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Abstract—The recently proposed recursive projection-
aggregation (RPA) decoding algorithm for Reed-Muller codes has
received significant attention as it provides near-ML decoding
performance at reasonable complexity for short codes. However,
its complicated structure makes it unsuitable for hardware
implementation. Iterative projection-aggregation (IPA) decoding is
a modified version of RPA decoding that simplifies the hardware
implementation. In this work, we present a flexible hardware
architecture for the IPA decoder that can be configured from
fully-sequential to fully-parallel, thus making it suitable for a
wide range of applications with different constraints and resource
budgets. Our simulation and implementation results show that
the IPA decoder has 41% lower area consumption, 44% lower
latency, four times higher throughput, but currently seven times
higher power consumption for a code with block length of 128
and information length of 29 compared to a state-of-the-art
polar successive cancellation list (SCL) decoder with comparable
decoding performance.

Index Terms—RPA, IPA, Reed-Muller codes, pipelined archi-
tecture.

I. INTRODUCTION

FUTURE communications systems will need to enable
ultra-reliable low-latency communications (URLLC) and

machine-type communications (MTC) [1]. Low latency gener-
ally implies the use of very short packets. Moreover, in some
MTC systems, such as Internet of Things (IoT) applications,
there is not enough data to create large packets because sensors
typically only transmit a small amount of data infrequently [2],
[3]. Low-density parity check (LDPC) [4] and turbo [5] codes
are highly regarded due to their ability to achieve significant
coding gains in the moderate blocklength regime, while
maintaining linear decoding complexity. However, conventional
asymptotic methods used to construct LDPC and turbo-like
codes, such as extrinsic information transfer (EXIT) charts,
often have difficulties to generate short codes with good
performance. As a result, achieving high reliability with short
packets becomes challenging, as conventional error-correcting
schemes typically require moderate to large blocklengths to be
effective.

An alternative approach for short packets is to utilize
polar codes, which are capacity-achieving codes with low
encoding and decoding complexity for binary-input memoryless
symmetric (BMS) channels under successive cancellation (SC)
decoding [6]. However, to make polar codes effective for short
blocklengths, certain modifications are necessary. Typically,
this means employing the SC list (SCL) decoder with a very
large list size, combined with a CRC code. Consequently, this
results in a reduced effective information rate for the code and

increased decoding complexity and latency. These challenges
have increased attention towards codes and decoding algorithms
specifically designed for short-length packets [7], [8], aiming to
enhance communication performance and achieve low latency.

Reed-Muller (RM) codes are a class of linear block error-
correcting codes that are closely related to polar codes.
They were first discovered and introduced by Reed [9] and
Muller [10]. Reed’s decoder is based on majority voting and
can correct a number of errors up to half of the code’s minimum
distance. Several additional decoding methods were developed
to improve the decoding performance [11]–[15]. More recently,
there has been a renewed interest in RM codes as they can
achieve the Shannon capacity on any BMS channel [16]–
[20] and they were shown to outperform polar codes under
maximum likelihood (ML) decoding for short codes [21], [22].

As ML decoding is generally intractable, the authors of
[23] introduced a more practical near-ML decoding method
for RM codes called recursive projection-aggregation (RPA)
decoding. The RPA algorithm exploits the recursive structure
of RM codes by projecting a received codeword with a length
of n into n− 1 shorter codewords and decoding the projected
codewords recursively until codewords belonging to a first-
order RM code are reached, which can be decoded efficiently
using the fast Hadamard transform. The number of recursive
calls depends on the order of the employed RM code. The
complexity of RPA decoding scales as nr, where r is the order
and n is the length of the RM code. However, decoding low-
order RM codes (i.e., second and third-order RM codes) with
a short length is still practical with RPA decoding, making
it particularly interesting for URLLC and MTC applications.
Nevertheless, the complexity and recursive structure of RPA
decoding are still major challenges for its efficient hardware
implementation.

Some modified versions of the RPA algorithm have been
proposed to reduce its algorithmic complexity. Simplified
RPA [23] is a variant of RPA deploying two-dimensional sub-
spaces for the projection step, which reduces the total number of
projections. The authors of [24] proposed a collapsed projection-
aggregation (CPA) decoding algorithm, which merges multiple
recursion levels into a single step and has lower complexity.
The results in [24] show that the CPA algorithm achieves a
similar error-correcting performance to the RPA algorithm
for RM codes with r = 3 and n = 128. To further
reduce complexity, [25] and [26] proposed different ways to
exploit correlations between projection to prune CPA. Although
both simplified RPA and CPA reduce the overall algorithmic
complexity, they make the projection and aggregation steps
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more involved as they employ more complex operations. Sparse
RPA (SRPA) [27] is another modification of the RPA decoder
that consists of multiple sparse RPA decoders. Each sparse
RPA decoder uses only a random subset of projections. The
work of [28] has lowered the average computational complexity
of RPA by taking advantage of syndrome-based early stopping
techniques along with a scheduling scheme.

Even though all aforementioned algorithmic complexity-
reduction methods for RPA are promising, there are still
challenges in their hardware implementation due to their
recursive and/or complex structure. The iterative projection-
aggregation (IPA) [29] algorithm transforms the recursive
structure of the RPA decoder into an iterative structure, making
it more straightforward for hardware implementation. The
work of [29] includes a preliminary fully-parallel hardware
implementation of the IPA algorithm, but only for the special
case of hard-decision decoding.

Contributions: The main contributions of this paper are:
• We first design a flexible processing unit for soft-decision

IPA decoding that can perform one level of projection,
first-order decoding, and a part of the aggregation step.
The proposed processing unit is configurable at runtime for
performing different projections and their corresponding
aggregations. Moreover, we propose hardware-friendly
architectures for the projection and aggregation steps that
reduce the required hardware resources and simplify the
data flow.

• We design a flexible pipelined architecture based on the
proposed processing units for the IPA algorithm that can
be configured to be from fully-sequential to fully-parallel.
As a result, the proposed architecture is very flexible in
trading latency and throughput for area, such that it is
applicable to a wide range of URLLC and MTC systems
with different requirements and constraints. Additionally,
to achieve high throughput, we design the controlling
path of the architecture to support pipelining. This
enables efficient data processing and optimal utilization
of available resources.

• We compare the error-correcting performance of short RM
codes under IPA decoding with similar 5G polar codes
under SCL decoding [30], [31]. Moreover, we compare our
proposed architecture for the IPA decoder and a state-of-
the-art implementation of the SCL decoding [32] for the
same blocklength, rate, and error-correcting performance,
and we show that our IPA decoder is superior with respect
to the area and latency in the short blocklength and low-
rate regime. However, it currently has a higher power
consumption compared to a state-of-the-art SCL decoder.

Outline: The remainder of this paper is organized as follows.
In Section II, we review the background of RM codes as well
as the RPA and IPA decoding algorithms. In Section III, we
provide a detailed description of our proposed architecture for
the second-order IPA decoder by explaining the structure of
the processing unit, voting circuit, register array, and control
unit. In Section IV, we explain how our basic second-order
decoder architecture can be generalized to decode RM codes
of any order. In Section V, we discuss the simulation and
implementation results. We first compare the error-correcting
performance of the IPA decoder to the baseline RPA decoder
and then present multiple simulations to justify certain param-

eter choices for the hardware implementation in Section V-A.
In addition, we compare the hardware implementation results
of the IPA decoder for different RM codes with hard-decision
(HD) IPA [29], and a state-of-the-art SCL decoder [32] for
polar codes in Section V-B. Finally, Section VI concludes this
paper.

II. BACKGROUND

Notation: In this manuscript, lowercase and uppercase
boldface letters denote vectors and matrices, respectively. In
addition, vectors of log-likelihood ratios (LLR) are denoted by
the boldface uppercase and non-italic letter L. The symbols
yi and y(j) represent the i-th projected vector and the j-th
coordinate of the vector y, respectively.

A. Reed-Muller codes
Reed-Muller (RM) codes are linear block codes denoted

by RM(m, r) with rate R =
k

n
, where n = 2m indicates

the code length, r is the order, and k =
∑r

i=0

(
m
i

)
is the

dimension of the code. There are several ways to define RM
codes [33], [34] including a recursive approach, which is called
Plotkin construction. In the Plotkin (u,u + v) construction
of RM codes, u and u + v are two subvectors of length
2m−1 of a codeword c = (u,u + v) ∈ RM(m, r), where
u ∈ RM(m − 1, r) and v ∈ RM(m − 1, r − 1). Therefore,
the generator matrix G(m,r) ∈ Fk×n for an RM(m, r) code is
recursively defined based on the Plotkin construction as:

G(m,r) =

[
G(m−1,r) G(m−1,r)

0 G(m−1,r−1)

]
, G(1,1)=

[
1 1
0 1

]
.

(1)
In addition, the minimum Hamming distance of the RM(m, r)
code is d = 2m−r.

B. First-order RM codes and decoder
RM(m, 1) represents the first-order RM code with length

n = 2m, dimension k = m + 1, and minimum Hamming
distance d = 2m−1. The most popular optimal decoding method
for first-order RM codes is the decoding algorithm based on
the fast Hadamard transform (FHT) [35], [36]. The FHT-based
decoding operates in the following four steps:

1) Calculate the FHT of the received vector y, represented
by its LLR values L as:

ω = H2mL, (2)
where the Hadamard matrix H2m is defined as:

H2m =

[
H2m−1 H2m−1

H2m−1 −H2m−1

]
, H2 =

[
1 1
1 −1

]
. (3)

2) Find the index β of vector ω such that:
β = arg max

i∈{0,...,n−1}
|ω(i)| (4)

3) Calculate the index α of the closest codeword ŷ ∈
RM(m, 1) to the received vector as:

α = nλ+ β where λ =

{
0, ω(β) ≥ 0,

1, ω(β) < 0.
(5)

4) The decoded codeword ŷ ∈ RM(m, 1) is then given by:
ŷ = de2bi (α)G(m,1), (6)

where de2bi (α) gives the right-MSB binary representa-
tion of the index α.
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Fig. 1: RPA decoding for third-order RM codes based on [23].

C. RPA decoding
As mentioned in Section I, a wide variety of decoding

algorithms have been proposed for RM codes, some of which
make use of the recursive structure and the large automorphism
group of RM codes to propose projection-based methods. One
of the algorithms taking advantage of the recursive structure
of RM codes is RPA decoding. As shown in Fig. 1, the RPA
method uses three steps, namely, projection, recursive decoding,
and aggregation to decode a noisy received vector y from a
transmitted RM codeword c.

In addition, the RPA algorithm has two flavors: 1) hard-
decision decoding where y is a binary vector, mostly used
for binary symmetric channels (BSCs), and 2) soft-decision
decoding where y is a vector of LLRs, which can be used
for more general communication channels like additive white
Gaussian noise (AWGN) channels. The general structure of
the RPA algorithm is the same for both hard- and soft-
decision decoding, but the projection and aggregation steps are
different. In this paper, we focus on soft-decision decoding.
RPA decoding can be described by the following steps:

1) Projection: In this step, L is transformed into n − 1

distinct vectors L1,L2, ...,Ln−1 of length
n

2
. The projection

rule is:

Li(j) = 2 tanh−1

(
tanh

(
L(ja)

2

)
tanh

(
L(jb)

2

))
, (7)

where i ∈ {0, . . . , n − 1} is the projection number, j ∈
{0, . . . , n

2 − 1}, and ja and jb are the coordinates of the
original vector L that are used to create Li(j). The set of these
coordinates for the i-th projection is given by:

{(ja, jb)|ja = jb ⊕ i;∀jb ∈ {0, . . . , n− 1}}. (8)
We note that the above set contains n/2 pairs of elements for
which (ja, jb) = (jb, ja). To avoid repetition, for each such
pair, we remove (jb, ja) from the set. Equation (7) is often
approximated by the so-called min-sum approximation [37],
which is defined as:
Li(j) = min

{
|L(ja)|, |L(jb)|

}
sgn

(
L(ja)

)
sgn

(
L(jb)

)
. (9)

2) Recursive decoding: In this step, each projected vector
from the previous step is recursively decoded with RPA
decoding for RM(m − 1, r − 1) until first-order codes are
reached, for which the FHT-based first-order decoder (FOD)
explained in Section II-B is applied.

Algorithm 1: RevReorder
1 Input: i, n
2 Output: U = {u(j) | u(j) = (ja, jb); j = 0, ..., n

2 − 1}
3 if i <

n

2
then

4 U
(
0 to

n

4
−1

)
←RevReorder

(
i, n

2

)
5 U

(n
4

to
n

2
−1

)
←RevReorder

(
i, n

2

)
+

n

2
6 else
7 for j=1 :

n

2
−1 do

8 U(j)← (j, j ⊕ i)
9 end

10 U(0)← (0, i)
11 end
12 return U

3) Aggregation: In this step, a per-coordinate average
is taken from all the decoded codewords obtained from
the recursive decoding step. Then, the hard-decoded binary
vector ŷ from the obtained LLR vector L̂ is considered as
an estimation for the transmitted codeword c. This step is
effectively the reverse of the projection step, so similarly to
the projection step, it requires first finding the origins of each
coordinate ŷi(j), j ∈ {1, . . . , n/2}, of the decoded codeword
ŷi, i ∈ {1, . . . , n − 1}. The RevReorder function given
in Algorithm 1 finds the index pair Ui(j) := (ja, jb) for
each coordinate ŷi(j), that was originally created by the i-th
projection on the coordinates ja and jb of the input vector L.
Then, the average of the LLR values that were involved in
creating each pair of coordinates ŷ(ja) and ŷ(jb) is calculated
as follows:

L̂(ja) =
1

n− 1

n−1∑
i=1

(
1− 2ŷi(j)

)
L(jb), (10)

L̂(jb) =
1

n− 1

n−1∑
i=1

(
1− 2ŷi(j)

)
L(ja). (11)

Furthermore, as shown in Fig. 1, several iterations of the
aforementioned steps are performed at every recursion level
until either there are no changes in the decoded codeword or
a pre-defined maximum number of iterations Nmax is reached,
which the authors of [23] set to⌈m/2⌉.

D. IPA decoding and implementation

RPA decoding performs up to Nmax iterations at each level of
the recursion, which increases the complexity and significantly
complicates the RPA decoding structure. Fig. 2a shows the
data flow of one iteration of the RPA algorithm to decode
a codeword from an RM(m, 3) code. In this example, two
levels of projection are shown with blue triangles until the
first-order codes are reached. Then, the FODs, represented
with green hexagons, decode the first-order RM codes. Similar
to the projection step, there are two levels of aggregation
represented with brown triangles. However, as shown in the
highlighted region, the second projected vector requires an extra
iteration on its recursive call to the RPA of RM(m−1, 2) after
the first level of aggregation. This makes the other parallel
branches stall. Furthermore, handling multiple iterations at
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Fig. 2: Data-flow of one iteration of RPA (a) and IPA (b) decoding of an arbitrary codeword from RM(m, 3) code.

each recursion level requires complicated control circuitry and
memory structure when implemented in hardware.

The work of [29] showed that it is possible to remove the
iterations at internal levels of recursion with minimal degrada-
tion in error-correcting performance. This change transforms
the recursive structure of RPA decoding into an iterative one
that we call IPA, shown in Fig. 2b. This simplification of
the RPA algorithm made it feasible to have a fully-parallel
hardware implementation [29].

Computational complexity: The number of calls to the FOD
function is commonly used as a measure to estimate the
computational complexity of RPA decoding [24]–[28]. In the
worst-case scenario, where the maximum number of iterations
is performed for every recursive call, the total number of FOD
calls can be determined as:

Θ(m,r,Nmax) = Nr−1
max

r−1∏
i=1

(
2m−i−1 − 1

)
. (12)

However, with the simplification in IPA, the number of FODs
will be decreased by Nr−2

max times as there is no additional
iteration for r − 2 levels of recursion.

Implementation: The proposed architecture in [29] is com-
prised of three main components: projection, FOD, and aggre-
gation for HD decoding of the received vector y ∈ RM(m, r).
The projection component performs r − 1 levels of projection.
Each projection level is equipped with parallel projection
units. These units are comprised of a crossbar to combine
the corresponding coordinates for the desired projection of
the input vector y. Additionally, each unit includes an XOR
circuits to apply the projection rule for HD decoding. The
FOD component provides first-order decoding for all first-
order codewords, obtained in the innermost level of projection,
in parallel. Each FOD consists of the hardware implementation
of each step in the decoding method explained in Section II-B.
The aggregation component provides r−1 levels of aggregation.
Each level includes the required parallel crossbars to expand the
corresponding coordinates of the desired decoded codeword
from RM(m − j, r − j) in order to estimate the codeword
belonging to RM(m−j+1, r−j+1), where j = {1, . . . , r−1}
represents the current level of aggregation.

Although the proposed architecture has very low latency, the
resource utilization is extremely high due to its fully-parallel

Algorithm 2: IPA decoding for RM(m, 2) codes

1 Input: L,m,Nmax

2 Output: Codeword ŷ
3 n← 2m

4 for j = 0 : Nmax do
5 for i=1 : n−1 do
6 Li ←Projection(L,m, i)
7 ŷi ← FOD

(
Li

)
// First-order decoder

8 Li
agg ← PreAggregation(L, ŷi, i,m)

9 end
10 L← Voting

(
L1

agg, ...,L
n−1
agg

)
11 end
12 for z = 0 : n− 1 do
13 ŷ← 1− 1 [L(z)) ≥ 0] // Hard-decision

14 end
15 return ŷ

structure. Moreover, the decoder only supports HD decoding,
which accepts binary vectors as input rather than LLR values.
The projection and aggregation rules for HD decoding, which
are explained in detail in [23] and [29], differ significantly
from those of a soft-decision decoder.

In Section III, we present a flexible hardware implementation
of the soft-decision IPA decoding for general binary-input
memoryless channels. Our design can be easily configured
based on the specific requirements of the application, offering
a range of options from fully sequential to fully parallel
configurations including partial-parallel configuration.

E. Polar code and SCL decoder

Polar codes [6] were ratified as the channel coding scheme of
5G enhanced mobile broadband (eMBB). However, even with
highly specialized node-based SCL decoders capable of parallel
bit decoding, meeting the stringent demands of high-reliability
and low-latency in 5G (and beyond) is still a challenge for
existing polar decoders. Recently, the authors of [32] proposed
the first generalized node-based SCL decoding algorithm and
presented a corresponding hardware implementation. By extend-
ing a generalized node called the sequence repetition (SR) node
[38] to SCL decoding, this state-of-the-art polar decoder in [32]
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Fig. 3: Overview of our proposed second-order SIPA decoder architecture.

achieves increased decoding parallelism and more efficient
utilization of computation units. This enhancement offers a
competitive solution for 5G polar codes. We compare our
proposed architecture against this state-of-the-art polar decoder
in Section V.

III. SECOND-ORDER SOFT-INPUT IPA DECODER
ARCHITECTURE

Since first-order RM codes can be decoded optimally using
the FHT [36], the lowest order for which RPA decoding is
meaningful is r = 2. Therefore, we first describe a base
architecture for IPA decoding for second-order RM codes and
we explain how it can be extended to decode RM codes of
higher order in Section IV.

We implement soft-decision IPA decoding as described in
Algorithm 2 with a pipelined architecture shown in Fig. 3
that has dedicated hardware blocks for each iteration of the
outer for loop in lines 4-11 of Algorithm 2. The inputs of
this architecture are a vector of channel LLRs and the ValidIn
signal, which is high when a new vector of channel LLRs
becomes available. The outputs are the decoded codeword and
the ValidOut signal, which is high when the output is valid.
Furthermore, our architecture includes processing units (PUs)
that implement the projection step, first-order decoding, and
a part of the aggregation step, which we call pre-aggregation.
A hardware-friendly pipelined tree divider is also placed after
the PU to complete the aggregation step of the IPA decoding.
In the following subsections, we explain these components in
detail.

A. Processing unit (PU)

The for loop in lines 5-9 of Algorithm 2 can be fully
parallelized. Therefore, we design a PU which is pipelined
and has appropriate hardware components to perform the
Projection, FOD, and PreAggregation functions for
any value of the loop variable i ∈ {0, . . . , n− 1}, where i = 0
corresponds to a dummy all-zeros vector that simplifies the
implementation and that we explain in Section III-B. Thus, our
second-order IPA decoder can be from fully-sequential with
P = 1 PUs to fully-parallel with P = 2m PUs.

1) Projection component: This component includes two sub-
components: Reordering (ROC) and min-sum (MS) shown in
Fig. 4. The ROC contains n−1 crossbars (CB) and a multiplexer
that selects the crossbar for the corresponding projection. Each
crossbar i is built with function Reorder(L, i,m) represented
in Algorithm 3 that finds the relevant coordinates of the input
vector L, taking the projection number i into account. Then,
it reorders L to put those coordinates in consecutive pairs.
Consequently, the output vector Li

r is a reordered version of
the input vector L according to the projection number i. As
shown in Fig. 4, the multiplexer selects the reordered vector Li

r

corresponding to the current projection i determined with its
selector input. For example, in Fig. 4, the highlighted crossbar
shows that the second projection is currently performed.

The number of crossbars inside the ROC block depends on
the number of available PUs. When P PUs are instantiated, the
ROC block placed in the j-th PU, j ∈ {0, . . . , P −1}, includes
the crossbars i such that i mod P = j. Therefore, for one
PU, the ROC block contains all the crossbars, but for P > 1,
each PU has a distinct circuit for its ROC sub-component.
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Fig. 4: Architecture of the Projection component including the ROC and MS sub-components.

Algorithm 3: Reorder
1 Input: L, i, n
2 Output: Li

r

3 if i <
n

2
then

4 Li
r(0 to

n

2
−1)←Reorder(L(0 to

n

2
−1), i,m−1)

5 Li
r(
n

2
to n−1)←Reorder(L(n2 to n−1), i,m−1)

6 else
7 for j=1 :

n

2
−1 do

8 Li
r(2j)← L(j)

9 Li
r(2j + 1)← L(j ⊕ i)

10 end
11 Li

r(0)← L(0)
12 Li

r(1)← L(i)
13 end
14 return Li

r

In addition, the MS component shown in Fig. 4 consists
of n/2 blocks performing (9) on every pair of coordinates(
Li
r(2j),L

i
r(2j + 1)

)
, j ∈ {0, . . . , n/2− 1} , of the reordered

vector Li
r.

2) FOD component: We use the architecture proposed in
[29] modified for soft-input FOD, explained in Section II-B,
to decode the vector Li corresponding to a first-order code-
word obtained from the Projection component. As Fig. 5
demonstrates, the FOD component is pipelined and contains
three modules: 1) the FHT module, which computes the fast
Hadamard transform of Li, 2) the Argmax module to find the
index of the maximum value of the output of the FHT module,
and 3) the GenMtx module, which implements an encoder for
an RM(m − 1, 1) code. The output of the FOD component
is the decoded codeword ŷi corresponding to the projected
vector Li.
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Fig. 5: Hardware implementation of FOD based on [29]

3) PreAggregation component: We have rewritten the ag-
gregation step explained in Section II-C3 in Algorithm 4. The
for loop on lines 4-11 of Algorithm 4 can be fully parallelized.
The PreAggregation(L, ŷi, i,m) function in Algorithm 2
implements exactly this for loop. The PreAggregation
function first calls RevReorder function corresponding
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Algorithm 4: Aggregation
1 Input: L, ŷ1, ŷ2, . . . , ŷn−1,m

2 Output: L̂
3 n← 2m

4 for i=1 : n−1 do
// PreAggregation(L, ŷi, i,m)

5 Ui ←RevReorder(i,m)
6 for j = 0 : n

2 − 1 do
7 (ja, jb)← Ui(j)
8 Li

agg(j
a)←

(
1− 2ŷi(j)

)
L(jb))

9 Li
agg(j

b)←
(
1− 2ŷi(j)

)
L(ja))

10 end
11 end

// Voting

12 for z = 0 : n− 1 do
13 L̂(z)←

∑n−1
i=1 Li

agg(z)

n−1

14 end

to the i-th loop variable for finding the pairs of indices
(ja, jb) of the input vector L from which the coordinates
Li(j), j ∈ {0, . . . , n/2} were originally created. Then, it applies
the aggregation rule in (10), except the final averaging step. The
hardware implementation of the PreAggregation function,
shown in Fig. 6, has three sub-components:

• Extension module, which extends the length-n/2 decoded
binary codeword ŷi to the length-n vector ŷi

e. The exten-
sion rule is determined by the RevReorder function,
which copies each coordinate ŷi(j), j ∈ {0, . . . , n/2}, to
their corresponding coordinates of ŷi

e indexed by ja and
jb.

• ReArrangement module, which flips the values of each
pair of coordinates (L(ja),L(jb)). The output vector with
flipped LLRs is Li

e. Similarly to the Extension module,
each crossbar i in the ReArrangement module finds the
pair (ja, jb) based on the RevReorder function.

• TwosComp module, which finds the two’s complement of
each coordinate j, j ∈ {0, . . . , n− 1}, of Li

e if ŷie(j) = 1,
as stated in lines 8-9 of Algorithm 4.

In addition, similarly to the ROC module, both the Extension
and the ReArrangement modules contain a multiplexer to select
the extension network or crossbar corresponding to the current
decoded projected vector ŷi. Moreover, the number of the
extension networks and crossbars inside the Extension and
ReArrangement modules is adjusted based on the number of
instantiated PUs, similarly to the ROC module.

B. Tree divider

The second for loop in the Aggregation function, shown
in lines 12-14 of Algorithm 4, is the Voting function men-
tioned in Algorithm 2. More specifically, it takes the average
value of the pre-aggregated vectors Li

agg, i ∈ {1, . . . , n − 1},
which are the outputs of PUs. As shown in line 11 of
Algorithm 4, the Voting function needs an (n−1)-input adder
to add up all Li

agg, i = 1, . . . , n − 1. In addition, it requires
a divider to find the average value out of the accumulated
LLRs. Implementing such adder and divider in hardware is
relatively expensive, especially when n gets large. As a result,

we propose a tree divider structure to implement the Voting
function.

The structure of the divider follows from the fact that the
average value of two sets of n/2 numbers is equal to the sum
of the average values of each set divided by two:

x̄ =
1

n

n∑
i=1

xi =

1
n
2

∑n
2
i=1 xi +

1
n
2

∑n
i=n

2 +1 xi

2
. (13)

As a result, if n = 2m, we end up with a tree structure
represented in Fig. 7. In this structure, we have two-input
adders with one bit extension and shifting elements that perform
division by two, simply shifting the dividend one bit to the
right. However, there are n− 1 pre-aggregated vectors instead
of n required vectors for the tree divider. Consequently, we add
a dummy all zero vector to the flow of our proposed decoder.
This approximation affects the output of Voting function, but
the effect is negligible, as we will show in Section V-A. The 0
vector is generated with i = 0 in Projection and PreAggregation
units as it is shown in Fig. 4 and Fig. 6.

In the case of a fully-sequential implementation with P = 1
PUs, only one new divider input is available per clock cycle.
Hence, we implemented the divider, depicted in Fig. 7, with
log(n) shift registers, two-input adders, and shifting elements.
Each shift register contains two registers for two LLRs, data
and enable input ports, as well as one data output port. The
shift register shifts its internal array one position to the right
and writes its current data input to the location of the shifted
value. For the shift register in the first level l = 0, the data
input is the output of the PU, and its enable is the valid output
port of the PU. The data input for the shift register in level
l > 0 is the output of the shift register in level l − 1, and
its enable input is high when the shift register at level l − l
has written two new data inputs. This signal is generated with
EnGen module in the Control unit.

However, in a partially-parallel design with P > 1 PUs,
more than one input is ready at every clock cycle. Taking the
tree divider’s structure into account, we add a condition for
choosing the number of PUs to keep the divider and pipeline
stages as simple as possible. This constraint limits P = 2p, p ∈
{0, . . . ,m}, so that we replace the shift registers with standard
registers for the first p levels of the tree divider. Hence, we
have 2p−l two-input standard registers at each level l, l ∈
{0, . . . ,m− p− 1}. These registers are enabled with the valid
output of the PreAggregation unit delayed by l−1 clock cycles.
Furthermore, we keep the sequential divider operating with
shift registers for the last m− p levels of the divider. The shift
register placed in the first level of the sequential part which is
the (m− p)-th level is enabled with the valid signal of PreAgg
unit delayed by p clock cycles. The enable signals for the rest
of the shift registers are generated by the Control unit.

C. Register array

Fig. 8 demonstrates the pipeline stages for a fully-sequential
implementation of IPA, i.e., P = 1 , for RM(3, 2). In this
example, for simplicity each stage is assumed to require one
clock cycle. However, in the hardware implementation, the
length of each stage can be multiple clock cycles to balance
the critical path depending on the input blocklength. As shown
in the highlighted time slots in Fig. 8, the Projection component
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Fig. 7: Hardware implementation of the Voting function with
a tree-like divider for an example of n = 8.

loads the new received vector while the PreAggregation
component is still busy with the previously received vector.
Therefore, we need an array of registers to store the channel
LLRs for each input vector L during the decoding process.
The depth of this array is calculated by:

DRegArr =

⌈
tagg

n/P

⌉
+ 1, (14)

where tagg is the number of clock cycles required for the
pipeline stages before reaching the PreAggregation component,
P is the number of PUs, and n is the block length. Hence, the
more PUs we instantiate, the more registers we need. In the
case of a fully-sequential implementation with P = 1, only two
registers are required to store the channel LLRs of two input
vectors as n > tagg in most practical cases. On the other hand,
in a fully-parallel implementation with P = n PUs, we have
DRegArr = tagg + 1. As a result, this register array is generally
relatively small. The register array is managed using a small
write counter, which keeps track of the register that needs to
be updated. Additionally, a counter is utilized to determine

the register that needs to be read when the PreAggregation
component begins processing a new vector. The Control unit
generates the necessary signals to facilitate the updating and
reading of registers within the array.

D. Control unit

The Control unit generates all the controlling signals required
for the pipeline structure, the PUs, the tree divider, and the
memory. According to the pipeline table represented in Fig. 8
for an implementation that is not fully parallel, it is not possible
to decode one codeword every clock cycle, so the read and
write counters in the memory should be controlled carefully.
Besides, the selectors for the multiplexers in the Projection
and PreAggregation components of the PU do not have the
same value, e.g., when the PreAggregation starts processing
the first decoded projected codeword at t5, the Projection starts
the 5-th projection in the example shown in Fig. 8. Moreover,
as mentioned earlier, the data input L is not the same for the
Projection and PreAggregation units in one PU as shown in
the highlighted part from time instances t9 to t12 and from
t17 to t21 in Fig. 8. Therefore, the Control unit runs two state
machines simultaneously to generate the controlling signals
for the projection and aggregation steps.

In addition, the EnGen component of the Control unit
generates the enable signals for the registers used in the tree
divider. It consists of m−p cascaded counters for implementing
the IPA decoder for the RM(m, 2) code with 2p PUs. Each
counter makes its output high for one clock cycle when it
counts two high levels of its enable signal. The enable signal
of the first counter is the valid output of the PU delayed by
p clock cycles. Furthermore, the remaining counters in the
consecutive levels are enabled with the previous level’s output.

E. Iteration

After the aggregation step in the RPA algorithm, a compari-
son is made to check whether the output of the current iteration
converges to its input or not. If the condition is satisfied, the
algorithm stops before performing all Nmax iterations. However,
since very few iterations are generally required, we removed
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Fig. 8: Pipeline stages for the fully-sequential second-order IPA decoder for an example of n = 8.

the early stopping condition in our proposed architecture to
simplify the pipeline flow and to have a constant throughput.

For a decoder with Nmax iterations, we cascade Nmax copies
of the single-iteration hardware, as shown in Fig. 3, such that
the ValidIn input port of i-th iteration is the ValidOut of (i−1)-
th iteration. As Fig. 3 shows, there is a hard-decision maker
module at the end of the flow. This module considers the most-
significant bit of the estimated LLRs of the Nmax-th iteration
as the binary decoded codeword.

F. Throughput and latency
As shown in Fig. 8, a new codeword with blocklength n can

be processed every n clock cycles in a fully-sequential IPA
decoder. However, in the partially-parallel IPA decoder with P
PUs, a new codeword can be inserted into the pipeline every
n
P clock cycles. In general, the throughput of the proposed
second-order IPA decoder is:

ThrMbps =
P × Frequency

n
× n = P × Frequency, (15)

where the frequency is given in MHz.
As all steps of the IPA decoder are pipelined, the latency of

one iteration of the second-order IPA decoder is:

t(m,2) = (tproj + tFOD + tPreAgg) +

(
2m

P
− 1

)
+ tDivider + tIO,

(16)
where tproj, tFOD, and tPreAgg are the delays of the Projection,
FOD, and PreAggregation components, respectively, measured
in clock cycles. In addition, tDivider = m and tIO = 2
corresponding to two input and output registers. In our
design, we consider tproj = tPreAgg = 1, and tFOD = 3 or
tFOD = 4, depending on the input blocklength. The total
latency of the second-order IPA decoder with Nmax iterations
is t(m,2) ×Nmax.

IV. PROPOSED ARCHITECTURE FOR SOFT-INPUT IPA
DECODER FOR RM CODES WITH r > 2

IPA decodes RM(m, r) codes with r > 2 by producing
2m−1 projected codewords from RM(m−1, r−1), as discussed
in Section II-C. Therefore, we can generalize the architecture
shown in Fig. 3 to decode RM codes with r > 2 by adding
Projection and PreAggregation components along with the tree
divider for any level r > 2. Additionally, a dedicated memory
with different blocklength and depth is required for each level

of r > 2. Finally, we add a Control unit for each level of r > 2
to generate the control signals required for the corresponding
r. Fig. 9 shows an overview of the proposed architecture for
one iteration of the third-order IPA decoder.

We keep the dummy all-zero vector inserted in the base
second-order IPA decoder, and the projection, first-order
decoding, and aggregation steps are performed on this dummy
vector. As a result, some clock cycles are lost, but it simplifies
the divider and Control unit as mentioned in Section III.
However, for the levels r > 2, we do not use the dummy
all-zero vector because it results in wasting significant number
of clock cycles depending on the structure of the base second-
order decoder. Therefore, to keep the tree divider and the whole
structure simple, we only freeze the entire decoder for one
clock cycle at each level of r > 2 and we insert zeros in the
frozen cycle to the tree divider directly.

Similarly to the second-order IPA decoder, the proposed
r-order IPA decoder is able to be adjusted from fully-
sequential to fully-parallel. A fully-sequential architecture is
obtained by instantiating one PU in the level r = 2 and a
fully-parallel implementation is obtained by instantiating all(∏r−3

i=0 2m−i − 1
)
×2m−r+2 required PUs for the level r = 2.

Any other number of available PUs, following the constraint
mentioned in Section III-B, results in partially-parallel archi-
tectures. It is worth mentioning that with P > 2m−r+2, i.e.,
with more than the required PUs for a fully-parallel base
second-order IPA, multiple second-order IPA decoders will be
instantiated in the design.

Similar to the second-order IPA decoder, the throughput of
the higher-order IPA decoder is calculated as:

Thrbps =
P × Frequency(∏r−3

i=0 2m−i − 1
)
× 2m−r+2

× n. (17)

The latency of one iteration of the r-order IPA decoder is:

t(m,r) = tproj+t(m−1,r−1)+tPreAgg+

⌈
dr−1 × (2m − 2)

NDec

⌉
+m,

(18)
where NDec is the the number of instantiated decoders for
the RM(m − 1, r − 1) code. In addition, dr−1 is the delay
that should be considered between inserting the inputs to the
(r − 1)-th level of the decoder, which is dependent on the
number of available PUs. The latency of the second-order base
IPA decoder, i.e., t(m,2) , is calculated based on (16).
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Fig. 9: Overview of third-order IPA decoder architecture for
one iteration.

V. SIMULATION AND IMPLEMENTATION RESULTS

A. Simulation results

In this section, we present simulation results of the decoding
performance of the IPA decoder for both hard- and soft-decision
decoding including the approximate divider in the aggregation
step. It is important to note that when we refer to our work as
IPA in this section, we specifically mean soft-decision IPA. For
hard-decision IPA, we use the term HD-IPA. First, we compare
IPA decoding to the baseline RPA algorithm for different
codes. Then, we compare IPA decoding for different numbers
of iterations as well as different quantization bit-widths to
justify our design choices for the hardware implementation.
Furthermore, we compare IPA decoding of RM codes to
SCL decoding of polar codes with the same blocklength and
rate. We use the 5G-compatible SCL decoder of [39] with
an 11-bit cyclic redundancy check (CRC). The target codes
for simulations are RM(6, 3) and RM(7, 2) to cover different
orders as well as different rates. For the comparison to polar
codes, we consider polar codes with (n, k) pairs of (64, 42)
and (128, 29), as they have the same rate and blocklength to
the RM(6, 3) and RM(7, 2) codes, respectively. All simulations
are performed over the AWGN channel.

1) RPA decoding vs IPA decoding: Fig. 10 shows the frame
error rate (FER) for RPA and IPA decoding implemented with
the exact projection rule (7) and the min-sum approximation (9).
As in [23], we set the maximum number of iterations Nmax =
⌈m/2⌉ for the simulations represented in Fig. 10. For second-
order RM codes, the only difference between IPA and RPA
is the approximate divider during aggregation. The simulation
results in Fig. 10 show that the effect of this approximate
divider is negligible as there is effectively no performance
difference between IPA and RPA for the RM(7, 2) code. For
the RM(6, 3) code, the performance difference between IPA and
RPA is also negligible, even though ∼ 567 internal iterations
are removed by the IPA algorithm. In addition, Fig. 10 shows
that the degradation caused by the min-sum update rule (9)
compared to the exact update rule (7) is small for both codes.
In addition, we aim to compare the hardware implementation
of our proposed IPA to the fully-parallel HD-IPA architecture
proposed in [29]. Therefore, a comparison between the HD-
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Fig. 10: Comparison of different flavours of RPA and IPA for
Reed-Muller codes over AWGN channel.

3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

Eb/No dB

FE
R

1.5 2 2.5 3 3.5 4

Eb/No dB
(a) (b)

RM(6, 3) RM(7, 2)

1 Iterations 3 Iterations
2 Iterations 4 Iteration

3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

Eb/No dB

FE
R

1.5 2 2.5 3 3.5 4

Eb/No dB
(a) (b)

RM(6, 3) RM(7, 2)

1 Iterations 3 Iterations
2 Iterations 4 Iteration

3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

Eb/No dB

FE
R

1.5 2 2.5 3 3.5 4

Eb/No dB
(a) (b)

RM(6, 3) RM(7, 2)

1 Iterations 3 Iterations
2 Iterations 4 Iteration

Fig. 11: Comparison of different numbers of iterations for the
IPA algorithm.

IPA [29] and IPA is made in Fig. 10. As expected, the error-
correcting performance of the HD-IPA shows a noticeable
degradation of more than 2 dB and 1.75 dB for RM(6,3) and
RM(7,3) codes, respectively, in comparison to the soft-input
IPA.

2) Number of iterations: The hardware cost of our architec-
ture represented in Fig. 9 scales linearly with the number of
iterations. Therefore, we also explored whether the number of
iterations can be reduced without degrading the error-correcting
performance significantly. Fig. 11 shows the performance of
IPA decoding with 1 to ⌈m/2⌉ iterations. We observe that the
performance loss with one iteration is significant compared
to ⌈m/2⌉ iterations for both examined RM codes. However,
there is no performance degradation for the RM(6, 3) code and
only a very small degradation for RM(7, 3) with 2 iterations,
instead of ⌈m/2⌉ = 3 and ⌈m/2⌉ = 4 iterations, respectively.
Therefore, we set Nmax = 2 for the hardware implementation
of the IPA decoder for both of these codes, reducing the
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Fig. 12: FER comparison between floating-point and different
fixed-point implementation of IPA decoding.

3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

Eb/No dB

FE
R

1.5 2 2.5 3 3.5 4

Eb/No dB
(a) (b)

RM(6, 3) and Polar(64, 42) RM(7, 2) and Polar(128, 29)

IPA (Q(3 : 2)) SCL (L = 32)
SCL (L = 16) SCL (L = 64)

3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

Eb/No dB

FE
R

1.5 2 2.5 3 3.5 4

Eb/No dB
(a) (b)

RM(6, 3) and Polar(64, 42) RM(7, 2) and Polar(128, 29)

IPA (Q(3 : 2)) SCL (L = 32)
SCL (L = 16) SCL (L = 64)

Fig. 13: FER comparison between 5-bit fixed-point IPA
decoding and floating-point SCL decoding.

required hardware and the latency by 33% and 50% for each
code, respectively.

3) Quantization bit-width: For the fixed-point implementa-
tion, we quantized all LLRs using a Q(qi : qf ) quantization
scheme, where qi and qf is the number of integer and fractional
bits, respectively. We increase the bit-width by one at each
stage of the FHT inside the FOD because it is very sensitive
to saturation. The results of all other operations are always
clipped to remain within the representable range. Fig. 12
shows the results for the different values of qi and qf . We
observe that the 5-bit quantized IPA decoder with qi = 3 and
qf = 2 is almost as accurate as the floating-point IPA decoder
for both considered codes. Therefore, we present hardware
implementation results using 5-bit LLRs.

4) IPA decoding of RM codes vs SCL decoding of polar
codes: For the final comparison, we compare the performance
of our selected 5-bit quantized IPA with 2 iterations to the
floating-point SCL decoding of 5G polar codes with 11-bit

CRC. As Fig. 13 demonstrates, the quantized IPA decoder for
RM(6, 3) outperforms the floating-point SCL decoder for a
polar code of the same blocklength and rate with list sizes
of L = 16, L = 32, and L = 64. Moreover, the quantized
IPA decoder for RM(7, 2) outperforms the floating-point SCL
decoder for a polar code of the same blocklength and rate with
list size of L = 16 and L = 32, but has worse performance
for L = 64.

B. ASIC synthesis results
In this section, we present synthesis results for our pro-

posed IPA decoder architecture. The IPA decoder has been
implemented in VHDL and synthesized using the Cadence
Genus RTL compiler with the STM 28nm FD-SOI technology
in the slow-slow corner and at 25o C. To obtain accurate
power measurements, we performed gate-level (GL) simulations
by generating a standard delay file (SDF) through synthesis.
Subsequently, we utilized the SDF to perform GL simulations
in the Cadence Xcelium simulator. To ensure an accurate power
estimate, we incorporated the switching activity obtained from
the GL simulation for 103 frames into our analysis. We show
the synthesis results for the IPA decoder for RM(7, 2) and
RM(6, 3) codes. As concluded from Fig. 12, the IPA decoder
has been implemented for 5-bit input LLRs, i.e., Q(3 : 2) and
two decoding iterations. Furthermore, we provide the synthesis
results for different numbers of PUs employed in the IPA
decoder to show the trade-off between area consumption and
latency as well as throughput.

Since, to the best of our knowledge, there are no other hard-
ware implementations of soft-decision projection-aggregation
based RM decoders in the literature, we compare the area
consumption, latency, and throughput of the IPA decoder
against the state-of-the-art SCL decoder of [32] synthesized
for polar codes with the same blocklength and information rate
and with the same technology and settings. The SCL decoder
has been synthesized for 6-bit quantization to ensure that there
is minimal performance loss between the SCL decoder with
quantized LLRs and the floating-point LLRs [32]. Additionally,
we select the list sizes based on Fig. 13 and we allow the SCL
decoder to have slightly worse error-correcting performance if
necessary to be as conservative in our comparison as possible.
We also synthesized the fully-parallel HD-IPA decoder [29] for
comparison. To ensure a fair comparison with the soft-decision
IPA, we also synthesized the HD-IPA decoder for 2 iterations.

Table I presents the synthesis results for soft-decision IPA
decoders with various numbers of PUs and fully-parallel HD-
IPA for RM(6, 3) code. It also compares the IPA decoders with
the SCL decoder of [32] for the 5G polar code with n = 64
and k = 42, which has the same rate and blocklenth as the RM
code. The second-order decoder instantiated in the IPA decoder
for the RM(6, 3) code performs 32 projections, resulting in 32
PUs in case of a fully-parallel implementation. Therefore, we
synthesized the IPA decoder for 16 and 32 PUs to show the
effects of the partially-parallel and fully-parallel second-order
decoder used in the IPA decoder for decoding a third-order
code. In addition, Table I also includes synthesis results for
64 PUs, meaning that two fully-parallel second-order decoders
are employed in the third-order IPA decoder. The results show
that increasing the number of PUs from 16 to 32 results in
a 58% increase in the area while the latency decreases by
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TABLE I
SYNTHESIS RESULTS FOR OUR PROPOSED IPA DECODER FOR RM(6, 3)

CODE AND FOR THE STATE-OF-THE-ART SCL DECODER OF [32] FOR A 5G
POLAR CODE WITH n = 64 AND k = 42.

Code RM(6, 3) Polar (64, 42)
Decoder IPA HD-IPA [29] SCL [32]

List size (L) - - - - 64
Number of PUs (P) 16 32 64 8001a -

Clock Rate (MHz) 714 714 714 500 350
Latency (cc) 294 168 106 26 95
Latency (µs) 0.411 0.235 0.148 0.052 0.270
Throughput (Mbps) 357 714 1428 1231 235

Area (
(
mm2

)
0.38 0.61 1.21 4.08 2.04

Area Eff.
(
Gbps/mm2

)
0.94 1.17 1.60 0.30 0.12

Power (mW) 317 505 801 NAb NAb

Energy (pJ/b) 888 707 561 NA NA
a There is no PU defined in [29], but there are 127× 63 parallel units including two levels of
projection, FOD, and two levels of aggregation.
b Not available: Due to the high resource utilization, the post-synthesis power analysis failed
to run.

TABLE II
SYNTHESIS RESULTS FOR OUR PROPOSED IPA DECODER FOR RM(7, 2)
CODE AND FOR THE STATE-OF-THE-ART SCL DECODER OF [32] FOR A 5G

POLAR CODE WITH n = 128 AND k = 29.

Code RM(7, 2) Polar (128, 29)
Decoder IPA HD-IPA [29] SCL [32]

List size (L) - - - - 32
Number of PUs (P) 2 4 8 127 -

Clock Rate (MHz) 555 555 555 384 403
Latency (cc) 156 92 60 15 94
Latency (µs) 0.281 0.165 0.108 0.039 0.233
Throughput (Mbps) 1110 2220 4440 3282 548

Area
(
mm2

)
0.33 0.50 0.88 1.90 0.96

Area Eff.
(
Gbps/mm2

)
3.30 4.35 5.04 1.72 0.57

Power (mW) 214 364 662 237 52
Energy (pJ/b) 192 163 149 72 95

42%. However, implementing the IPA decoder with 64 PUs
results in slightly higher than two times area consumption
compared to 32 PUs since there are two decoders with separate
control units and memories instantiated in the third-order
IPA decoder. Furthermore, we observed that HD-IPA shows
significantly lower latency compared to IPA due to its fully-
parallel architecture. However, it has a significantly worse
error-correcting performance, as shown in Fig. 10. Moreover,
this remarkably low latency is achieved at the cost of using
significantly more resources, making it impractical for many
applications. This further emphasizes the necessity for a partial-
parallel architecture, such as our proposed architecture, which
offers a more viable alternative. Additionally, despite its lower
latency, HD-IPA does not achieve high throughput due to its
non-pipelined structure, resulting in very low area efficiency.
We also see that all different configurations for the proposed
IPA decoder have a significantly smaller area and a much higher
throughput than the SCL decoder, resulting in an improvement
in the area efficiency of one order of magnitude. At the same
time, the IPA decoders have 13% and 45% lower absolute
latency than the SCL decoder for P = 32 and P = 64,
respectively.

Table II presents the synthesis results for various soft-
decision IPA decoders and HD-IPA for the RM(7, 2) code
as well as an SCL decoder for the 5G polar code with n = 128
and k = 29. We see that HD-IPA shows up to 7 times lower
latency but requires up to 6 times more resources. Similarly to
what was observed in Table I, HD-IPA is less efficient in terms
of resource usage compared to IPA because it does not use
a pipelined architecture. However, the resource efficiency for

RM(7, 2) is better than RM(6, 3) due to the lower number of
clock cycles required for decoding each codeword. It is again
important to highlight that the error-correcting performance of
HD-IPA is significantly worse than that of the soft-decision
IPA as it is shown in Fig. 10. Similarly to the previous
results, all IPA decoders have a significantly smaller area and
a much higher throughput than the SCL decoder, resulting in
an improvement in the area efficiency by a factor between 6
and 9, depending on the number of PUs. At the same time,
the IPA decoders have 29% and 54% lower absolute latency
than the SCL decoder for P = 4 and P = 8, respectively.

Table I and Table II also provide a comparison of the power
consumption among the soft-decision IPA, HD-IPA, and SCL
decoder. The proposed IPA architecture shows higher power
consumption compared to the other two decoders. This can be
attributed to its pipelined architecture, where all components
remain active during each clock cycle, contrary to the SCL
decoder that mostly consists of memory. Furthermore, it is
evident that as the level of parallelism, indicated by the number
of PUs, increases the energy consumption per bit decreases.
This implies that the IPA architecture can be configured to
deliver a high-throughput decoder with reasonable energy
consumption per bit if such performance is required.

We have included detailed information regarding the average
area per iteration and the power consumption for each iteration
of any block in the IPA decoder in Table III. As expected, the
PU utilizes the largest area among all blocks. Additionally,
within the PU, the FOD block is the most area-intensive com-
ponent. The area consumption of the register array, designed
to fulfill pipeline requirements, is negligible compared to other
blocks, as it only needs to store a small number of codewords.
Furthermore, it is worth noting that the area utilization for one
PU in the second-order decoder embedded within the decoder
for RM(6, 3) is relatively low. This is because we employed a
fully-parallel second-order decoder with 32 PUs at that level,
resulting in smaller Projection and PreAggregation components.
Similarly, the divider at that level appears relatively large
compared to other parts, as it has 32 vectors ready at each
clock cycle, requiring five levels of parallel adders and shift
registers, as depicted in Fig. 7.

In terms of power consumption, we reported the power values
for both iterations. The second iteration is less computationally
intensive, as the majority of error correction occurs in the first
iteration. Consequently, the FOD units exhibit lower activity
levels during the second iteration. Therefore, we observe
approximately 18% and 14% less power consumption for the
second iteration of the IPA decoder for RM(7, 2) and RM(6, 3)
codes, respectively. Additionally, we noticed that the power
consumption of the control units, register array, and divider
for the second iteration remains almost the same as the first
iteration, as their activities are not dependent on input values.

VI. CONCLUSION

In this work, we described a pipelined and flexible archi-
tecture for soft-decision IPA decoding of RM codes. We used
several algorithmic1 and architectural optimizations to reduce

1We note that IPA decoding can be further simplified using recently
published methods [28], [40]. Since our results, considered as a baseline,
are already highly promising even without these simplifications, we consider
the quantification of these additional improvements as future work.
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TABLE III
AREA UTILIZATION AND POWER CONSUMPTION OF EACH COMPONENT OF

THE IPA DECODER

RM(7, 2), P = 4 RM(6, 3), P = 32
Areaa Power(mW) Areaa Power(mW)
mm2 itr. 1 itr. 2 mm2 itr. 1 itr. 2

IPA(r = 3) - - - 0.306 271.76 232.84
Projection(r = 3) - - - 0.007 5.40 4.03
IPA(r = 2) 0.249 199.94 162.10 0.266 244.42 208.56

PU 0.048 45.06 36.79 0.008 7.02 05.90
Projection 0.008 5.98 4.32 0.001 0.34 0.27
FOD 0.032 27.35 21.69 0.006 5.45 4.46
PreAggregation 0.008 8.19 7.73 0.000 0.18 0.16

Divider 0.047 25.64 23.04 0.023 25.94 25.20
Register array 0.075 3.53 3.53 0.006 5.56 5.42
Control unit 0.001 0.07 0.07 0.001 0.00 0.00

PreAggregation(r = 3) - - - 0.005 4.39 3.22
Divider(r = 3) - - - 0.021 13.21 12.78
Register array (r = 3) - - - 0.003 2.20 2.22
Control unit(r = 3) - - - 0.000 0.01 0.01

a Average area utilization for one iteration.

the hardware implementation complexity while maintaining an
error-correcting performance that is very close to the original
RPA decoding algorithm from which IPA is derived. Our
synthesis results with an STM 28 nm technology demonstrate
that the IPA decoder exhibits notable advantages in terms of
area efficiency, with improvements of up to 10 times, and
latency reductions of up to 54% when compared to the SCL
decoder. These improvements are achieved while maintaining
comparable error-correcting performance, highlighting the
potential benefits of the IPA decoder for applications that
require high reliability and low latency. However, the post-
synthesis simulation results showcases significantly higher
power consumption compared to a state-of-the-art SCL decoder
for polar codes. Therefore, the proposed flexible architecture
of IPA enables a wide range of trade-offs between area and
power consumption on one side, and latency and throughput
on the other side.
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