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Abstract—Energy storage systems (ESS) are pivotal component
in the energy market, serving as both energy suppliers and con-
sumers. ESS operators can reap benefits from energy arbitrage by
optimizing operations of storage equipment. To further enhance
ESS flexibility within the energy market and improve renewable
energy utilization, a heterogeneous photovoltaic-ESS (PV-ESS) is
proposed, which leverages the unique characteristics of battery
energy storage (BES) and hydrogen energy storage (HES). For
scheduling tasks of the heterogeneous PV-ESS, cost description
plays a crucial role in guiding operator’s strategies to maximize
benefits. We develop a comprehensive cost function that takes
into account degradation, capital, and operation/maintenance
costs to reflect real-world scenarios. Moreover, while numerous
methods excel in optimizing ESS energy arbitrage, they often
rely on black-box models with opaque decision-making processes,
limiting practical applicability. To overcome this limitation and
enable transparent scheduling strategies, a prototype-based pol-
icy network with inherent interpretability is introduced. This
network employs human-designed prototypes to guide decision-
making by comparing similarities between prototypical situa-
tions and encountered situations, which allows for naturally
explained scheduling strategies. Comparative results across four
distinct cases underscore the effectiveness and practicality of
our proposed pre-hoc interpretable optimization method when
contrasted with black-box models.

Index Terms—Heterogeneous energy storage systems, deep
reinforcement learning, pre-hoc interpretability.

I. INTRODUCTION

AS one of the significant resource, energy storage system
(ESS), characterized by their flexibility, are extensively

integrated into power systems, and contribute to carbon emis-
sion reduction [1–4]. Flexible ESS serves a dual role in the
energy market, functioning both as an energy supplier and
consumer [5]. One noteworthy application lies in its capacity
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to profit from participation in the energy market through
energy arbitrage [6]. Simultaneously, ESS can also support
the integration of random renewable energy sources into the
energy market, fostering competition with conventional non-
renewable energy producers [7–9]. Thoughtful scheduling of
ESS operations can enhance the profitability of ESS operators
and maximize the utilization of renewable energy resources,
thereby mitigating the inherent uncertainties associated with
renewable energy sources [10].

Many research efforts have been devoted to various ESS,
such as battery energy storage (BES), hydrogen energy storage
(HES), compressed air energy storage, and pumped hydro
energy storage [11–14]. These ESS variants exhibit diverse
dynamic characteristics. For instance, lithium batteries of-
fer rapid response capabilities, enabling swift charging and
discharging, whereas hydrogen and pumped hydro energy
storage systems require more extended response times [11].
Furthermore, lithium batteries have constrained capacities,
especially when compared to compressed air energy storage
and pumped hydro energy storage, which are better suited for
large-scale applications [12]. Hydrogen energy storage systems
excel in energy density and storage duration [13, 14]. Given
the flexibility and variety within ESS, numerous studies have
explored the combination of photovoltaic (PV) power stations
with ESS to enhance overall energy efficiency [4, 11]. In
contrast to prior configurations involving PV-battery storage
systems and PV-compressed air energy storage systems, we
propose a unique combination of the PV system with both
BES and HES as a PV-ESS, which leverages the distinctive
characteristics of these heterogeneous energy storage systems,
and further augment the revenue potential for the PV-ESS
operator.

To treat a PV-ESS as an entity within power systems and
optimize the economic profitability for the PV-ESS operator,
a critical step involves the development of a realistic cost
function. Significant efforts have been dedicated to describing
the costs associated with various types of energy storage
systems [15–18]. For instance, the degradation cost of BES
has garnered considerable attention [15, 16]. Factors such
as depth of discharge (DoD), discharge rate, and state of
charge (SoC) are recognized as pivotal in influencing battery
degradation. [15] has introduced a BES cost model, accounting
for degradation cost based on DoD and discharge rate, which
is applicable to conventional electrochemical batteries. [16]
has captured the intricacies of battery degradation mechanisms
and presented a battery degradation model that considers both
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DoD and SoC. Additionally, the capital cost and the opera-
tion/maintenance cost hold substantial importance, particularly
for large-scale energy storage equipment. [19] has highlighted
the impact of factors such as start-up/shut-down cycles, rapid
transients in operational conditions, and the number of work-
ing hours on electrolyzers and fuel cells within HES systems.
However, different from traditional homogeneous ESS, our
proposed heterogeneous ESS poses a unique challenge in
comprehensively characterizing various cost components. In
this paper, we establish a comprehensive cost function that
simultaneously incorporates degradation, capital, as well as
operation/maintenance costs to mirror real-world scenarios.

On the other hand, due to the remarkable flexibility of
ESS and the inherent uncertainty associated with PV power
generation, the development of optimal scheduling strategies
for PV-ESS has garnered significant research attention, partic-
ularly with the well-defined cost function [20–23]. Traditional
optimization approaches for solving the scheduling problem
have focused on mathematical programming and heuristic
techniques [16, 24–26]. For instance, [16] has implemented
a mixed integer linear programming algorithm to address a
day-ahead economic scheduling problem of BES systems,
where a one-dimensional linearization technique has been
used to linearize the two-variable function, reducing com-
putational complexity without sacrificing accuracy. In [25],
particle swarm optimization has been employed to obtain
an optimal operation schedule for the ESS. Despite notable
advancements in these traditional optimization methods, these
approaches often hinge on precise models or assumptions
about the distribution of random variables such as the PV
power generation, which limits their applicability.

Recent advancements in artificial intelligence (AI) have
led to the popularity of optimization methods based on rein-
forcement learning, which are particularly attractive for their
independence on precise system models and strong perfor-
mance, especially in uncertain systems [27–29] and multi-
agent systems [30, 31]. In [4], a proximal policy optimization
(PPO) based deep reinforcement learning (DRL) method has
been employed to address capacity scheduling in PV-battery
storage systems. This approach has demonstrated adaptability
to uncertain market signals as well as PV generation profiles.
Meanwhile, [11] has introduced a model-free DRL technique
for optimizing energy arbitrage, utilizing a hybrid model
to forecast intermittent PV power generation. Nevertheless,
the practical application of these AI-powered methods is
somewhat constrained due to their opaque decision-making
processes.

It has been widely recognized that interpretability is a
crucial factor to enhance the practical applicability of rein-
forcement learning. A few works have explored the inter-
pretability of reinforcement learning when applied to forecast-
ing/optimization problems in energy system [32, 33]. [32] has
provided the post-hoc interpretability for the policy network,
employing the Shapley value to uncover the significance of
various input features in the decision-making process. How-
ever, it’s worth noting that this post-hoc explanation method is
primarily retrospective, offering insights about the black-box
model after the decision-making process. Consequently, it does

not empower operators to understand the agent’s decision-
making process.

Building upon the aforementioned motivation, this paper
introduces an inherently interpretable DRL algorithm with pre-
hoc interpretability tailored for addressing the heterogeneous
PV-ESS scheduling problem. This pre-hoc explanation method
relies on intuitive human-designed prototypes to guide the
decision-making process by comparing similarities between
prototypical situations and encountered situations [34]. To
achieve this, a prototype-based policy network is trained and
integrated with a pre-trained agent, which can shorten the gap
between the well-performed black-box model and the inter-
pretable strategies. Our main contributions are summarized as
follows:

• A heterogeneous PV-ESS is proposed to leverage the
distinctive characteristics of BES and HES, thereby en-
hancing flexibility within the energy market. The schedul-
ing problem of this PV-ESS is formulated as a Markov
Decision Process (MDP), with the primary objective of
maximizing benefits of the operator through energy arbi-
trage. Compared with homogeneous ESS in [4, 11], our
approach incorporates a comprehensive cost function for
the heterogeneous PV-ESS accounting for degradation,
capital, as well as operation and maintenance costs to
provide more realistic and practical guidance for operator
decision-making.

• An interpretable DRL method is developed to provide
pre-hoc interpretability for agent’s decision-making pro-
cess. Different from post-hoc explanation methods out-
lined in [32], our approach involves training a prototype-
based policy network, which enables the guidance
of decision-making by assessing similarities between
human-defined prototypical situations and encountered
situations, thereby rendering the decision-making process
transparent. Significantly, this method reveals the corre-
lation between the decisions made by the agent and the
comprehensible decisions made by human.

• A comprehensive assessment across four cases, each
featuring different PV-ESS configurations, is conducted.
The comparative results illustrate the effectiveness and
applicability of the proposed pre-hoc interpretable DRL
method compared with black-box models. Furthermore,
we evaluate the revenue of the PV-ESS operator, consider-
ing various scenarios with heterogeneous energy storage
devices, and investigate the impact of the learning rate
on convergence and optimization.

The remainder of this paper is structured as follows: Section
II provides a detailed formulation of the scheduling problem
for the heterogeneous PV-ESS. Section III outlines our pro-
posed interpretable DRL method, featuring a prototype-based
policy network. We present the simulation results in Section
IV, and finally, we conclude the paper in Section V.

II. PROBLEM FORMULATION

As depicted in Fig. 1, our study focuses on energy arbitrage
through the coordinated operations of the heterogeneous PV-
ESS. The goal is to maximize the revenue of the PV-ESS
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operator by actively participating in electricity markets. In this
section, we introduce dynamic models and the cost function
of the heterogeneous PV-ESS, consisting of BES and HES.
Subsequently, accounting for dynamic market prices and un-
certainties associated with PV power generation, we formulate
the operation scheduling task of the heterogeneous PV-ESS as
a MDP. Within this framework, we optimize the charge and
discharge operations for both BES and HES.

Fig. 1. Framework of the energy market with a heterogeneous PV-ESS.

A. BES

For the optimal scheduling of BES, the requisite dynamic
model for the charge and discharge operations is defined as
follows,

ESoC
t+1 = ESoC

t + ηBatPBat
t ∆t, (1)

where ESoC
t represents the current SoC of the battery. ηBat

signifies the charge/discharge efficiency, where ηBat = 0.9 for
charging and ηBat = 0.95 for discharging. PBat

t denotes the
charge/discharge power of the BES equipment, with PBat

t > 0
indicating charging and PBat

t < 0 indicating discharging at
time t. It’s important to note that we use a time interval of
∆t = 1 hour, during which all values are assumed to remain
constant.

In accordance with the dynamic model described above, the
BES must adhere to the following operational constraints,

ESoC
min ≤ESoC

t ≤ ESoC
max, (2a)

PBat
min ≤PBat

t ≤ PBat
max, (2b)

where ESoC
min and ESoC

max represent the minimum and maximum
energy states of the battery. PBat

min and PBat
max are the limits of

the charge/discharge power per unit time.
To maximize the benefits of the PV-ESS operator, it is

crucial to have an accurate and easily solvable battery cost
function that accounts for coupled capital, degradation, and
operation costs. Both degradation and operation costs are inter-
twined with the capital cost. Over time, the battery experiences
degradation from its original state, with the degradation rate
being dependent on operating characteristics and conditions.
Thus, we employ degradation cost to encompass both capital

and operation costs. As described in prior studies [15, 17],
the degradation cost incurred during operation is significantly
influenced by various factors, including battery capacity, SoC
limits, environmental temperature, and current. In our BES
cost function, we assume the presence of a temperature control
system in the environment, thereby neglecting the impact of
high temperatures. We also establish appropriate minimum and
maximum values for SoC while not considering the effects of
SoC limits. Instead, we focus on the degradation associated
with DoD and discharge rate during periodic charge and
discharge processes within the electricity market framework.

It is essential to highlight that the impact of DoD on
degradation costs is influenced not only by the difference SoC
at adjacent times but also by the initial and final levels of
SoC during discharge process. For instance, discharging from
70% to 0% results in more significant degradation compared
to discharging from 100% to 30%. Consequently, we employ
SoC instead of DoD in the BES cost function.

Additionally, the discharge rate vDCR
t related to the current

can be computed as follows,

vDCR
t =

ESoC
t−1 − ESoC

t

∆t
. (3)

Building on insights from [15] and taking into consideration
the above mentioned influencing factors, the BES cost CBat

is expressed as follows,

CBat
t =

cBat
cc

Capη2rϕ
((1− ESoC

t )ω − (1− ESoC
t−1 )

ω), (4)

where cBat
cc represents the BES capital cost of the battery. Cap

means the battery capacity, and ηr signifies the round trip
efficiency of the BES. Coefficients ϕ and ω are used to capture
the relationship between DoD and the number of cycles.

To simplify the BES cost function and make it readily inte-
grable into a comprehensive cost function of the heterogeneous
PV-ESS, the cost function from Eq. (4) can be linearized as
follows,

CBat
t = w1E

SoC
t + w2E

SoC
t−1 + w3v

DCR
t + w4, (5)

where w1 and w2 are the coefficients of the cost related to
DoD. w3 is the coefficient of the cost related to discharge rate.
w4 is related to battery capacity and serves as a linearization
offset term within the degradation cost function [15]. Indeed,
it’s important to emphasize that the proposed degradation
cost function for the BES is time-dependent, as it takes
into account factors such as DoD, SoC, and discharge rate,
all of which vary with time. These parameters collectively
enable a comprehensive and time-sensitive representation of
the degradation cost model.

B. HES

In the pursuit of optimizing the scheduling of the HES, we
first introduce the composition of the HES and elucidate the
energy conversion processes associated with each component.
Subsequently, the dynamic model of the HES that govern these
energy conversion processes is presented. Finally, we delve
into the HES cost function.
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The HES comprises hydrogen proton exchange membrane
fuel cell stacks (FCs), an electrolyzer (EL), and a hydrogen
storage reservoir, encompassing the conversion of hydrogen
into electricity and vice versa [13]. More specifically, the
hydrogen FCs serve as power generation equipment capable of
converting the chemical energy stored in hydrogen into electric
energy, while the EL can perform the reverse operation. We
quantify these conversion relationships using the molar flow
of hydrogen and the power output of the EL and FCs, in
accordance with Faraday’s law [35],

F
ELH2
t = ηELPEL

t /NCVH2 , (6a)

F
FCH2
t = PFC

t /ηFCNCVH2 , (6b)

where FELH2
t and FFCH2

t represent the hydrogen molar flow in
the EL and FCs, respectively. PEL

t and PFC
t denote the power

output of the EL and FCs, while ηEL and ηFC characterize
the energy conversion rates of the EL and FCs, respectively.
NCVH2 represents the net calorific value, which is the effec-
tive calorific value obtained by subtracting the heat of water
vaporization from the full combustion calorific value.

Based on the above conversion relationship, the state of the
hydrogen storage reservoir at the previous time step and the
change in the hydrogen molar flow at current time step can be
employed to calculate the current state of the hydrogen storage
reservoir in the following manner [13],

ELoH
t =

(
1− ηHES

)
ELoH

t−1 +
RTH2

VH2

(
F

ELH2
t − FFCH2

t

)
,

(7)
where ELoH

t denotes the pressure of the hydrogen storage
reservoir at time t. ηHES represents the self-consumption
rate of the hydrogen storage equipment. R, TH2

, and VH2

correspond to the gas constant, mean temperature of the
hydrogen storage reservoir, and the reservoir volume, respec-
tively. Similar to the BES, we still assume the existence of a
temperature control system, so the mean temperature remains
constant.

Additionally, the HES must adhere to the following opera-
tional constraints,

ELoH
min ≤ ELoH

t ≤ ELoH
max , (8a)

PEL
min ≤ PEL

t ≤ PEL
max, (8b)

PFC
min ≤ PFC

t ≤ PFC
max, (8c)

PEL
t PFC

t = 0, (8d)

where ELoH
min and ELoH

max are the lower and upper limits for the
pressure of the hydrogen storage reservoir. PEL

min and PEL
max

impose constraints on the power output of the EL, while
PFC
min and PFC

max are limits for the power output of FCs. The
final constraint specifies that the EL and FCs cannot operate
simultaneously at time t.

Following the depiction of the state transition of the hy-
drogen storage reservoir, we now turn our attention to the
comprehensive cost function of the HES. Much like the
BES, the cost of HES incorporates capital, degradation, and
operation costs. In contrast to the BES, HES incurs a higher
capital cost. It’s evident that the latter two costs are intricately
tied to the operational scheduling of the HES, which includes

factors like runtime, state switching frequency, power output,
and current. Inspired by [19], the cost function for the HES
can be formulated as follows,

CHES
t =

∑
i=EL,FC

((
cicc
νi

+ ciop

)
σi + cistζ

i + cideκ
i

)
, (9)

where σi ∈ {σEL, σFC} are binary variables associated with
the on/off-status of EL and FCs, where 0 indicates off-status
and 1 indicates on-status. ζi represent logical variables that
account for the start-up state. κi is defined as the power
variation at instances when EL/FCs are active. cicc and νi

denote the capital acquisition cost for the EL/FCs devices
and the total number of working hours. ciop is the hourly
operation cost associated with the maintenance of EL/FCs
devices. cist and cide are utilized to formulate the degradation
cost resulting from start-up cycles and high current values
during the charge/discharge processes.

C. MDP Formulation

As for the heterogeneous PV-ESS scheduling framework
developed in this paper shown in Fig. 1, it comprises an
operator and a heterogeneous ESS integrated with PV, which
can serve as both an energy supplier and an energy consumer
in the energy market. On the supply side, the framework
primarily includes the traditional centralized main grid, which
relies on thermal power generation. The market electricity
prices in this framework are determined by the main grid.
On the demand side, there are various users with diverse
power requirements, such as municipalities, factories, and
individual households. We assume a continuous electricity
demand scenario, ensuring that users are constantly in need
of electricity from a whole perspective.

It’s crucial to emphasize that, to enhance the competitive-
ness of the PV-ESS in the energy market, its transaction prices
consistently remain below market prices. This allows users
prioritize purchasing electricity at a lower price from the PV-
ESS. The revenue of the PV-ESS operator is derived from
the sale of PV power and energy arbitrage. Energy arbitrage
entails storing excess PV power or procuring electricity from
the main grid when market prices are low and subsequently
selling it at a lower price than the market rate when prices
rise and electricity demand is high. Typically, the selling price
is often higher than the price at which the PV-ESS initially
bought electricity from the market.

The operator has access to energy market information, in-
cluding electricity prices, as well as internal status information
about the PV-ESS. This internal status information covers PV
power generation, the SoC of the BES, the hydrogen storage
level of the HES, and the operational status of each equipment.
This framework forms the basis for optimizing operations
of the heterogeneous PV-ESS and maximizing its economic
profitability.

To design an explainable scheduling strategy for the hetero-
geneous PV-ESS, the charge and discharge operation schedul-
ing problem can be formulated as a MDP. In this formulation,
state transitions depend solely on the previous one step state
and not on any memory. The MDP framework comprises four
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Fig. 2. Structure of interpretable DRL method with a prototype-based policy network.

key elements: a set of states (s ∈ S), a set of actions (a ∈ A),
a reward function r, and transition probabilities p from state
s and action a to state s′ [36]. For the operation scheduling
problem, these elements are defined as follows:

1) The state: The state st serves as a representation of the
current situation of the heterogeneous PV-ESS. In this study,
the state encompasses the following elements,

st = {Prt, PPV
t , ESoC

t , ELoH
t , σEL, σFC}, (10)

where Prt represents the dynamic electricity price, and the
PPV
t signifies the power output from PV generation. In order

to ensure that the EL and FCs do not operate simultaneously,
we impose the constraint σELσFC = 0. The observation is
denoted as {Prt, PPV

t , ESoC
t , ELoH

t }.
2) The action: Based on the definition of the system state,

the actions are defined as follows,

at = {PBat
t , PEL

t , PFC
t }, (11)

where PBat
t , PEL

t , and PFC
t are continuous variables in the

action space A. It is important to take into account the
constraints imposed by the battery capacity, hydrogen storage
reservoir pressure, the charge/discharge power limitations, and

the power output of the EL/FCs. Consequently, the actual
actions are constrained as follows,

PBat
t =

{
min{PBat

t ,
1−ESoC

t

ηBat∆t }, if PBat
t > 0,

max{PBat
t ,

−ESoC
t

ηBat∆t}, if PBat
t < 0,

(12a)PEL
t = min{PEL

t ,
∆ELoH

t VH2

RTH2
}, if PEL

t > 0,

PFC
t = min{PFC

t ,
∆ELoH

t VH2

RTH2
}, if PFC

t > 0,
(12b)

∆ELoH
t =

{
ELoH

max −
(
1− ηHES

)
ELoH

t , if PEL
t > 0,(

1− ηHES
)
ELoH

t , if PFC
t > 0.

(12c)

Eq. (12a) serves to ensure that the charge and discharge
power of the battery do not breach the maximum/minimum
capacity limits. Additionally, Eq. (12b) ensures that the hydro-
gen produced by electrolysis does not exceed the maximum
remaining capacity of the hydrogen storage tank, and it also
ensures that the hydrogen demand of fuel cell stacks does not
exceed the available hydrogen reserve. Eq. (12c) calculates the
permissible pressure state change while taking into account the
impact of equipment self-consumption.

3) State transition: The system transition at time t can be
depicted as Eq. (1) and Eq. (7).
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4) The reward function: The reward function is designed
to quantify benefits of the PV-ESS operator at time t, aligning
with the optimization objective,

rt =ρPrtP
sell
t − CBat

t − CHES
t , (13a)

P sell
t =PPV

t + PFC
t − PBat

t − PEL
t , (13b)

where P sell
t represents the electricity sold to customers.

ρ ∈ (0, 1] signifies the discount rate applied to the market
electricity price Prt. For this analysis, ρ is set to 0.95. This
choice indicates that it is more advantageous for customers to
engage in energy transactions with the PV-ESS operator rather
than with the power grid, primarily due to the more favorable
electricity prices offered by the PV-ESS operator. Participation
in the energy market with the PV-ESS operator clearly leads
to improved economic performance for prosumers.

III. PROPOSED APPROACH

In this section, we provide a detailed introduction to the pro-
posed interpretable DRL method, which includes a prototype-
based policy network designed for pre-hoc interpretability. We
will first delve into the prototype-based policy network, and
then offer insights into the human-friendly interpretable DRL
method, which demonstrates how the prototype-based policy
network enhances the transparency and understandability of
the agent’s decision-making process.

A. Prototype-based Policy Network

The rapid advancement of DRL across various domains has
led to the emergence of interpretable methods to facilitate
its real-world application. Currently, the prevalent methods
are post-hoc interpretation techniques that provide insights
into model predictions over time [32]. While these methods
are widely adopted, they may not provide a complete under-
standing of the agent’s decision-making process, as it remains
concealed.

Motivated by this, we introduce a prototype-based policy
network that transforms a DRL agent from a black-box model
into an interpretable model [34]. This approach compels the
agent to generate policies that are comprehensible in a human-
friendly manner. The structure of the prototype-based policy
network, as applied to the PV-ESS scheduling problem, is
depicted in Fig. 2. It comprises a pre-trained agent serving
as a coding network, several transformation networks along
with their corresponding prototypical states. The similarity
score is derived by comparing the prototypes transformed from
prototypical states with the actual potential representation of
the states. This score is then employed to guide the agent’s
decision-making process. Notably, the method’s interpretabil-
ity is derived from prototypes based on human experience,
which incorporate intuitive and easily understandable actions
in the prototypical states. These prototypes, in turn, provide
guidance for the actual actions within each dimension.

Remark 1: It’s important to note that a pre-trained agent
can be acquired using a black-box approach, which can
achieve commendable performance. The primary purpose of
the prototype-based policy network is to assist the pre-trained
agent in rendering its decision-making process transparent and

understandable, thereby enhancing the pre-hoc interpretability
of the algorithm. Consequently, within the prototype-based
policy network, we fully leverage the capabilities of the pre-
trained agent.

We define the policy derived from the pre-trained agent,
based on the black-box model, as π′ and assume that this
policy can be decomposed into an encoder network F and
a linear layer, implying that π′ = W ′F(s) + b′ [34]. To
fully utilize the well-performing black-box model, within the
prototype-based policy network, we initially input the state s
into the pre-trained encoder network F to obtain the latent
representation z = F(s). Subsequently, to elucidate the action
generation process clearly, separate transformation networks
Hk are introduced for each action dimension, which map the
latent representation z of the state s to specific representations
zk for different action dimension k. In particular, for the
PV-ESS scheduling problem, the action encompasses three
dimensions: the charge/discharge power of the BES, the power
output of the EL, and the power output of the FCs. However, to
distinguish between the charge and discharge behavior of the
BES, the first dimensional action PBat is divided into separate
components for charging and discharging, resulting in a total
of four action dimensions. This division enhances the ease of
prototype design and facilitates a better understanding of the
agent’s decision-making process.

zk = Hk(z), k ∈ {1, 2, 3, 4}.

With the networks described above, a set of prototypical
states Sk are designed for prototypical actions within each
dimension, which are intuitive and human-friendly. These
prototypical states are then fed into both the original encoder
network F and the transformation networks Hk, and used
as prototypes pk = Hk(F(Sk)) for the k-th dimension. For
the PV-ESS scheduling problem, we design four prototypical
states, as illustrated in Fig. 3. One prototypical state represents
a typical charging scenario for the BES in an environment
characterized by low electricity prices, ample PV power gen-
eration, and a low level of battery energy. Conversely, another
prototypical state signifies an obvious and intuitive profitable
operation for the BES, which is discharging in an environment
featuring high market electricity prices, insufficient PV power
generation, and a high SoC. Similar situations apply to the EL
and FCs within the HES as well.

Utilizing the prototypes pk mentioned earlier, the similarity
between specific representations zk and prototypes pk are
calculated as outlined in [37]. Subsequently, we introduce a
human-defined linear weight matrix W that is employed in
combination with the similarity scores to generate actions.
This weight matrix W encapsulates the relationship between
prototypes and actions, and it provides an intuitive explanation
for Wk, which signifies how the prototype pk should influence
the action ak. This approach ensures that each prototype is
associated with an action that is intuitively comprehensible.

sim(zk, pk) =log

(
(zk − pk)2 + 1

(zk − pk)2 + ϵ

)
, (13a)

at,k =Wksim(zk, pk), (13b)
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Fig. 3. Four prototypical states.

where ϵ = 1e−5 is a hyperparameter utilized to characterize
similarity.

In the scheduling problem of the PV-ESS, where PBat
t is

the charge/discharge power, we set W1 = 1 and W2 = −1.
This configuration signifies that the charge/discharge power
should be equal to the difference between the similarity to
prototypical charge and discharge actions. Here, we illustrate
with a straightforward example that when the current state of
the BES closely resembles the typical BES charging state as
shown in Fig. 3, the action PBat

t becomes strongly associated
with charging. Likewise, if the actual state bears similarity
to the typical BES discharge state, the learned action leans
towards discharge. Consequently, the decision-making process
becomes more interpretable as it naturally explains why a
specific action is chosen. This approach can be likened to
a case-based reasoning strategy, where the decision to take
action a is made because the current situation bears similarity
to a prior prototypical situation in which action a was also
chosen [34].

PBat
t =W1sim(z1, p1) +W2sim(z2, p2).

Remark 2: It’s important to emphasize that, in contrast to
previous approaches where prototypes are learned [37], the
prototypes in our method are human-defined. This choice is
in line with the idea that involving humans in the learning
loop can be beneficial, as suggested by [38]. Similarly, the
weight matrix W is manually defined rather than learned.
Learning W could lead to each prototype corresponding to
multiple undesirable actions, which is why we opt for manual
specification.

In the prototype-based policy network, only the transforma-
tion networks Hk with parameters ψ can be trained. These
networks build upon the pre-trained encoder network F , the
provided prototypical states Sk, and a manually specified
weight matrix W . The training process involves minimizing
the loss between the output of the prototype-based policy
network a and the action a′ ∈ π′ obtained from the black-
box model in specific states. The parameters ψ of the trans-
formation networks Hk are updated using the gradient descent

method. The pseudocode for training the prototype-based
policy network is presented in the following Algorithm 1.

Algorithm 1 Training the prototype-based policy network
Input: A pre-trained agent with encoder network F and

policy π′.
Output: A well-trained prototype-based policy network.

1: Initialize the prototype-based policy network with a man-
ually specified weight-matrix W .

2: Sample n state-action pairs from Dataset collected by the
pre-trained agent D ← {(s, π′(s))}nj=0.

3: Choose Human-Interpretable Prototypical States Sk ∈ S.
4: for batch (s, a′) ∈ D do
5: z = F(s);
6: for k ∈ {1, 2, 3, 4} do
7: ak = 0;
8: for each Sk do
9: pk = Hk(F(Sk))

10: end for
11: zk = Hk(z)
12: ak = ak +Wksim(zk, pk)
13: Minimize Loss L(a|a′,F , ψ,W ) with gradient de-

scent, updating only ψ.
14: end for
15: Cache all pk = Hk(F(Sk)) for testing time inference.
16: end for
17: return trained prototype-based policy network.

B. Interpretable DRL Algorithm

Before training a prototype-based policy network, a well-
trained black-box model is required. This black-box model is
used, in part, as an encoder network F for the interpretable
policy network. The PPO algorithm is employed for pre-
training the agent. In this section, we will provide a brief
introduction to the PPO algorithm as applied to solve the
scheduling problem of the PV-ESS.

The PPO algorithm employs a neural network architecture
with shared parameters θ for predicting the policy function
and the value function. The loss function used to train the
shared network encompasses error terms from the policy
surrogate and the value function. Additionally, an entropy term
is incorporated into the loss function to promote exploration
in the action space. The loss function can be expressed as
follows,

Lt(θ) = Êt

[
LC
t (θ)−m1L

V
t (θ) +m2L

S
t [πθ| (st)]

]
, (15)

where LC
t (θ) represents the policy surrogate error term,

LV
t (θ) =

(
Vθ (st)− V targ

t

)2
is the error of the value function,

and LS
t [πθ| (st)] is the entropy bonus used for exploration. m1

and m2 are coefficients for LV
t and LS

t , respectively. LC
t (θ)

can be calculated as follows,

LC
t (θ) = Êt

[
min

(
ΥtÂt, clip (Υt, 1− ξ, 1 + ξ) Ât

)]
, (16)

where Ât = δt + (γλ)δt+1 + · · · + · · · + (γλ)T−t+1δT−1 is
the advantage function estimated with δt = rt + γV (st+1)−
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V (st). Υt = πθ(at|st)
πθold

(at|st) is the probability ratio, and ξ is a
hyperparameter.

With the loss function as Eq. (15), the shared network with
parameters θ for both policy and value functions can be trained
as shown in [39].

IV. EXPERIMENTS

This section outlines the experiments to assess the effective-
ness of the proposed interpretable DRL method for solving
the heterogeneous PV-ESS scheduling problem. Meanwhile,
the revenue of the PV-ESS operator in various cases is also
analyzed, considering heterogeneous energy storage devices.
The following subsections describe the preliminaries of exper-
iments. Then, the performance of the proposed interpretable
DRL method compared with other approaches is verified and
corresponding discussions about the pre-hoc interpretability
are provided. Lastly, we examine the revenue of the PV-
ESS operator with heterogeneous energy storage devices in
various scenarios and assess the impact of the learning rate
on convergence and optimality.

A. Preliminaries of Case Studies

The experiments are conducted using PV power generation
data and time-varying electricity prices data from [40]. We
focus on the PV-ESS scheduling problem during a single day,
with each hour representing one time slot, resulting in the
time horizon T = 24 hours. Considering the one-hour time
scale, there are a total of 8760 data sets in a year. As for
the heterogeneous PV-ESS, the initial SoC is set to a random
value between 0.25 and 1, while the initial level of hydrogen
storage (LoH) is set to a random value between 5 and 35.
Various parameters used in the experiments are detailed in
Table I.

We design four distinct cases, as summarized in Table II,
to analyze the impact of the heterogeneous PV-ESS on the
operator’s revenue, while considering various characteristics
and cost structures. The experiments are conducted using
Python 3.6.13 with the machine learning library PyTorch 1.8.1.

TABLE I
PARAMETERS USED IN THE EXPERIMENTS.

Parameters Value Parameters Value

a -36.23 m1 0.5
b 34.80 m2 0.01
c 2.77 ηEL 0.725
d -2.45 ηFC 0.6
ξ 0.2 ηHES 0.05
λ 0.95 VH2

35 Nm3

γ 0.99 TH2 313 K
R 8.314 J/mol K NCVH2

240 MJ/kmol

B. Performance of the Prototype-based Policy Network

Here, we first present several baseline methods employed
for comparison with the proposed interpretable DRL method
using the prototype-based policy network in the scheduling

TABLE II
DESCRIPTION OF EXPERIMENTAL CASES.

Cases BES HES
existence cost existence cost

Case 1 ✓ ✓ ✓ ✓
Case 2 ✓ × ✓ ×
Case 3 ✓ ✓ × ×
Case 4 × × ✓ ✓

problem of the heterogeneous PV-ESS, following the presenta-
tion of four human-designed prototypes. Then the performance
and interpretability of each method are presented, and the
results are analyzed to provide insights into the benefits of the
proposed interpretable DRL approach. It is remarkable that
the pre-trained agent is based on PPO, and only the design
of the policy network and prototypes is changed in different
baselines.

Below, we provide an overview of the baseline methods:
• Prototype-based policy network*: This variant uses a

single transformation network H for all prototypes, rather
than individual transformation networks for each proto-
type dimension. Besides, it learns prototypes as training
parameters, which are then mapped to the most recent
training example. In contrast, our proposed prototype-
based policy network employs manually defined proto-
types. The purpose of this variant is also to conduct
an ablation test, exploring the impact of these specific
design choices, such as separate transformation networks
and manually defined prototypes, on the performance and
interpretability of the prototype-based policy network.

• K-Means: This method obtains the prototypes through
the clustering and the mapping process. The clustering
process aims to identify centroids that match the number
of prototypes used in the proposed prototype-based policy
network. When clusters in space z with the same number
as the prototypes are obtained, each centroid is mapped
to the most recent training sample, essentially associating
each centroid with a specific state from the training data.
These states serve as the prototypical states. Besides, K-
Means are allowed to learn the weight parameters of the
last layer, which suggests that K-Means clusters are not
only used to identify prototypes but also contribute to the
network’s final decision-making process through weight
parameters.

To enhance the pre-hoc interpretability of the method pro-
posed in this paper, we illustrate the four prototypical states
and their corresponding intuitive actions in Fig. 4. These proto-
typical states are designed based on common human intuition,
considering the charge and discharge actions of BES and HES,
which aid in elucidating the agent’s policy. For instance, in
Prototype 1, under conditions where the energy market price
is high and PV power generation is minimal, the SoC reaches
its maximum level, whereas the hydrogen storage reservoir
remains empty. Drawing from common human experience, the
optimal action for the BES in this scenario is to discharge
and sell previously stored electricity at the elevated market
price to maximize revenue. Likewise, in a scenario where the
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TABLE III
RESULTS OF THE PROTOTYPE-BASED POLICY NETWORK COMPARED WITH VARIOUS BASELINES.

Methods Metrics Case 1 Case 2 Case 3 Case 4

Prototype-based
Policy Network

Reward 7.43± 3.25 23.63 ± 1.01 15.69 ±0.78 7.48 ± 0.67
MSE 4.92 ± 1.80 4.97 ± 0.51 3.17 ± 0.50 0.13 ±0.07

Prototype-based
Policy Network*

Reward -7737.81 ± 1627.94 -6979.15 ± 4963.04 -5054.70 ± 1746.51 -5943.58 ± 3174.58
MSE 58.26±6.49 45.46 ±8.92 138.61 ±37.65 10.60±2.92

K-Means Reward -98.36± 67.68 14.72 ± 3.46 13.94 ± 0.72 9.38 ± 3.49
MSE 24.74 ± 3.99 25.73 ± 3.12 23.37 ± 1.25 8.44 ± 2.55

Reward of Black-box 12.42 24.44 14.70 7.66

Results in bold and cells colored gray denote the best and the second best, respectively.

market price is lower and PV power generation is sufficient,
the most advantageous action for the BES with ESoC

t = 0
is to charge and store energy. This readies the system to
sell electricity when prices increase and PV power generation
becomes inadequate. Analogous situations also apply to the
EL and FCs within the PV-ESS.

Fig. 4. The output of the prototype-based policy network for four prototypical
states.

Leveraging our human-friendly prototypes, we conduct a
performance evaluation comparing the proposed prototype-
based policy network against the aforementioned baseline
methods in the operation optimization of the heterogeneous
PV-ESS. We evaluate performance using two key metrics:
average reward and mean-squared error (MSE). The reward
metric is based on the average of five trials, with each
trial comprising 30 simulations. We calculate a cumulative
average reward across these trials and subsequently determine
the average reward and standard error over the five trials.
The second metric, MSE, quantifies the dissimilarity between
actions generated by the black-box model and the interpretable
model during each iteration. It provides insights into how
closely these methods approximate the oracle. The prototype-
based policy network serves a dual purpose. First, it aims to
align with the pre-trained black-box model to achieve com-
parable performance, and MSE serves as a tool to assess this
alignment. The second purpose is to integrate human-defined
prototypes, thus incorporating pre-hoc human experience. It’s
essential to note that the output of our prototype-based policy
network is not expected to precisely replicate that of the pre-

trained agent. In fact, we intentionally seek some divergence,
with the goal of the network learning a new policy grounded
in interpretability, informed by reasoning with prototypes and
the manually specified weight matrix W .

Fig. 5. The examples of interpretable decision-making by the agent.

The results are presented in Table III with the best-
performing results highlighted in bold, and the second-best
results shaded in gray. Analyzing these results, it’s evident that
the prototype-based policy network we introduced excels in
achieving optimal performance in cases 1, 2, and 3. However,
in case 4, it attains sub-optimal results in terms of reward.
A comparison between the prototype-based policy network
and prototype-based policy network* reveals that prototypes
designed with the integration of human experience outper-
form learned prototypes. Having multiple prototypes proves
advantageous in guiding agent selection strategies, as each can
extract key information relevant to their respective actions.

Furthermore, when compared to the K-Means method with
the same number of clusters, human-designed prototypes offer
more valuable insights than prototypes generated through
self-classification of samples. This enriched knowledge aids
in the development of superior strategies. In case 4, which
exclusively involves HES, both K-Means and the prototype-
based policy network achieve similar average rewards to the
black-box model. Notably, the prototype-based policy network
yields predictions that closely align with the black-box model,
evident in the smallest MSE observed in case 4. In terms of
interpretability, we also present examples of decision-making
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by the agent, as illustrated in Fig. 5, which unveils the
correlation between the decisions made by the agent and the
comprehensible decisions made by human.

C. Performance comparison between different cases with dif-
ferent learning rate

To further elucidate the influence of heterogeneity in the PV-
ESS on the operator’s revenue, we extend our analysis beyond
the baseline comparisons and consider the performance of the
pre-trained black-box model across different cases, as depicted
in Fig. 6. Notably, in case 4, where only the HES is involved,
the operator’s profit is significantly reduced and can even result
in a loss. This is primarily attributed to the fact that HES
incorporates three types of equipment: the EL, the FCs, and
the hydrogen storage reservoir, leading to considerably higher
capital cost than other ESS. Additionally, it entails increased
degradation and operation/maintenance expenses.

The noticeable increase in reward observed in case 2 com-
pared to case 1 can be explained by the absence of any ESS-
related costs in case 2. When comparing case 3 with case
1, which only accounts for the BES cost, it becomes evident
that the presence of the HES significantly reduces operator’s
profitability.

The occurrence of negative rewards in case 4, while seldom
encountered in real-world scenarios, reflects situations where
users may be required to pay rental or participation fees to
access the energy market with the PV-ESS. In such market,
users benefit from lower-priced electricity. Additionally, the
PV-ESS operator might be eligible for government incentives
aimed at encouraging the use of renewable energy.

TABLE IV
PERFORMANCE COMPARISON OF FOUR CASES WITH HETEROGENEOUS

ENERGY STORAGE DEVICES.

Cases Reward Loss Description

Case 1 151.84 194.28 Both BES and HES are considered
and their costs are included.

Case 2 182.88 300.13 Both BES and HES are considered,
but their costs are not included.

Case 3 336.60 23.01 Only BES and its cost are considered.
Case 4 -32.17 1186.37 Only HES and its cost are considered.

The learning rate is another critical factor influencing per-
formance. In the above experiments, we employ an adaptive
learning rate, initially set at 1e−4 with an initial attenuation
coefficient of α = 1. The attenuation coefficient gradually
decreases with the number of simulations, following the for-
mula α = 1 − step

totalstep
. To evaluate the impact of different

learning rates on convergence and optimality, we design three
alternative learning rate schemes: constant 1e−2, constant
1e−4, and a gradually declining learning rate with a constant
attenuation coefficient of 0.95 and carry out experiments on
case 1. The results are presented in Fig. 7. As illustrated
in the figure, we can observe that agents with a constant
learning rate tend to exhibit slower convergence rates and
are more susceptible to getting stuck in local optimization.
In contrast, agents with a gradually declining learning rate
demonstrate improved convergence performance. Furthermore,

Fig. 6. Results of four different cases.

the adaptive attenuation coefficient proves more effective in
ensuring both convergence and optimal performance compared
to a constant attenuation coefficient. These findings underscore
the importance of choosing an appropriate learning rate for
reinforcement learning tasks.

Fig. 7. Results considering different learning rates.

V. CONCLUSION

In this paper, a heterogeneous PV-ESS is proposed to lever-
age the unique characteristics of BES and HES for scheduling
tasks, with the primary objective of maximizing benefits of
the PV-ESS operator through energy arbitrage. To provide
more precise guidance for the operator in real-world scenar-
ios, we present a comprehensive cost function that accounts
for degradation, capital, as well as operation/maintenance
costs. Additionally, in an effort to enhance the interpretability
of strategies based on black-box models, we introduce a
prototype-based policy network. This network utilizes human-
designed prototypes to guide decision-making by comparing
similarities between prototypical situations and encountered
situations, leading to natural explanations of scheduling strate-
gies. Comparative results across four distinct cases underscore
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the effectiveness and practicality of our proposed pre-hoc inter-
pretable optimization method when contrasted with black-box
models. Looking ahead to our future work, we plan to extend
scheduling tasks to more intricate large-scale ESS featuring
multiple uncertainties and heterogeneity. Furthermore, we aim
to combine pre-hoc interpretable DRL with these post-hoc
interpretable methods to further promote the interpretability
of scheduling strategies within energy systems.
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