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SPP-CNN: An Efficient Framework for Network
Robustness Prediction

Chengpei Wu, Yang Lou, Lin Wang, Junli Li, Xiang Li, and Guanrong Chen

Abstract—This paper addresses the robustness of a network
to sustain its connectivity and controllability against malicious
attacks. This kind of network robustness is typically measured
by the time-consuming attack simulation, which returns a se-
quence of values that record the remaining connectivity and
controllability after a sequence of node- or edge-removal attacks.
For improvement, this paper develops an efficient framework
for network robustness prediction, the spatial pyramid pooling
convolutional neural network (SPP-CNN). The new framework
installs a spatial pyramid pooling layer between the convolutional
and fully-connected layers, overcoming the common mismatch
issue in the CNN-based prediction approaches and extending
its generalizability. Extensive experiments are carried out by
comparing SPP-CNN with three state-of-the-art robustness pre-
dictors, namely a CNN-based and two graph neural networks-
based frameworks. Synthetic and real-world networks, both
directed and undirected, are investigated. Experimental results
demonstrate that the proposed SPP-CNN achieves better pre-
diction performances and better generalizability to unknown
datasets, with significantly lower time-consumption, than its
counterparts.

Index Terms—Complex network, robustness, convolutional
neural network, spatial pyramid pooling, prediction.

I. INTRODUCTION

HE study of complex networks enhances our understand-

ing of various real-world systems, ranging from natural
to engineering, to biological, and to social networks [1]-
[3]. Scientific investigations intend to reveal the essence and
characteristics of networks, while engineering studies focus
on their functions and applications, regarding such as connec-
tivity [4]-[6], controllability [7]-[14], data transmission and
communication abilities [15], [16], and so on. Today, random
failures and malicious attacks take place in many engineering
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and technological applications, which significantly degrade or
even destroy the network normal functions. Therefore, it has
become important and necessary to strengthen such network
functions against attacks and failures [4]-[6], [17]-[23]. This
leads to the concern of network robustness, which has different
meanings in different scenarios, and here it refers to the ability
of a network to sustain its normal functions when a fraction
of the network nodes and/or edges failure due to attacks. In
this paper, network robustness is studied with respect to both
connectivity and controllability against destructive attacks and
failures in the forms of node-removals.

The enhancement of network robustness depends on some
reliable and efficient measures of the defined robustness [5],
[6]. In general, network robustness can be measured in both
a priori and a posteriori manners. A priori measures are
referred to specific network features that can be evaluated and
calculated without performing attack simulations. Widely-used
a priori robustness measures include topological measures, for
example betweenness centrality [24] and clustering coefficient
[25], and spectral measures include such as natural connec-
tivity [26], algebraic connectivity [27], effective resistance
[28], and so on. Network spectra can be calculated using the
network adjacency matrix and Laplacian matrix [29]. Although
a priori measures are easy-to-access with lower computational
cost and complexity [6], [22], they have limited scopes of
applications [30].

In contrast, a posteriori robustness measures have intuitively
clear meanings with a wider range of applicability, namely, a
posteriori measures are applicable to any type of networks
under any kind of attacks, and they return distinguishable
measure values with respect to different attack strategies.
Therefore, the practical a posteriori measures remain as the
main approach in robustness studies for many real-world
applications. A posteriori measures are quantified by recording
a sequence of values that represent the remaining functionality
(here, connectivity and controllability) of the network after
a series of node- or edge-removal attacks. Evaluation of a
posteriori measures is generally time-consuming, however, not
only due to the iterative node- or edge-removal processes, but
also because of the recalculation of the concerned network
functions, such as the size of largest connected component [4],
the number of needed driver nodes [7], [8], and the number
of communicable node pairs [15], [16].

In practice, it is not always necessary to calculate the exact
values of the network robustness as done in attack simula-
tion. For example, during an optimization process, network
robustness is reevaluated after each structural disturbance,
e.g., edge rewiring [31]-[33]. It is very time-consuming to
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perform an attack simulation each time, especially for large-
scale networks. Therefore, robustness prediction approaches
are more desirable in such cases, which significantly reduce
the cost and time complexity [34].

Network robustness prediction can be achieved by using ei-
ther analytical or computational methods. In so doing, the time
complexity is either constant [35] or increasing but signifi-
cantly slower than that of the attack simulation [36]. Analytical
approximations have a much narrower scope of applications to,
e.g., the controllability robustness under random edge-attacks
[35], [37], [38]. In contrast, machine learning algorithms,
such as neural networks and random forest schemes, have no
such limitation [39]. By combining several machine learning
algorithms together, a surrogate ensemble can be formed for
robustness prediction through an optimization process [34].

Regarding neural networks-based frameworks, deep neural
networks are more powerful than canonical machine learning
algorithms for efficiently processing network data. Success-
ful application examples include critical node identification
using deep reinforcement learning [40] and graph attention
networks [41]. The convolutional neural network (CNN) [42]-
based prediction processes network data as gray-scale images
[36], thereby fast approximating the robustness performances
against different attacks. Prior knowledge is useful to further
improve the prediction performances [43]. This straightfor-
ward approach requires downsampling and upsampling for
the input data that are smaller and larger than the fixed
input size of CNN, however, thus information distortion may
be severe if the input network size is very large or very
small. Graph neural networks (GNN) [44], [45] are able
to compress and unify higher-dimensional network raw data
to lower-dimensional representations. Therefore, GNN-based
approaches are more tolerable to the input data-size changes,
and so have better prediction performances [46]. Taking the
connectivity robustness prediction as an example, the CNN-
based approach needs an average run time that is 3.48% of
the attack simulation, while the GNN-based approach requires
up to 82.8% of the attack simulation [46].

In this paper, to overcome the aforemention mismatch
issue between the various input sizes and the fixed input
size in the CNN-based processing, and also to achieve a
balance between the flexibility of processing different input
sizes and the approximation speed in computation, a spatial
pyramid pooling (SPP) [47] layer is installed into the network
robustness predictor, which is demonstrated to be superior to
the other CNN-based and GNN-based frameworks.

Specifically, the work and contributions of this paper are
summarized as follows:

1) SPP-CNN is proposed, which has a wider tolerance to
different input-data sizes than the CNN- and GNN-based
approaches [46], while maintaining fast approximation
speed like the CNN-based approaches [36].

2) SPP-CNN shows stronger generalizability than the other
approaches on predicting the network robustness for
datasets with unseen topologies and sizes.

3) SPP-CNN demonstrates better performances than the
other approaches on predicting the robustness of real-

world networks, with consistent advantages for both
synthetic and real-world networks.

The rest of the paper is organized as follows. Section II
reviews several measures of the network robustness against
destructive node-removal attacks, and both CNN-based and
GNN-based prediction frameworks. Section III introduces the
proposed SPP-CNN. Section IV presents extensive empirical
experiment results with comparison and analysis. Section V
concludes the investigation.

II. PRELIMINARIES

In this paper, network robustness is considered from two
specific aspects, namely the a priori connectivity robustness
and controllability robustness, while other a posteriori ro-
bustness measures such as communication robustness can be
investigated in a similar manner. Only node-removal attacks
is discussed, while edge-attacks can also be studied in the
same way. Three state-of-the-art network robustness predictors
are reviewed, namely the CNN-based robustness predictor
(CNN-RP) [36], PATCHY-SAN [48], and the learning fea-
ture representation-based predictor (LFR-CNN) [46]. Both
PATCHY-SAN and LFR-CNN consist of a GNN module
for graph representation learning, followed by a CNN for
robustness performance prediction (regression).

A. Robustness Measures

1) Connectivity Robustness: In this paper, connectivity
robustness refers to the ability of a network to maintain its
connectivity against destructive node-removal attacks, which is
widely measured by counting the size of the largest connected
component (LCC) in the network after an attack. If an undi-
rected network is connected or a directed network is weakly
connected, then the LCC is the network itself; otherwise,
a connected component that includes the largest number of
nodes is an LCC. Connectivity robustness is evaluated by the
following index:

N—i’
i=0

N-1 N-1 .
Bo= S nm =Y el (1)
i=0
where NV is the number of nodes in the given network before
being attacked; ¢ is the total number of nodes that have been
removed from the network; Ny () is the number of nodes in
the remaining LCC; therefore, r1(¢) is the density of nodes
remaining in the ith LCC. The denominator N — ¢ ensures
Ry, € (0,1], but if the denominator is replaced by N then
Ry €(0,0.5] as used in [4].

The series of values r1(¢) can be plotted to show a con-
nectivity curve, for which the scalar R; reflects the overall
connectivity robustness against node-removal attacks: a higher
Ry value indicates a better connectivity robustness.

2) Controllability Robustness: Controllability robustness
reflects the ability of a networked system to maintain or regain
its controllability with the lowest control cost, e.g., the mini-
mum number of driver nodes (DN) that are needed to add to
the network after the attack. For a general linear time-invariant
(LTI) networked system x = Ax + Bu, where x € RY
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represents the state vector; u € R? represents the control input;
A € RV*N and B € RV*? are constant matrices. This LTI
system is state controllable if and only if there exist a control
input u that can drive the state x to move from any initial
state to any target state in the state space in finite time. The
state controllability can be determined by checking whether
the controllability matrix [B AB A%B --- AN~1B] has a full
row-rank [49]. The concept of structural controllability is a
slight generalization of the state controllability, to deal with
two parameterized matrices A and B, in which the parameters
characterize the structure of the underlying system in the sense
that if there are specific parameter values that can ensure the
system to be state controllable then the system is said to be
structurally controllable.

For a network with many LTI systems, any node system with
control input is a ND. The minimum number of NDs needed
to retain the (state or structural) controllability of the network
can be determined by using either the minimum inputs theorem
(MIT) [7] for directed networks or the exact controllability
theorem (ECT) [8] for both directed and undirected networks,
which are defined as follows:

max{1, N — B[},
Np =
max{1, N — rank(A)},

using MIT [7],

. 2
using ECT [8],

where |E| represents the number of edges in the maximum
matching E, which is a basic concept in graph theory [7].
Under a sequence of node-removal attacks, the controllability
robustness is measured by

N-1 ‘ N-1 Np (i)
Ry=) nm(i)=) ~—5 3)
=0 =0

where Np(7) is the number of DNs and 75(%) is the density
of DNs, which are needed to retain the network controllability
after a total of ¢ nodes have been removed by the attack.
Similarly, the series of values 72(¢) can be plotted to show
a controllability curve, where Ry measures the overall con-
trollability robustness: a lower Ry values indicates a better
connectivity robustness.

B. Network Robustness Predictors

There are three commonly-used network robustness predic-
tors, namely CNN-RP [36], PATCHY-SAN [48], and FR-CNN
[46]. Basic principles as well as the pros and cons of these
approaches are reviewed and discussed in this subsection.

The general structures of CNN-RP, PATCHY-SAN, and
LFR-CNN are visualized in Fig. 1. The input is the adjacency
matrix, which could also be a Laplacian matrix or other
representations, and the output is the predicted robustness
performance.

1) CNN-RP: The structure of CNN-RP [36], [50], using
a VGG-structured CNN [51], is shown in Fig. 2. Adjacency
matrices are treated as gray-scale images and processed by
CNN directly. Classification and regression tasks are com-
pleted using such an image-processing mechanism [43].

The output of CNN-RP is an N-vector, which represents a
connectivity or controllability curve, denoted by 0. The mean-

g gray-scale
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Fig. 1: General frameworks of CNN-RP, PATCHY-SAN, and
LFR-CNN. CNN-RP processes network data as gray-scaled
images, while for PATCHY-SAN and LFR-CNN, the LFR
module performs the selection, assembly, and normalization

(SAN) operations, which compress higher-dimensional (HD)
network data to be lower-dimensional (LD) representations.

Assembly

\
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robustness
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Fig. 2: CNN structure in CNN-RP. The input is an ad-
jacency matrix; the output is an N-vector. Seven feature
map (FM) groups are generated with N; = [N/20+1D7, for
1 =1,2,...,7. Concatenation layer reshapes the data to be a
vector, from FM 7 to FC;. FC1=512N72 and FC5=4096 [36].

squared error between the predicted curve © and the true curve
v is used as the loss function:

1L .
£= 3 D100 vl @

where ©0(i) and v(i) represent the predicted and the true
connectivity or controllability values, respectively; ¢ is the total
number of nodes that have been removed from the network;
|| || is the Euclidean norm. The true values v(¢) are obtained
by performing attack simulation. The training process aims at
adjusting the internal parameters, aiming at minimizing L.

2) PATCHY-SAN and LFR-CNN: As shown in Fig. 1,
PATCHY-SAN and LFR-CNN share the same LFR module,
which converts higher-dimensional network data to lower-
dimensional representations. This conversion is achieved by
using a series of three operations: selection, assembly, and
normalization (SAN).

First, the N network nodes are sorted according to their
importance, which can be quantified by certain node centrality
measure such as node degree or node betweenness. A total of
W most important nodes are first selected. For each selected
node, a receptive field of size g is created based on its
neighboring information. If N < W, then all-zero receptive
fields are added for padding. Next, a breadth-first search is
conducted to construct the neighborhood field for each selected
node. Finally, a normalization step converts and normalizes
the neighboring field for each selected node to an embedded
vector with a uniform length gh, where h is the number of
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attributes used for the neighboring nodes. The first element
in the resultant normalized vector represents the root node,
followed by the neighboring nodes sorted according to their
centrality measures.

To this end, an N-node network represented by an N2
adjacency matrix has been represented by a W X (gh) matrix,
where there are W receptive fields and each receptive field is
presented by a 1 x gh vector. Since ¢ < N and h < N,
this procedure generates lower-dimensional learned feature
representations from higher-dimensional raw network data.
Then, the lower-dimensional representations are processed by
CNN to predict the robustness performances of the given
networks.

For PATCHY-SAN, a shallow 1D-CNN structure is em-
ployed, while for LFR-CNN a VGG-structured [51] 2D-CNN
with 3 feature maps (FMs) is used. The numbers of internal
parameters to be adjusted during training are 5.1 x 10° and
6.0 x 105 for PATCHY-SAN and LFR-CNN, respectively.

The same mean-squared error between the predicted curve
© and the true curve v as shown in Eq. (4) is used as the loss
function for both PATCHY-SAN and LFR-CNN.

C. Error Measures
Let vi = {v;(i)}5" and v, = {v, (i)} ;" be the true and
the predicted robustness curves obtained by attack simulation,

respectively. The prediction error £ is calculated by

| Nl
£= N 2 £(i) 4)
where £(i) = |v:(3) — vp(9)], ¢ = 0,1,..., N — 1. Given

two prediction errors obtained by two different robustness
predictors, denoted by &; and &, if & < & then the first
predictor performs better than the second.

III. SPATIAL PYRAMID POOLING

A CNN consists of convolutional layers and fully-connected
layers, as shown in Fig. 2. The convolutional layers, which
work in a sliding-window manner, are flexible with different
input sizes, while the nature of the fully-connected layers
requires a predefined fixed size of input. Therefore, CNNs
require a fixed size for the input data, e.g., 224 x 224. For
image processing tasks such as classification and object de-
tection [51]-[53], cropping [54] and warping [55], the images
may be fit to the required fixed input size. When complex
network data are used as the input to CNNs, upsampling or
subsampling is suitable [36], since cropping and warping may
discard or distort some specific marginal regions of an image,
while upsampling and subsampling cause uniformly random
information loss or distortion. However, resizing of network
data not only will change the true network size, but also
will change the true topology, by removing existing nodes
or adding dummy nodes. But the resized network data can be
misleading, for example, when hub nodes are deleted.

On the other hand, the GNN-based approaches can effec-
tively reduce the information loss by extracting neighboring
information from the important nodes, as discussed in Sub-
section II-B2. The representation learning process converts the

input higher-dimensional data of any size to a regulated fixed-
sized lower-dimensional representation, and then passes it to
a CNN. This process significantly widen the application range
of the robustness predictor to different network sizes [46].
However, the GNN-based approaches are significantly slower
than the CNN-based approaches, where the representation
learning process is the most time-consuming part.

Embedding a spatial pyramid pooling (SPP) [47] layer into
CNN, in between the convolutional layers and fully-connected
layers, brings some benefits: it brings a buffer layer from
the flexible convolutional layers to the fixed fully-connected
layers. SPP is developed from the canonical spatial pyramid
matching algorithm in computer vision [56], [57], which
statistically counts the feature distributions of images from
multiple scales, such that better recognition performances can
be achieved. The spatial pyramid matching algorithm sets a
number of spatial bins, and then local features within each
individual spatial bin are captured statistically. The represen-
tation of the whole image consists of local features from
different spatial bins.

As an extension of the spatial pyramid matching algorithm,
SPP uses max pooling instead of statistical counting to local
feature learning and resizing. Given input images of different
sizes, the convolution layers are able to process all the infor-
mation and then generate feature maps of different sizes. The
SPP layer then transforms these feature maps to fixed-length
representations.

As shown in Fig. 3, an N x N input image results in L
N’ x N' feature maps, where L is the number of filters in
the last convolutional layer. In the SPP layer, feature maps are
divided into 3 different levels of spatial bins, of sizes 1 x 1,
2 x 2, and 4 x 4, which are processed by max pooling with
corresponding sizes. Then, a representation vector of size pL
is generated as the output of the SPP layer. Here, both L and
p are pre-defined hyperparameters. As a result, for the input
image of any size, a fixed length pL-vector is generated as
the input to the fully-connected layers. In this paper, three
pyramid pooling levels are used, with sizes of 1 x 1, 2 x 2
and 4 x 4, respectively. It has been empirically verified that
the performance of the SPP layer is insensitive to different
settings of the pyramid bins [47].

By installing such an SPP layer in CNN, an SPP-CNN is
constructed for network robustness prediction. Fig. 4 shows
the structure of SPP-CNN, which consists of 6 convolutional
layers, 1 SPP layer, and 3 fully connected layers. This structure
is able to predict the robustness performances of networks
with hundreds to thousands of nodes. Specifically, p = 21
represents the total number of bins, and L = 256 denotes the
number of filters in the last convolutional layer. The resultant
representation has a fixed-length of 21 x 256 = 5376, which
is also the fixed input size of the first fully-connected layer
(FCy), namely L; = pL = 5376.

The parameter setting of the convolutional layers is shown
in Table I. Source codes of this work are available for the
public!.

Uhttps://fylou.github.io/sourcecode.html
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Fig. 3: The convolutional neural network structure with a spatial pyramid pooling layer. The detailed structure of convolutional

layers are shown in Fig. 4.
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Fig. 4: CNN structure of SPP-CNN. The spatial pyramid
pooling layer is installed between the convolutional layers and
fully-connected layers. Hard-sigmoid is installed in the last
fully-connected layer, while in other layers ReLU is installed.

TABLE I: Parameter setting of the convolutional layers in SPP-
CNN.

] Kernel . Output

Group Layer size Stride channel
Group 1 Conv7-64 TxT 1 64
Max?2 2 X2 2 64
Group 2 Conv5-64 5X5 1 64
Max2 2 X2 2 64
Group 3 Conv3-128 3x3 1 128
Max?2 2 X2 2 128
Group 4 Conv3-128 3x3 1 128
Max2 2 X2 2 128
Group 5 Conv3-256 3x3 1 256
Max?2 2 X2 2 256
Group 6 Conv3-256 3x3 1 256
Max2 2 X2 2 256

IV. EXPERIMENTAL STUDIES

In this section, the proposed SPP-CNN is experimentally
tested and compared with CNN-RP [36], PATCHY-SAN [48],
and LFR-CNN [46]. Network connectivity robustness under
maximum-degree node attacks and controllability robustness
under random node attacks are predicted. Other network
robustness under different attack strategies can be studied in
the same manner. Both directed and undirected, and synthetic
and real-world networks are simulated. All experiments are
performed on a PC with GeForce RTX 3080 GPU, which has
memory (RAM) 10 GB with running the Ubuntu 20.04.3 LTS

Operating System.

This section is organized as follows. Subsection IV-A in-
troduces the experimental settings. General comparison of ro-
bustness prediction performances are presented in Subsection
IV-B, which demonstrates that SPP-CNN performs as well as
other state-of-the-art GNN-based robustness predictors when
the test data drawn from the same distribution are used for
training. The run-time comparison presented in Subsection
IV-C demonstrates that SPP-CNN is significantly faster than
the GNN-based predictors. Then, the generlizability of the
predictors is verified in Subsections IV-D and IV-E, where the
test datasets with unseen synthetic and real-world networks
are tested. Finally, the pros and cons of different predictors
are discussed in Subsection I'V-F.

A. Experimental Settings

Nine representative synthetic network models are used for
simulation, including Barabdsi—Albert (BA) scale-free [58],
[59], extreme homogeneous (EH) [60], Erdos-Rényi (ER)
random-graph [61], g-snapback (QS) [62], random hexagon
(RH) [63], random triangle (RT) [63], generic scale-free (SF)
[64], Newman—Watts small-world (SW-NW) [65], and Watts—
Strogatz small-world (SW-WS) [25] network models.

Specifically, the generation of BA networks is based on
preferential attachment [58]; SF networks are generated using
predefined weights, namely the probability of connecting two
nodes 7 and j is proportional to their weights w; and w;, where
w; = (i + 0)~7 for any node ¢, parameters o € [0,1) and
60 < N; EH networks are generated by performing random
edge rectifications onto ER networks, such that the degree
distribution of EH is extremely homogeneous [60]; RT and RH
consist of random triangles and hexagons, respectively [63].
These models, BA, EH, ER, RH, RT, SF, generate undirected
instances by default, while directed instances are generated by
assigning random directions onto the edges.

QS consists of a directed backbone chain and multiple
snapback edges [62]; SW starts from an /N-node directed loop
having K (K = 2 here) connected nearest-neighbors; shortcuts
are randomly added without removing any existing edges in
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TABLE II: Comparison of average prediction errors among SPP-CNN, CNN-RP, PATCHY-SAN, and LFR-CNN. Signs in
parentheses denote the Kruskal-Wallis H-test [66] results. A ‘4’ sign denotes that SPP-CNN is superior to the other methods

3

with smaller errors; a ‘~
other methods with greater errors.

)

sign denotes no significant difference; while a ‘—’ sign denotes that SPP-CNN is inferior to the

SW- SW-
BA EH ER QS RH RT SF W WS
Comnectivity | SPP-CAN 0.038 0.057 0.032 0.067 0.056 0.105 0.017 0.030 0.031
oY [TCNN-RP 0.146(F) | 0.138(F) | 0.129(F) | 0.162(F) | 0.121(F) | O.118(=) | 0.068(%) | 0.094(%) | 0.099(1)
- Bg () PATCHY-SAN | 0.040(1) | 0.032(—) | 0.024(—) | 0.027(—) | 0.028(—) | 0.031(—) | 0.029(H) | 0.027(~) | 0.024(—)
g a- LFR-CNN 0.041(F) | 0.078(F) | 0.039(~) | 0.076(=) | 0.023(—) | 0.031(—) | 0.018(=) | 0.029(=) | 0.027(=)
£ [ Comrollabilicy | _SPP-CNN 0.031 0.025 0.025 0.042 0.021 0.030 0.025 0.028 0.025
A g“;of‘“y CNN-RP 0.092(1) | 0.040(1) | 0.062(1) | 0.104(1) | 0.051(1) | 0.060(1) | 0.134(1) | 0.054(1) | 0.059(1)
‘])5(;‘5(‘3“;'55 PATCHY-SAN | 0.032(~) | 0.028(~) | 0.026(~) | 0.030(—) | 0.019(~) | 0.024(~) | 0.049(+) | 0.024(~) | 0.022(=)
: LFR-CNN 0.024(~) | 0.013(—) | 0.018(—) | 0.015(—) | 0.015(—) | 0.019(—) | 0.039(%) | 0.015(—) | 0.015(—)
Comnectivity |_SPP-CNN 0.023 0.070 0.025 0.026 0.028 0.047 0.016 0.029 0.028
oY [ CNN-RP 0.055(+1) | 0.188(F) | 0.121(+) | 0.135(F) | 0.121(+) | 0.100(+) | 0.020(=) | 0.149(+) | 0.140(+)
3 By (1) PATCHY-SAN | 0.030(+) | 0.032(—) | 0.022(—) | 0.024(~) | 0.022(—) | 0.026(—) | 0.025(+) | 0.025(~) | 0.020(—)
S qa- LFR-CNN 0.026(~) | 0.066(=) | 0.025(=~) | 0.027(=~) | 0.019(—) | 0.022(—) | 0.016(=) | 0.023(=~) | 0.020(—)
5 [ Controllability | SPP-CNN 0.027 0.013 0.016 0.014 0.018 0.018 0.026 0.016 0.017
5 Robugmwy CNN-RP 0.060(F) | 0.037(F) | 0.031(F) | 0.035(F) | 0.039(F) | 0.039(F) | 0.085(%) | 0.045(%) | 0.046(F)
By () PATCHY-SAN | 0.028(=) | 0.015(=) | 0.020(=) | 0.017(+) | 0.021(+) | 0.020(~) | 0.040(+) | 0.016(~) | 0.016(=)
q- (- LFR-CNN 0.037(1) | 0.016(+1) | 0.017(=) | 0.017(f) | 0.018(=) | 0.020(=) | 0.060(%) | 0.018(+) | 0.019(=~)

SW-NW [65], while rewiring operations are performed in SW-
WS [25]. Thus, QS, SW-NW, and SW-WS generate directed
network instances by default, while undirected instances are
generated by removing the edge directions.

The average degree of each network instance is assigned
reasonably at random. For directed networks, the average
degree range is set as (k) € [2.5,5] for the two SW models,
(k) € [2,4] for RH, (k) € [1.5,3] for RT, and for the other
models, (k) € [3,6]. For undirected networks, the average
degree range is set to double, namely, the range is set as
(k) € [5,10] for the two SW models, (k) € [4,8] for RH,
(k) € [3,6] for RT, while for the other models, (k) € [6,12].

Define three sets of synthetic network models, S; ={BA,
EH, ER, QS, RH, RT, SF, SW-NW, SW-WS}, S; ={ER,
QS, SE, SW-NW}, and S3 ={BA, EH, RH, RT, SW-WS}.
Three network size ranges are set as N, € [700,1300],
Ny, € [300,700], N. € [1300, 1700]. For each synthetic model,
1000 network instances are randomly generated as the training
data, and 100 instances as the test data. Since the structural
connectivity and controllability are independent of the edge
weights, only unweighted networks are simulated here.

For the LFR module in both PATCHY-SAN and LFR-CNN,
the number of features is set as h = 2, where node degree and
clustering coefficient are employed; the size of receptive field
is set as g = 10, both are the same as that in [46], [48].

B. Comparison of Prediction Performances

Both training and test data are drawn from the same sample
space, namely each network instance is randomly generated
from any of the 9 synthetic models in S7, with a network size
randomly picked as N, € [700,1300].

Table II shows the average prediction errors obtained by
SPP-CNN, CNN-RP, PATCHY-SAN, and LFR-CNN. Boxplots
of the prediction errors are presented in Figs. S1-S4 of the
Supplementary Information (SI)> due to space limitation here.
Network robustness in terms of connectivity and controllability

Zhttps://fylou.github.io/pdf/sppsi.pdf

is predicted, and the prediction errors are calculated using Eq.
(5). The errors are averaged from 100 independent runs for
each synthetic model. A total of 2x2x9 = 36 comparisons are
performed between SPP-CNN and each of CNN-RP, PATCHY-
SAN, and LFR-CNN, namely, directed and undirected net-
works, two robustness measures, and 9 synthetic network
models. The Kruskal-Wallis H-test [66] results are shown
with the corresponding prediction error values, where a ‘4’
sign denotes that SPP-CNN performs significantly better than
the other methods with smaller errors; a ‘x’ sign denotes
no significant difference between SPP-CNN and the other
methods; while a ‘=’ sign denotes that SPP-CNN performs
significantly worse than the other methods with greater errors.

SPP-CNN performs significantly better than CNN-RP in 34
cases, and for the rest 2 cases, there is no significant difference
between them. As for PATCHY-SAN and LFR-CNN, the same
numbers of superiors and inferiors are obtained, showing that
SPP-CNN significantly outperforms PATCHY-SAN (or LFR-
CNN) in 8 cases; SPP-CNN performs significantly worse than
PATCHY-SAN (or LFR-CNN) in 12 cases; and they perform
statistically equally in the rest 16 cases.

In a nutshell, it is clear that SPP-CNN performs equivalently
to or marginally worse than PATCHY-SAN and LFR-CNN, but
significantly better than CNN-RP.

C. Run Time Comparison

The powerful GNN-based representation learning part of
PATCHY-SAN and LFR-CNN significantly enhances the pre-
cision of robustness prediction, which however is the most
time-consuming part. In contrast, SPP-CNN does not involve
any GNN-based operation for feature learning.

Figure 5 shows the run time comparison of SPP-CNN,
CNN-RP, PATCHY-SAN, LFR-CNN, and attack simulation
(SIM). Fig. 5 (a) presents the run time when the network size is
N, € [700,1300], of which the average network size is 1000;
for Fig. 5 (b), the network size is set as N, € [700, 1300], of
which the average network size is 500.


https://fylou.github.io/pdf/sppsi.pdf
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Fig. 5: Run time comparison of SPP-CNN, CNN-RP,
PATCHY-SAN, LFR-CNN, and attack simulation (SIM): (a)
for network size N, € [700,1300]; and (b) for network size
Ny, € [300, 700]

(b) N € [300,700]

For each subplot in Fig. 5, it is clear that CNN-RP is the
fastest, followed by SPP-CNN. Clearly, PATCHY-SAN and
LFR-CNN are significantly slower than CNN-RP and SPP-
CNN, but much faster than attack simulations. For PATCHY-
SAN and LFR-CNN, the representation learning takes most of
the run time.

Comparing Figs. 5 (a) and (b), when the average network
size is doubled from subplot (b) to subplot (a), the time
consumption of SPP-CNN, CNN-RP, PATCHY-SAN, LFR-
CNN, and SIM is increased by 1.61, 1,34, 4.78, 4.81, and
8.21 times, respectively. It is clear that the time consumption
of CNN-RP and SPP-CNN increase significantly slower than
the GNN-based predictors do.

The run time difference between CNN-RP and SPP-CNN
is negligible, while SPP-CNN significantly outperforms CNN-
RP, as can be seen from Table II, which also shows that the
performance different between SPP-CNN and the GNN-based
predictors is marginal, while the time complexity of SPP-CNN
is significantly lower than PATCHY-SAN and LFR-CNN, as
shown in Fig. 5.

D. Comparison of Generalizability

The generalizability of robustness predictors is tested from
two aspects: 1) using the network models in S;, two sets of
test instances with unseen network sizes (UNS) are tested,
namely, the network size of training data is drawn from N, €
[700, 1300], while the test data are from N, € [300, 700] and
N, € [1300,1700]. 2) Given network size drawn from N, €
[700, 1300], training instances are generated from the network
models in S, while the test instances are from Ss. Since S
and S3 are two mutually exclusive subsets of Sy, S3 is called
the test data of unseen network topology (UNT). Note that
although S and Ss are mutually exclusive, there are some
similarities between the models in the two sets, e.g., SW-NW
€ 55 and SW-WS € Ss.

Table III summarizes the comparison of the significant dif-
ferences between SPP-CNN and each of CNN-RP, PATCHY-
SAN, and LFR-CNN. The prediction errors for UNS and UNT
are presented in Figs. S5-S8 and S13 of SI, respectively.
The barcharts of the numbers of significant performance
differences for UNS and UNT are shown in Figs. S9—S12 and

TABLE III: Comparison of significant difference between
SPP-CNN and each of CNN-RP, PATCHY-SAN, and LFR-
CNN.

Significant Difference “+) | (=) | (=
SPP-CNN vs CNN-RP 266 12 10
UNS | SPP-CNN vs PATCHY-SAN | 169 78 41
SPP-CNN vs LFR-CNN 124 | 108 56
SPP-CNN vs CNN-RP 11 2 7
UNT | SPP-CNN vs PATCHY-SAN 15 3 2
SPP-CNN vs LFR-CNN 14 3 3

S14 of SI, respectively. For UNS, there are 2x2x 9 x 8 = 288
neck-to-neck comparisons between SPP-CNN and each of
CNN-RP, PATCHY-SAN, and LFR-CNN, namely, directed
and undirected, connectivity and controllability robustness, 9
synthetic models in S7, and 8 UNS sections in N, and N,.. For
UNT, there are 2 x 2 X 5 = 20 comparisons, namely, directed
and undirected, connectivity and controllability robustness,
and 5 synthetic models in Ss.

Only when testing on UNS, SPP-CNN outperforms LFR-
CNN marginally, but for all the rest comparisons, SPP-CNN
gains more superiors than inferiors. This indicates the excellent
generalizability of SPP-CNN.

E. Predicting Robustness for Real-world Networks

The prediction performance is studied by two experiments.
The first experiment investigates the performances of SPP-
CNN, PATCHY-SAN, and LFR-CNN on predicting the robust-
ness of the tested real-world networks. The second experiment
uses mixed sets of both synthetic and real-world networks
as both training and test data. Define S, ={Reddit-Multi-
12K3 Networks}, where there are 1000 real-world networks
selected randomly, of which the network size ranges as N, €
[300, 700].

1) Real-world Networks Only: Figure 6 (a) shows the
prediction errors obtained by SPP-CNN, PATCHY-SAN, and
LFR-CNN, where the training data set is .S, while the test
set constitutes of other randomly picked 100 networks from
Reddit-Multi-12K. The boxplot in Fig. 6 (a) shows that SPP-
CNN outperforms both PATCHY-SAN and LFR-CNN, with
statistic significance, using the Kruskal-Wallis test [66].

2) Real-world and Synthetic Networks: To clear up the
doubt that the excellent performance of SPP-CNN on predict-
ing real-world networks is random or due to overfitting, S,
and Sy are mixed together in experiments. Thus, the trained
SPP-CNN is neither specialized for synthetic models nor for
real-world networks.

As shown in Fig. 6 (b), the prediction error boxplot obtained
by SPP-CNN on real-world networks is similar to that in Fig. 6
(a). This clears up the doubt of overfitting. Also, the prediction
errors obtained by SPP-CNN for synthetic networks are similar
to that in Fig. 6 (c), where a SPP-CNN is specifically trained
for the 4 synthetic models.

In a nutshell, when real-world and synthetic networks are
mixed and used as both training and test data, SPP-CNN can
perform robustness prediction as excellent as the cases where

3https:/networkrepository.com/REDDIT-MULTI- 12K php
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Fig. 6: Prediction error comparison in the form of boxplot: (a) both training and test data are real-world networks; (b) for SPP-
CNN, the training and test data include both real-world networks S, and synthetic models Sa; (c) the benchmark performance
of SPP-CNN when only S5 is used as both training and test data.

TABLE IV: A summary of the performances of SPP-CNN when different datasets (including 57, S2, S3, and S,.) and network

s

sizes (including N,, Ny, and N.) are used. A ‘=

sign represents that the numbers of superiors and inferiors obtained by

SPP-CNN are similar to that obtained by the compared method; while a ‘>’ sign means that SPP-CNN obtains clearly more

superiors than inferiors in the corresponding comparison.

Training data S1 (Ng) S1 (Ng) Sa (Ng) S Sr+S2
Test data S1 (Ng) S1 (Np and N.) S3 (Ng) Sy Sr+S2
Performance | ~ PATCHY-SAN | > PATCHY-SAN | > PATCHY-SAN | > PATCHY-SAN | as good as whf:n S
of SPP-CNN =~ LFR-CNN ~ LFR-CNN > LFR-CNN > LFR-CNN and S are trained
~CNN-RP > CNN-RP > CNN-RP > CNN-RP and tested separately

only real-world or only synthetic networks are used. This also
implies the excellent generalizability of SPP-CNN.

F. Discussions
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Fig. 7: Overall performances of SPP-CNN, CNN-RP,

PATCHY-SAN, and LFR-CNN.

1) Overall Performance: Table IV shows the overall per-
formances of SPP-CNN compared to CNN-RP, PATCHY-
SAN, and LFR-CNN. The results are summarized from the
results presented in Subsections IV-B, IV-D, and IV-E. When
the test data and training data are drawn from the same
sample space, SPP-CNN performs as good as the GNN-based
predictors. However, if the test data are drawn from different
sample spaces, SPP-CNN consistently outperforms the other
predictors. Here, different sample spaces mean that either UNS
or UNT is set. Also, SPP-CNN outperforms the GNN-based
predictors on predicting the robustness of real-world networks.

Considering both generalizability and run time, Fig. 7 shows
the performance comparison in two-dimensional coordinate

plots. Clearly, SPP-CNN and CNN-RP are faster, while SPP-
CNN meanwhile possesses the best generalizability.

2) Information Loss: Given an N x N adjacency matrix
as input, CNN-RP requires a fixed input size W x W, and
thus downsampling or upsampling is necessary. If N > W,
then N — W columns and rows are needed to be randomly
deleted from the adjacency matrix in order to fit the input size.
If N < W, then W — N empty columns and rows are needed
to be randomly added for padding. These deletion or addition
operations may significantly distort the original network topol-
ogy, and thus degenerate the subsequent robustness prediction
performance.

For PATCHY-SAN and LFR-CNN, as discussed in Subsec-
tion II-B2, if N > W, then only the neighboring fields of
the W most important nodes are selected to construct the
receptive fields. While if N < W then W — N dummy
nodes are generated. For CNN-RP, there is always a proportion
of & = Wl information distortion, while for PATCHY-
SAN and LFR-CNN, this information distortion is significantly
lower than o, since the neighboring fields of the W most
important nodes are always included, but other unimportant
nodes may also be compressed into the neighboring fields.

Finally, for SPP-CNN, there is always no information loss
or distortion from the input, since networks of any sizes are
able to be input without the need of resizing. Moreover, local
features are better captured by the SPP layer.

V. CONCLUSIONS

Measuring network robustness by attack simulations is
time-consuming, while deep neural networks provide a more
cost-effective technique for robustness prediction, which can
replace the iterative attack simulations, at least partially. The
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CNN-based framework CNN-RP can predict network robust-
ness fast, but is inefficient when the size of the concerned
network is different from the fixed input size of the CNN.
On the other hand, PATCHY-SAN and LFR-CNN, which
incorporate both GNN and CNN, are able to predict network
robustness of different sizes and various topologies with
low prediction errors. However, these GNN-based robustness
predictors perform significantly slower than CNN-RP, due
to the powerful but time-consuming feature learning module
installed.

In this paper, to overcome the mismatch issue between the
various network sizes and the somewhat fixed input size of the
CNN, a spatial pyramid pooling layer is installed between the
convolutional and fully-connected layers of the CNN, yielding
the new SPP-CNN framework.

Extensive experiments are carried out by comparing SPP-
CNN with CNN-RP, PATCHY-SAN, and LFR-CNN. Three
sets of synthetic (directed and undirected) networks with
three different network size ranges, together with one set
of real-world networks, are simulated. Detailed comparisons
are performed, where both training and test data are drawn
from the same sample space. Generalization abilities of the
predictors are also examined, where the test data are drawn
from different sample spaces, other than the training data
space. The prediction performances on real-world networks
are tested from two aspects: 1) real-world networks are
trained and tested separately, and 2) real-world networks are
mixed with synthetic networks. All the experimental results
demonstrate the excellent performances of SPP-CNN: 1) SPP-
CNN achieves significantly better prediction performances
than CNN-RP with similar performances as PATCHY-SAN
and LFR-CNN, when tboth training and test data are drawn
from the same sample space. 2) When the sample spaces of
training and test data are different, SPP-CNN shows stronger
generalizability than the other three predictors. 3) SPP-CNN
performs prediction significantly faster than PATCHY-SAN
and LFR-CNN.

Overall, the proposed SPP-CNN framework lifts the net-
work robustness prediction to a higher level, so that the
prediction tasks can be accomplished faster and more precise.
This investigation reveals that the great potential of deep neural
networks can be further explored for broader applications in
the future.
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Fig. S7: Prediction errors obtained by SPP-CNN, CNN-RP, PATCHY-SAN, and LFR-CNN for unseen network sizes (UNS).
Connectivity robustness of undirected networks under maximum-degree node attacks is predicted.



SUPPLEMENTARY INFORMATION, JULY 2022

(a) BA (b) EH (¢) ER
¢ ® CNN-RP ¢ °
4- : ] -
0 @ m patchvsan | 047 e 0414
o LFR-CNN
" +  SPP-CNN ° ¢
0.2 1 0.2 1 0.2 1
+ ° [ ] + e + ¢
0 & o ® " o © - °
e ‘”‘f"‘“‘”o,o--a”.&:’."”‘o.o-!E”.mﬁa"‘

IQ IQ IQ IQ IQ Q IQ IQ IQ IQ IQ IQ - IQ IQ Q IQ IQ IQ IQ IQ& - IQ Q IQ IQ
D - RUNE O RN DD RN

\
N N
(d) QS (¢) RH (H) RT
[ ) o [ )
041 041 041
" ° L] ®
0.2 0.2 0.2
[ J [} [ J
i & =
[ )
0.0+ 1"5* 8 &m0l !"5"" . ?@Qﬁoo-. !g"" _alds
Q. QO Q .. Q00N Q Q0 Q . Q00D QO QD .. Q00N
NS RRUNE O NN DD RN
N N _ N
(2) SF (h) SW-NW (i) SW-WS
[ ) o [ )
031 @ 041 o 041
o
WOZ- ® ° o
= e 0| 029 . 0.2 o
01{ = & o N N
m pol« . o ® n o ®
Tre v T e slgol FPe Samf|l L PPe gRm
ARAVFAN A\ PN AN AN AN QN . QDN QO N Q . Q0D
AN RNNURNE AN RN DR DN
N N N

Fig. S8: Prediction errors obtained by SPP-CNN, CNN-RP, PATCHY-SAN, and LFR-CNN for unseen network sizes (UNS).
Controllability robustness of undirected networks under random node attacks is predicted.
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Fig. S11: Numbers of superiors and inferiors obtained by SPP-CNN, compared to each one of CNN-RP, PATCHY-SAN, and
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LFR-CNN. Connectivity robustness of undirected networks under maximum-degree node attacks is predicted.
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Fig. S12: Numbers of superiors and inferiors obtained by SPP-CNN, compared to each one of CNN-RP, PATCHY-SAN, and
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LFR-CNN. Controllability robustness of undirected networks under random node attacks is predicted.
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Fig. S13: Prediction errors obtained by SPP-CNN, CNN-RP, PATCHY-SAN, and LFR-CNN for unseen network topology
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