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Congestion Estimation for 3-D Circuit Architectures
Lerong Cheng, William N. N. Hung, Guowu Yang, and Xiaoyu Song

Abstract—Three-dimensional (3-D) routing is an important step
in deep submicrometer very large-scale integrated design. Given a
3-D grid graph and a set of two-terminal nets to be routed, we pro-
pose a probabilistic model to calculate the routing density (conges-
tion) on each edge of the grid graph. The routing density provides
a direct congestion estimation. Our experimental results demon-
strate the effectiveness of the method on routing benchmarks.

Index Terms—Estimation, probabilistic methods, routing.

I. INTRODUCTION

ROUTING plays a critical role in the high performance
deep submicrometer very large-scale integrated (VLSI)

design process [10], [11]. Under the current technology, appli-
cation-specific integerated circuit (ASIC) designs are frequently
implemented with four to six layers of metals [10]. Most printed
circuit boards (PCBs) and multichip modules (MCMs) use mul-
tiple layers where their logic cells occupy the bottom layers and
their interconnects are routed in upper metal layers [2], [10].
Three-dimensional (3-D) layouts [2], [5], [8], [12], [13] and
placement [3] were considered for VLSI. Three-dimensional
architectures have also been proposed for field-programmable
gate arrays (FPGAs) [7], [9] and reconfigurable computing [1].

A probabilistic model of interconnect routing will enable de-
signers to quickly compute estimates of the routing conges-
tion. There has been some work on probabilistic models. Lou
et al. [6] presented a fast probabilistic estimation for conges-
tion. They assumed each net uses the shortest route and each
possible route has the same usage probability. Based on such as-
sumption, they estimate the congestion for the routing area. The
previous probabilistic approaches are not sufficiently accurate
as the shortest routes are merely considered in their restricted
models. A more precise prediction should incorporate conges-
tion-related detouring in the model to reflect the actual practice.

In this brief, we consider the following problem: Given a
3-D grid graph and a set of two-terminal nets to be routed, we
propose a probabilistic model to calculate the routing density
(congestion) on each edge of the grid graph. The routing den-
sity provides a direct congestion estimation. Our method is the
first attempt to model 3-D congestion. The experimental results
demonstrate the effectiveness of the method on routing bench-
marks.
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II. PROBLEM DEFINITION

Without loss of generality, we model a 3-D routing region
by where

, and are nonnegative integers. Within the discrete
routing space, the set of lines including the rectangle bound-
aries is called the grid (or the grid graph) and the lines are called
grid lines. An intersection between grid lines is referred to as a
grid point. We denote the set of all grid points by . A subset
of is referred to as terminal points. A terminal is denoted
by a 3-tuple of the coordinate values
of . An edge is a small interval connecting two adjacent grid
points along one of the three dimensions. In this brief we also
refer to an edge as a unit line. A route is a set of consecutively
adjacent edges connecting two grid points.

The set of terminal points is partitioned into sets,
. Each set is called a net. Hence, a net is

a collection of terminals to be interconnected together. Nets
containing exactly two terminals are called two-terminal nets;
otherwise, they are called multiterminal nets. In this brief, we
restrict our discussion on two-terminal nets. Our model can
be extended to handle the case for multiterminal nets using
rectilinear Steiner trees or minimum spanning trees.

Given any two-terminal net, with terminals and
, we can apply a coordinate transformation on the en-

tire routing region so that the two terminals become (0, 0, 0)
and , where .
Terminal (0, 0, 0) is the start terminal and terminal is
the end terminal of the net. The direction of the route is from the
start terminal to the end terminal. A route segment is a intercon-
nect connecting two grid points (not necessarily adjacent to each
other) along one of the three dimensions. The direction of the
route segment is from one grid point to the other grid point. A
forward segment is a route segment which goes positively along
its dimension. A reverse segment is a route segment which goes
negatively along its dimension. The reverse segments are also
called detours.

Since we do not restrict the net route with the shortest length,
the routes may not be monotonic, i.e., may not always use for-
ward segments. If a route contains reverse segments, it will in-
crease the total interconnect length, thus increasing path delay.
To limit the interconnect length, we assume the route is either
shortest path (monotonically increasing route) or have a limit
length detour (detour length ) and the detour can go in only
one dimension. By allowing detours, the legal routing space for
each net is actually extended beyond the bounding cube. Fig. 1
shows an extended routing cube. For each net, the detour can
happen many times, but they all have to be in the same dimen-
sion for that net. However, different nets can have detours in
different dimensions. We define the density of an edge as the
number of possible routes that go through this edge. Given the
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Fig. 1. Extended routing cube with detour of length d.

above routing model, our problem is to calculate the density of
all the edges in the entire routing region .

III. DENSITY ESTIMATION

For a two-terminal net , assume there are possible
routes, and for a unit line , assume there are such routes
passing though it. Therefore, the density of the unit line under
the two terminal net is . The estimated
density for each unit line is: .

Let us define as the number of routes that go mono-
tonically from to . Since there are unit lines
in -dimension, unit lines in -dimension, and unit lines in

-dimension. We use to represent such unit lines. Each
route is correspondent to a combination that we put ’s,

’s, and ’s in a series. The number of such combination is
, where . Hence

otherwise.

Let us define as the number of routes that: 1)
go from (0, 0, 0) to ; and 2) have detour only in the

-dimension and the total detour length is .
Lemma 1:

Proof:

Case 1) : The route is monotonic, hence the lemma.
Case 2) : In this case, the route is nonmonotonic,

as shown in Fig. 2. There are unit lines
in -dimension, unit lines in -dimension and

unit lines in -dimension, and unit lines in
detour. We use and to represent such
unit lines respectively. Each route corresponds to
a combination such that and are put in
a series and and can not be adjacent to each
other. For instance, the route presented in Fig. 2 is

.
To compute the number of such combinations, we first put
’s and ’s in a series, there are such combinations.

Fig. 2. Nonmonotonic route in f .

Later, we insert the ’s and ’s in the series. There are
places for ’s and ’s. We pick of them. There are
choices. In the chosen places, we pick to put ’s and the
other to put ’s. There are choices.

For the example route in Fig. 2, there are three ’s and one
. They are put as . We pick four of the places to put
’s and ’s. In the four picked places, we choose two out of

four to put ’s and the other two to put ’s. Such as
, where denotes an unpicked place, denotes

a place picked to put and denotes a place picked to put .
And then, we have to divide ’s into groups and

also divide R’s into groups. For the first task, dividing
’s into groups is the same as inserting breaks into

places. Therefore, there are such combinations.
For the second task, there are combinations that ’s are
divided into groups.

Moreover, it is obvious that the range of and are
. If we multiply all of the above choices, we

arrive at . This is
the total number of routes, and can be simplified as

(1)

Among the terms of (1), can be simplified to:
. We can substitute it to (1), and simplify to

(2)

We now show that the last summation term of (2) can be re-
duced.

First we want to show that

(3)

Consider the term in the polynomial where
its coefficient is . We also consider the same term in the
polynomial . It is known that

So, the coefficient of the term in the polynomial
is . Notice that

, we obtain: . Hence the (3)
holds. Now, let

. For the last summation term of (2), we
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know that . Also, when Therefore,
the last summation term of (2), , can

be reduced to . Thus, formula (2) can be reduced to

This is precisely the total number of routes that we stated in
our lemma.

In the same manner, we define as

Let us define as the total number of
routes going from (0, 0, 0) to with the detour length .
When total number is . When , it is equal
to: .

Let us define as the number of routes that: 1)
go from to ; 2) have detour in the -dimension
and the total detour length is ; and 3) have a segment con-
necting the point i n the -dimension and it is the de-
tour segment. Based on ideas similar to Lemma 1, we can see
that is 0 when . When , it is equal to

.
We now define ,

and . They all count the number of routes
that go from (0, 0, 0) to and has a detour in the

-dimension and the total detour length is . Their differences
are in the segment that connect to (0, 0, 0). For , this
segment is in the -dimension and is NOT the detour segment.
For and , this segment is in the and dimension
respectively. For , this segment is simply NOT in the

-dimension. Thus, the set of routes counted by is the
union of the set of routes counted by and . Also, the
sets of routes counted by and are disjoint.

We define as the number of routes that: 1) go
from to ; 2) have detour in -dimension and the
total detour length is ; and 3) have a segment connecting the
point in the -dimension. We also define in a way
similar to .

Given as evaluated in Lemma 1, we can compute
the values of the following by exchanging coordinates:

We have

We can also deduce that equals
when . In case , it is equal to

, which is the same as

Definition 1: represent the number of
routes that have the following features: 1) it goes from
to ; 2) the total detour length is ; and 3) it passes through
the unit line connecting the point and .

Now let us consider in the following range:
.

Theorem 1:

otherwise

where equals

is equal to .
is equal to
.

is equal to

is equal to

is equal to



658 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS , VOL. 51, NO. 12, DECEMBER 2004

Proof: The evaluation of is divided into five cases.

• The unit line is not in the usage area.
• The route is monotonic. The route will first reach the point

, passes through the unit line and then goes
from to .

• The unit line is connecting the start point or end point. The
start point and end point cases are symmetric, so it is the
sum of , and .

• The unit line is connecting the start point or end point, and
it is the detour segment. The start point and end point cases
are symmetric, so it is equal to .

• Otherwise, we divide to four subcases: (1) The detour goes
-dimension. (2) The detour goes -dimension. (3) The

detour goes -dimension and the unit line is not in the
detour segment. (4) The detour goes -dimension and the
unit line is in the detour segment.

All of the above cases have been evaluated in previous lemmas.
Hence we prove Theorem 1.

Similarly, we can define and by coordinate transforma-
tions from

where

where .
After computing the number of routes, we can compute the

density of each unit lines.
Definition 2: is the density of the unit

line connecting the point and under the
two terminal net.

Theorem 2:

Here, is the weight factor of the route
whose detour length is . We add such weight factor because in
practice, the longer route will have smaller usage probability.
The details of such weight factor can be adjusted by users.

We can also define and and compute them in a
similar way. The weight factor of can be scaled by a factors
less than 1 to account for different characteristics of wiring in
the dimension. We have focused on congestion estimation
of two-terminal nets. We can also handle multiterminal nets by
transforming them into two-terminal nets using Steiner trees or
other methods.

IV. EXPERIMENTS

We used a random number generator to randomly construct
a set of 3-D routing benchmarks. The random data are gener-
ated using a random number generator where all terminals are
randomly placed within a 3-D routing region. We then create

TABLE I
THREE-DIMENSIONAL ROUTING DENSITIES

an extended routing cube with detour of length d as described
in Fig. 1. The extended routing cube is then used for both the
heuristic router and our congestion estimation. For each bench-
mark, we compute the routing density for each edge as described
in previous section, using a weight function . We then
used a heuristic 3-D maze router [10] to draw out the routing
paths for each benchmark. The router will attempt to connect
terminals with a shortest path, and will also attempt to relax
the constraints and route with a longer path. The capacity of all
edges is 1 for detailed routing. Consequently, we obtained the
densities of the edges that were routed (by the heuristic router)
as well as the densities of the edges that were not routed.

The result is shown in Table I. The “Dimension” column
shows the size of the 3-D routing space where are the
maximum index (counting from 0) for their corresponding axis.
The “ ” column shows the maximum number of detours al-
lowed. The “Nets” column indicates the number of nets routed
in each benchmark. Based on results from the heuristic router,
we divide all the edges in the 3-D cube into two groups: routed
edges and unrouted edges. We then choose a threshold density

to see how much percentage of routed edges have density
lower than , and how much percentage of unrouted edges
have density higher than ( was chosen such that these per-
centages are comparable). The above two percentages indicate
routed and unrouted edges with overlapping densities, i.e., hard
to differentiate. The worst case is roughly 39% from our exper-
iments. For all benchmarks, the average density of routed edges
is higher than the average density of unrouted edges. This is a
good indication that the routing heuristic is in agreement with
the density estimation.

To better understand the result, we take the largest bench-
mark ( with 3757 nets)
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Fig. 3. Density distribution for X = 100; Y = 100;Z = 6; d = 0 with
3757 nets.

and divide the edge densities into several consecutive ranges:
. We tally the routed edges

and the total number of edges for each density range, and plot
the result in Fig. 3. The dashed exponentially decreasing line
(with triangular markers) shows the percentage of edges in each
sampling range out of total number of edges in the routing space.
It is natural to see that the majority (highest percentage) of edges
in the routing space have low densities, and this percentage
decreases exponentially as we increase the density sampling
range. The solid increasing solid line represents the percentage
of routed edges out of all edges within each density sampling
range. As the density increases, the percentage of routed edges
(in that density range) also increases. However, the percentage
fluctuates noticeably in high density sampling ranges. This is
due to the diminishing (smaller and smaller) number of edges
as the sampling range increases. So the statistical variation be-
comes more significant for these high density edges. This is be-
cause the heuristic router is choosing only one routing path for
each net. The densities are computed considering all the pos-
sible routing paths of each net. The routing path chosen by the
heuristic router does not necessarily contain the edge with the
highest density. Nevertheless, the general trend from the graph
indicates that there is a high likelihood that larger density edges
are actually routed.

To further demonstrate the effectiveness of our approach, we
used routing benchmarks from Profs. Sarrafzadeh and Kastner
[4], and compared our congestion estimation with results from
their global router [4]. The results are shown in Table II. The
“Nets” column shows the number of nets for each benchmark.
The “Grid” column indicates the grid size (dimension). The
“Capacity” column shows the max. number of nets allowed
for each vertical (V) and horizontal (H) edge. We compute the
density of each edge (with or without detour) and compare
them with the actual density (number of routed nets) created by
the router. The absolute difference between our two estimation
methods and the actual density is shown in the “without detour”

TABLE II
GLOBAL ROUTING DENSITIES

and “with detour” columns for horizontal (H) and vertical (V)
edges. In general, the absolute difference between estimation
without detour and the actual routing is higher than the differ-
ence between estimation with detour (and the actual routing).
This is a good indication that congestion estimation with detour
is a better than without detour.

V. CONCLUSION

In this brief, we proposed a probabilistic model to calculate
the routing density (congestion) on each edge of a 3-D grid
graph. The routing density provides a direct congestion estima-
tion. Our experimental results demonstrate the effectiveness of
the method on routing benchmarks. Our work is the first method
for density (congestion) estimation in 3-D routing.
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