIM) in digital circuits, as the shift operation is 

cheaper in size and energy to be placed in or near the memory 

than multiplication. As shown in Fig. 7, we designed the matrix 

unit (MU) to realize the matrix multiplication between the 

weight and the layer input. In fact, the shift operation of K=3 is 

used. Therefore, the parameters we store are not the weight 

itself, but the corresponding shift parameters (i.e., s, n1, n2 and 

n3 in Eq. (9)). The shift operation between each input and each 

weight is implemented using a shift unit (SU) (see Fig. 7), 

consisting of three shifters, an adder, and a symbol selector. 

After the shift accumulation between one row of the weight 

matrix and an input vector, it is added to bias. The result of 

addition passes through the activation function unit (AU). It can 

be seen from Fig. 7 that the AU only consists of two selectors, 

a multiplier, a shifter, and a subtracter, so the circuit 

implementation is simple. At the same time, the activation 

function circuit designed consumes less clock cycles than that 

of tanh(x), because tanh(x) needs more clock cycles to be 

iteratively solved. Each layer of MLP is implemented using the 

NvN architecture shown in Fig. 7. Using the SilTerra 180 nm 

process, the MLP chip is designed and tape-out. Fig. 8(c) shows 

the die micrograph of MLP chip, occupying 1.73 mm2 die area. 

MLP chip on a printed circuit board (PCB) is exhibited in Fig. 

8(b).

wl



xl

Memory

gl

bl

hl ϕl xl+1

… …

register logic unit memory unit


multiplier adder
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Fig. 7. Schematic implementation of the matrix multiplication and activation function of the lth layer in MLP, consisting of j matric units (MU) 

and j activation function units (AU). Each MU contains k shift units (SU). Here, j represents the number of neurons of the lth layer, and k represents 

the number of neurons of the (l-1)th layer. 

 

 
Fig. 8. (a) The heterogeneous parallel MLMD computing system. (b) MLP chip on a PCB. (c) Micrograph of MLP die.

C. Heterogeneous Parallel System 

In this work, the MLP module is implemented based on the 

ASIC with NvN architecture, while the feature extraction 

module and integration module in MLMD calculations are 

implemented in the FPGA. The three modules of the MLMD all 

use signed 13-bit fixed-point numbers for operations, including 

1 sign bit, 2 integer bits and 10 fractional bits. A heterogeneous 

parallel MLMD computing system for a single water molecule 

is shown in Fig. 8(a). The whole circuit consists of one Xilinx 

XC7Z100 FPGA and two MLP chips. The workflow of the 

system is: 1) The FPGA calculates the features of two hydrogen 

atoms in the water molecule; 2) The two sets of features are 

inputs to two MLP chips simultaneously, and the two chips 

work in parallel to predict the forces of two hydrogen atoms; 3) 

The two sets of forces are sent back to the FPGA, and the force 

of the oxygen atom is calculated based on Newton's third law. 

Using the forces, the integration process is performed to update 

the positional coordinates of the atoms. Repeating the process 

1-3 to run multi-step MD calculations, the atomic trajectories 

can be obtained. Some physical properties can be further 

calculated from the trajectories, which will be introduced in 

detail in Section V. 

V. RESULTS 

The measurement results of the proposed dedicated NvN-

based MLMD computing system are presented in this section. 

First, it is verified that the MD calculation of the proposed 

system can achieve high-accuracy (Section V-A). Then, the 

computational speed (Section V-B) and energy efficiency 

(Section V-C) are quantitatively analyzed to demonstrate the 

high-efficiency. 

A. Accuracy 

 
Fig. 9. The comparison between the forces of test set using the MLP 

chip and DFT for the water molecular. The RMSE is 7.56 meV/Å. 

 

Reliable MD trajectories hinge on MLP’s ability to evaluate 

the atomic forces accurately. Therefore, before the accuracy 
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verification of MD calculation, we first test the function of the 

MLP chip. At the frequency of 25 MHz, as shown in Fig. 9, the 

atomic forces predicted by the proposed MLP chip is compared 

with the forces computed by the established DFT-based AIMD. 

The RMSE between the results of MLP chip and that of DFT is 

only 7.56 meV/Å.  

The high-accuracy of the forces lays a solid foundation for 

reliable calculation of physical properties. Using the MD 

trajectories calculated by the proposed MLMD computing 

system, the structural properties (e.g., bond length and angle) 

and dynamic properties (e.g., vibration frequency) can be 

analyzed. As shown in TABLE II and Fig. 10, we measure the 

calculation results of the four methods, namely, the DFT 

results, vN-MLMD results, NvN-MLMD results and DeePMD 

[19] results. Among them, vN-MLMD and NvN-MLMD 

execute the same MLMD algorithm (see Section II). The 

difference is that vN-MLMD is deployed on the vN-based CPU 

(Intel Xeon E5-2696 v2), while NvN-MLMD uses MLMD 

computing system proposed in this work. As for DeePMD [19], 

it is an advanced and universal MLMD method. It is meaningful 

to compare our design with it. Furthermore, three relative errors 

are calculated, denoted as Error1, Error2 and Error3, 

respectively. Error1 shows that the vN-MLMD method achieves 

a very consistent effect with the DFT method, and the errors of 

all calculated properties are less than 1.18%, proving that 

MLMD has the similar high-accuracy to DFT method. Error2 is 

more concerned, because it measures the accuracy of 

implemented NvN-MLMD. The results show that Error2 does 

not exceed 1.06%, demonstrating that the proposed NvN-based 

work without sacrificing the high-accuracy of the MLMD. 

Error3 shows the accuracy advantage of DeePMD, which is due 

to the fact that DeePMD uses a larger neural network and a 

more complex computing process compared with our work in 

terms of ensuring accuracy. 

TABLE II 
COMPARISON OF BOND LENGTH, ANGLE AND VIBRATION FREQUENCIES COMPUTED USING DIFFERENT METHODS 

Method Bond length (Å) H-O-H angle (°) 
Vibration frequency (cm-1) 

Symmetric stretching Asymmetric stretching Bending 

DFT 0.969 104.88 4007 4241 1603 

vN-MLMD 0.968 104.90 4040 4291 1619 

NvN-MLMD 0.968 104.85 4040 4274 1586 

DeePMD 0.970 104.82 4003 4234 1599 
Error1* 0.10% 0.02% 0.82% 1.18% 1.00% 

Error2* 0.10% 0.03% 0.82% 0.78% 1.06% 

Error3* 0.10% 0.06% 0.10% 0.17% 0.25% 

*Relative errors respectively computed by
1

vN-MLMD
%

DFT
Error = 100

DFT 

−
 , 

2
NvN-MLM

%
DFT

E =
D

DF
rro 0

T
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−
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3 %
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E
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T
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−
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Fig. 10. Vibration frequency of the water molecule. Here, DOS stands for the normalized density of states; the peak location indicates the vibration 

frequency. (a) symmetric stretching mode, (b) asymmetric stretching mode, and (c) bending mode of H2O vibrations are computed by using DFT, 

DeePMD, vN-MLMD and the proposed NvN-MLMD. The zoomed-out views of each plot are also shown. 

 

TABLE III 
COMPARISONS OF COMPUTATIONAL TIME COST AND ENERGY CONSUMPTION USING DIFFERENT METHODS 

Method Hardware device S (s/step/atom) P (W) η=S×P (J/step/atom) 

DFT CPU 1.9 230 4.4×102 

vN-MLMD CPU 5.1×10-4 45 2.3×10-2 

DeePMD CPU 8.6×10-5 152 1.3×10-2 

DeePMD CPU + GPU 2.6×10-6 250 6.5×10-4 

NvN-MLMD ASIC + FPGA 1.6×10-6 1.9 3.0×10-6 

(a) symmetric stretching (b) asymmetric stretching (c) bending
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B. Speed 

As shown in TABLE III, when applied to the MD calculation 

task of the water molecule, the computational speed of the 

proposed NvN-MLMD is about 6 orders of magnitude faster 

than the state-of-the-art DFT, and 1.6 times faster than the state-

of-the-art GPU-based MLMD method, i.e., DeePMD [19]. It is 

worth noting that the results in Ref. [19] are obtained on an 

NVIDIA V100 GPU with 12 nm node, while the MLP chip in 

the proposed method adopts the 180 nm process. Due to the 

limitation of the MLP chip’s process, the clock frequency 

adopted by the whole heterogeneous parallel system is 25 MHz. 

However, the clock frequency of the most of advanced 

commodity-level vN-based GPU/CPU can reach GHz-level 

[54, 55]. Although the processes used vary greatly and the clock 

frequency is about two orders of magnitude lower, the 

computational speed of the proposed NvN-MLMD is faster 

than that of the GPU/CPU-based MLMD method.  

C. Energy 

The energy consumption η is calculated by the formula 

η=S×P, where S represents the computational time cost and P 

represents the power consumption. The measured total power 

consumption of the proposed NvN-MLMD is only 1.9 W, of 

which the power consumption of a single MLP chip is only 8.7 

mW. As shown in TABLE III, the energy efficiency of the 

proposed system is 102-103× higher than that of the state-of-

the-art GPU-based MLMD method DeePMD [19]. 

Ⅵ. DISCUSSION 

The ASIC-based (180 nm process) method proposed in this 

paper is faster than the GPU (12 nm process), thanks to the 

adoption of the NvN architecture, which breaks the “memory 

wall bottleneck”. It is foreseeable that NvN-MLMD will have 

faster computing speed when using more advanced process 

nodes.  

The adoption of advanced process nodes has two main 

contributions to increasing computing speed. 1) The chips can 

reach clock frequencies of several GHz [54, 55], which means 

that, through purely boosting the clock frequency from 25MHz 

to several GHz, the computational speed can be directly 

accelerated by about 2 orders of magnitude (i.e., A1≈102). 2) 

Higher intra-ASIC parallelization can be achieved in the same 

area due to higher integration of transistors in advanced 

processes. Take the 14 nm node as an example, it can be learned 

from Ref. [56] and Ref. [57] that the transistor integration of the 

14 nm node is about 2 orders of magnitude higher than that of 

the 180 nm node. Therefore, it’s anticipated that the 

computational speed could be enhanced by about 2 orders of 

magnitude (i.e., A2≈102), by purely increasing the intra-ASIC 

parallelization. To sum up, the computational speed of the 

estimated NvN-MLMD would be around 4 orders of magnitude 

(i.e., A1×A2≈104) faster than that of the proposed method in this 

paper. In other words, the computational time cost of the 

MLMD computing system could be reduced from 10-6 

s/step/atom to around 10-10 s/step/atom, which shows great 

prospects of the NvN-MLMD. 

For different MD tasks, if different NN models are used, the 

current ASIC design needs to be modified. Therefore, 

developing a universal architecture is an important work we are 

doing. For example, at the software algorithm level, we will 

deploy the MLMD algorithm that is widely applicable to 

different MD tasks. At the hardware architecture level, we will 

provide a variable NN size to meet the different needs of 

different tasks on the NN size. 

Ⅶ. CONCLUSION 

In this work, a resource-saving and NvN-based MLP chip has 

been designed and implemented using SilTerra 180 nm process, 

to predict atomic forces. A heterogeneous parallel MLMD 

computing system has been proposed based on ASIC and 

FPGA. It is shown that, without compromising the high 

calculation accuracy, the proposed NvN-based MLMD 

achieves 1.6 ×  speedup and 102-103 ×  energy efficiency 

compared to the state-of-the-art vN-based MLMD method 

based on much more advanced process (12 nm). This paves the 

way for the development of next-generation NvN-based 

MLMD based on high-end fabrication technologies. 
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