
1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

A Heterogeneous Parallel Non-von Neumann

Architecture System for Accurate and Efficient

Machine Learning Molecular Dynamics

Zhuoying Zhao , Ziling Tan, Pinghui Mo, Xiaonan Wang, Dan Zhao, Xin Zhang, Ming Tao, and Jie Liu

Abstract—This paper proposes a special-purpose system to

achieve high-accuracy and high-efficiency machine learning (ML)

molecular dynamics (MD) calculations. The system consists of

field programmable gate array (FPGA) and application specific

integrated circuit (ASIC) working in heterogeneous

parallelization. To be specific, a multiplication-less neural network

(NN) is deployed on the non-von Neumann (NvN)-based ASIC

(SilTerra 180 nm process) to evaluate atomic forces, which is the

most computationally expensive part of MD. All other calculations

of MD are done using FPGA (Xilinx XC7Z100). It is shown that,

to achieve similar-level accuracy, the proposed NvN-based system

based on low-end fabrication technologies (180 nm) is 1.6× faster

and 102-103× more energy efficiency than state-of-the-art vN-

based MLMD using graphics processing units (GPUs) based on

much more advanced technologies (12 nm), indicating superiority

of the proposed NvN-based heterogeneous parallel architecture.

Index Terms—Molecular dynamics, machine learning, non-von

Neumann architecture, heterogeneous parallel

I. INTRODUCTION

OLECULAR dynamics (MD), as a computer

simulation technique for complex systems modelled

at the atomic level [1, 2], is widely used in many

fields, including physics [3], chemistry [4], material science [5],

semiconductor [6], nanotechnology [7], and biology [8], etc.

The dilemma of accuracy versus efficiency has plagued the MD

simulations for a long time. On one hand, density functional

theory (DFT)-based ab-initio molecular dynamics (AIMD) is

accurate, but its high computational cost limits its application

in large systems [9-11]. Empirical force fields (EFF)-based

classical MD (CMD) is efficient, but the manually-crafted EFF

may deviate from the physical reality, leading to accuracy

problems[12, 13].

The emerging machine learning (ML) MD (MLMD) has

been proved to alleviate the long-standing dilemma between

accuracy and efficiency [14-19]. By using the results of ab-

initio calculations to train the neural network (NN) model, the

MLMD can be several orders of magnitude faster than AIMD,

while ensuring accurate MD calculations.

This work is supported by the National Natural Science Foundation of China

(#61804049); the Fundamental Research Funds for the Central Universities of

P.R. China; Huxiang High Level Talent Gathering Project (#2019RS1023); the

Key Research and Development Project of Hunan Province, P.R. China
(#2019GK2071); the Fund for Distinguished Young Scholars of Changsha

(#kq1905012); the National Natural Science Foundation of China (#62104067);

Fig. 1. Block diagram of the proposed MLMD computing system. The

FPGA is responsible for feature extraction and integration, while the

ASIC is in charge of implementing the resource-saving NN (a

multilayer perceptron (MLP)). In addition, the proposed system

requires a central processing unit (CPU) for initialization and control.

However, when running MD calculations, using von

Neumann (vN) architecture computer is the only choice for

most researchers, since vN architecture has been the dominating

paradigm for many decades [20, 21]. Unfortunately, in the vN

architecture, computing units (e.g., central processing unit

(CPU) and graphics processing unit (GPU)) and storage units

are separated from each other, so the majority (> 90%) of the

total computation time and power consumption is actually

consumed in the frequent data shuttling [22, 23]. Only a small

fraction of time and power is used to perform useful arithmetic

and logic operations. This is commonly known as the “vN

bottleneck” (i.e., “memory wall bottleneck”) [22, 23], seriously

restricting the computing performance.

Although some special-purpose computers have been

developed to accelerate MD calculations [24-26], they are all

based on CMD, which makes their accuracy questionable in

many important applications [27, 28]. Recently, by leveraging

MLMD algorithms and NvN architecture, an MD computing

system named NVNMD has been developed by Mo et al [29-

31]. The NVNMD proves that the specially designed NvN-

based MLMD computing system has higher computational

speed and higher energy efficiency than the vN-based system

by deploying on field programmable gate array (FPGA),

providing a good hardware solution for accurate and efficient

MLMD calculations. However, FPGA-based hardware

the National Natural Science Foundation of China (#62101182); the China
Postdoctoral Science Foundation (#2020M682552). (Corresponding author:

Jie Liu; Ming Tao; Xin Zhang.)
The authors are with the College of Electrical and Information Engineering,

Hunan University, Changsha 410082, China (e-mail: jie_liu@hnu.edu.cn;

tming@hnu.edu.cn; zhangxin2302@hnu.edu.cn).

PROPOSED SYSTEM

FPGA

Feature

extraction

Integration

Resource-saving NN

(MLP)

ASIC

Initialization

& control

CPU

M

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

mailto:jie_liu@hnu.edu.cn
mailto:tming@hnu.edu.cn
mailto:zhangxin2302@hnu.edu.cn
https://orcid.org/0000-0001-8663-3551
https://orcid.org/0000-0001-9561-1362

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

architecture development limits the further improvement of the

computational efficiency for MLMD computing systems due to

its limited hardware resource and clock frequency, which come

from FPGA being born in semi-custom application scenarios.

By contrast, application specific integrated circuit (ASIC) has

merits of more abundant hardware resources, higher clock

frequency and lower power consumption than FPGA under the

same process node [32, 33]. Thus, ASIC has better potential to

further enhance the computational speed and energy efficiency

of MLMD computing systems.

In this paper, a heterogeneous parallel ASIC-and-FPGA-

based MLMD computing system (Fig. 1) is proposed and

implemented, to boost the development of the NvN-based

computing system for MLMD from the FPGA-based phase to

the ASIC-based phase. The MLMD algorithm adopted in this

paper consists of three modules, namely feature extraction,

multilayer perceptron (MLP), and integration (see Section II),

in which the MLP module is the most computationally

expensive one. Our analysis shows that the execution of the

MLP module accounts for the majority of the total calculation

time by using either CPU or GPU machines, especially when

the MLP size is large enough, the proportion can reach more

than 90%. Therefore, deploying the MLP on an ASIC is the key

to accelerate computing. Importantly, to reduce the physical

resources for its hardware implementation, the MLP uses shift

operations in place of multiplications during training stage, in

conjunction with the specially designed lightweight activation

function.

The resource-saving MLP is deployed on a carefully-

optimized special-purpose NvN-based prototype, which is

fabricated in SilTerra 180 nm process, with an area occupation

of 1.73 mm2 and a power dissipation of 1.9 W, to compute the

atomic forces of a water molecule. Except for NN, the feature

extraction module and integration module are implemented on

a NvN-based Xilinx XC7Z100 FPGA. Overall, as shown in Fig.

1, the MLMD computing system consists of ASIC and FPGA,

and an additional CPU is required for initialization and control.

As a result, we demonstrate that the computational error of the

proposed system is sufficiently small by measuring various

physical properties of the water molecule. Moreover, compared

to the state-of-the-art MLMD method relying on vN-based

GPU with 12 nm process, the proposed system, measured at a

low clock frequency of 25 MHz, returns 1.6× speedup and 102-

103× energy efficiency.

This work is a preliminary attempt to explore the substantial

acceleration of NVNMD by ASIC, and the main purpose is to

prove the feasibility. The remaining of the paper is organized as

follows. Section II introduces MLMD. Section III discusses the

optimization details of MLP module. Section IV introduces the

architecture design and hardware implementation. Section V

shows the measured results of the proposed system. Section Ⅵ

and Ⅶ present a brief discussion and conclusion.

II. MACHINE LEARNING MOLECULAR DYNAMICS

The procedure of MLMD calculations is introduced in this

section. Firstly, the overall design of MLMD is briefly

introduced (Section II-A). Then, the calculation flowchart is

introduced in three modules (Section II-B): (i) the feature

extraction module, (ii) the multilayer perceptron module, and

(iii) the integration module.

A. Overall Design

MLMD uses MLP to model energy or atomic force [15, 34,

35]. The input of the model is the local environment

information related to the atomic position, also known as the

feature. The output of the model is the energy or atomic force.

If energy is the output, the force is calculated according to the

energy derivative relative to the atomic position. In this work,

MLP is used to predict the force directly, which can complete

the MD calculations more efficiently.

MD is typically used to calculate the trajectories, ri(t)

(i=1,2,…,Na), of Na atoms in a system under certain conditions

(e.g., temperature, pressure, etc.) [11]. Here, t denotes time, ri

denote atomic coordinates in the Cartesian space.

The schematic flow of MLMD adopted in this paper is

presented in Fig. 2. Each MD step (time length dt) includes the

following three modules. (i) Given the atomic coordinates at

time t, ri(t), the features, Di(t), are computed. (ii) Using Di(t),

the atomic forces, Fi(t), are evaluated by MLP. (iii) Based on

Fi(t), through integrating Newton equation Fi=miai, ai=d2ri/dt2,

atomic coordinates at the next MD step, ri(t+dt), can be

calculated. It should be noted that, to evaluate Fi, we only need

to consider Ncut neighbor atoms near atom i, whose locations, rj,

satisfy |rj- ri|<rcut, where rcut is a cut-off radius, which can reduce

the size of features. The full atomic trajectories can be obtained

by repeating the above steps for a certain time.

Fig. 2. Schematic flow adopted in this work to compute one MD step,

which consists of three consecutive modules: (i) feature extraction, (ii)

multilayer perceptron (MLP) force evaluation, and (iii) integration.

Here, t is time; Di(t)=(D1, D2, …, Dn) are features associated with atom

i (i=1,2,…, Na); n denotes the number of features; Na denotes the total

number of atoms in the system; and mi, Fi, and vi are mass, force, and

velocity of atom i, respectively.

B. Calculation Flowchart

Feature Extraction Module: As shown in the module (i) in

Fig. 2, the atomic coordinates ri are converted into the features

Di, to preserve the translation, rotation and permutation

symmetries [34].

ri(t) Di(t)

… … … …

…

…

Input Hidden layers Output

1 2 L+1L0

(i) Feature extraction

(ii) Multilayer perceptron

Fi(t)vi(t)ri(t+dt)

(iii) Integration

D1

D2

D3

Dn

Fx

Fy

Fz

dt dt/mi

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Multilayer Perceptron Module: As shown in the module (ii)

in Fig. 2, the MLP takes the features Di as the input to compute

the atomic forces Fi=(Fx, Fy, Fz). It is worth noting that the

mapping from Di to Fi is a complex high-dimensional problem,

which is a challenge to compute both accurately and efficiently

[14].

As we all know, MLP is mathematically capable of fitting

arbitrarily complicated functions with arbitrary precision [36].

This mathematical conclusion provides a theoretical basis for

us to map from Di to Fi using MLP.

The MLP consists of L+2 layers, including an input layer

(denoted as l=0), L hidden layers (denoted as l=1, 2, ..., L), and

an output layer (denoted as l=L+1). The output of the lth layer is

1l l l l

j jk k j

k

a w a b − 
= + 

 
 (1)

where aj
l is the output of the jth neuron of the lth layer; wjk

l is the

weight connecting the kth neuron of the (l-1)th layer and the jth

neuron of the lth layer; bj
l
 is the bias of the jth neuron of the lth

layer; ϕ is the predefined nonlinear activation function; and l=1,

2, …, L+1. By setting the input of the MLP as features and the

output as forces, the weights and biases can be trained using the

DFT samples.

Integration Module: As shown in Fig. 2, the module (iii)

computes atomic coordinates ri(t+dt) by using atomic forces

Fi(t) through

() () ()i i it dt t t dt+ = + r r v (2)

and

() ()
()i

i i

i

t
t t dt dt

m
= − + 

F
v v (3)

where vi and mi are the velocity and the mass of atom i,

respectively [2].

Ⅲ. RESOURCE-SAVING NEURAL NETWORK

To achieve high computational efficiency with limited

hardware resources, we adopt quantized NN (QNN) instead of

continuous NN (CNN) (Section Ⅲ-A). Two main optimizations

are employed in QNN: Designing a lightweight nonlinear

activation function (Section Ⅲ-B); Using shift operation in

place of multiplication operation to realize multiplication-less

neural network (Section Ⅲ-C). The effects of optimizations on

the accuracy and hardware overhead are discussed in detail.

A. Quantized Neural Network

Accurate calculations of the atomic forces by MLP is the key

to perform accurate MD simulations. In traditional processors

(e.g., CPUs and GPUs), MD simulations adopt high-precision

floating-point numbers. However, continuous NN (CNN) based

on floating-point numbers is very hardware resource-

consuming in the implementation of the dedicated digital chip.

Therefore, we use QNN to reduce the power and resource

consumption of hardware design [37-39]. In the QNN, the

weights and activations are quantized by using signed fixed-

point numbers instead of floating-point numbers, so that integer

arithmetic can be used to realize real number operations.

B. Nonlinear Activation Function

The NN applied to regression problems usually uses

hyperbolic tangent nonlinear activation function (i.e., tanh(x))

[40], which is based on trigonometric function. If it is directly

implemented, it will be very hardware resource-consuming

[41]. Here, we design a hardware-friendly nonlinear activation

function

()

1 2

2 2
4

1 2

x

x x
x x x

x







= − −  


−  −


 (4)

with fewer calculations. We can use the right shift to divide, for

that the parameter in the denominator is the exponent of 2. The

most complex operation in ϕ(x) is just multiplication.

Compared with tanh(x), the hardware implementation of ϕ(x) is

simpler, which can reduce the hardware overhead and improve

the computational speed.

Fig. 3. (a) The curves of tanh(x) and ϕ(x). The tanh(x) and ϕ(x) are

similar at the numerical value. (b) The number of transistors consumed

by the tanh(x) and ϕ(x). The results are evaluated by using Synopsys

Design Compiler (DC).

TABLE I
ACCURACY* COMPARISON OF NEURAL NETWORKS BASED ON TWO

ACTIVATION FUNCTIONS

Systems tanh(x) ϕ(x) Difference**

Water 25.04 24.83 0.21

Ethanol 29.33 29.84 -0.51

Toluene 53.15 52.70 0.45

Naphthalene 46.45 46.63 -0.18

Aspirin 74.85 75.20 -0.35

Silicon 67.10 67.28 -0.18

*The root mean square errors (RMSEs) of atomic forces (meV/Å) of

six tested datasets. **Difference between tanh(x)-based MLP and ϕ(x)-

based MLP.

Accuracy: The curves of tanh(x) and ϕ(x) are compared in

Fig. 3(a). Obviously, tanh(x) and ϕ(x) are similar at the

numerical value. In order to quantitatively analyze the influence

of ϕ(x) on the fitting accuracy of MLP, using tanh(x) and ϕ(x),

we train and test on six systems, including five molecule

systems (i.e., water, ethanol, toluene, naphthalene, and aspirin),

and one bulk system (i.e., silicon). The fitting accuracy of

atomic forces obtained on the six datasets is shown in TABLE

I. When compared against the DFT results, the atomic forces

root mean square errors (RMSEs) (meV/Å) of tanh(x)-based

tan(x)

50418

4098

tan(x)

(a)

T
ra

n
si

st
o
rs

 c
o
u
n
t

ϕ(x)

ϕ(x)

(b)

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

MLP and that of ϕ(x)-based MLP shows a very small difference,

as indicated in the last column of TABLE I. In other words,

replacing tanh(x) with ϕ(x) will hardly bring accuracy loss.

Hardware overhead: We design and model the functions

tanh(x) and ϕ(x) by using the hardware description language

(HDL) Verilog code [42], where tanh(x) is implemented using

the coordinate rotation digital computer (CORDIC) algorithm

[43]. The register translation level (RTL) code is then converted

into gate-level circuits using Synopsys logic synthesis tool

Design Compiler (DC) [44], and the number of transistors

consumed by the circuit is estimated based on the generated

report. As indicated in Fig. 3(b), the tanh(x) consumes 50418

transistors, while the ϕ(x) requires only 4098 transistors. It

means that the hardware overhead of ϕ(x) is only 8% of that of

tanh(x), which greatly reduces the hardware overhead.

C. Multiplication-Less Neural Network

The key operation in the neural network (NN) is the multiply-

accumulation (MAC). On traditional computing chips such as

CPUs and GPUs, the calculation of MAC is very hardware

resource-consuming and time-consuming. If the MAC

operation is directly implemented in a dedicated digital circuit,

it will also lead to large hardware overhead and power

consumption [45-47].

In this paper, we propose a multiplication-less NN that

reduces hardware overhead and power consumption by

replacing multiplication operations with shift operations.

Specifically, during training the model, we quantize the

floating-point weights as sums of integer powers of 2 through

() ()q Kw s w Q w=  (5)

where, w represents the floating-point weight; wq represents the

quantized weight; s(·) is the sign function represented as

1 0

() 0 0

1 0

w

s w w

w




= =
− 

 (6)

QK(·) is the quantization function given by

()()1 max () 0 () 1
()

() 1

K

K

Q w Q w Q w K
Q w

Q w K

−
 − + 

= 
=

，
 (7)

where, K stands for the number of integral powers of 2; max(x,

y) means take the larger between x and y; |·| is the absolute value

function; and the basis function,

2log (/1.5)
() 2

w
Q w

  = (8)

is used to quantize value to exponent of 2, where ⌈·⌉ means

ceiling function to round a number to upper integer.

During inference stage, Eq. (5) can also be represented as

1

2 k

K
n

q

k

w s
=

=  (9)

where s is the sign of weight w, obtained by Eq. (6); nk is the

exponent, obtained by Eq. (7) and Eq. (8). Therefore, in the

hardware implementation, the multiplication between weights

and layer inputs will be replaced by a base-2 shift-sum

operation, such that

1 1

2 (,)k

K K
n

q q q q k

k k

w x s x s P x n
= =

 =   =   (10)

where, xq represents the quantized layer input using fixed-point

numbers; and

0

(,) 0

0

x n n

P x n x n n

x n




= − 
 =

 (11)

is the shift function.

Obviously, after the above quantization design, the MAC

operation in the NN will be completely replaced by the shift

accumulate operation, which is very friendly to digital circuit

implementation and can greatly reduce the complexity of the

circuit.

Before quantitative analysis of accuracy and hardware

overhead, some underlying conditions need to be stated. Firstly,

the nonlinear activation function used in all models here is ϕ(x),

based on the analysis in Section III-B. Secondly, we employ a

pre-training strategy to improve the accuracy of QNN. Thirdly,

for the same dataset, the corresponding CNN and QNN have

the same size to ensure the fairness of comparison. Fourthly, for

different datasets, the model size is different according to the

complexity of the datasets. For the six datasets tested, the

complexity of water, ethanol, toluene, naphthalene, aspirin, and

silicon increases sequentially, resulting in a sequential increase

in the corresponding network sizes.

Accuracy: Compared with the NN that solves the

classification problem, the NN applied to the regression

problem requires higher numerical precision and is more

sensitive to the error caused by quantization. However, the

accuracy and hardware cost of the NN are a dilemma with

respect to the number of shifts (i.e., K in Eq. (9)). On the one

hand, ASIC implementation minimizes hardware cost with

decrements of the number of shifts used to approximate a

multiplication. On the other hand, NN tends to maximize

accuracy with increments of the number of shifts. To find the

appropriate K value, we explore various evaluations for the

following two models:

1) CNN: a baseline model using 32-bit floating-point

numbers, which is a continuous standard MLP based on

multiplication.

2) QNN: load the pre-trained CNN baseline model,

quantify the weights according to Eq. (5)-(8), consider

5 different K values (i.e., 1, 2, 3, 4 and 5), and train the

model based on the pre-trained model.

The comparison between the accuracy of CNN and that of

QNN is shown in Fig. 4. When K=1 or 2, the QNN has a serious

accuracy loss, while from K=3, the loss tends to converge and

the accuracy is gradually consistent with that of CNN.

Furthermore, by calculating the ratio of RMSE of CNN to

QNN, when K=3, the accuracy loss of QNN relative to CNN is

between 6.5% and 12%.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 4. Accuracy comparison between CNN and QNN. (a), (b), (c), (d), (e) and (f) are the results tested on the datasets of water, ethanol, toluene,

naphthalene, aspirin and silicon, respectively. Each figure includes the force RMSE of CNN and QNN, as well as the RMSE ratio of CNN to

QNN. With the increase of the number of shifts (i.e., K, whose value is 1 to 5), the accuracy of QNN gradually converges to that of CNN.

Fig. 5. The ratio of the number of transistors consumed by the SQNN to the FQNN. Here, Nm denotes the number of transistors consumed by

multiplication-based FQNN using 16-bit fixed-point quantization, and NK
s denotes the number of transistors consumed by shift-based SQNN. For

each of the six datasets, the K of SQNN is considered from 1 to 5.

Hardware overhead: Considering that the strategy widely

used of deploying NN into hardware is to adopt fixed-point

quantization schemes [48, 49], we perform 16-bit fixed-point

quantization on CNN. We name the quantized CNN as FQNN

to distinguish it from shift-based QNN (renamed as SQNN).

For fair comparison, the layer input, bias and activation

function of SQNN also use 16-bit fixed-point quantization

except that the weight is quantized as the sum of powers of 2.

By logically synthesizing the Verilog codes corresponding to

SQNN and FQNN, the number of transistors consumed in the

hardware implementation of SQNN and FQNN for six datasets

is evaluated. We set the number of transistors consumed by

multiplication-based FQNN with 16-bit fixed-point numbers as

Nm and the number of transistors consumed by shift-based

SQNN as NK
s . Then, the value, NK

s /Nm×100%, is calculated, as

shown in Fig. 5. It can be obtained that the more complex the

system is, the more hardware overhead can be saved by using

SQNN. Combined with the analysis in terms of accuracy, for

the value of K when accuracy tends to converge (i.e., K=3), the

SQNN can save about 50% to 70% of the hardware overhead

relative to FQNN. At this time, increasing the K (i.e., K=4 or 5)

will not significantly improve the accuracy, but will increase

the hardware cost by about 10% to 20%. Thus, K=3 is a more

appropriate choice to the trade-off between accuracy and

hardware overhead.

Ⅳ. ARCHITECTURE DESIGN AND HARDWARE

IMPLEMENTATION

This section introduces the architecture design and hardware

F
o
rc

e
 R

M
S

E
 (

m
eV

/Å
)

Water

Naphthalene Silicon

K KK

(a)

(d) (e) (f)

(b)

Ethanol Toluene

R
M

S
E

 r
a

ti
o

F
o
rc

e
 R

M
S

E
 (

m
eV

/Å
)

(c)

Aspirin

R
M

S
E

 r
a

ti
o

/ 100%s m

KN N

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

implementation. The three modules of MLMD (Section II) are

designed using non-von Neumann (NvN) architecture (Section

Ⅳ-A). The MLP model applied to a single water molecule is

designed and implemented in ASIC (Section Ⅳ-B). With the

feature extraction module and the integration module

implemented on FPGA, a heterogeneous parallel MLMD

computing system is constructed by using ASIC and FPGA

(Section Ⅳ-C).

A. Non-von Neumann Architecture

Fig. 6. Schematic of calculation step by adopting NvN architecture.

Equation (1) is used as an example to shows the calculation process of

NvN architecture. Here, xl, wl, bl, and ϕl are input, weight, bias, and

nonlinear activation function of the lth layer, respectively; gl = xl × wl;

hl = bl + gl.

As described in Section I, there are “memory wall

bottlenecks” in vN architecture, which seriously restrict the

improvement of MD computing performance. In this work, we

adopt the NvN architecture, which is very important to improve

the computational efficiency, especially to accelerate the MLP

module with the highest computational density. The logical

computing unit and the storage unit are integrated to avoid the

repeated data shuttling. For instance, to calculate the lth layer of

MLP, the weights wl and biases bl are stored in the locally

distributed memory, directly participate in the calculation near

it, and save the results in the nearby register. As shown in

Fig. 6, the result xl+1 of this layer is directly used as the input

of the next layer, without saving the intermediate result to the

off-chip memory. To compute a long MD trajectory of a

particular material, wl and bl are only initialized once before

MLP inference, and then kept unchanged during MD

calculation of the full trajectories. We implement pipeline

computing in the NvN architecture without data shuttling

latency, so that the computational time is purely used for useful

logic operations, improving the computational efficiency, and

thus solving the “memory wall bottleneck” problem.

Similar to the MLP module, both feature extraction module

and integration module are implemented using NvN

architecture. All the calculations described in Section II-B are

completed without back-and-forth data shuttling.

B. Implementation of Multilayer Perceptron Chip

We design and tape-out an ASIC for the MLP module, the

most computationally intensive module among the three

modules in the MLMD.

In order to verify the feasibility of our proposed method, we

take the force prediction of a single water molecule as an

example to train the model and implement it in ASIC. The

process consists of 3 steps.

First, training samples are generated. AIMD is run to obtain

the atomic trajectories, ri(DFT), using density functional theory

(DFT) code SIESTA [50]. The AIMD is run in a 2×2×2 nm

supercell; Γ-point is used to sample Brillouin zone; double-zeta

plus polarization (DZP) linear combination of atomic orbitals

are used; plane wave cutoff is 100 Ry. To improve the MD

calculation accuracy, a generalized gradient approximation is

used to account for exchange-correlation effects [51]. The MD

timestep dt is set to as 2 fs. The atomic forces, Fi(DFT), at each

MD step are calculated using the Hellman-Feynman theorem

[52].

Second, an MLP model is trained. After the atomic

coordinates ri(DFT) are converted into features Di (see Section II

-B), the MLP is trained using Di and Fi(DFT). Our training work

is based on TensorFlow [53]. All simplified and quantized

methods introduced in Section III are adopted in the training

stage. Using 80% of the DFT samples as the training set and the

remaining 20% as the test set, the atomic forces, Fi(MLP),

predicted by the MLP can accurately reproduce the DFT results

Fi(DFT). Here, we trained an MLP model to predict the forces on

the hydrogen atom. The number of input neurons is 3, and the

number of output neurons is 2. The model contains 2 hidden

layers, and each hidden layer contains 3 neuron nodes. The

forces on the oxygen atoms can be solved according to

Newton's third law, to reduce the complexity of our design.

Third, the digital circuit of the MLP model is designed and

implemented. The MLP mainly consists of two computationally

expensive parts: weight matrix multiplication and evaluation of

nonlinear activation function. In Section Ⅲ-C, it has been

introduced that the multiplication in MAC operation is replaced

by shift operation, which is more suitable to realize processing

in memory (PIM) in digital circuits, as the shift operation is

cheaper in size and energy to be placed in or near the memory

than multiplication. As shown in Fig. 7, we designed the matrix

unit (MU) to realize the matrix multiplication between the

weight and the layer input. In fact, the shift operation of K=3 is

used. Therefore, the parameters we store are not the weight

itself, but the corresponding shift parameters (i.e., s, n1, n2 and

n3 in Eq. (9)). The shift operation between each input and each

weight is implemented using a shift unit (SU) (see Fig. 7),

consisting of three shifters, an adder, and a symbol selector.

After the shift accumulation between one row of the weight

matrix and an input vector, it is added to bias. The result of

addition passes through the activation function unit (AU). It can

be seen from Fig. 7 that the AU only consists of two selectors,

a multiplier, a shifter, and a subtracter, so the circuit

implementation is simple. At the same time, the activation

function circuit designed consumes less clock cycles than that

of tanh(x), because tanh(x) needs more clock cycles to be

iteratively solved. Each layer of MLP is implemented using the

NvN architecture shown in Fig. 7. Using the SilTerra 180 nm

process, the MLP chip is designed and tape-out. Fig. 8(c) shows

the die micrograph of MLP chip, occupying 1.73 mm2 die area.

MLP chip on a printed circuit board (PCB) is exhibited in Fig.

8(b).

wl



xl

Memory

gl

bl

hl ϕl xl+1

… …

register logic unit memory unit


multiplier adder

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 7. Schematic implementation of the matrix multiplication and activation function of the lth layer in MLP, consisting of j matric units (MU)

and j activation function units (AU). Each MU contains k shift units (SU). Here, j represents the number of neurons of the lth layer, and k represents

the number of neurons of the (l-1)th layer.

Fig. 8. (a) The heterogeneous parallel MLMD computing system. (b) MLP chip on a PCB. (c) Micrograph of MLP die.

C. Heterogeneous Parallel System

In this work, the MLP module is implemented based on the

ASIC with NvN architecture, while the feature extraction

module and integration module in MLMD calculations are

implemented in the FPGA. The three modules of the MLMD all

use signed 13-bit fixed-point numbers for operations, including

1 sign bit, 2 integer bits and 10 fractional bits. A heterogeneous

parallel MLMD computing system for a single water molecule

is shown in Fig. 8(a). The whole circuit consists of one Xilinx

XC7Z100 FPGA and two MLP chips. The workflow of the

system is: 1) The FPGA calculates the features of two hydrogen

atoms in the water molecule; 2) The two sets of features are

inputs to two MLP chips simultaneously, and the two chips

work in parallel to predict the forces of two hydrogen atoms; 3)

The two sets of forces are sent back to the FPGA, and the force

of the oxygen atom is calculated based on Newton's third law.

Using the forces, the integration process is performed to update

the positional coordinates of the atoms. Repeating the process

1-3 to run multi-step MD calculations, the atomic trajectories

can be obtained. Some physical properties can be further

calculated from the trajectories, which will be introduced in

detail in Section V.

V. RESULTS

The measurement results of the proposed dedicated NvN-

based MLMD computing system are presented in this section.

First, it is verified that the MD calculation of the proposed

system can achieve high-accuracy (Section V-A). Then, the

computational speed (Section V-B) and energy efficiency

(Section V-C) are quantitatively analyzed to demonstrate the

high-efficiency.

A. Accuracy

Fig. 9. The comparison between the forces of test set using the MLP

chip and DFT for the water molecular. The RMSE is 7.56 meV/Å.

Reliable MD trajectories hinge on MLP’s ability to evaluate

the atomic forces accurately. Therefore, before the accuracy

>>2
+
-

sign_qj
qj

Act. Unit (AU)

ϕj

Matric Unit (MU)

…

a1

a2

ak b1

p01

p02

p0k

SU01

SU02

SU0k

Act. Unit (AU)

q1 ϕ0

Matric Unit (MU)

…

a1

a2

ak b1

p11

p12

p1k

SU11

SU12

SU1k

Act. Unit (AU)

q1 ϕ1

Matric Unit (MU)

…

a1

a2

ak bj

pj1

pj2

pjk

SUj1

SUj2

SUjk

Act. Unit (AU)

qj ϕj

>>njk
1

sjk

pjk+
-

ak

Shift Unit (SU)

>>njk
2

>>njk
3

1 2 3()jk jk k jk k jk k jkp s a n a n a n=   +  + 

… …

Xilinx FPGA XC7Z100 MLP chip on a PCB Micrograph of MLP die

(a) (b) (c)

RMSE=7.56meV/Å

FDFT (meV/Å)

F
M

L
P

_
ch

ip
(m

eV
/Å

)

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

verification of MD calculation, we first test the function of the

MLP chip. At the frequency of 25 MHz, as shown in Fig. 9, the

atomic forces predicted by the proposed MLP chip is compared

with the forces computed by the established DFT-based AIMD.

The RMSE between the results of MLP chip and that of DFT is

only 7.56 meV/Å.

The high-accuracy of the forces lays a solid foundation for

reliable calculation of physical properties. Using the MD

trajectories calculated by the proposed MLMD computing

system, the structural properties (e.g., bond length and angle)

and dynamic properties (e.g., vibration frequency) can be

analyzed. As shown in TABLE II and Fig. 10, we measure the

calculation results of the four methods, namely, the DFT

results, vN-MLMD results, NvN-MLMD results and DeePMD

[19] results. Among them, vN-MLMD and NvN-MLMD

execute the same MLMD algorithm (see Section II). The

difference is that vN-MLMD is deployed on the vN-based CPU

(Intel Xeon E5-2696 v2), while NvN-MLMD uses MLMD

computing system proposed in this work. As for DeePMD [19],

it is an advanced and universal MLMD method. It is meaningful

to compare our design with it. Furthermore, three relative errors

are calculated, denoted as Error1, Error2 and Error3,

respectively. Error1 shows that the vN-MLMD method achieves

a very consistent effect with the DFT method, and the errors of

all calculated properties are less than 1.18%, proving that

MLMD has the similar high-accuracy to DFT method. Error2 is

more concerned, because it measures the accuracy of

implemented NvN-MLMD. The results show that Error2 does

not exceed 1.06%, demonstrating that the proposed NvN-based

work without sacrificing the high-accuracy of the MLMD.

Error3 shows the accuracy advantage of DeePMD, which is due

to the fact that DeePMD uses a larger neural network and a

more complex computing process compared with our work in

terms of ensuring accuracy.

TABLE II
COMPARISON OF BOND LENGTH, ANGLE AND VIBRATION FREQUENCIES COMPUTED USING DIFFERENT METHODS

Method Bond length (Å) H-O-H angle (°)
Vibration frequency (cm-1)

Symmetric stretching Asymmetric stretching Bending

DFT 0.969 104.88 4007 4241 1603

vN-MLMD 0.968 104.90 4040 4291 1619

NvN-MLMD 0.968 104.85 4040 4274 1586

DeePMD 0.970 104.82 4003 4234 1599
Error1* 0.10% 0.02% 0.82% 1.18% 1.00%

Error2* 0.10% 0.03% 0.82% 0.78% 1.06%

Error3* 0.10% 0.06% 0.10% 0.17% 0.25%

*Relative errors respectively computed by
1

vN-MLMD
%

DFT
Error = 100

DFT

−
 ,

2
NvN-MLM

%
DFT

E =
D

DF
rro 0

T
r 10

−
 , and

3 %
DeePMD

E
DFT

=
DF

rro 0
T

r 10
−

 .

Fig. 10. Vibration frequency of the water molecule. Here, DOS stands for the normalized density of states; the peak location indicates the vibration

frequency. (a) symmetric stretching mode, (b) asymmetric stretching mode, and (c) bending mode of H2O vibrations are computed by using DFT,

DeePMD, vN-MLMD and the proposed NvN-MLMD. The zoomed-out views of each plot are also shown.

TABLE III
COMPARISONS OF COMPUTATIONAL TIME COST AND ENERGY CONSUMPTION USING DIFFERENT METHODS

Method Hardware device S (s/step/atom) P (W) η=S×P (J/step/atom)

DFT CPU 1.9 230 4.4×102

vN-MLMD CPU 5.1×10-4 45 2.3×10-2

DeePMD CPU 8.6×10-5 152 1.3×10-2

DeePMD CPU + GPU 2.6×10-6 250 6.5×10-4

NvN-MLMD ASIC + FPGA 1.6×10-6 1.9 3.0×10-6

(a) symmetric stretching (b) asymmetric stretching (c) bending

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

B. Speed

As shown in TABLE III, when applied to the MD calculation

task of the water molecule, the computational speed of the

proposed NvN-MLMD is about 6 orders of magnitude faster

than the state-of-the-art DFT, and 1.6 times faster than the state-

of-the-art GPU-based MLMD method, i.e., DeePMD [19]. It is

worth noting that the results in Ref. [19] are obtained on an

NVIDIA V100 GPU with 12 nm node, while the MLP chip in

the proposed method adopts the 180 nm process. Due to the

limitation of the MLP chip’s process, the clock frequency

adopted by the whole heterogeneous parallel system is 25 MHz.

However, the clock frequency of the most of advanced

commodity-level vN-based GPU/CPU can reach GHz-level

[54, 55]. Although the processes used vary greatly and the clock

frequency is about two orders of magnitude lower, the

computational speed of the proposed NvN-MLMD is faster

than that of the GPU/CPU-based MLMD method.

C. Energy

The energy consumption η is calculated by the formula

η=S×P, where S represents the computational time cost and P

represents the power consumption. The measured total power

consumption of the proposed NvN-MLMD is only 1.9 W, of

which the power consumption of a single MLP chip is only 8.7

mW. As shown in TABLE III, the energy efficiency of the

proposed system is 102-103× higher than that of the state-of-

the-art GPU-based MLMD method DeePMD [19].

Ⅵ. DISCUSSION

The ASIC-based (180 nm process) method proposed in this

paper is faster than the GPU (12 nm process), thanks to the

adoption of the NvN architecture, which breaks the “memory

wall bottleneck”. It is foreseeable that NvN-MLMD will have

faster computing speed when using more advanced process

nodes.

The adoption of advanced process nodes has two main

contributions to increasing computing speed. 1) The chips can

reach clock frequencies of several GHz [54, 55], which means

that, through purely boosting the clock frequency from 25MHz

to several GHz, the computational speed can be directly

accelerated by about 2 orders of magnitude (i.e., A1≈102). 2)

Higher intra-ASIC parallelization can be achieved in the same

area due to higher integration of transistors in advanced

processes. Take the 14 nm node as an example, it can be learned

from Ref. [56] and Ref. [57] that the transistor integration of the

14 nm node is about 2 orders of magnitude higher than that of

the 180 nm node. Therefore, it’s anticipated that the

computational speed could be enhanced by about 2 orders of

magnitude (i.e., A2≈102), by purely increasing the intra-ASIC

parallelization. To sum up, the computational speed of the

estimated NvN-MLMD would be around 4 orders of magnitude

(i.e., A1×A2≈104) faster than that of the proposed method in this

paper. In other words, the computational time cost of the

MLMD computing system could be reduced from 10-6

s/step/atom to around 10-10 s/step/atom, which shows great

prospects of the NvN-MLMD.

For different MD tasks, if different NN models are used, the

current ASIC design needs to be modified. Therefore,

developing a universal architecture is an important work we are

doing. For example, at the software algorithm level, we will

deploy the MLMD algorithm that is widely applicable to

different MD tasks. At the hardware architecture level, we will

provide a variable NN size to meet the different needs of

different tasks on the NN size.

Ⅶ. CONCLUSION

In this work, a resource-saving and NvN-based MLP chip has

been designed and implemented using SilTerra 180 nm process,

to predict atomic forces. A heterogeneous parallel MLMD

computing system has been proposed based on ASIC and

FPGA. It is shown that, without compromising the high

calculation accuracy, the proposed NvN-based MLMD

achieves 1.6 × speedup and 102-103 × energy efficiency

compared to the state-of-the-art vN-based MLMD method

based on much more advanced process (12 nm). This paves the

way for the development of next-generation NvN-based

MLMD based on high-end fabrication technologies.

REFERENCES

[1] "Molecular dynamics." https://www.nature.com/subjects/molecular-

dynamics (accessed.
[2] D. Frenkel and B. Smit, Understanding molecular simulation: from

algorithms to applications. Elsevier, 2001.

[3] V. Bapst et al., "Unveiling the predictive power of static structure in glassy
systems," Nature Physics, vol. 16, no. 4, pp. 448-454, 2020.

[4] P. Bajaj, J. O. Richardson, and F. Paesani, "Ion-mediated hydrogen-bond

rearrangement through tunnelling in the iodide–dihydrate complex,"
Nature chemistry, vol. 11, no. 4, pp. 367-374, 2019.

[5] F. Rao et al., "Reducing the stochasticity of crystal nucleation to enable

subnanosecond memory writing," Science, vol. 358, no. 6369, pp. 1423-
1427, 2017.

[6] M. Shi, P. Mo, and J. Liu, "Deep neural network for accurate and efficient

atomistic modeling of phase change memory," IEEE Electron Device
Letters, vol. 41, no. 3, pp. 365-368, 2020.

[7] J. Liu et al., "A sensitive and specific nanosensor for monitoring

extracellular potassium levels in the brain," Nature Nanotechnology, vol.
15, no. 4, pp. 321-330, 2020.

[8] M. Karplus and G. A. Petsko, "Molecular dynamics simulations in

biology," Nature, vol. 347, no. 6294, pp. 631-639, 1990.
[9] W. Kohn and L. J. Sham, "Self-consistent equations including exchange

and correlation effects," Physical review, vol. 140, no. 4A, p. A1133, 1965.

[10] R. Car and M. Parrinello, "Unified approach for molecular dynamics and
density-functional theory," Physical review letters, vol. 55, no. 22, p. 2471,

1985.

[11] D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and
advanced methods. Cambridge University Press, 2009.

[12] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, "Development and

testing of the OPLS all-atom force field on conformational energetics and
properties of organic liquids," Journal of the American Chemical Society,

vol. 118, no. 45, pp. 11225-11236, 1996.

[13] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case,
"Development and testing of a general amber force field," Journal of

computational chemistry, vol. 25, no. 9, pp. 1157-1174, 2004.

[14] J. Behler and M. Parrinello, "Generalized neural-network representation
of high-dimensional potential-energy surfaces," Physical review letters,

vol. 98, no. 14, p. 146401, 2007.
[15] N. Kuritz, G. Gordon, and A. Natan, "Size and temperature transferability

of direct and local deep neural networks for atomic forces," Physical

Review B, vol. 98, no. 9, p. 094109, 2018.
[16] H. Wang, L. Zhang, J. Han, and E. Weinan, "DeePMD-kit: A deep

learning package for many-body potential energy representation and

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

https://www.nature.com/subjects/molecular-dynamics
https://www.nature.com/subjects/molecular-dynamics

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

molecular dynamics," Computer Physics Communications, vol. 228, pp.

178-184, 2018.

[17] L. Zhang, J. Han, H. Wang, W. Saidi, and R. Car, "End-to-end symmetry

preserving inter-atomic potential energy model for finite and extended

systems," Advances in Neural Information Processing Systems, vol. 31,
2018.

[18] W. Jia et al., "Pushing the limit of molecular dynamics with ab initio

accuracy to 100 million atoms with machine learning," in SC20:
International conference for high performance computing, networking,

storage and analysis, 2020: IEEE, pp. 1-14.

[19] D. Lu et al., "DP train, then DP compress: model compression in deep
potential molecular dynamics," arXiv preprint arXiv:2107.02103, 2021.

[20] J. Von Neumann, "First Draft of a Report on the EDVAC," IEEE Annals

of the History of Computing, vol. 15, no. 4, pp. 27-75, 1993.
[21] "Electronic Numerical Integrator and Computer (ENIAC)."

https://en.wikipedia.org/wiki/ENIAC (accessed.

[22] W. A. Wulf and S. A. McKee, "Hitting the memory wall: Implications of
the obvious," ACM SIGARCH computer architecture news, vol. 23, no. 1,

pp. 20-24, 1995.

[23] M. Horowitz, "1.1 computing's energy problem (and what we can do
about it)," in 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), 2014: IEEE, pp. 10-14.

[24] D. E. Shaw et al., "Anton, a special-purpose machine for molecular
dynamics simulation," Communications of the ACM, vol. 51, no. 7, pp.

91-97, 2008.

[25] D. E. Shaw et al., "Anton 2: raising the bar for performance and
programmability in a special-purpose molecular dynamics

supercomputer," in SC'14: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
2014: IEEE, pp. 41-53.

[26] D. E. Shaw et al., "Anton 3: twenty microseconds of molecular dynamics

simulation before lunch," in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,

2021, pp. 1-11.

[27] V. L. Deringer and G. Csányi, "Machine learning based interatomic
potential for amorphous carbon," Physical Review B, vol. 95, no. 9, p.

094203, 2017.

[28] J. Zeng, L. Cao, M. Xu, T. Zhu, and J. Z. Zhang, "Complex reaction
processes in combustion unraveled by neural network-based molecular

dynamics simulation," Nature communications, vol. 11, no. 1, pp. 1-9,

2020.
[29] P. Mo et al., "Accurate and efficient molecular dynamics based on

machine learning and non von Neumann architecture," npj Computational

Materials, vol. 8, no. 1, pp. 1-15, 2022.
[30] J. Liu and P. Mo. "The server website of NVNMD." http://nvnmd.picp.vip

(accessed.

[31] J. Liu and P. Mo. "The training and testing code for NVNMD."
https://github.com/LiuGroupHNU/nvnmd (accessed.

[32] I. Kuon and J. Rose, "Measuring the gap between FPGAs and ASICs,"
IEEE Transactions on computer-aided design of integrated circuits and

systems, vol. 26, no. 2, pp. 203-215, 2007.

[33] A. De Vita, A. Russo, D. Pau, L. Di Benedetto, A. Rubino, and G. D.
Licciardo, "A partially binarized hybrid neural network system for low-

power and resource constrained human activity recognition," IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11,
pp. 3893-3904, 2020.

[34] L. Zhang, J. Han, H. Wang, R. Car, and E. Weinan, "Deep potential

molecular dynamics: a scalable model with the accuracy of quantum
mechanics," Physical review letters, vol. 120, no. 14, p. 143001, 2018.

[35] P. Mo, M. Shi, W. Yao, and J. Liu, "Transfer Learning of Potential Energy

Surfaces for Efficient Atomistic Modeling of Doping and Alloy," IEEE
Electron Device Letters, vol. 41, no. 4, pp. 633-636, 2020.

[36] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward

networks are universal approximators," Neural networks, vol. 2, no. 5, pp.
359-366, 1989.

[37] G. Purushothaman and N. B. Karayiannis, "Quantum neural networks

(QNNs): inherently fuzzy feedforward neural networks," IEEE
Transactions on neural networks, vol. 8, no. 3, pp. 679-693, 1997.

[38] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, "Deep

learning with limited numerical precision," in International conference on
machine learning, 2015: PMLR, pp. 1737-1746.

[39] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, "Ristretto: A

framework for empirical study of resource-efficient inference in

convolutional neural networks," IEEE transactions on neural networks

and learning systems, vol. 29, no. 11, pp. 5784-5789, 2018.

[40] R. C. Minnett, A. T. Smith, W. C. Lennon Jr, and R. Hecht-Nielsen,

"Neural network tomography: Network replication from output surface

geometry," Neural Networks, vol. 24, no. 5, pp. 484-492, 2011.
[41] S. Marra, M. A. Iachino, and F. C. Morabito, "High speed, programmable

implementation of a tanh-like activation function and its derivative for

digital neural networks," in 2007 International Joint Conference on
Neural Networks, 2007: IEEE, pp. 506-511.

[42] S. Palnitkar, Verilog HDL: a guide to digital design and synthesis.

Prentice Hall Professional, 2003.
[43] M. Garrido, P. Källström, M. Kumm, and O. Gustafsson, "CORDIC II: a

new improved CORDIC algorithm," IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 63, no. 2, pp. 186-190, 2015.
[44] "Synopsys Design Compiler." https://solvnet.synopsys.com/DocsOnWeb

(accessed.

[45] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
"Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1," arXiv preprint arXiv:1602.02830,

2016.
[46] B. Wu et al., "Shift: A zero flop, zero parameter alternative to spatial

convolutions," in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2018, pp. 9127-9135.
[47] H. Chen et al., "AdderNet: Do we really need multiplications in deep

learning?," in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2020, pp. 1468-1477.
[48] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, "Fixed Point

Quantization of Deep Convolutional Networks," in 33rd International

Conference on Machine Learning, New York, NY, Jun 20-22 2016, vol.
48, in Proceedings of Machine Learning Research, 2016.

[49] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and

K. Gopalakrishnan, "Pact: Parameterized clipping activation for quantized
neural networks," arXiv preprint arXiv:1805.06085, 2018.

[50] J. M. Soler et al., "The SIESTA method for ab initio order-N materials

simulation," Journal of Physics: Condensed Matter, vol. 14, no. 11, p.
2745, 2002.

[51] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient

approximation made simple," Physical review letters, vol. 77, no. 18, p.
3865, 1996.

[52] R. Gaudoin and J. Pitarke, "Hellman-Feynman operator sampling in

diffusion Monte Carlo calculations," Physical review letters, vol. 99, no.
12, p. 126406, 2007.

[53] M. Abadi, P. Barham, J. Chen, Z. Chen, and X. Zhang, "TensorFlow: A

system for large-scale machine learning," in USENIX Association, 2016.
[54] N. Corporation. "Nvidia Tesla V100 GPU Volta Architecture." White

Paper 53. https://images.nvidia.cn/content/volta-architecture/pdf/volta-

architecture-whitepaper.pdf (accessed.
[55] "Intel Core i9-10900K Processor."

https://www.intel.com/content/www/us/en/products/sku/199332/intel-
core-i910900k-processor-20m-cache-up-to-5-30-ghz/specifications.html

(accessed.

[56] "International Technology Roadmap for Semiconductors 2.0 2015
edition." http://www.itrs2.net/itrs-reports.html (accessed.

[57] W. M. Holt, "1.1 Moore's law: A path going forward," in 2016 IEEE

International Solid-State Circuits Conference (ISSCC), 2016: IEEE, pp.
8-13.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2023.3255199

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

https://en.wikipedia.org/wiki/ENIAC
http://nvnmd.picp.vip/
https://github.com/LiuGroupHNU/nvnmd
https://solvnet.synopsys.com/DocsOnWeb
https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.intel.com/content/www/us/en/products/sku/199332/intel-core-i910900k-processor-20m-cache-up-to-5-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199332/intel-core-i910900k-processor-20m-cache-up-to-5-30-ghz/specifications.html
http://www.itrs2.net/itrs-reports.html

