
1

LEAPS: Topological-Layout-Adaptable Multi-Die
FPGA Placement for Super Long Line Minimization

Zhixiong Di, Member, IEEE, Runzhe Tao, Jing Mai, Lin Chen, Yibo Lin, Member, IEEE

Abstract—Multi-die FPGAs are crucial components in modern
computing systems, particularly for high-performance appli-
cations such as artificial intelligence and data centers. Super
long lines (SLLs) provide interconnections between super logic
regions (SLRs) for a multi-die FPGA on a silicon interposer.
They have significantly higher delay compared to regular in-
terconnects, which need to be minimized. With the increase in
design complexity, the growth of SLLs gives rise to challenges in
timing and power closure. Existing placement algorithms focus
on optimizing the number of SLLs but often face limitations
due to specific topologies of SLRs. Furthermore, they fall short
of achieving continuous optimization of SLLs throughout the
entire placement process. This highlights the necessity for more
advanced and adaptable solutions.

In this paper, we propose LEAPS, a comprehensive, system-
atic, and adaptable multi-die FPGA placement algorithm for
SLL minimization. Our contributions are threefold: 1) proposing
a high-performance global placement algorithm for multi-die
FPGAs that optimizes the number of SLLs while addressing
other essential design constraints such as wirelength, routability,
and clock routing; 2) introducing a versatile method for more
complex SLR topologies of multi-die FPGAs, surpassing the
limitations of existing approaches; and 3) executing continu-
ous optimization of SLL counts across the whole placement
stages, including global placement (GP), legalization (LG), and
detailed placement (DP). Experimental results demonstrate the
effectiveness of LEAPS in reducing SLLs and enhancing circuit
performance. Compared with the most recent state-of-the-art
(SOTA) method, LEAPS achieves an average reduction of 43.08%
in SLL counts and 9.99% in HPWL while exhibiting a notable
34.34× improvement in runtime.

Index Terms—Multi-die FPGA, super long line (SLL), place-
ment, nonlinear optimization, GPU acceleration

I. INTRODUCTION

MULTI-DIE FPGAs are essential for modern computing
systems, especially for high-performance applications

such as artificial intelligence and data centers. A multi-die
FPGA comprises several SLRs on a silicon interposer, in-
terconnected by SLLs that facilitate communication between
these regions, as depicted in Fig. 1(a). In the multi-die FPGA

This work was supported by National Natural Science Foundation of
China (62374138, 62034007). Corresponding author: Zhixiong Di (dizhix-
iong2@126.com).

Zhixiong Di, Runzhe Tao, and Lin Chen are with the School of Information
Science and Technology, Southwest Jiaotong University, Chengdu, China. (e-
mail:dizhixiong2@126.com, 825140517@qq.com, mix lc@qq.com).

Jing Mai is with the School of Computer Science and the School
of Integrated Circuits, Peking University, Beijing, China. (email: jing-
mai@pku.edu.cn)

Yibo Lin is with the School of Integrated Circuits, Peking University,
Beijing, China, Institute of Electronic Design Automation, Peking Univer-
sity, Wuxi, China, and Beijing Advanced Innovation Center for Integrated
Circuits, Beijing, China. (email: yibolin@pku.edu.cn)

Package Substrate

SLR0 SLR1 SLR2 SLR3

Super Long Line

(SLL)

Super Logic Region

(SLR)

Silicon

Interposer

(a) Xilinx Multi-die FPGA Alveo U250 Architecture: Top View and Vertical View

DSPCLB

I/O Banks DDR3

IP

Die

Boundary

SLR0

SLR1

SLR2

SLR3

Clock Region

I/O RAM

SLICEL

(b) SLR Architecture (c) SLICEM-SLICEL Heterogeneity

Half Column

LUT FF

FF C
A

R
R

Y

LUT

LUT FF

FF C
A

R
R

Y

LUT

SLICEM

LUT FF

FF C
A

R
R

Y

LUT

LUT FF

FF C
A

R
R

Y

LUT A
d

d
it

io
n

a
l

L
o
g

ic

CLB

Slice
LUTs FFs CARRY

Distributed

RAM
SHIFT

CLB

Slice
LUTs FFs CARRY

Distributed

RAM
SHIFT

SLICEL 8 16 1 NA NASLICEL 8 16 1 NA NA

SLICEM 8 16 1 512 bits 512 bitsSLICEM 8 16 1 512 bits 512 bits

Fig. 1: (a) Architectural illustration of Xilinx multi-die FPGA
Alveo U250: Demonstrating a 1 × 4 SLR topology with
central I/O banks and DDR controller IPs, and a right-side
Vitis platform for CPU communication. (b) Detailed view of
SLR architecture: Partitioned into 2 × 3 clock regions and
further segmented into multiple half columns. (c) Schematic
of a CLB slice: Distinguishing between SLICEL and SLICEM
types to highlight asymmetric compatibility.

design flow, cells within each SLR are interconnected by rout-
ing resources (i.e. regular interconnects), while SLLs enable
interconnections between SLRs. Nevertheless, it is essential
to emphasize that SLLs exhibit substantially greater latency
in comparison to regular interconnects, consequently severely
impacting timing performance. As design complexity grows,
the number of SLLs multiplies, which leads to performance
degradation and power increase. Therefore, minimizing the
SLL counts is a crucial and challenging task in multi-die
FPGA placement.

Existing works [1]–[5], [24], [25] have endeavored to
optimize the number of SLLs during partitioning before
placement. In [1] and [2], they solve the SLL issue by
employing distinct optimization techniques for solving the pin
assignment problem. Specifically, the former utilizes integer
linear programming (ILP), while the latter combines a cluster
approach with minimum cost flow (MCF) optimization. More-
over, modular placement approaches have been investigated
in [3] and [4], where optimal SLL resource utilization is
achieved by mapping partitioned modules to appropriate dies.
However, these approaches cannot simultaneously consider

ar
X

iv
:2

30
8.

03
23

3v
2

 [
cs

.A
R

]
 2

 F
eb

 2
02

4

various physical constraints like clock routing, as they are
applied at a separate partitioning stage before placement.
A recent state-of-the-art (SOTA) approach [5] proposes an
analytical placement method for multi-die FPGAs, which
optimizes both the number of SLLs and critical clock routing
constraints based on a 3D Poisson density formulation with
proximal alternating direction method of multipliers (ADMM)
as the solver. However, this method is only applicable to a
specific multi-die FPGA architecture (e.g., four dies arranged
vertically on an interposer) and cannot accommodate more
complex topologies.

Additionally, these established placement methods typically
concentrate on SLL optimization during the global placement
(GP) stage, often neglecting the necessity to tackle the SLL
issue in the subsequent legalization (LG) and detailed place-
ment (DP) stages. This oversight may inadvertently degrade
circuit quality. Similar to optimizing other placement metrics
like wirelength and routability [7]–[10], [22], SLL minimiza-
tion should be an ongoing and holistic process throughout
the entire placement. Further, during the LG and DP, the
movement of placeable instances is critical to the potential
impact of placement metrics [11]–[15]. This movement may
increase the number of SLLs, necessitating positive measures
to maintain circuit performance.

Accordingly, our proposed method aims to address three
major challenges: 1) simultaneous optimization of various de-
sign constraints and objectives, such as wirelength, routability,
and clock routing; 2) capability of adapting to more complex
topologies; and 3) holistic optimization of the number of
SLLs throughout the placement stage. To tackle the above
challenges, this paper presents LEAPS, a comprehensive, sys-
tematic, and adaptable multi-die FPGA placement algorithm
for SLL minimization. Our contribution can be summarized
as follows.

• We propose a high-performance nested optimization hi-
erarchy for global placement of multi-die FPGA, which
aims to reduce wirelength and the number of SLLs,
and meanwhile satisfy routability and clock routing
constraints.

• We introduce an adaptive wirelength-weighting-factor
adjusting technique, primarily aimed at balancing the
trade-offs between HPWL and SLL counts. This ap-
proach is pivotal in achieving a more finely-tuned and
optimized placement solution, addressing the wirelength
handling challenges in multi-die FPGA design.

• We design a flexible method to adapt multi-die FPGAs
with arbitrary SLR topologies. It converts SLR indexes
into vector representations of instances’ coordinates and
uses a soft floor technique, thus enabling a seamless
transition from global to local optimization.

• We propose a simple but effective optimization technique
for SLL minimization at the LG and DP stages.

In summary, this paper presents a novel approach to address
the challenges in multi-die FPGA placement, specifically
for SLL minimization, while maintaining a focus on other
essential design constraints. Our proposed LEAPS framework
demonstrates adaptability to complex topologies and ensures

continuous optimization throughout the entire placement pro-
cess. The experimental results show that our method greatly
outperforms the SOTA algorithm [5]. It achieves significant
reductions of 43.08% and 9.99% in SLL and HPWL, respec-
tively, while exhibiting a substantial improvement of 34.34×
in runtime.

The rest of the paper is structured as follows. Section II
provides essential background information and formulates
the problem of multi-die FPGA placement addressed by the
proposed framework. Section III presents a comprehensive
overview of the LEAPS framework, highlighting its key
features and technical innovations. Section IV delves into the
technical details of the core placement algorithms employed
in LEAPS. Section V presents the experimental results, which
validate the efficacy and superiority of our approach. Finally,
Section VI concludes the paper by summarizing the key
contributions and highlighting avenues for future research.

II. PRELIMINARIES

In this section, we provide the background and concepts
related to the multi-die FPGA placement problem addressed
in this paper. First, we introduce the multi-die FPGA archi-
tecture and its various topologies, as well as the calculation
of the number of SLLs and clocking constraints within SLRs.
Then, we also discuss the multi-electrostatic approach used
to optimize the placement, emphasizing the advancement of
the underlying methods on which our framework depends.
Finally, we formally state the problem of multi-die FPGA
placement, highlighting the key objectives and constraints to
be considered in the proposed placement algorithm.

A. Multi-Die FPGA Architecture

The multi-die FPGA architecture utilizes stacking technol-
ogy to interconnect multiple FPGA cores, known as SLRs, via
SLLs on an interposer, as depicted in Fig. 1(a). It is worth
noting that SLLs have significantly higher delay compared to
regular interconnects, which can greatly impact the design’s
timing performance and circuit quality. Fig. 1(b) illustrates
that each SLR contains multiple distinct clock regions. This
arrangement facilitates more flexible and efficient clock signal
management and routing.

Additionally, each SLR comprises millions of logic gates,
including heterogeneous blocks such as look-up tables
(LUTs), flip-flops (FFs), digital signal processors (DSPs),
random access memories (RAMs), and other intellectual
property (IP) blocks. LUTs and FFs are ultimately clustered
in configurable logic blocks (CLBs) for placement. Fig. 1(c)
illustrates the representation of CLBs, which are classified
into two types: SLICEL and SLICEM, showing asymmetric
compatibility. SLICEL allows LUT blocks to be configured
as LUTs, while SLICEM can be configured in one of the
following modes: LUT, distributed RAM, or SHIFT, without
intermixing LUTs, distributed RAMs, and SHIFTs within a
CLB.

An important aspect of multi-die FPGAs is the arrangement
of SLRs, which we refer to as SLR topology, with examples
including 1 × 4 (shown as Fig. 1(a)) and 2 × 2 (shown as

Fig. 2) configurations. An m × n SLR topology implies an
arrangement of m column and n rows of SLRs. We present
two industrial examples, the Xilinx Alveo U250 FPGA and
the Xilinx Alveo U280 FPGA, to illustrate different SLR
topologies and some basic configurations.

• The Xilinx Alveo U250 FPGA features a 1 × 4 SLR
topology, with I/O banks and DDR controller IPs located
in the middle column, and a Vitis platform region on the
right side for communication with the host CPU.

• The Xilinx Alveo U280 FPGA, which integrates High-
Bandwidth Memory (HBM), has a 2× 2 SLR topology,
with I/O banks in the middle columns and a gap region
devoid of programmable logic in the center of the chip.

Two representative multi-die FPGA architectures are pre-
sented above, highlighting the diversity of SLR topologies.
This diversity emphasizes the need for a placement algorithm
that can handle different topologies and constraints while
ensuring flexibility and efficiency. However, due to the limita-
tions in academic datasets, our framework design and testing
focus on the Xilinx UltraScale architecture.

B. SLL Calculation Method

Calculating the number of SLLs is crucial for the effective
placement optimization of multi-die FPGAs. The number of
SLLs is determined by the number of times a net has to cross
between different SLRs.

Given a hypergraph-based placement result, we define
the set of placeable instances as V = {v1, v2, ..., vn}, and
the net as E = {e1, e2, ..., en}. For the multi-die FPGA
placement problem, we define the coordinates of instance vi
as (xi, yi, zi), where xi and yi represent the physical location
of the instance on the layout, and zi denotes the index of
the SLR in which the instance is located. With the above
definitions, we can calculate the total number of SLLs as
follows:

SSLL =
∑
e∈E

f({zi|vi ∈ e}, TSLR). (1)

Here, {zi|vi ∈ e} denotes the SLR index set of the instances
associated with net n, and TSLR denotes the SLR topology.
The function f(·) denotes the mapping between the specified
index set and the SLR topology. For the 1× 4 SLR topology
in the previous discussion, this mapping can be found in the
existing work [5]. For complex SLR topologies like 2× 2 or
3× 3, we use a minimum spanning tree (MST) for mapping,
which is efficient due to the typically small size of these SLR
topologies (with rows and columns less than 5). A mapping
table in our function further improves computational speed.
Notably, while our method can adapt to any SLR topologies,
choosing the best one involves balancing the benefits of multi-
die architectures against practical constraints. These include
clock region division, timing closure, and manufacturing
factors related to cost and limitations.

To determine the SLR index zi for each instance, we use
the Manhattan metric considering both xi and yi. We define
the distance thresholds δx and δy as the width and height
of each SLR, respectively. The width and height of an SLR
are computed by dividing the total width and height of the

SLR

Silicon

Interposer

SLL

Net BoundingBox

SLR4

Net n’s BoundingBox

Reference Point

Instance i,

Instance j,

SLR1 SLR2

SLR3

Fig. 2: Schematic example of a multi-die FPGA featuring a
2×2 SLR topology with an illustrative SLL calculation for a
3-pin net n.

FPGA’s layout by the number of columns and rows in the SLR
topology. In our method, the reference point (xref , yref) is
set to the bottom-left corner of the layout (0, 0). With these
definitions, the SLR index zi can be calculated as follows:

zi = ⌊
|xi − xref |

δx
⌋ · x̂+ ⌊ |yi − yref |

δy
⌋ · ŷ, (2)

where x̂ and ŷ represent the unit vectors in the x and y dimen-
sions, respectively. Note that the SLR index zi is represented
as a two-dimensional vector. This vector representation will
be consistently used in subsequent sections for clarity and
uniformity.

The above method for computing SLLs is an improved
version of the method in [5]. It’s proposed to accommodate
SLR topologies with multiple rows and columns, such as 2×2
SLR topology. The motivation behind this improved method is
the indispensable role that precise quantization of the number
of SLLs for efficient optimization. This precise quantification
allows the placer to adjust the arrangement of logic instances,
thus facilitating the minimization of the total number of SLLs.

C. Clocking Constraints in SLRs

Clocking constraints are crucial for both performance opti-
mization and timing closure in a multi-die FPGA design flow.
The target device has rectangular-shaped clock regions (CRs)
arranged in a 5 × 8 grid, each consisting of columns of site
resources. The CRs can be further subdivided horizontally
into upper and lower half-columns (HCs), with a maximum
of 12 clock nets per HC and a maximum of 24 clock nets
per CR. These constraints are referred to as the half-column
constraint and the clock region constraint, respectively.

To mathematically model these constraints, we first define
Czk as the set of blocks connected to clock k on SLR z. We

then establish the x (y) coordinates of the right, left (top,
bottom) boundaries of clock region o on SLR z, denoted by
rzo , lzo (u

z
o, d

z
o), respectively. Accordingly, we can calculate the

horizontal and vertical clocking resource usages for clock k
in clock region o on SLR z as:

H(k, o, z) = min {max {xi | i ∈ Czk} , rzo}
−max {min {xi | i ∈ Czk} , lzo} ,

V (k, o, z) = min {max {yi | i ∈ Czk} , uzo}
−max {min {yi | i ∈ Czk} , dzo} .

(3)

The total clock usage P (k, o, z) for clock k in clock region
o on SLR z can be computed as:

P (k, o, z) =

{
1, if H(k, o, z) > 0 and V (k, o, z) > 0;

0, otherwise.
(4)

By assuming that clock region o on SLR z is covered by
at most Mo,z clock net bounding boxes, we can define the
clocking constraints of a multi-die FPGA as:∑

k

P (k, o, z) ≤Mo,z, ∀o, z. (5)

With the above definitions, we effectively model the clock-
ing constraints in multi-die FPGA architectures. This model
allows a more precise depiction of the clocking resources
and their existing constraints within the FPGA device. As
a result, it will facilitate the development process of more
advanced multi-die FPGA placement algorithms, making the
overall efficiency higher.

D. Multi-Electrostatic FPGA Placement

State-of-the-art placement algorithms [16]–[20], grounded
in electrostatics, conceptualize each instance as a positive
charge within an electrostatic system. This approach was
originally introduced in ASIC placement to mitigate density
overflow problem in the placement, and leverages the physical
principle of balanced charge distribution leading to low poten-
tial energy in electrostatic systems. [16] expanded this method
to include multiple electrostatic fields, thereby facilitating the
management of diverse resource types in FPGA placement,
such as LUTs, FFs, DSPs, and BRAMs. Building upon these
advancements, recent work [17], [18] has further refined the
multi-electrostatic approach by incorporating considerations
of SLICEL-SLICEM heterogeneity and multiple constraints,
including timing, clock routing, and carry chain alignment.
This innovative algorithm takes the quality and efficiency of
FPGA placement a significant step forward, surpassing its
predecessors. It seeks to minimize the total potential energy
of multiple fields, effectively reducing density overflow. Given
this capacity for adept resource distribution management
across multiple dies and their respective clocking domains, the
multi-electrostatic approach is especially well-suited to multi-
die FPGA placement. The primary objective of this approach
is to optimize placement by achieving a balanced resource
distribution in the layout. This problem can be mathematically
formulated as follows:

min
x,y

W̃ (x,y) s.t. Φs(x,y) = 0,∀s ∈ S (6)

Here, x,y represent instances’ location, W̃ (·) denotes the
wirelength objective, S is the field type set, and Φs(·) signifies
the electric potential energy of the field for field type s ∈ S.
We formally constrain the target energy Φs(x,y) to 0, as
the energy is typically nonnegative. The constraints can be
relaxed to the objective and solved using the gradient descent
method. In practice, optimization is ceased when the energy
reaches a sufficiently low level, or equivalently when the
density overflow reaches an acceptable threshold.

E. Problem Statement for Multi-Die FPGA Placement

In this paper, we aim to solve the problem of multi-die
FPGA placement. The optimization objective is to minimize
the half-perimeter wirelength (HPWL) and the number of
SLLs crossing SLRs while satisfying various architectural
constraints. Formally, the problem can be formulated as
follows:

Problem 1 (Multi-Die FPGA Placement). Given a circuit
netlist N , a placement region R, and architecture constraints
C, determine the optimal legal position (xi, yi) of each logic
block i on a SLR to minimize the HPWL WH and the
number of SLLs WS with a weighting factor ψ, such that all
architecture constraints in C are satisfied. Mathematically, the
problem can be formulated as:

min
x,y

WH(x,y) + ψWS(x,y)

s.t. x,y ∈ R,
∄ i, j ∈ N with i ̸= j such that Overlap(i, j) > 0,

all architecture constraints in C are satisfied.

(7)

III. LEAPS OVERVIEW

Building upon the foundational contributions of [17], [18],
we introduce the proposed LEAPS for multi-die FPGA place-
ment, consisting of three main stages: global placement,
legalization, and detailed placement. A summary of the core
techniques employed in the proposed LEAPS is provided
in Fig. 3. Furthermore, to ensure a coherent explanation of key
terminologies used throughout this paper, a detailed glossary
is presented in TABLE I.

The proposed LEAPS considers a set of field types denoted
as S = {LUTL, LUTM-AL, FF, CARRY, DSP, BRAM}.
Notably, the LUTL and LUTM-AL field types were intro-
duced in [17]. The LUTL field type represents the LUT
resources provided by both SLICEM and SLICEL, while the
LUTM-AL field type models the additional logic resources
offered solely by SLICEM and not by SLICEL.

A. Global Placement

Global placement acts as the backbone of the entire place-
ment algorithm, harmonizing multiple design objectives while
satisfying complex constraints.

TABLE I: Glossary Table of Key Terminology in the proposed LEAPS

Term Definition Motivations
Augmented Lagrangian Method
(ALM)

Transforms constrained problems into unconstrained ones by
adding equality constraints and a quadratic penalty term.

Simplifies Eq. (8)’s complex constrained problem into Eq. (9)’s
unconstrained problem.

Clock Penalty Multiplier η Dynamically penalizes clock routing violations in the optimiza-
tion process.

Ensures clock routing constraints are considered with other
design objectives.

Density Penalty Ds
Penalizes denser areas in the FPGA placement to even out logic
element distribution. Prevents hotspots and ensures routability in FPGA placement.

Wirelength-Weighting-Factor Ψ Balances the minimization of HPWL and the reduction of SLL
counts. Manages HPWL and SLL trade-offs in multi-die FPGA design.

Instance-to-Clock-Region Map-
ping Generation Assigns instances to clock regions to minimize SLLs. Optimizes clock network efficiency and FPGA performance.

Netlist

Global

Placement

Legalization

Detailed

Placement

Placement

Result

Multi-die

Architecture

(1) Nested Optimization Hierarchy: SLL-centric, multi-

objective optimization

(2) Soft Floor Method: Continuous SLR modeling

(3) Wirelength-weighting Optimization: Adaptive HPWL-

SLL balancing

(4) SLL-aware Legalization: SLL-focused, clock-compliant

legalization.

Core Techniques

(5) SLL-aware Detailed Placement: SLL-minimizing, clock-

aware placement

Fig. 3: Core Techniques in the proposed LEAPS: (1) Nested
Optimization Hierarchy: Enhances [17], [18] for multi-
objective optimization, focusing on SLL minimization. See
Section III-A3. (2) Soft Floor Method: Transforms dis-
crete SLR coordinates into continuous models, optimizing
wirelength and SLR constraints. Refer to Section IV-A3.
(3) Wirelength-weighting Optimization: Dynamically adjusts
HPWL and SLL trade-offs for improved FPGA placement.
Details in Section IV-C. (4) SLL-aware Legalization: Adapts
[21] to prioritize SLL reduction with concurrent clock con-
straint management. Further information in Section IV-E. (5)
SLL-aware Detailed Placement: Builds on [8], focusing on
SLL minimization, clock-awareness, and wirelength optimiza-
tion. See Section IV-E.

1) Problem Definition: Considering wirelength minimiza-
tion objective, clock constraints, and carry chain alignment
feasibility, we present the multi-die global placement problem
as a constrained minimization problem:

min
x,y

W̃ψ(x,y), (8a)

s.t. Φs (x,y;As) = 0, ∀s ∈ S, (8b)
Γ (x,y) = 0, (8c)
Carry chain alignment constraint. (8d)

Here, W̃ψ(x,y) denotes the total wirelength, which accounts
for both the HPWL and SLL counts; As represents all the
instance areas in field s; and Γ (·) signifies the clock penalty
term. For brevity, we simplify Φs (x,y;A) to Φs for all s ∈

S. The potential energy vector, with elements Φs (∀s ∈ S),
is denoted by Φ in subsequent discussions.

2) Problem Reformulation with ALM: To facilitate solving
the original problem (8), we employ the augmented La-
grangian method (ALM) [27] to formulate an unconstrained
subproblem:

min
x,y

L(x,y;λ, ψ,A, η) = W̃ψ(x,y) +
∑
s∈S

λsDs

+ ηΓ (x,y), (9a)

Ds = Φs +
1

2
WsΦ

2
s, ∀s ∈ S.

(9b)

Here, the density multiplier vector is λ ∈ R|S|, and the clock
penalty multiplier is η ∈ R. The density-weighting coefficient
vector W ∈ R|S| is employed to balance the first-order and
second-order terms for density penalty. We adopt the setup
for λ and W from [16].

3) Nested Optimization Hierarchy: To handle multiple
constraints, we solve the problem (9) using the ALM in a
nested manner:

Clock Opt.: L1 = max
η
L2(η), (10a)

Routability Opt.: L2(η) = max
A
L3(A, η), (10b)

WLW Opt.: L3(A, η) = max
ψ
L4(ψ,A, η) (10c)

WL Opt.: L4(ψ,A, η) = max
λ
L5(λ, ψ,A, η), (10d)

Subproblem: L5(λ, ψ,A, η) = min
x,y
L(x,y;λ, ψ,A, η).

(10e)

Here, L5 denotes Eq. (9); “Opt.” stands for “Optimization”,
while “WL” and “WLW” are abbreviations for “Wirelength”
and “Wirelength-weighting”, respectively.

Within this nested structure, each term, ranging from L1

to L5, addresses a unique aspect of the placement challenge.
Each term passes its variables to the subsequent subproblem,
considering them as fixed hyperparameters. This systematic
approach is vividly portrayed in the global placement phase
as shown in Fig. 4. We highlight two vital aspects:

a) Effective Range for SLL Optimization: The SLL
minimization is integrated into the optimization objective
only when the density overflow lies between 0.15 and 0.9.
Within these bounds, L4 becomes operative. When the density
overflow drops below 0.15, the algorithm adjusts the instance
area to mitigate routing congestion.

Multiplier InitlizationMultiplier Initlization

Nesterov Optimizer

Carry Chain

Alignment Correction

Nesterov Optimizer

Carry Chain

Alignment Correction

Overflow < 0.9
Density Multipliers

Updating

Overflow < 0.15
Wirelength-weighting

Factor Adjustment

Any Routing

Congestion?

Instance Area

Adjustment

Satisfy Clock

Constraints?

Clock Penalty

Updating &

SLL-aware Instance-

to-CR Assignment

Clock- and SLL-aware Legalization & Detailed Placement

CR-wise and SLL-aware Direct Legalization

Clock- and SLL-aware Multi-stage ISM Detailed Placement

CR-wise and SLL-aware Direct Legalization

Clock- and SLL-aware Multi-stage ISM Detailed Placement

Architecture

Constraints

Circuit

Netlist

N

Y

N

N

Y

Y

N

SLL-aware Global Placement

Placement

Results

Y

Fig. 4: Overview of the proposed LEAPS framework. The
framework continuously optimizes the number of SLLs
while handling other design objectives during the global
placement, legalization, and detailed placement stages. The
global placement employs a nested optimization technique
to progressively converge and optimize each design objec-
tive. Subsequent legalization and detailed placement consider
SLL minimization and clock routing constraints while refin-
ing the initial placement. Note that “Instance Area Adjust-
ment” and “Carry Chain Alignment Correction”are referenced
in [16] and [17], respectively, and are not repeated in this
paper. The rest of the contents are described in this work.

b) Distinct Roles of Each Optimizer: To illustrate the
overall approach, we consider the example of optimizer L5,
particularly in scenarios where density overflow exceeds 0.9.
Upon reaching its optimal state, L5 maintains the param-
eters λ, ψ, A, and η as fixed values. Subsequently, the
L4 optimizer amplifies the density term by incrementing λ,
progressively satisfying the density constraints. This approach
is similarly employed for other optimizers. Each optimizer has
a specific role:

• L1 analytically mitigates clock violations, with its ter-
mination criteria based on the fulfillment of clock con-
straints.

• L2 enhances routability via an area inflation-based tech-
nique, with its termination criteria determined by routing
congestion estimation and pin density.

• L3 accounts for the growth of SLLs during the iterative
process to balance the trade-off between the HPWL and
SLL counts in the total wirelength objective.

• L4 tackles the core wirelength-driven placement prob-
lem, with its termination criteria determined by the
density overflow of all instances.

In the end, L5 is consistently solved with a pre-defined
number of iterations, such as one iteration in our experiments.

B. Legalization & Detailed Placement

Legalization (LG) and detailed placement (DP) serve as
the refining stages of the placement, fine-tuning the initial
solution and ensuring compliance with design constraints and
objectives. Given the multi-die FPGA architecture, both LG
and DP need to achieve the aim of minimizing SLLs under
various design constraints. To achieve this, we adapt our LG
and DP to specifically target the reduction of SLLs while
maintaining other design objectives.

Our LG approach, inspired by the Direct Legalize (DL)
algorithm [21], employs a binary optimization strategy to
map instances to specific clock regions. This method has been
adapted and expanded from its original single-die application
to multi-die FPGAs, incorporating a refined cost function that
includes SLL optimization. This enhancement makes it better
suited to address the unique challenges presented in multi-die
scenarios, going beyond the traditional DL method by consid-
ering factors like HPWL, SLL counts, and packing metrics.
This approach not only ensures a pronounced reduction in the
number of SLLs but also maintains essential clock feasibility
constraints.

Complementing this, our DP method builds on the multi-
stage independent set matching (ISM) technique as presented
in [8], [11]. It emphasizes the reduction of the number of
SLLs, similar to the legalization process, and employs clock-
awareness to the ISM method, thereby refining placement
for improved wirelength and routability. This refinement
ensures the viability of the clock network and simultaneously
optimizes SLL counts, a crucial aspect frequently neglected
in conventional single-die FPGA placement strategies.

These approaches, building upon the foundational frame-
works of [8], [11], [21], introduce novel enhancements specif-
ically designed for the complexities of multi-die architectures.
These advancements are essential to meet the evolving de-
mands of modern FPGA design.

C. Comparative Features of LEAPS and Other Placers

TABLE II summarizes the characteristics of the pub-
lished SOTA FPGA placers. They mainly resort to quadratic
programming-based approaches [8], [9], [11]–[13], [23] and
nonlinear optimization-based approaches [5], [16], [18], [20]
for the best trade-off between quality and efficiency. To

TABLE II: Features of the published state-of-the-art FPGA placers

Placer UTPlaceF
[8]

GPlace 3.0
[9]

elfPlace
[16]

DREAMPlaceFPGA
[19]

AMF-Placer
[23]

UTPlaceF
2.0&2.X [11], [13]

ICCAD’17
[12]

ICCAD’19
[5]

OpenPARF
[18] Ours

Clock Constraints × × × × × ✓ ✓ ✓ ✓ ✓
Multi-die Support × × × × × × × ✓ × ✓
GPU-Acceleration × × ✓ ✓ × × × × ✓ ✓

Algorithm Category Quadratic Quadratic Nonlinear Nonlinear Quadratic Quadratic Quadratic Nonlinear Nonlinear Nonlinear

provide a comprehensive assessment, we categorize our eval-
uation based on three pivotal features:

• Handling Clock Constraints: An important issue in
FPGA placement is to effectively address clock
constraints to optimize performance. Among these
SOTA placers, UTPlaceF 2.0&2.X [11], [13],
ICCAD’17 [12], ICCAD’19 [5], OpenPARF [18], and
the proposed LEAPS exhibit proficiency in this domain.

• Supporting Multi-Die Architecture: The capability to
facilitate designs across multiple dies is only present in
ICCAD’19 [5] and the proposed LEAPS. This gives
them an advantage in modern FPGA designs, where
multi-die configurations are sought for enhanced perfor-
mance and modularity.

• Leveraging GPU acceleration: Speeding up the place-
ment process is crucial in FPGA design. Among the plac-
ers, only elfPlace [16], DREAMPlaceFPGA [20],
OpenPARF [18], and the proposed LEAPS capitalize on
GPU acceleration, making them ideal for rapid design
iterations.

Conclusively, LEAPS demonstrates a robust feature set
aligning with modern FPGA design demands, including clock
constraints, multi-die support, and GPU acceleration, making
it stand out in the FPGA placement landscape.

IV. CORE PLACEMENT ALGORITHMS

In this section, we will explicate the core algorithms of the
proposed framework.

A. Wirelength Objective Handling
The wirelength is the most fundamental objective in place-

ment algorithms. In traditional FPGA placement algorithms,
wirelength is typically measured in the x and y dimensions.
However, considering the multi-die FPGA architectures in
this work, it is necessary to minimize the number of SLLs
by incorporating the z dimension, which represents the SLR
index of instances dominated by x and y.

1) Wirelength Objective Formulation: The wirelength ob-
jective is formulated as:

Wψ (x,y) =WH (x,y) + ψ ·WS (x,y)

=
∑
e∈E

(
max
i,j∈e

|xi − xj |+max
i,j∈e

|yi − yj |

+ψmax
i,j∈e
∥zi − zj∥1

) (11)

Here, x and y denote the locations of the instances in a layout,
while z represents the SLR index of instances dominated by
x and y. The term ∥·∥1 denotes the L1 norm, applicable here
as the SLR indexes zi and zj are two-dimensional vectors.
The weighting factor ψ adjusts the weighting of the SLL term
WS(·) in the wirelength objective function Wψ(·).

2) Smooth and Differentiable Wirelength Model: To enable
the utilization of gradient-based optimization methods, we
adopt a smooth and differentiable wirelength model using
the weighted-average (WA) approach [26] for the max term.
Specifically, the wirelength model for the z-dimension is
defined as:

W̃ez (z) =

∑
i∈e∥zi∥1 exp(∥zi∥1/γS)∑

i∈e exp(∥zi∥1/γS)
−∑

i∈e∥zi∥1 exp(−∥zi∥1/γS)∑
i∈e exp(−∥zi∥1/γS)

,

(12)

Here, γS > 0 is a parameter controlling the accuracy of
the approximation. As γS increases, the approximation be-
comes more accurate, but the objective function becomes less
smooth. In this work, we utilize the parameter γS to estimate
the wirelength in the z-direction, while also introducing a
parameter γH for the wirelength approximation in the x and
y directions. Employing this smooth approximation allows the
wirelength model to be differentiable, facilitating the use of
gradient-based optimization methods.

By substituting the smooth approximations for the max
function in x, y, and z directions into the original wirelength
objective shown as Eq. (11), we obtain a smooth and differ-
entiable wirelength objective:

W̃ψ(x,y) = W̃H (x,y) + ψ · W̃S (x,y)

=
∑
e∈E

(
W̃ex (x) + W̃ey (y) + W̃ez (z)

)
, (13)

This wirelength formulation greatly expands the utility of
gradient-based optimization methods within our placement
algorithm. By minimizing the wirelength objective, the al-
gorithm aims to achieve improved placement results in terms
of wirelength while considering constraints related to SLLs.

3) Soft Floor Method for Discrete Coordinates z: The
discrete nature of z presents challenges when optimizing the
wirelength objective, as discrete variables can impede the
convergence of the optimization algorithm. To overcome this
issue, we aim to transform the discrete z into a continuous
and smooth variable.

Specifically, we propose a soft floor method that enables the
smoothing and continuous representation of z. This approach
utilizes a sigmoid-like function, defined as follows:

σ(x) =
1

1 + exp(−γS · x)
(14)

Here, exp(·) denotes the exponential function, while γS is
an adaptive parameter used in the wirelength objective for
the z-dimension, as illustrated in Eq. (13). By employing the

Initial Stage

(e.g. Epoch = 10)

Intermediate Stage1

(e.g. Epoch = 400)

Intermediate Stage2

(e.g. Epoch = 600)

Final Stage

(e.g. Epoch = 1200)

Placement Epoch

Multi-die FPGA with

2 2 SLR Topology

Multi-die FPGA with

2 2 SLR Topology

SLR Index z Modeling

by Soft Floor Method

Equation

Formulation

Visualization of Component

Fig. 5: Visualization of the soft floor method applied to a multi-die FPGA with a 2×2 SLR topology: Demonstrating variations
with different γS values.

sigmoid function σ(·), a continuous and smooth transforma-
tion of zi can be formulated as:

zi = zxi · x̂+ zyi · ŷ

=

k=|zx|−1∑
k=0

σ(
xi
σx
− k) · x̂+

k=|zy|−1∑
k=0

σ(
yi
σy
− k) · ŷ

,

(15)
Eq. (15) illustrates how the discrete vector z is transformed
into a continuous, smoothly varying two-dimensional vector.
This transformation is related to the normalized coordinates
of the instances

(
xi

σx
, yiσy

)
, where x̂ and ŷ denote the unit

vectors along the x and y axes, respectively.
Next, we delve into this methodology in terms of two key

questions:
a) Operational Principles of the Soft Floor Method:

As the number of optimization iterations increases, the value
of γS rises, exacerbating the barrier between SLRs. Initially,
when γS = 1, as illustrated in Fig. 5, instances move
easily between dies for global optimization. However, with
γS increasing to 20, traversing between dies becomes more
challenging and costly, directing the optimization towards re-
fining local solutions. Only instances located at the edges are
considered to move between molds to obtain a more optimal
solution. By modulating the value of γS , the algorithm strikes
a balance between global and local searches, leading to better
solutions in fewer iterations.

b) The Advancement of Our Method Over the Lifting
Dimension Technique by [5]: While our soft floor method
draws inspiration from the lifting dimension technique, it
offers distinct improvements:

• As shown in Fig. 6(a), the lifting dimension technique
in [5] specifically designed for 1× 4 SLR topology and
introduces an electric field dimension z with discrete
SLR indexes, aiming to minimize wirelength in the z-
direction using 3D Poisson equation and ADMM solver.
However, this discrete approach leads to suboptimal
results.

• In contrast, our soft floor method treats z as a continuous
variable influenced by x and y coordinates, as depicted
in Fig. 6(b). It can represent SLR indexes for any SLR

(b)

SLR 3

SLR 2

SLR 1

SLR 0

x

y

O

SLR 1

SLR 0

SLR 2

SLR 3

xO

y

z

(a)

Introduce z-dimension

for electric field

Implement a smooth and

continuous method

Fig. 6: Comparison of the electric field modeling between
the SOTA method [5] and the proposed LEAPS. InstSLRindex

represents the SLR index of placeable instances. (a) The
SOTA method utilizes the lifting dimension technique. (b) The
proposed LEAPS utilizes a smooth and continuous function
fsmooth (i.e., the soft floor method in Section IV-A3).

topology. This continuous approach allows for smooth
adjustments of instance coordinates, facilitating SLL
minimization. Moreover, by employing the 2D Poisson
equation, the placer simplifies computational demands
and enhances design integration.

In essence, the soft floor method provides a more adaptive
and efficient approach to multi-die FPGA placement, promis-
ing optimal results. By transforming z into a continuous
variable, it leverages gradient-based optimization, ensuring
a differentiable wirelength model and improved placement
results.

B. Density Multiplier Updating for Multi-Die FPGA

In FPGA placement, the density multiplier λ is pivotal for
wirelength optimization, guiding the spreading rate of various
resource types. While the method for updating λ has been
extensively discussed in [16], our work introduces modifi-
cations tailored for multi-die FPGA, particularly considering
SLL counts.

Our method initializes the density multiplier λ(0) as fol-
lows:

λ(0) = η
∥∇W̃ψ

(
x(0),y(0)

)
∥1∑

i∈V qi∥ξ
(0)
i ∥1

(1, 1, · · · , 1)T . (16)

The formula ∥∇W̃ψ(·)∥1 = ∥∇W̃H(·) + ψ · ∇W̃S(·)∥1, dis-
tinct from [16], incorporates SLL counts into the initialization
process. The initial placement location (x(0),y(0)) and the
initial electric field ξ

(0)
i of each instance are considered.

The weight parameter η and the L1 norm are calibrated to
prioritize wirelength minimization in early iterations. We set
η to 10−4, applying uniform spreading weights across all
resource types.

For the subsequent updating mechanism of λ, we largely
follow the subgradient update technique described in [16].
This approach has been proven to enhance convergence
efficiency and circuit quality. Detailed technical aspects of
this method are available in the cited work.

In conclusion, while our density multiplier updating mech-
anism builds upon the foundation set by [16], it introduces
critical modifications to cater to the unique challenges posed
by multi-die FPGA architecture, ensuring optimal placement
results.

C. Adaptive Wirelength-Weighting-Factor Adjusting

To further improve the performance in solving the overall
wirelength minimization problem, we also adaptively update
the wirelength-weighting factor ψ to balance the trade-off
between HPWL minimization and SLL minimization. We
apply an exponential moving average (EMA) and the Adam
optimization algorithm, which has two main advantages: 1)
improved convergence speed and 2) better trade-off between
different objectives.

Defining the function S(x, y), which represents the number
of SLLs. We first derive the growth of SLL counts, denoted by
δ
(k+1)
S , in the (k+1)-th iteration. The calculation is performed

as follows:

δ
(k+1)
S = S(x(k+1),y(k+1))− S(x(k),y(k)). (17)

This equation computes the change in the SLL counts from
the k-th iteration to the (k + 1)-th iteration, providing a
quantitative measure of the SLL growth for the optimization
process.

Next, we calculate the EMA of δkS using a weight parameter
ρ, set to 0.9 for smooth convergence:

E
(k+1)
S = ρ · δ(k+1)

S + (1− ρ) · E(k)
S . (18)

We employ the Adam optimization algorithm to update ψ
based on the EMA value E(k+1)

S . The algorithm dynamically
adjusts the learning rate using the first- and second-moment
estimates of the gradient, with E(k)

S serving as the gradient in
this context. We compute the first-moment estimate ψm and
the second-moment estimate ψv:

ψm = β1 · ψm + (1− β1) · E(k+1)
S , (19)

ψv = β2 · ψv + (1− β2) · (E(k+1)
S)2, (20)

Here, we set β1 = 0.9 and β2 = 0.999 as the exponen-
tial decay rates for the first- and second-moment estimates.
Then, we compute the bias-corrected first and second-moment
estimates:

ψ̂m =
ψm

1− β1
, (21)

ψ̂v =
ψv

1− β2
, (22)

Lastly, we update ψ(k) with ψ(k+1) using the bias-corrected
estimates:

ψ(k+1) = ψ(k) + tψ ·
ψ̂m√
ψ̂v + ϵψ

, (23)

where tψ is the step size, and ϵψ = 10−8 is a small constant
to prevent division by zero.

In essence, the use of EMA helps to reduce noise and
maintain a good balance between HPWL and SLL counts.
Not only that, the Adam optimization algorithm accelerates
the convergence process and allows for an efficient trade-
off between these objectives. This combined strategy features
robustness to noise gradients and effective bias correction. It
ensures an optimal balance between HPWL and SLL counts
across the FPGA placement, improving overall performance.

D. Improved Clock Network Planning Algorithm for Multi-
Die FPGAs

We introduce an advanced algorithm for clock network
planning in multi-die FPGAs, aiming to satisfy clock con-
straints while effectively minimizing SLLs. This algorithm is
structured into two key stages:

• Instance-to-Clock-Region Mapping Generation with SLL
Minimization: This stage focuses on assigning instances
to specific clock regions. Our approach, inspired by the
methods in [21], extends beyond just adhering to clock
routing constraints. It integrates a novel optimization
objective that concurrently addresses clock constraints
and actively reduces SLL counts. See Section IV-D1.

• The Advanced Clock Penalty: In this stage, we incor-
porate a smooth, differentiable penalty function into the
overall placement optimization. This function is designed
to subtly guide instances towards their specified clock
regions, aligning with the clock network’s layout and
constraints. See Section IV-D2.

In our proposed algorithm, the synergy of these two stages
results in a more balanced and efficient clock network plan-
ning for multi-die FPGAs. It not only meets the critical clock
constraints but also minimizes SLL counts, leading to an
optimized placement and routing of the clock network.

1) Instance-to-Clock-Region Mapping Generation with
SLL Minimization: In this stage, our objective is to gen-
erate mappings from instances to clock regions. It requires
satisfying clock constraints while minimizing the number of
SLLs. Initially, we introduce symbols and notions to clarify
the problem, as shown in TABLE III. Then, the instance-

TABLE III: Symbols and Notions Used in Clock Network
Planning.

V The set of instances.

S The set of resource types.

V (s) The set of instances of resource type s ∈ S.

A(s)
v The instance v’s demand for resource type s ∈ S.

R The set of clock regions.

C
(s)
r The clock region r’s capacity for resource type s ∈ S.

Dv,r The physical distance between instance v and clock region r.

Iv,r The increase in the number of SLLs if moving instance v to
clock region r.

E The set of clock nets.

to-clock-region mapping process is formulated as a binary
optimization problem, shown in Formulation (24).

minimize
x

∑
v∈V

∑
r∈R

(Dv,r + αIv,r) · xv,r, (24a)

s.t. xv,r ∈ {0, 1},∀v ∈ V,∀r ∈ R, (24b)∑
r∈R

xv,r = 1,∀v ∈ V, (24c)∑
v∈V
A(s)
v · xv,r ≤ C(s)

r ,∀r ∈ R,∀s ∈ S, (24d)

Exist a legal clock routing w.r.t x. (24e)

In the above formulation, the overall cost function
(Eq. (24a)) is designed by summing 1) the physical distance
Dv,r between instances and clock regions and 2) the increase
in SLL counts Iv,r. The two are weighed for importance
by a factor α. The binary decision variable xv,r (Eq. (24b))
denotes the mapping status of instance v to clock region r.
The constraint (Eq. (24c)) specifies that each instance v is
mapped to exactly one clock region r. The upper limit of
total resource demand per region is enforced by the constraint
(Eq. (24d)), ensuring no clock region is overburdened. Finally,
the constraint (Eq. (24e)) ensures compliance with the legal
clock routing and conforms to the constraints of the multi-
die FPGA architecture. As such, the proposed formulation
comprehensively explores the solution space, balancing the
physical distance and the potential increase in SLL counts
for clock network planning.

To solve this optimization problem Eq. (24), we employ a
branch-and-bound based method proposed by [13], which ad-
vances the performance of clock-driven placement algorithms.
This method utilizes a tree traversal-based heuristic to search
for a huge solution space of possible variable assignments.

A critical distinction of our proposed method compared to
previous works lies in its dual focus: not only does it minimize
the total distance between instances and their designated
clock regions, but it also crucially aims to reduce the overall
increase in SLL counts. Addressing the SLL issue represents a
notable advancement in this field. We introduce Algorithm 1
to address this challenge, detailing below its workflow for
calculating the increase in SLL counts.

Algorithm 1 Calculation of the Increase in SLL Counts

Input: The set of candidate mapping nodes N , the target
mapping clock region cr with its central coordinates
specified as (crx, cry). The SLR’s width δx, the SLR’s
height δy .

Output: Total increase in SLL counts IS
1: IS ← 0
2: Compute cr’s SLR index crz using Eq. (2)
3: for all n ∈ N do
4: Get node n’s coordinate (nx, ny)
5: Get node n’s SLR index nz using Eq. (2)
6: if compare == 0 then
7: continue
8: else
9: Get pins of node n denoted as Pn

10: for all pn in Pn do
11: Get the net ep belonged to pin pn
12: if ep is not eligible then
13: continue
14: end if
15: Compute net ep’s bounding box denoted as Be
16: Compute a partial increase in the number of

SLLs ∆S ← ∥Be −B
′

e∥1
17: IS ← IS +∆S
18: end for
19: end if
20: end for
21: return IS

a) Streamlined Analysis of the Algorithm: Initially, the
increase in SLL counts IS is set to zero, and the SLR index
crz for the clock region is computed, defining its location
within the grid. Then, the algorithm checks each node in
the candidate set. For each node, its SLR index is calculated
and compared to the clock region’s index. If they match, the
algorithm considers that there is no potential to increase the
number of SLLs and proceeds to the next node. However, if
the indexes differ, the algorithm further explores the node’s
pins to identify eligible nets to calculate the increase in
the number of SLLs. For each eligible net, the bounding
box is computed, an updated bounding box is generated
considering the instance-to-clock region assignment, and a
partial increase in the number of SLLs is computed and added
to IS . After evaluating all nodes, the algorithm concludes by
returning the final total SLLs’ increase IS . The algorithm
is able to efficiently evaluate the potential increase in the
number of SLLs while considering the spatial relationships
and interconnections of the nodes.

b) Complexity Analysis of the Algorithm: As for the
algorithm’s complexity, the time complexity is mainly de-
termined by the nested loops that iterates over the nodes and
pins. Let N represent the number of nodes, and P denote
the maximum number of pins per node. In the worst case,
the algorithm needs to check all pins of all nodes, resulting
in a time complexity of O(NP). However, since only a
small fraction of nets need to perform the calculation of the

increased number of SLLs, the actual runtime is usually much
less than the worst-case complexity. The space complexity is
determined by the storage required for the data associated
with nodes, pins, and various auxiliary data structures for
intermediate computations. In general, the space complexity
is proportional to the number of nodes, pins, and nets, making
it O(N +P +E), where E represents the number of eligible
nets.

2) The Advanced Clock Penalty: In the second stage, we
implement an advanced clock penalty term to the placement
objective for better adapting to the multi-die FPGA architec-
ture while minimizing the number of SLLs and meeting clock
constraints.

Unlike previous works [11], [14], which enforces a direct
shift of instances to their clock regions. Instead, we adopt
a novel gravitational attraction concept [15], resembling a
bowl-like pull, to guide instances toward their mapped clock
regions. The clock penalty function is expressed as:

Γi (xi,yi) = Γi (xi)
x
+ Γi (yi)

y
. (25)

The penalty terms Γi(xi)x and Γi(yi)y correspond to the
x and y directions, respectively. Let loxi , hixi , loyi , and hiyi
denote the left, right, bottom, and top boundary coordinates
of the generated mapping result for instance i. We define
Γi (xi)

x as,

Γi (xi)
x
=

(xi − loxi)2, xi < loxi ,

0, loxi ≤ xi ≤ hixi ,
(xi − hixi)2, hixi < xi.

(26)

Here, Γ (x,y) denotes the sum of the clock penalty of all
instances, i.e., Γ (x,y) =

∑
i∈V Γi (xi,yi).

The clock penalty multiplier η is initially set to 0. Upon
resetting the clock penalty function Γ (·), η is updated with
the relative ratio between the gradient norms of the wirelength
and the clock penalty to maintain the clock penalty function’s
stability.

η =
ι∥∇W̃ψ∥2
∥∇Γ∥2 + ε

. (27)

As the placement optimization proceeds, the clock penalty
multiplier η is dynamically adjusted to balance the influence
of wirelength and clock penalty terms in the objective func-
tion. This adaptation ensures that the optimization algorithm
maintains an appropriate focus on wirelength minimization
and compliance with clock region constraints.

After the instances are assigned to their respective clock
regions, only about 1% of instances are found outside their
designated clock regions. Therefore, most of the instances
do not incur any clock penalty. Empirically, we set the
parameters ι and ε to 10−4 and 10−2, respectively. This
setting achieves an appropriate balance between the gradient
norm ratio of wirelength and clock penalty terms.

As the optimization proceeds, instances that are still outside
of their designated clock regions will be subjected to an
increasing clock penalty. The size of the penalty will grow
with the distance of the instance from its specified region,
prompting the instance to move toward its specified clock
region. This approach facilitates the smooth convergence

of the optimization process while satisfying the clocking
constraints imposed by the multi-die FPGA architecture.

In summary, this clock penalty method can dynamically
adjust the clock penalty multiplier. This provides an efficient
way to place instances in a multi-die FPGA architecture while
minimizing the wirelength and satisfying clock region con-
straints. This approach enables improved placement quality
and performance in comparison to existing methods, proving
its applicability and effectiveness for modern FPGA designs.

E. Clock- and SLL-aware Legalization & Detailed Placement

Two critical constraints that need to be carefully considered
during the legalization (LG) and detailed placement (DP)
stages are clock feasibility and minimizing SLL counts. We
delve into these constraints in the following discussion.

In the LG stage, we leverage the Direct Legalize (DL)
algorithm [21] to skillfully manage clock constraints. Due
to the complexity of clock networks, modern FPGAs often
introduce “clock region constraints” at this stage. To address
this, we establish a legal clock-to-clock region assignment that
specifies which cell can be positioned to which slice. Then,
Our DL algorithm performs an additional check to discard
cell-to-slice assignments that violate this assignment, thereby
ensuring adherence to the clock region constraint.

In the DP stage, we leverage a clock-aware multi-stage ISM
approach, drawing inspiration from the UTPlaceF series [8],
[11]. The approach utilizes an iterative minimum-cost-flow-
based cell assignment technique to optimize wirelength and
routability while adhering to complex clock constraints, re-
sulting in clock-legal and high-quality placement solutions.

Addressing the SLL minimization challenge involves esti-
mating the potential increase in SLL counts due to instance
relocations during legalization and detailed placement. This
estimation is seamlessly incorporated into the optimization
objectives, mirroring the Algorithm 1 applied in clock net-
work planning. The goal is to ensure that the overall opti-
mization objective is minimized.

To concretely demonstrate our methodology, we consider
the SLL optimization in the LG to illustrate the practical
details. Given the DL algorithm concurrently explores the
solution spaces of placement and packing. This requires
a scoring function that encapsulates both placement- and
packing-related metrics. Given a slice s and a cluster c, the
score of c in s is defined as follows:

SCORE(c, s) =
∑
e∈E(c)

InternalPins(e, c)− 1

TotalPins(e)− 1

− φ(∆HPWL(c, s) + αLG∆SLL(c, s))
(28)

Here, E(c) denotes the set of nets with at least one cell
in c, TotalPins(e) represents the total pin count of net e,
InternalPins(e, c) indicates the number of pins of net e in c,
and ∆HPWL(c, s) and ∆SLL(c, s) denote the increase in
HPWL and the number of SLLs when moving cells in c from
their flat initial placement (FIP) locations to s. The positive
weighting parameters φ and αLG are empirically set to 0.02

and 4.0, respectively. The first term defines the clustering
score, granting higher scores to clusters that convert more
external nets into internal ones, effectively reducing routing
demands and enhancing routability. The second term favors
candidates that significantly reduce the wirelength and the
number of SLLs.

The SLL optimization in the DP is consistent with the
approach in the LG above, while also taking clock constraints
into account. This ensures the overall optimization goal,
including SLL minimization and clock routing constraints,
guarantees high-quality placement results. This process is
not further elaborated here and can be referred to in the
description in the LG.

V. EXPERIMENTAL RESULTS

A. Comparison with the SOTA methods

We implemented our GPU-accelerated placer in C++ and
Python along with the open-source machine learning frame-
work PyTorch for fast gradient back-propagation. We conduct
experiments on a Ubuntu 22.04 LTS platform that consists of
an Intel(R) Xeon(R) Gold 6248 CPU @ 3.00GHz (24 cores),
an NVIDIA RTX3090 GPU, and 128GB memory.

To comprehensively compare our LEAPS with other SOTA
placers, we evaluated its performance using the ISPD 2017
benchmarks, specifically targeting multi-die FPGA with a
1×4 SLR topology. These evaluations focus on three key
metrics: minimization of super long lines (SLL), optimization
of half-perimeter wirelength (HPWL), and overall runtime
efficiency. Notably, we further dissect the runtime into CPU
runtime (CRT) and GPU runtime (GRT) to highlight the GPU
acceleration capabilities of our placement method.

The characteristics and comparative analysis of various
FPGA placement algorithms, including ICCAD’17 [12],
Min-cut + ICCAD’17 [12], ICCAD’19 [5], and our
proposed LEAPS, are detailed in Table IV, focusing on the
ISPD 2017 contest benchmark. The rationale behind selecting
these specific algorithms for comparison is as follows:

• ICCAD’17 [12] and Min-cut + ICCAD’17 [12]
are included despite ICCAD’17 [12] not being a
multi-die FPGA placer. It represents a significant
clock-aware placement algorithm. The Min-cut +
ICCAD’17 setup, which combines the Min-cut method
with ICCAD’17 [12], not only provides a balanced com-
parison but is also pivotal in the ICCAD’19 [5] analysis,
serving as a benchmark method. This method divides
blocks into four subsets for placement within each die,
providing a unique approach to FPGA placement.

• ICCAD’19 [5] is considered for its recent advance-
ments as a state-of-the-art (SOTA) method, particularly
addressing SLL challenges with clock- and SLL-aware
techniques.

Notably, recent heterogeneous FPGA placement algo-
rithms such as elfPlace [16], DREAMPlaceFPGA [20],
AMF-Placer [23] are excluded from this comparison. The
key reason for their exclusion is the omission of clock
constraints in these algorithms, a detail underscored in Sec-
tion III-C. The assessment in TABLE II is based on three key

features: handling clock constraints, supporting multi-die ar-
chitecture, and leveraging GPU acceleration. In these aspects,
LEAPS demonstrates its powerful capabilities in meeting the
demands of modern FPGA design, distinguishing itself in the
field of FPGA placement. This distinction is crucial, as over-
looking clock constraints can significantly affect wirelength
metrics post-placement, leading to an inaccurate compari-
son of performance metrics. Additionally, OpenPARF [18],
representing our preliminary work, is not compared directly.
However, the superiority of the LEAPS framework is evident
from the results presented in Tables IV, V, and VI. For
enhanced clarity and emphasis, the most superior results in
these tables are highlighted in bold.

The analysis presented in Table IV clearly indicates that
our LEAPS method surpasses other algorithms across all
evaluated metrics, achieving notably lower counts of super
long lines (SLL) and improved half-perimeter wirelength
(HPWL) for all benchmark designs. Additionally, LEAPS
demonstrates a substantial advantage in runtime, consistently
completing placements more rapidly than its counterparts.
This remarkable enhancement in performance is largely due
to the method’s efficient optimization techniques and the inte-
gration of GPU acceleration. It’s noteworthy that even when
the GPU acceleration factor is set aside, the CPU-based im-
plementation of LEAPS still significantly outpaces the current
state-of-the-art, ICCAD’19 [5], with an approximate 2.62×
speedup in runtime. In comparison to the latest SOTA method
ICCAD’19 [5], LEAPS with GPU acceleration demonstrates
a substantial reduction in SLL by 43.08% and in HPWL by
9.99%, along with a significant 34.335× speedup in runtime.
These results underscore LEAPS’s ability to achieve more
optimal placements with lower computational demands.

In conclusion, LEAPS demonstrates clear superiority over
other algorithms in SLL, HPWL, and runtime metrics for the
ISPD 2017 benchmarks. Its combination of efficient optimiza-
tion and GPU acceleration not only minimizes HPWL and
SLL counts but also reduces computational overhead, making
it an effective solution for multi-die FPGA placement.

B. Effectiveness Validation of Optimization Techniques

In this section, we conduct a thorough validation of the
techniques presented in the LEAPS framework, specifically
tailored for multi-die FPGA placement. To achieve this,
we design two sets of experiments: the first evaluates the
impact of optimizing SLL at different stages of the placement
process, while the second assesses the adaptive wirelength-
weighting-factor adjusting method (hereafter referred to as the
WLW method) in the GP, which enables trade-offs between
HPWL and SLL counts. These experiments aim to provide a
comprehensive understanding of how each technique within
LEAPS contributes to the overall placement efficacy.

1) Necessity of Full-flow Optimization in LEAPS: Our
primary focus is on the full-flow optimization of the num-
ber of SLLs, driven by the premise that SLL minimization

1The Norm. in this table are calculated using the relative improvement
method. This differs from the relative reduction percentage used in the main
text, leading to variations in the reported values.

TABLE IV: Comparison of Super Long Lines (×100), Half-Perimeter Wirelength (×103), and Runtime (Seconds) for Multi-Die
FPGA with 1×4 SLR Topology on ISPD 2017 Benchmarks.

Design #LUT/#FF/#BRAM/#DSP #Clock ICCAD’17 [12] Min-cut + ICCAD’17 [12] ICCAD’19 [5] The Proposed LEAPS
SLL HPWL CRT (s) SLL HPWL CRT (s) SLL HPWL CRT (s) SLL HPWL CRT(s) GRT(s)

CLK-FGPA01 211K/324K/164/75 32 19707 1933691 2939 15039 2126497 7963 14817 1916227 3227 4873 1658361 1697 123
CLK-FGPA02 230K/280K/236/112 35 19245 1949266 3356 14937 2138430 7772 14470 1927038 3225 7192 1777341 1552 121
CLK-FGPA03 410K/481K/850/395 57 33915 4760837 7410 24310 5702452 17545 22500 4688170 7251 14285 4487928 2377 202
CLK-FGPA04 309K/372K/467/224 44 22774 3388240 6015 17317 4163495 13060 17123 3389653 5419 10852 3094173 2148 148
CLK-FGPA05 393K/469K/798/150 56 28246 4147683 7460 21745 5112935 17533 21238 4066860 7275 11777 3821386 2269 189
CLK-FGPA06 425K/511K/872/420 58 30526 5007798 8261 21260 6128113 12708 20988 5152846 5686 15959 4625645 2355 214
CLK-FGPA07 254K/309K/313/149 38 14916 2096178 3747 11079 2271849 8582 11215 2047259 3561 6813 1905011 1688 127
CLK-FGPA08 212K/257K/161/75 32 16711 1673570 2812 13457 2143600 8401 12565 1661350 3509 4849 1545018 1554 109
CLK-FGPA09 231K/358K/236/112 35 16275 2162916 3994 10282 2836349 10879 10485 2177478 4512 6508 1891086 1816 131
CLK-FGPA10 327K/506K/542/255 47 22584 3886385 6396 17793 4716132 18464 17233 3970566 7675 13816 3301351 2273 180
CLK-FGPA11 300K/468K/454/224 44 26024 3676642 6339 19356 4573412 15325 19567 3697769 6359 11052 3138093 2731 165
CLK-FGPA12 277K/430K/389/187 41 25683 2814733 4703 19275 3109834 12768 18559 2811424 5702 10533 2453370 1916 151
CLK-FGPA13 339K/405K/570/262 47 32248 3464495 4750 24774 4297976 14354 24999 3422521 5956 10003 3172093 2057 160

Norm.1 2.403 1.111 33.753 1.795 1.338 81.858 1.757 1.110 34.335 1.000 1.000 13.084 1.000

TABLE V: HPWL and SLL Evaluations With Different Stages Optimizations on ISPD 2017 Benchmarks.

Design
1× 4 SLR Topology 2× 2 SLR Topology

LEAPS(GP) LEAPS(GP+LG+DP) LEAPS(GP+LG+DP+CNP) LEAPS(GP) LEAPS(GP+LG+DP) LEAPS(GP+LG+DP+CNP)
SLL HPWL SLL HPWL SLL HPWL SLL HPWL SLL HPWL SLL HPWL

CLK-FPGA01 5180 1658842 4916 1659305 4873 1658361 10598 1629348 10173 1631056 10026 1631274
CLK-FPGA02 7523 1800437 7278 1799139 7192 1777341 14480 1788592 13928 1773191 13984 1791406
CLK-FPGA03 14833 4495993 14430 4494080 14285 4487928 24088 4471987 23626 4475201 23371 4474117
CLK-FPGA04 11034 3090311 10845 3093255 10852 3094173 19781 3068101 19014 3070280 19131 3068247
CLK-FPGA05 12079 3832208 11773 3832323 11777 3821386 21617 3843644 20799 3843667 20735 3844829
CLK-FPGA06 16351 4622926 15983 4624631 15959 4625645 26867 4642177 26124 4648913 25970 4642732
CLK-FPGA07 7234 1912074 6936 1912016 6813 1905011 12150 1912148 11494 1915191 11584 1913722
CLK-FPGA08 4915 1545356 4588 1544583 4849 1545018 10182 1530010 9595 1531410 9706 1524861
CLK-FPGA09 6864 1889271 6526 1890708 6508 1891086 10922 1904842 10388 1904557 10339 1904389
CLK-FPGA10 14285 3299965 13941 3304380 13816 3301351 21470 3304337 20890 3305586 20717 3306488
CLK-FPGA11 11042 3136026 10690 3136950 11052 3138093 16921 3130795 16227 3134114 16087 3131357
CLK-FPGA12 10985 2451674 10825 2452170 10533 2453370 15244 2460003 14723 2461136 14593 2460000
CLK-FPGA13 10352 3177396 10172 3181802 10003 3172093 18742 3168715 18196 3170607 18179 3172810

Norm. 1.0324 1.0011 1.0030 1.0015 1.0000 1.0000 1.0403 0.9997 1.0035 1.0000 1.0000 1.0000

should be a continuous effort throughout the entire placement
process, not limited to the GP stage alone. We conducted
comparative experiments, as detailed in TABLE V, evaluating
HPWL and SLL across three scenarios: 1) optimization
solely during the GP stage (abbreviated as LEAPS(GP)), 2)
optimization across the GP, LG, and DP stages (abbreviated
as LEAPS(GP+LG+DP)), and 3) optimization extending into
the clock network planning (CNP) stage (abbreviated as
LEAPS(GP+LG+DP+CNP)).

Results from experiments using both 1 × 4 and 2 × 2
SLR topologies on the ISPD 2017 benchmark distinctly
demonstrate significant reductions in SLL counts and im-
provements in wirelength optimization. Importantly, the ap-
plication of optimization at the LG, DP, and CNP stages
leads to a progressive decrease in SLL counts, confirming
their effectiveness in refining SLL optimization in multi-die
FPGA designs. Although optimization in the LG, DP, and
CNP typically results in a minor increase in HPWL within
acceptable limits, they occasionally produce a decrease in
HPWL. This enhancement may be attributed to more refined
clock network planning and wirelength objective, and is also
likely influenced by inherent coupling mechanisms within
these topologies. However, it is acknowledged that our current
understanding of these blind spots is incomplete, prompting
further investigation. This area forms the nucleus of our ongo-
ing research endeavors. Moreover, our analysis suggests that
compared to the 2× 2 SLR topology, the 1× 4 configuration
results in fewer SLLs while maintaining comparable HPWL.

This suggests a potential preference for the 1×4 topology in
multi-die FPGAs with four SLRs. However, a deeper study
into other design performance aspects, like timing and routed
wirelength, is essential for a definitive finding.

Upon the normalized data, it becomes evident that the
comprehensive LEAPS framework (encompassing GP, LG,
DP, and CNP) is the most effective, significantly enhancing
SLL and HPWL performance in the evaluated designs. These
results not only demonstrate the efficacy of the LEAPS
framework but also validate our strategic approach towards
optimizing the entire workflow in multi-die FPGA design.

2) Effectiveness of Adaptive Wirelength-weighting-factor
Adjusting Method: By integrating SLL counts into the
conventional wirelength objective, the LEAPS framework
innovates with the WLW method. This method aims to
strike a balance between HPWL and SLL counts during
the GP, addressing one of the key challenges in LEAPS.
TABLE VI presents a comparative analysis of LEAPS with
the WLW method (LEAPS(with WLW)) and without the
WLW method (LEAPS(without WLW)), illustrating the
method’s effectiveness in reducing SLL counts with a minimal
impact on HPWL. Specifically, in the 1×4 SLR topology, the
WLW method achieved a notable 4.58% reduction in SLLs
with only a marginal 0.1% increase in HPWL. These results
validate the WLW method’s efficacy in achieving a delicate
balance between minimizing SLL counts and maintaining
HPWL, underscoring its importance in the LEAPS framework
for multi-die FPGA placement.

TABLE VI: Comparative Performance Analysis of the LEAPS
Framework Utilizing Versus Omitting the WLW Method in a
1×4 SLR Topology.

Design LEAPS(without WLW) LEAPS(with WLW)
SLL HPWL SLL HPWL

CLK-FPGA01 4992 1654111 4873 1658361
CLK-FPGA02 7425 1777650 7192 1777341
CLK-FPGA03 14971 4485711 14285 4487928
CLK-FPGA04 11989 3089971 10852 3094173
CLK-FPGA05 12942 3826220 11777 3821386
CLK-FPGA06 16465 4627091 15959 4625645
CLK-FPGA07 6942 1902767 6813 1905011
CLK-FPGA08 5532 1546489 4849 1545018
CLK-FPGA09 6679 1889111 6508 1891086
CLK-FPGA10 14017 3301502 13816 3301351
CLK-FPGA11 11711 3126103 11052 3138093
CLK-FPGA12 10846 2447167 10533 2453370
CLK-FPGA13 10215 3173383 10003 3172093

Norm. 1.048 0.999 1.000 1.000

VI. CONCLUSION

In this paper, we have introduced LEAPS, a comprehen-
sive and adaptable multi-die FPGA placement algorithm that
addresses the challenges of minimizing SLL counts while
optimizing essential design constraints, such as wirelength,
routability, and clock routing. Our key contributions include
a high-performance nested optimization algorithm with adap-
tive wirelength-weighting-factor adjusting, a soft floor method
for handling any multi-die FPGA SLR topology, and the con-
tinuous optimization of SLLs throughout the entire placement
process, including LG and DP stages. Experimental results
demonstrate that our method significantly outperforms the
SOTA algorithm, achieving an average reduction of 43.08%
and 9.99% in SLL counts and HPWL, respectively, and a
34.34× speedup in execution efficiency.

Future research may involve refining the LEAPS frame-
work by developing advanced optimization techniques or
employing machine learning to learn from previous place-
ment experiences. Additionally, integrating our algorithm with
other placement and routing tools could enhance seamless
interoperability and collaboration between different stages
of the FPGA design flow. In conclusion, LEAPS offers a
promising foundation for addressing challenges in multi-die
FPGA placement, setting the stage for future advancements
in this field and contributing to the ongoing development of
high-performance computing systems.

REFERENCES

[1] W. S. Kuo, S. H. Zhang, W. K. Mak, R. Sun, and Y. K. Leow, “Pin
assignment optimization for multi-2.5D FPGA-based systems,” in Proc.
ISPD, 2018, pp. 106-113.

[2] Y. C. Liao and W. K. Mak, “Pin assignment optimization for multi-
2.5D FPGA-based systems with time-multiplexed I/Os,” IEEE TCAD,
vol. 40, no. 3, pp. 494-506, Mar. 2021.

[3] F. Mao, W. Zhang, B. Feng, B. He, and Y. Ma, “Modular placement
for interposer based multi-FPGA systems,” in Proc. GLS-VLSI, 2016,
pp. 93-98.

[4] C. Ravishankar, D. Gaitonde, and T. Bauer, “Placement strategies for
2.5D FPGA fabric architectures,” in Proc. FPGA, 2018, pp. 16-20.

[5] J. Chen, W. Zhu, J. Yu, L. He, and Y.-W. Chang, “Analytical placement
with 3D Poisson’s equation and ADMM based optimization for large-
scale 2.5D heterogeneous FPGAs,” in Proc. ICCAD, 2019, pp. 1-8.

[6] R. Raikar and D. Stroobandt, “Multi-die heterogeneous FPGAs: How
balanced should netlist partitioning be?” in Proc. SLIP, 2022, pp. 1-7.

[7] C. Pui, G. Chen, W. Chow, K. Lam, J. Kuang, P. Tu, H. Zhang, E.
F. Y. Young, and B. Yu, “RippleFPGA: A routability-driven placement
for large-scale heterogeneous FPGAs,” in Proc. ICCAD, 2016, p. 67.

[8] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” IEEE TCAD, vol.
37, no. 4, pp. 869-882, 2018.

[9] Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Gréwal, S.
Areibi, and A. Vannelli, “GPlace3.0: Routability-driven analytic placer
for UltraScale FPGA architectures,” ACM TODAES, vol. 23, no. 5, pp.
66:1–66:33, 2018.

[10] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam, W. Cai, and E.
F. Y. Young, “Ripple 2.0: High quality routability-driven placement via
global router integration,” in DAC, 2019, pp. 1-6.

[11] W. Li, Y. Lin, M. Li, S. Dhar, and D. Z. Pan, “UTPlaceF 2.0: A high-
performance clock-aware FPGA placement engine,” ACM TODAES,
vol. 23, no. 4, pp. 42:1-42:23, 2018.

[12] Y.-C. Kuo, C.-C. Huang, S.-C. Chen, C.-H. Chiang, Y.-W. Chang,
and S.-Y. Kuo, “Clock-aware placement for large-scale heterogeneous
FPGAs,” in Proc. ICCAD, 2017, pp. 519-526.

[13] W. Li, M. E. Dehkordi, S. Yang, and D. Z. Pan, “Simultaneous
placement and clock tree construction for modern FPGAs,” in Proc.
FPGA, Feb. 2019, pp. 132-141.

[14] C. Pui, G. Chen, Y. Ma, E. F. Y. Young, and B. Yu, “Clock-aware ul-
trascale FPGA placement with machine learning routability prediction:
(invited paper),” in Proc. ICCAD, IEEE, 2017, pp. 929-936.

[15] J. Chen, Z. Lin, Y. Kuo, C. Huang, Y. Chang, S. Chen, C. Chiang, and S.
Kuo, “Clock-aware placement for large-scale heterogeneous FPGAs,”
IEEE TCAD, vol. 39, no. 12, pp. 5042-5055, 2020.

[16] Y. Meng, W. Li, Y. Lin, and D. Z. Pan, “elfPlace: Electrostatics-based
placement for large-scale heterogeneous FPGAs,” IEEE TCAD, vol. 41,
no. 1, pp. 365-378, Jan. 2022.

[17] J. Mai, Y. Meng, Z. Di, and Y. Lin, “Multi-electrostatic FPGA place-
ment considering SLICEL-SLICEM heterogeneity and clock feasibil-
ity,” in Proc. DAC, Jul. 2022, pp. 649-654.

[18] J. Mai, J. Wang, Z. Di, G. Luo, Y. Liang, and Y. Lin, “OpenPARF:
An open-source placement and routing framework for large-scale
heterogeneous FPGAs with deep learning toolkit,” in Proc. ASICON,
2023.

[19] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “DREAMPlace: Deep learning toolkit-enabled GPU acceleration
for modern VLSI placement,” IEEE TCAD, June 2020.

[20] R. S. Rajarathnam, M. B. Alawieh, Z. Jiang, M. Iyer, and D. Z. Pan,
“DREAMPlaceFPGA: An open-source analytical placer for large scale
heterogeneous FPGAs using deep-learning toolkit,” in ASP-DAC, 2022,
pp. 300-306.

[21] W. Li and D. Z. Pan, “A new paradigm for FPGA placement without
explicit packing,” IEEE TCAD, vol. 38, no. 11, pp. 2113-2126, 2019.

[22] S. Chen and Y. Chang, “Routing-architecture-aware analytical place-
ment for heterogeneous FPGAs,” in Proc. DAC, ACM, 2015, pp.
27:127:6.

[23] T. Liang, G. Chen, J. Zhao, L. Feng, S. Sinha, and W. Zhang, “AMF-
Placer: High-performance analytical mixed-size placer for FPGA,” in
Proc. ICCAD, 2021, pp. 1-6.

[24] S.-J. Lee and K. Raahemifar, “FPGA placement optimization method-
ology survey,” in CCECE, IEEE, 2008, pp. 001 981-001 986.

[25] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and challenges in VLSI
placement research,” Proceedings of the IEEE, vol. 103, no. 11, pp.
1985- 2003, 2015.

[26] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “TSV-aware analytical
placement for 3-D IC designs based on a novel weighted-average
wirelength model,” IEEE TCAD, vol. 32, no. 4, pp. 497-509, 2013.

[27] R. Andreani, E. G. Birgin, J. M. Martı́nez, and M. L. Schuverdt, “On
augmented lagrangian methods with general lower-level constraints,”
SIAM Journal on Optimization, vol. 18, no. 4, pp. 1286–1309, 2008.

