
1

Discovering important nodes of complex
networks based on Laplacian spectra
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Abstract—Knowledge of the Laplacian eigenvalues of a net-
work provides important insights into its structural features
and dynamical behaviours. Node or link removal caused by
possible outage events, such as mechanical and electrical failures
or malicious attacks, significantly impacts the Laplacian spectra.
This can also happen due to intentional node removal against
which, increasing the algebraic connectivity is desired. In this
article, an analytical metric is proposed to measure the effect
of node removal on the Laplacian eigenvalues of the network.
The metric is formulated based on the local multiplicity of each
eigenvalue at each node, so that the effect of node removal
on any particular eigenvalues can be approximated using only
one single eigen-decomposition of the Laplacian matrix. The
metric is applicable to undirected networks as well as strongly-
connected directed ones. It also provides a reliable approximation
for the “Laplacian energy” of a network. The performance of
the metric is evaluated for several synthetic networks as well
as the American Western States power grid. Results show that
this metric has a nearly perfect precision in correctly predicting
the most central nodes, and significantly outperforms other
comparable heuristic methods.

Index Terms—Complex network, Graph theory, Laplacian
spectrum, Local multiplicity, Node-removal attack.

I. INTRODUCTION

MANY real systems can be modelled as networks, where
a number of agents (nodes) or even dynamical subsys-

tems interact through an often complex graph of connection
links [1]. Statistical properties of the network’s nodes and
links are often a major determinant of the behaviour of the
networked system. In other words, not all nodes have the
same importance for networks’ dynamical behaviours, such
as consensus or synchronization [2]. Nodes with considerable
impacts on the structure or specific collective behaviour of
a network are often called “central”. The centrality of nodes
and identification of which nodes are more central than others
have been key issues in network analysis. For example, a
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criminal network may be broken to smaller components or
groups with less corruptive potential when appropriate central
nodes are identified and removed [3]. Central nodes are
clearly important in the synchronization problem [4], and in
the concern of network robustness against disturbances and
attacks [5], [6]. Much research effort has been devoted to
investigating impacts of adding or removing nodes and edges
on performance measures from the graph-theoretic perspective,
such as deleting the minimum number of nodes or links to
make a graph embeddable onto a surface [7] or to optimise a
manufacturing process [8].

Well-known examples of structural centrality measures in-
clude degree, betweenness and closeness centrality metrics,
i.e. nodes having high degree, betweenness or closeness are
regarded as those with particularly high impacts [9]. As an
example, these metrics are applied to find the most influential
people in the communication network of hijackers participat-
ing in the September 11, 2001 attacks [3], [11]. However, in
relation to node centrality to dynamical behaviours, often these
structural measures have poor performances [12].

Another interesting class of centrality measures is based on
the spectral properties of the connectivity matrix. Spectrum-
based centrality measures, which are based on the eigenvalues
or eigenvectors of the Laplacian or the adjacency matrix of
the network, have recently attracted particular attention in
analysis and control of dynamical networks [13]–[20]. For
example, the second smallest eigenvalue of the Laplacian
matrix, known also as the algebraic connectivity, shows how
close the network is to disconnection and also how synchro-
nisable it is [43]. Or, the largest eigenvalue of the adjacency
matrix, often referred to as the spectral radius, can well
describe virus or rumour spreading through a network [21],
[22]. Laplacian spectrum-based methods can assess the ability
of a linear multi-agent system, connected over a directed
graph, to achieve consensus [23]–[25]. The best set of control
nodes to achieve synchronisation over the widest range of
coupling strengths has been recently identified using eigen-
decomposition of the Laplacian matrix of the network [12],
[18]. A subgraph centrality measure is proposed in [26] based
on the spectrum of the adjacency matrix, which can be useful
in some applications.

Identifying central nodes of a network using spectrum-based
measures has shown promising results in different applica-
tions [27]. For example, synchronisability and convergence
performances of a network may be enhanced by sequentially
targeted node removal to increase the algebraic connectivity
[28]. A similar approach can be applied as a failure or attack
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tolerant mechanism for dynamical networks [23]. For example,
identifying and protecting central nodes can improve resilience
and reliability of power systems [10]. Node centrality can
also be defined based on the Laplacian energy EL(G), which
is sum of the squared eigenvalues of the Laplacian matrix
L of the graph G [29]. The importance of a node is then
reflected by the drop of EL(G) when the node is removed.
This centrality measure has applications in identification of
central nodes in different terrorist social networks [30], data
clustering for measuring the similarity between data and their
classification [31], as well as in air-traffic network optimisa-
tion [32]. Although identifying central nodes using Laplacian
energy yields reliable results especially for social networks,
it requires multiple eigen-decompositions of the Laplacian
matrix, and thus is computationally expensive for large-scale
networks.

Compared to the adjacency matrix, the effect of a node or
link removal on the Laplacian spectra has been less studied
analytically [3], [27]. A weak interlacing theorem is proposed
in [33] where an upper and a lower bound on Laplacian
eigenvalues are introduced when a node is removed. The
relationship between spectral node centrality in undirected
networks and eigenvectors of the Laplacian matrix has been
studied analytically [34] and through extensive numerical
simulations [35]. Despite the above research progress, there
is still a lack of an analytical easy-to-compute metric to rank
the nodes based on their impacts on the Laplacian spectra in
large-scale networks. This paper develops a new metric to rank
nodes based on their impacts on an individual eigenvalue of
the Laplacian matrix. The metric is based on the concept of
the local multiplicity of each eigenvalue at each node in the
network. Using this metric, a clear ranking can be obtained that
separates nodes for any eigenvalue of the Laplacian matrix. It
will be shown that nodes with higher local multiplicity have
larger spectral impact on the Laplacian matrix. This metric is
therefore applicable to studying many dynamical performances
and collective behaviours of the underlying dynamical net-
work. Indeed, identifying central nodes of a network is just one
application of the results of this paper. The proposed metric is
also computationally cost-effective as it performs node ranking
for all eigenvalues using only a single eigen-decomposition of
the Laplacian matrix. The metric is applicable to weighted or
unweighted undirected graphs as well as strongly-connected
directed graphs. Simulations demonstrate its high precision in
various networks with different topologies.

The rest of the paper is organised as follows. The mathe-
matical concept of local multiplicity is introduced in Section
II. Based on that, a new node centrality metric is introduced
in Section III. The metric is applied to directed and undi-
rected networks with scale-free, Watts-Strogatz or Erdös-Rényi
structures to rank their nodes based on their impacts on the
algebraic connectivity λ1, spectral radius λN and Laplacian
energy EL(G). It is also applied to identify nodes with
maximum spectral impact on the power grid of the Western
States of the United States of America. A brief conclusion is
given in Section V.
Preliminaries

In this paper, vectors and matrices are shown in bold italic.

The set of real numbers is denoted by R, and 1 is the vector
with all elements being 1. The inner product of vectors x and
y is 〈x,y〉 = x>y, and eu is the canonical basis vector of
RN in which the uth entry is 1 and all other entries are zero.
The Kronecker delta is denoted by δij , i.e. δij = 1 if i = j
and δij = 0 otherwise. The uth entry of vector x is denoted
by xu, and Euu is the (u, u)th element of the matrix E.
Finally, G and

−→
G stand for an undirected and directed graph,

respectively. G\u shows the graph G when node u is removed
from it. Throughout the paper, it is always assumed that G\u
is a connected graph.

II. INTRODUCTION TO LOCAL MULTIPLICITY

Consider an undirected network G = (V,E) with a set V
of N nodes and a set E of links, with loops allowed, where
each link (i, j) between nodes i and j is associated with a
weight wij = wji (if there is no loop at i, set wii = 0). The
Laplacian matrix L = (lij) is a zero row-sum matrix with
entries

lij =

 d(i), if i = j,
−wij , if i ∼ j,

0, otherwise.
(1)

where i ∼ j means that there is a link between nodes
i and j, and d(i) =

∑
j∼i wij is the weighted degree of

node i. Sometimes, it is convenient to consider the so-called
normalized Laplacian matrix L = (`ij) with entries

`ij =


1− wii

d(i) , if i = j,

− wij√
d(i)d(j)

, if i ∼ j,
0, otherwise.

(2)

The spectrum of the Laplacian matrix L is the set of
eigenvalues 0 = λ1 < λ2 < · · · < λd, together with
their algebraic (or geometric) multiplicities mi = m(λi) for
i = 1, 2, . . . , d,

sp(L) = {λm1
1 , λm2

2 , . . . , λmd

d }, (3)

where mi is the number of repeats of λi. The eigenvalues
λi, for i = 1, 2, . . . , d, are the roots of the characteristic
polynomial ψG(λ) = det(λI −L) of G, and they are all real
since L is symmetric. It is known that m1+m2+· · ·+md = N
and, for connected graphs, m1 = 1. For each eigenvalue λi,
i = 1, 2, . . . , d, let U i be a matrix which columns form an
orthonormal basis of the eigenspace Ei = Ker(L–λiI). The
dimension of Ei is called the geometric multiplicity of λi.

Definition 1. The orthogonal projection of RN onto the
eigenspace Ei is represented by the following matrixEi, called
a principal idempotent of L,

Ei =
1

φi

d∏
j=1

j 6=i

(L− λjI), where φi =

d∏
j=1

j 6=i

(λi − λj). (4)

Alternatively, the principal idempotents of L can be repre-
sented as Ei = U iU

>
i .

Theorem 1. [37] The idempotents satisfy the following
properties.
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(i) EiEj = δijEi.
(ii) LEi = λiEi,

(iii) I =
∑d
i=1Ei,

(iv) If f(x) is a rational function defined at each eigenvalue
of L, then f(L) =

∑d
i=1 f(λi)Ei.

Corollary 1 (Spectral decomposition). [37] The spectral
decomposition of the Laplacian matrix is L =

∑d
i=1 λiEi.

Proof. Apply Theorem 1(iv) with f(x) = x.

Corollary 2. A spectral decomposition of the uth canonical
vector is eu =

∑d
i=1 zui with zui = Eieu.

Proof. Simply multiply both sides of Theorem 1(iii) by eu.

Definition 2. [38] The local multiplicity of the eigenvalue
λi at node u, denoted by mui, is defined as the square norm
of the projection of the canonical vector eu ∈ RN onto the
eigenspace Ei. That is,

mui ≡ mu(λi) = ‖Eieu‖2 = 〈Eieu, eu〉 = (Ei)uu. (5)

The local multiplicities play the same role as the (standard)
multiplicities when the graph is ‘seen’ from a ‘base vertex’.
In particular, for any node u, the local multiplicities of all
eigenvalues sum up to 1:

d∑
i=1

mui = 1. (6)

In addition, the multiplicity of an eigenvalue is the sum of all
its local multiplicities, namely [37]:∑

u∈V
mui = mi for i = 1, 2, . . . , d. (7)

From a geometrical point of view, the local multiplicity mui

corresponds to cos2 βui, where βui is the angle between eu
and Ei, as shown in Fig. 1 [40]. The local multiplicity concept
has already been applied to different graphs considering eigen-
values of the adjacency matrix [38], [39], and it is extended to
the Laplacian matrix in this paper. For example, it is known
that the number of walks with length ` between nodes u and
v in G having the adjacency matrix A, is the (u, v)th element
of A`. On the other hand, the number of circuits of length d
through node u is:

C`(u) =

d∑
i=0

muiµi, (8)

where, now, µ0 > µ1 > · · · > µd are the eigenvalues of
the adjacency matrix with local multiplicities mui, for i =
0, 1, . . . , d, at node u. In the next section, the local multiplicity
concept is applied to discover spectrally important nodes of a
complex network.

III. NODE RANKING USING THE LOCAL MULTIPLICITY

The importance of node u can be measured by its impact on
a specific eigenvalue λi(1 ≤ i ≤ d) of the Laplacian matrix
of the graph when the node is removed. It is noted that the
study of the impact of a node being removed from a graph,

by considering its Laplacian spectrum, is more complicated
than the case of the adjacency matrix where a removing node
is represented by a simple row-column removal. Here, the
removal of node u from a network is represented as removing
the canonical basis eu from RN . The idea of ranking nodes
using local multiplicities is to measure the impact of such a
removal on the kernel space of λi. Thus, the proposed metric
can be applied to any eigenvalue and any graph topology.

Lemma 2. [41] Any real symmetric matrix, as the Laplacian
L or the adjacency matrix A, has an orthogonal basis
composed of its eigenvectors.

It follows from this lemma that, for any undirected graph,
resulting in symmetric λiI −L(i = 1, 2, . . . , d), the columns
of U i form an orthogonal set. Thus, Ei is a projection matrix
corresponding to an orthogonal projection onto the eigenspace
Ei. The idea is to project the canonical basis of the vector space
RN onto Ei for any desired i = 0, 1, . . . , d and then rank the
projected canonical basis vectors. The vector eu, related to
node u of the graph with maximum projection size on Ei,
is a candidate for removal if the maximum impact on λi is
desirable. On the other hand, suppose eu and ev are the uth

and the vth canonical bases of RN corresponding to nodes u
and v, respectively. Consider the case where the angle between
ev and Ei is bigger than that of eu, that is, β2 > β1, namely
(Ei)vv < (Ei)uu. This means that the removal of node u
impacts λi more than the removal of v due to the following
theorem.

Theorem 3. The larger the u-local multiplicity mui = (Ei)uu
is, the higher ∆λi, caused by removing the node u, will be.

Proof. This can be justified by using the adjacency matrix
A, with spectrum {µm0

0 , µm1
1 , . . . , µmd

d }, and characteristic
polynomial ψG(λ) = det(λI−A). Then, since the adjacency
matrix of G\u is obtained from A by deleting the uth row and
column, the characteristic polynomial of the node-removed
subgraph is the (u, u)-cofactor of (λI−A). Indeed, recall that
the inverse of a square matrix M is M−1 = 1

detM adj(M),
where adj(M) is the adjoint (or transpose of the cofactor
matrix) of M . Then, in the present case with M = λI −A,
one has:

ψG\u(λ) = det(λI −A)((λI −A)−1)uu

= ψG(λ)((λI −A)−1)uu = ψG(λ)

d∑
j=0

mu(µj)

λ− µj
,

(9)

where Theorem 1(iv) has been used with f(x) =
ψG(λ)

∑
λ

1
λ−x , which is well-defined when λ is an eigen-

value of A. For the Laplacian, the reasoning is similar, but (9)
is only an approximation if the network has many nodes. The
reason is that, in the principal submatrix obtained by deleting
the uth row and column of the Laplacian, each vth diagonal
entry, with v being adjacent to u, should be decreased by
one unity. However, if the network has many nodes, the two
matrices (the obtained principal submatrix and the Laplacian
of G\u) are very similar in the sense that the matrix norm of
its difference is small.
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From (9), one can deduce the known result (see, for in-
stance, [37]) that the (not necessarily distinct) eigenvalues of
the adjacency matrix of G\u, say τ1 ≤ τ2 ≤ · · · ≤ τN−1,
interlace the eigenvalues ω1 ≤ ω2 ≤ · · · ≤ ωN of the
adjacency matrix of G. That is,

ω1 ≤ τ1 ≤ ω2 ≤ τ2 ≤ · · ·ωN−1 ≤ τN−1 ≤ ωN .

where we have used the symbol ω instead of µ to represent
non-repetitive eigenvalues of the adjacency matrix. This is
because the numerators (local multiplicities) of the (partial
fraction expansion of the) function

ζ(λ) =
ψG\u(λ)

ψG(λ)
=

d∑
j=0

mu(µj)

λ− µj
(10)

are non-negative (and sum up to 1). Then, the derivative
ζ ′(λ) is negative for all real values of λ, except where it
has asymptotes, that is at the zeros of ψG(λ). In particular,
there must be a zero of ψG\u(λ), say τ = µ′i, between each
pair of consecutive zeros µi and µi+1, of ψG(λ). So, we
are interested in knowing what is the vertex u that results
in the maximum increment ∆i = µ′i − µi. But, when ∆i 6= 0
(which usually happens in the case when the multiplicity of
µi is one), we observe that the sum of the two terms mui

λ−µi

and mu,i+1

λ−µi+1
in (10), where mui + mu,i+1 ≤ 1, gives rise

to a greater ∆i (µ′i closer to µi+1) when mui is large, as
we claimed. Of course, this is an approximation suggested by
the simpler case of having only two terms, where the function
ξ(λ) = mui

λ−µi
+ 1−mui

λ−µi+1
has a zero at µ′i = µi+mui(µi+1−µi).

Since the u-local multiplicities sum up to 1, a more involved
analysis shows that, in general, the same relationship between
u-local multiplicities of µi and large increments ∆i holds.
We can use a similar reasoning by using the Laplacian, and
conclude the proof.

Corollary 3. Let xi be the eigenvector associated with the
eigenvalue λi of a network with simple spectrum without
repeated eigenvalue. Removing node u with maximum (xi)

2
u

results in maximum impact on λi.

Proof. For a network with simple spectrum, one has
Ker(λiI − L) = 〈xi〉, which means that Ei is generated
only by the eigenvector xi. This results in (Ei)uu = (xi)

2
u,

meaning that the uth diagonal element of xix>i reflects the
impact on λi caused by the removal of node u.

Remark 1. In our previous work [12], we identified node
u with the maximum (xN )2u, where xN is associated with
the largest (positive) eigenvalue of L, as the best node to be
controlled for achieving synchrony over the widest range of
coupling parameters. In this paper, it is proposed to remove
node u with the maximum (Ei)uu when the highest impact on
the ith eigenvalue of the Laplacian (or the adjacency matrix) is
desired. One can see that the present paper, where the study is
not restricted to any specific eigenvalue, is a generalization of
our previous work. The new metric is also applicable to graphs
with repeated eigenvalues in the corresponding Laplacian
matrix.

Remark 2. Suppose 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN
are eigenvalues of the Laplacian matrix of the graph G
and 0 = λ′1 < λ′2 ≤ · · · ≤ λ′N−1 are those for G\u.
Following the above discussions, one has ∆λi = λ′i − λi for
i = 2, 3, · · · , N−1, where the maximum happens when node u
with maximum mui is removed. For i = N , define the variation
of spectral radius as ∆λN = λN−λ′N−1. From the discussions
on Eq. (10), one has λ′N−1 = λN−1 +mu(N−1)(λN −λN−1),
which can be written as (λN − λ′N−1) = (λN − λN−1) −
mu(N−1)(λN − λN−1) = (λN − λN−1)(1 − mu(N−1)). On
the other hand, it has been shown that mu(N−1) +muN ≤ 1;
thus, ∆λN ≥ muN (λN − λN−1), which means that node u
with maximum muN can cause the maximum variation of the
spectral radius.

Example 1. A fully connected undirected graph of N = 100
nodes is considered with random weights wij = wji ∈ (0, 1]
on all (i, j) links. By performing an eigen-decomposition of
the Laplacian matrix, the principal idempotents E2 and EN ,
associated with the Kernel spaces of λ2 and λN respectively,
are calculated. For the uth node, the uth diagonal elements
of E2 and EN are listed in Table I, in the columns of local
multiplicities mu2 and muN . The increments ∆λ2 = λ′2− λ2
and ∆λN = λN − λ′N−1 are calculated for removing each
node of the graph, where the prime refers to the graph
after removing the node. Table I compares local multiplicities
mu2 and muN with ∆λ2 and ∆λN . It shows that the local
multiplicity mu2 of λ2 takes the maximum of 0.7382 at node
65. At the same time, ∆λ2 = 0.5137 at this node, which is also
the maximum in the ∆λ2 column. A similar result is obtained
at node 54 for muN and ∆λN . It is therefore concluded that
mu2 and muN can precisely identify nodes whose removal
result in maximum ∆λ2 and ∆λN , respectively. It is worth
noting that mu2 can identify the node whose removal results
in a positive increase of λ2, ∆λ2 > 0, despite the fact
that other removed nodes normally decrease it. Thus, this
approach suggests a useful method for increasing the algebraic
connectivity of a graph by node removal.

This example is presented only to clarify how the perfor-
mance of our proposed metric can be studied. Performance
acceptance test of the metric absolutely requires extensive sim-
ulations in networks with different SF, WS and ER topologies,
which will be presented in section IV.

A. Dealing with directed graphs

The majority of research activities in spectral graph theory
deals with undirected graphs, where eigenvalues are real, and
eigenvectors form an orthogonal basis. In directed graphs,
however, eigenvalues of the Laplacian matrix are typically not
real. Besides, eigenvectors corresponding to these eigenvalues
may not form an orthogonal basis. This means that the local
multiplicity metric of Definition 2 cannot be directly applied
to directed graphs.

In order to extend the above metric to digraphs, suppose
that wij is the weight of the link from node i to node j in
the directed graph

−→
G = (V,E). Then, define the probability

transition matrix P = (pij), in which pij = wij/d
+(i). d+(i)

is the outdegree of node i, that is, d+(i) =
∑
i→j wij , where



5

Table I: Comparing the local multiplicity of λ2 and λN at each
node with ∆λ2 and ∆λN when the node is removed.

Node # mu2 muN ∆λ2 ∆λN

1 0.0002 0.0018 -0.3614 0.2308
2 0.0001 0.0001 -0.2153 0.6545
3 0.0003 0.0006 -0.6379 0.6555
...

...
...

...
...

53 0.0002 0.0005 -0.6562 0.6952
54 0.0002 0.7381 -0.4374 1.0222
55 0.0019 0.0001 -0.4256 0.3933
...

...
...

...
...

64 0.0021 0.0072 -0.7388 0.3877
65 0.7382 0.00003 0.5137 0.3989
66 0.0010 0.0015 -0.2238 0.7669
...

...
...

...
...

99 0.0036 0.0002 -0.0840 0.5156
100 0.00003 0.0017 -0.4498 0.2180

i→ j shows that there is an arc from node i to node j. Clearly,
P1 = 1. The Perron-Frobenius theorem states that, if

−→
G is

strongly connected and aperiodic, then there exists a unique
positive vector φ = (φu), also called Perron vector, which
satisfies φP = φ and φ1> = 1 [42]. Define the diagonal
matrix Φ with non-zero elements being the square roots of the
elements of φ, that is, (Φ)uu = φ

1/2
u . The directed Laplacian

of
−→
G is then defined as
−→
L = L(

−→
G) = I − 1

2

(
ΦPΦ−1 + Φ−1P>Φ

)
. (11)

The following lemma relates
−→
L to the Laplacian matrix of the

corresponding undirected graph.

Lemma 4. [42] Let
−→
G be an aperiodic strongly connected

weighted directed graph and let H be a weighted undirected
graph, on the same vertex set as

−→
G , and with weights defined

by wij = φipij + φjpji. Then,

L(
−→
G) = L(H). (12)

In other words, the strongly connected weighted digraph−→
G is converted to an undirected weighted connected graph
with the normalized Laplacian matrix L(H). We will show
by simulations that this transformation preserves the centrality
of nodes in terms of their local multiplicities. That is, central
nodes of L(

−→
G) are the same as those of L(H).

From the analytical results of this section, it can be con-
cluded that the concept of local multiplicity, if extended to
the Laplacian matrix, can be applied to identify the most
influential nodes from a graph spectrum perspective, which
are indeed vital nodes in collective dynamical behaviour of
networked systems. Simulations provided in the next section
convincingly support these findings.

IV. SIMULATION RESULTS

In this study, synthetic networks with typical Barabási-
Albert (BA) scale-free, Watts-Strogatz (WS) small-world, and
Erdös-Rényi (ER) random network structures are considered.
BA networks are constructed using the preferential attachment

algorithm of the original model, by first constructing a fully-
connected network with a number of nodes, and then adding
nodes and creating links to old nodes with a probability
proportional to their degrees [49]. The probability of creating
a link between the newly added node and the existing node i
is (d(i) +B)/Σj(d(j) +B), where d(i) is the degree of node
i and B is a constant controlling the heterogeneity of the net-
work: as B increases, heterogeneity of the network decreases.
WS networks are constructed starting from a ring network,
where nodes are connected to their m nearest neighbours,
and then by rewiring all the links with the same probability p
[50]. ER networks are constructed by independently placing a
link between any pair of nodes with probability p. In the case
of directed graphs, 30% of links of the generated graph are
randomly chosen and random directions are placed on them.
Also, for weighted cases, a random weight value taken from
the range (0, 1] is assigned to each link of the underlying
network.

A. Relationship between the spectral impact and local multi-
plicity

The main claim of this paper is that removing node u with
higher local multiplicity of λi, i.e. higher (Ei)uu, impacts λi
more than when other nodes are removed. Here, it is studied
for λ2 and λN in synthetic networks with different BA, WS
and ER topologies. (E2)uu is first calculated for all nodes
of the network by using the equation E2 = U2U

>
2 . The

increment ∆λ2 is also measured for all nodes by removing
them one by one and performing an eigenvalue calculation.
This process is repeated for (EN )uu and ∆λN and results are
shown in Fig. 2(a). This figure shows that ∆λ2 [∆λN ] is a
monotonically increasing function of (E2)uu[(EN )uu] regard-
less of the network topology. Fig. 2(a) also shows that spectral
impact of a node removal on networks with BA and ER
topologies is stronger than those with WS topology which is
in accordance with small-world features of the WS networks.
The relationship between ∆λ2 [∆λN ] and (E2)uu[(EN )uu]
become close to linear for large enough values of the local
multiplicity.

To further study the relationship between local multiplicity
of nodes and their Laplacian spectral impact, the Kendall’s
rank correlation τ between the vector containing local multi-
plicity of nodes and that of ∆λN caused by removing each
node is considered. Figure 3 shows the results on SF, WS and
ER networks with N = 200 nodes and different topologies.
The correlation value in SF networks is larger than 50% almost
always, regardless of the average degree and heterogeneity of
the graph. Smaller, yet rather strong, correlation exists in WS
and ER networks.

B. Algebraic connectivity

Here, we begin by studying the impact of a node removal on
the algebraic connectivity of a graph, i.e. λ2 of its Laplacian
matrix. Features of λ2, such as being monotone increasing
in the link set [43], make it a reliable measure of how well-
connected a graph is [44]. Practically, modification of the alge-
braic connectivity λ2 can be easier done by removing than by
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Figure 1. The relationship between the local multiplicity (E2)uu[(EN )uu]
and ∆λ2 [∆λN ] caused by the removal of node u, in networks with BA,
WS and ER topologies. Results are averaged over 1000 iterations.

Figure 2. Kendall’s rank correlation between node centrality and ∆λN caused
by removing each node of a network with (a) WS or ER, and (b) SF topologies.

adding nodes [28]. Therefore, targeted node removal for max-
imum increase in λ2 is of particular interest. The maximum
local multiplicity of λ2 is applied to identify the node when
the maximum influence on λ2 by node removal is desired.
First, calculate E2 = U2U

>
2 using eigen-decomposition of

the Laplacian, and then rank the nodes based on the diagonal
elements of E2, i.e. (E2)uu. The performance is compared
using some heuristic methods including various metrics of
degree-, betweenness- and closeness-centrality.

To study the precision of the new metric proposed in
this paper, the node whose removal causes the maximum
variation in λ2 is first obtained. To this end, we follow
the time-consuming process of removing nodes one by one
and measuring ∆λ2. The nodes are then ranked based on
∆λ2 to obtain a ground-truth for comparing the performances
of other metrics. Then, we remove the node u which is

identified by our computationally efficient metric and ∆λu2
is calculated. Finally, the precision of the new metric is cal-
culated as P = [∆λu2– min(∆λ2)]/[max(∆λ2)– min(∆λ2)],
so that P ∈ [0, 1]. For example, P = 90% shows that
if the node predicted by our metric is removed, ∆λ2 will
be 90% of the maximum possible value, within the interval
[min ∆λ2,max ∆λ2], that may happen by a node removal in
the network. This precision is also calculated for heuristic
centrality metrics. Although these heuristics are not directly
related to the algebraic connectivity by their definitions, they
are still the first that comes to mind when one is looking
for vital nodes. Figure 4 compares the precisions of the
proposed metric with that of the heuristic centrality measures
in BA scale-free networks. It clearly shows almost 100%
identification of the node with the maximum impact on λ2
using local multiplicity, regardless of the level of network
heterogeneity (Figs. 4(A) to (C)). Degree centrality shows a
poor performance in dense networks while betweenness and
closeness centrality measures are not much sensitive to the
average degree.

The performances of the new metric on WS and ER
networks are again close to perfect, and much better than
the heuristics (Fig. 5). Among the heuristic methods, degree
and betweenness centrality measures show almost the same
precision, which is less than 50% for p > 0.2. Closeness
centrality has the poorest performance with precision less than
20%. We further studied the performance of our proposed
metric in networks with different assortativity level. To this
end, Erdös-Rènyi networks with different assortativity levels
are generated and the metric is applied to them in order to
identify the node with maximum impact on the algebraic
connectivity λ2 (Fig. 6). Assortativity shows the tendency
of nodes of a complex network to get connected to similar
nodes [45], e.g. nodes with the same degree in the case
of degree assortativity. Pearson correlation quantifies degree
assortativity: It is zero for no assortative mixing and positive or
negative for assortative or disassortative mixing, respectively
[45].

In Fig. 6, assortativity of the network is changed from
σ = −0.5 to σ = +0.5, where σ is the Pearson correlation,
by performing degree-preserving random rewiring on an initial
ER graph. It shows that the performance of our proposed
metric is better in disassortative networks. Its performance
drops in assortative networks while it is still better than 90%.
Precisions of other heuristics methods are less than 30%.

The precision of the proposed local multiplicity-based met-
ric in finding the node with the maximum impact on λ2 is also
studied in directed graphs. Figures 7 and 8 show the precisions
of our proposed metric in directed and weighted networks
with BA, WS and ER topologies, respectively. A directed and
weighted network is first converted to its undirected underlying
graph using the Lemma 3 in Section III. The central node is
then selected from ranking nodes based on local multiplicities
of λ2 at each of them. In other words, the node with maximum
impact on λ2 of the normalized Laplacian matrix of the
undirected graph is the most influential one of its directed
peer. Figure 7 shows that the accuracy of this approach in
predicting the most influential node in directed BA graphs
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Figure 3. The precision of the proposed local multiplicity-based metric in
predicting the node with the maximum influence on λ2 in networks with BA
topology having average degree m and (A) B = 0, (B) B = 5, and (C)
B = 10.

increases in networks with high average degree values. Results
are not sensitive to the network heterogeneity and an accuracy
higher than 90% can be achieved for dense networks. Figure
8 shows that the proposed metric works more accurately for
directed WS networks than ER networks, and the results are
not much sensitive to the value of p in these networks.

C. Spectral radius

Here, finding the node whose removal causes the maximum
reduction in the spectral radius, i.e. the largest eigenvalue of
the Laplacian matrix of a graph, is studied. The precision of
the proposed local multiplicity-based metric is again compared
with heuristic methods. The way of calculating the precision
P is the same as that for the algebraic connectivity. Here,
only results in directed and weighted networks are presented,
since the proposed metric works perfectly and outperforms the
others.
Figures 9 and 10 depict this comparison in synthetic directed
and weighted networks with BA, WS and ER topologies,
respectively. From these figures, one can conclude that the
performance of the proposed metric is always better than 70%,
regardless of the network structure, level of heterogeneity and
the average degree. Interestingly, the performance of the metric
on BA networks is not particularly sensitive to the level of the
heterogeneity. While the accuracy in directed WS graphs is not
much sensitive to the value of p, the accuracy in ER graphs
improves as the randomness increases.

D. Laplacian centrality

Laplacian centrality of a node [27] has been introduced
based on the concept of Laplacian energy, which is defined
as EL(G) = Σiλ

2
i for the graph G with eigenvalues λi of

the Laplacian matrix. Central nodes are those whose removal
causes higher energy drops. Thus, ranking nodes based on
their importance needs N eigen-decompositions of the Lapla-
cian matrix, where N is the number of nodes. This is a
computationally expensive process for large networks. Here,
based on the concept of local multiplicity, a new function is
defined as ĒL(G) = Σi(Ei)uu. We show that ĒL(G) is a
computationally simple yet precise enough approximation for
EL(G).

To study the precision of ĒL(G) in finding central nodes,
we first construct the ground-truth by measuring the drop in
Laplacian energy EL(G) after removing each node. Then, we
apply ĒL(G) which can clearly rank nodes faster. Columns
(A) and (B) in Fig. 11 show how precise ĒL(G) can identify
the central node for Laplacian energy in BA, WS and ER
networks, respectively. For example, P = 60% shows that
the impact of the node predicted by ĒL(G) on the Laplacian
energy, when the node is removed, is 60% of maximum
possible energy drop. Upper panel of Fig. 11(A) shows that
in BA networks, the precision of ĒL(G) in finding the most
important node is at least 60% on average, regardless of the
heterogeneity level of the network. This precision increases
as the average degree of the network increases. The Kendall
correlation τ between ranks by using ĒL(G) and EL(G) is
also displayed in the lower panel of Fig. 11(A), showing
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Figure 4. The precision of the proposed local multiplicity-based metric in
predicting the node with the maximum influence on λ2 in networks with
N = 200 nodes and with (A) WS and (B) ER topologies.

the correlation of almost 80% in networks with high average
degree values.

The precision of this approximation is better in WS and
ER networks (Fig. 11(B)). The upper panel of Fig. 11(B)
shows that the precision of the proposed metric is always better
than 75%, while it performs more precisely for ER networks.
The precision of ĒL(G) in WS networks decreases slightly as
the network topology becomes closer to random. The Kendall
correlation between ranks by EL(G) and ĒL(G) is higher than
80% in ER and better than 70% in WS networks, as shown
in the lower panel of Fig. 11(B). These correlations are all
averaged over 100 realisations.

Figures 12 and 13 show the results when simulations are
repeated in directed and weighted networks with BA, WS and
ER topologies. In BA networks (Fig. 12), the precision of
ĒL(G) in approximating EL(G) increases as the number of
links in the network increases. Here, the precision is always
higher than 90%, regardless of the heterogeneity level of the

Figure 5. Precision in finding the node whose removal causes a maximum im-
pact on algebraic connectivity in random ER networks with wiring probability
p = 0.5 and different assortativity level σ.

Fig7_new.png

Figure 6. The precision of the proposed local multiplicity-based metric in
predicting the node with the maximum influence on λ2 in directed weighted
networks with BA topology and average degree m.

network. Figure 13 depicts that the proposed metric works
perfectly for WS and ER networks. Based on the present study,
one can consider ĒL(G) as a computationally cost-effective
alternative for EL(G) in ranking nodes based on the Laplacian
centrality.

E. Application on an example power grid

To study a real network, we apply our metric to the power
grid of the Western States of the United States of America,
which includes N = 4941 nodes and E = 6594 links, which
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Figure 10. The precision of the ĒL(G) in predicting central nodes based on the Laplacian centrality concept. Networks with N = 200 nodes and BA
topologies are reported in column (A) where those with WS and ER topologies are in column (B). In each column, the upper figure is precision of ĒL(G)
and the lower one is the Kendall correlation between rankings of ĒL(G) and EL(G). Results are averaged over 100 realizations.

Fig8_new.png

Figure 7. The precision of the proposed metric in predicting the node with
the maximum influence on λ2 in directed weighted networks with WS and
ER topologies.

are randomly weighted. The topology of a power network
affects its performance in voltage and frequency stability [46]–
[48]. Here, we apply our local multiplicity (LM) based metric
to find nodes with maximum impact on λ2 and λN of the
power grid, and compare its performance with degree (Deg)
and betweenness centrality (BC) metrics. The same process
explained in parts A and B is performed to achieve the ground-
truth and derive the precision of our local multiplicity-based

Fig9_new.png

Figure 8. The precision of the proposed metric in predicting the node with
maximum influence on λN in directed weighted networks with BA topology
with N = 200 nodes and average degree m.

metric. Table II shows that our metric can identify the most
influential node on λ2 with precision P = 66%, meaning
that the predicted node has 66% of the maximum possible
impact on λ2 in this network. The precision is perfect in
the case of λN . The degree centrality metric works almost
perfectly in identifying the most influential node on λN , but
its performance is rather weak (36%) in the case of λ2.
The BC shows very good performance for λ2 and the least



10

Fig10_new.png

Figure 9. The precision of the proposed metric in predicting the node with
the maximum influence on λN in directed weighted networks with WS and
ER topologies and N = 200 nodes.

Fig12_new.png

Figure 11. The precision of the ĒL(G) in predicting central nodes based
on the Laplacian centrality concept in directed weighted scale-free networks
with N = 200 nodes and different heterogeneity levels.

Fig13_new.png

Figure 12. The precision of the ĒL(G) in predicting central nodes based on
the Laplacian centrality concept in directed weighted WS and ER networks
with N = 200 nodes.

Table II: Identification of the most influential nodes for the
American Western States power grid. τ1 is the Kendall corre-
lation between the whole ranking vector and the ground-truth
and τ2 is that for 25% top-rank nodes.

Metric P (%) τ1 τ2

λ2

LM 66 0.48 0.69
Deg 36 0.16 0.21
BC 49 0.26 0.46

λN

LM 100 0.42 0.62
Deg 98 0.06 0.11
BC 60 0.03 0.03

precision for λN compared to other metrics. The Kendall
correlation between the ground-truth vector and vector ranked
by our metric is 0.48 for λ2 and 0.42 for λN , confirming
the significant correlation. This correlation calculation is also
repeated for the top 25% of nodes which results in correlations
of 0.69 and 0.62 for λ2 and λN , respectively. This means
that our proposed metric outperforms other metrics in precise
identification of the most influential nodes on λ2 and λN .

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, a new node centrality measure based on the
local multiplicity concept has been introduced, which can rank
nodes of a graph according to their impacts on the spectrum of
the network Laplacian matrix. Local multiplicity is a general-
ization of the network algebraic multiplicity when the network
is viewed from a specific node. Nodes can be easily and accu-
rately ranked based on their impacts on any desired eigenvalue
of the Laplacian matrix using this local multiplicity-based
metric. The proposed metric is computationally effective as
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it needs only one single eigen-decomposition of the Laplacian
matrix and therefore, is advantageous for large-scale networks.
Simulations have verified and demonstrated its accurate per-
formances in ranking central nodes in both undirected and
directed networks with different scale-free, small-world and
random topologies. Following the investigation of this paper,
some meaningful research questions, such as ‘can this metric
give guidelines for adding new nodes to a graph’, ‘what is
the best minimum set of nodes to recover a networked system
after a total failure’, or ‘developing a metric for multiple node
removal’, will be addressed in the future. In addition, the
influence of removing an edge could be similarly evaluated
by using the so-called crossed ij-local multiplicities (see [36]–
[38]) with i and j being the end-vertices of the edge.
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APPENDIX A
NOMENCLATURE

Symbol Description
L Laplacian matrix.
L Normalized Laplacian matrix.
A Adjacency matrix.
λi ith eigenvalue of the Laplacian matrix.
µi ith eigenvalue of the adjacency matrix.

sp(L) Spectrum of the Laplacian matrix L.
Ei Kernel space of λiI −L.
U i Matrix with columns forming an orthonormal basis of Ei.
mi Multiplicity of the eigenvalue λi of the Laplacian matrix.
mui Local multiplicity of λi at node u.
Ei The orthogonal projection onto Ei.
d(i) Degree of node i of the graph.
d+(i) Outdegree of node i of the graph.
xi Eigenvector associated with eigenvalue λi.
1 The all-1 vector.
δij The Kronecker delta.
ek The kth canonical basis vector of RN .

EL(G) Laplacian energy of the graph G.
E(G) An estimate of the Laplacian energy.


