
ar
X

iv
:c

s/
04

02
05

4v
3 

 [c
s.

C
R

]  
1 

D
ec

 2
00

4
1

On the Security of the Yi-Tan-Siew Chaotic Cipher
Shujun Li, Guanrong Chen,Fellow, IEEEand Xuanqin Mou

Abstract— This paper presents a comprehensive analysis on
the security of the Yi-Tan-Siew chaotic cipher proposed in [1].
A differential chosen-plaintext attack and a differential chosen-
ciphertext attack are suggested to break the sub-keyK, under the
assumption that the time stamp can be altered by the attacker,
which is reasonable in such attacks. Also, some security Problems
about the sub-keysα and β are clarified, from both theoretical
and experimental points of view. Further analysis shows that the
security of this cipher is independent of the use of the chaotic tent
map, once the sub-keyK is removed via the proposed suggested
differential chosen-plaintext attack.

Index Terms— chaotic cryptography, tent map, differential
cryptanalysis, chosen-plaintext attack, chosen-ciphertext attack.

I. I NTRODUCTION

SINCE the 1990s, chaotic cryptography has attracted more
and more attention as a promising way to design novel

ciphers, and this research has become more intensive in recent
years [2, Chap. 2]. To evaluate the security performance
of chaotic ciphers and to clarify some design principles,
cryptanalysis plays an important role.

This paper analyzes the security of the recently-proposed
Yi-Tan-Siew chaotic cipher [1] and points out some defects
existing in this cipher:

1) the sub-keyK can be removed by a differential chosen-
plaintext attack and a differential chosen-ciphertext at-
tack, under the assumption that the time-stampt can be
altered by the attacker;

2) the sub-keyβ should not be contained in the secret key
due to its poor contribution to the security of the cipher;

3) the noise vectors{Uj} used in the encryption/decryption
functions do not have a uniform distribution, which
downgrades the security of the cipher by limiting the
value of the sub-keyα;

4) when the aforementioned differential chosen-plaintext
(or chosen-ciphertext) attack is used, the security of the
cipher is independent of the chaotic map, but depends on
the mixture of three operations from different algebraic
groups.

The first two defects mean that the claimed key(α, β, γ,K)
collapses to be(α, γ). Note that the second and third defects
were implicitly mentioned in Sec. III-B of [1] without con-
vincing explanations. This paper will give a comprehensive
analysis on all the four security defects.
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The rest of this paper is organized as follows. The next
section gives a brief introduction to the Yi-Tan-Siew chaotic
cipher. Then, the first two defects of the cipher are discussed
in Sec. III. The other two defects are analyzed in Secs. IV and
V, respectively. The last section concludes the paper.

II. Y I-TAN-SIEW CHAOTIC CIPHER

This proposed cipher is atime-variantblock cipher based
on the chaotic tent map. Each block has4n bits, and the
encryption function changes as the iteration evolves. Given
a plaintextP = (P1, · · · , Pj , · · · , Pr) and the corresponding
ciphertextC = (C1 · · · , Cj , · · · , Cr), wherePj andCj are
both 4n-bit blocks, the cipher is described as follows.

• The employed chaotic tent mapis an extended version of
the normal skew tent mapFα:

G(α,β) : xi =

{

Fα(xi−1), if 0 < xi−1 < 1,

β, otherwise,
(1)

where

Fα : xi =

{

xi−1/α, 0 ≤ xi−1 ≤ α,

(1 − xi−1)/(1− α), α < xi−1 ≤ 1.
(2)

• The secret keywas claimed to be a 4-tuple key
(α, β, γ,K), whereγ is used to generate a secret initial
conditionx0 of G(α,β) as follows:

x0 = F 4n
γ

(
10⌊log10

t⌋

t

)

. (3)

Here, t representes the current time-stamp transmitted
over a public channel. Sinceγ is only used to generate
x0, the secret key can also be considered as(α, β, x0,K).
Based on the secret key, the following secret functions are
calculated for the encryption/decryption procedures:

1) A sequence of4n-bit noise vectors Uj =
(u4jn, u4jn+1, · · · , u4jn+4n−1) (j = 0, 1, 2, · · · , )
are generated from the digital chaotic orbit1 of the
extended tent mapG(α,β) with the following rule:

ui =

{

0, 0 ≤ xi ≤ α,

1, α < xi ≤ 1.
(4)

2) A sequence of secret permutationswji (j =
0, 1, 2, · · · ; i = 1, · · · , n) are generated from
Uj and the sub-keyK, as follows: Vj =
(vj1, vj2, · · · , vjn) = Uj ⊕ K, where eachvji
corresponds to a functionwji that represents a
permutation of four integers{1, 2, 3, 4} (following
Table 1 of [1]).

1In this paper, the term “digital chaotic orbit” is used to denote the orbit
of a chaotic map realized in a digital computer [2, Chap. 2.5].
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3) A sequence of secret bit-permutation functionsfj =
fjn ◦ · · · ◦ fj1 (j = 0, 1, 2, · · · ) are generated as
follows:

fji(X) = fji(M1,M2,M3,M4)

= [wji(M1,M2,M3,M4)] ≪ 1, (5)

whereX = M1× 23n+M2× 22n+M3× 2n+M4

and “≪ 1” is the 1-bit circular left-shift operation.
4) Another sequence of permutation functionsf−1

j =

f−1
j1 ◦ · · · ◦ f−1

jn are generated as follows:

f−1
ji (X) = f−1

ji (M1,M2,M3,M4) =

[w−1
ji (M1,M2,M3,M4)] ≫ 1, (6)

where f−1
ji is the inverse function offji, i.e.,

f−1
ji (fji(X)) = X , and “≫ 1” is the 1-bit circular

right-shift operation.

• The initialization procedure: C0 = U0, P0 = U1.
• The encryption procedure:

Cj = fj−1 (Pj ⊕ (Cj−1 ⊞ Uj+1))⊕ (Pj−1 ⊞ Uj+1) ,
(7)

where⊕ denotes XOR anda⊞ b := (a+ b) mod 24n.
• The decryption procedure:

Pj = f−1
j−1 (Cj ⊕ (Pj−1 ⊞ Uj+1))⊕ (Cj−1 ⊞ Uj+1) .

(8)

III. R EDUCTION OFKEY SPACE

This section discusses the reduction of the key space of the
Yi-Tan-Siew cipher, i.e., its first two security defects.

A. The Differential Chosen-Plaintext Attack for ReducingK

To break the Yi-Tan-Siew cipher via a chosen-plaintext
attack, the attacker has to maket fixed during the attack,
i.e., to make the sub-keyx0 and the noise vector sequence
{Uj} fixed. This can be done by intentionally altering the
local clock of the encryption machine, which is generally
available since the attacker can access the encryption machine
in chosen-plaintext attacks [3]. Ift is generated from a public
time service, the attacker can simply altering the time signal
transmitted over the public channel to altert. In the following,
therefore, assume thatt is fixed for all chosen plaintexts.

Assume{P1, · · · , Pj−1, Pj} and {P1, · · · , Pj−1, P
′
j} are

two plaintexts. The difference of the ciphertexts is as follows:

∆Cj = Cj ⊕ C′
j = fj−1 (Pj ⊕ (Cj−1 ⊞ Uj+1))

⊕ fj−1

(
P ′
j ⊕ (Cj−1 ⊞ Uj+1)

)
.(9)

AssumeCUj = Cj−1 ⊞ Uj+1. Then, Eq. (9) is reduced to

∆Cj = fj−1 (Pj ⊕ CUj)⊕ fj−1

(
P ′
j ⊕ CUj

)
. (10)

Now, consider such a question:what can one observe from
∆Cj , if Pj andP ′

j have only one different bit?Assume that

Pj =
(
p4jn, · · · , p4jn+i, · · · , p4jn+(4n−1)

)
,

P ′
j =

(
p4jn, · · · , p4jn+i, · · · , p4jn+(4n−1)

)
,

andCUj = (cu0, · · · , cu4n−1). It is obvious thatPj ⊕ CUj

andP ′
j ⊕ CUj also have only one different bit at the same

position i. Thus, further assuming that

Pj ⊕ CUj = (p′4jn, · · · , p
′
4jn+i, · · · , p

′
4jn+(4n−1)),

P ′
j ⊕ CUj = (p′4jn, · · · , p

′
4jn+i, · · · , p

′
4jn+(4n−1)),

one has

∆Cj = fj−1(p
′
4jn, · · · , p

′
4jn+i, · · · , p

′
4jn+(4n−1))

⊕ fj−1(p
′
4jn, · · · , p

′
4jn+i, · · · , p

′
4jn+(4n−1)).

Considering fj−1 is a bit-permutation function, one
has fj−1 (Pj ⊕ CUj) = (p′4jn+I0

, · · · , p′4jn+Il
=

p′4jn+i, · · · , p
′
4jn+I4n−1

), and fj−1

(
P ′
j ⊕ CUj

)
=

(p′4jn+I0
, · · · , p′4jn+Il

= p′4jn+i, · · · , p
′
4jn+I4n−1

), where
I0 ∼ I4n−1 ∈ {0, 1, · · · , 4n − 1} denote the permuted
positions of the4n bits p′4jn ∼ p′4jn+(4n−1). As a result,

∆Cj = (

4n−l
︷ ︸︸ ︷

0, · · · , 0, 1,

l−1
︷ ︸︸ ︷

0, · · · , 0) = 2l−1, (11)

which means that thei-th bit of ∆P = Pj ⊕ P ′
j is permuted

to the l-th bit of ∆C = Cj ⊕ C′
j by fj−1.

From the above discussion, one can immediately conclude
that given the following(4n+1) plaintexts containingj plain-
blocks, the secret bit-permutation functionfj−1 can be exactly
reconstructed:

P (∗) = (P ∗, · · · , P ∗, P ∗),

P (1) = (P ∗, · · · , P ∗, P1),

· · ·

P (l) = (P ∗, · · · , P ∗, Pl),

· · ·

P (4n) = (P ∗, · · · , P ∗, P4n),

where P ∗ ⊕ Pl = 2l−1. To get all r secret permutation
functionsf0 ∼ fr−1 for the decryption of ciphertexts whose
sizes are not larger thanr, the number of required plaintexts
is (4n+ 1)× r.

Since the sub-keyK is used only to determine{fj}
(together withUj), the reconstruction off0 ∼ fr−1 means
the reduction ofK from the whole secret key(α, β, γ,K).

Note that it is generally difficult to deriveVj from fj , due to
the strong mixing ofvji and the bit-shifting operations. That
is, it is generally difficult to deriveK from fj , even whenUj

is known to the attacker.

B. The Differential Chosen-Ciphertext Attack for ReducingK

Due to the similarity of the encryption and decryption
procedures, the above differential chosen-plaintext attack can
be easily generalized to a differential chosen-ciphertextattack.
Here, the attacker can makex0 fixed during the attack by
altering t transmitted over the public channel, which is pos-
sible since generally the attacker has a full control of the
public channel. In the differential chosen-ciphertext attack,
one can replace the(4n + 1) × r chosen plaintexts in the
above differential chosen-plaintext attack with(4n + 1) × r
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chosen ciphertexts. As a result, one can get allr inverses
permutation functions,f−1

0 ∼ f−1
r−1, which is equivalent to

the r permutation functions,f0 ∼ fr−1.

C. Reduction ofβ

In Sec. III-B of [1], it was said that “most likely,β does
not act in the encryption and decryption processes”, without
any explanation. Here, we will theoretically verify this claim.

In the extended tent mapGα,β , β will have to make
influence on the cipher only afterx = 0 or 1. However,
the possibility thatx = 0 or 1 is so tiny that the impact of
β on the encryption/decryption procedures is computationally
negligible from the Probabilistic point of view.

Without loss of generality, assume that the mapGα,β is
realized in n-bit computing precision and that the digital
chaotic orbit distributes uniformly in the discretized space,
which is reasonable due to the uniform invariant density
function of the skew tent map [4]. So, the Probability that
x = 0 or 1 is p = 2/2n = 1/2n−1. As a result, from the
mathematical expectation of the geometric distribution [5], the
average position of the first occurrence of the above event
(x = 0 or 1) is 1/p = 2n−1.

For single-precision floating-point arithmetic,n = 30 (two
sign bits are excluded), averagely229 = 512M iterations
are needed to activate the influence ofβ on the encryp-
tion/decryption procedures. This means averagely229/8 =
64M leading bytes of the ciphertext can be successfully
decrypted without any knowledge ofβ. Similarly, when the
double-precision floating-point arithmetic (n = 62) is used, the
condition will become much worse: averagely261/8 = 2GG
leading cipher-bytes can be decrypted without knowingβ.

Therefore, in most (if not all) cases,β is not meaningful
in the key. In fact, it is just a trivial parameter (not part of
the secret key) to avoid the digital chaotic orbit of the normal
skew tent mapFα to fall into the fixed pointx = 0.

As a summary, under the above differential chosen-plaintext
attack, the original key(α, β, γ,K) collapses to be(α, γ).
When the differential chosen-plaintext attack is impossible,
the original key(α, β, γ,K) collapses to be(α, γ,K).

IV. N ON-UNIFORMITY OF NOISE VECTORUj

In the encryption procedure of the Yi-Tan-Siew cipher, the
noise vectorUj+1 is used to mask the plaintextPj together
with the previous plaintextPj−1 and the previous cipher-
text Cj−1. To enhance the potential capability of resisting
statistics-based attacks [3], it is desirable thatUj distributes
uniformly in the discrete space

{
0, · · · , 24n − 1

}
. However,

as mentioned in Sec. III-B of [1],Uj does not distributes
uniformly whenα is close to 0 or 1. As a suggestion,0.49 <
α < 0.5 was suggested in [1]. However, neither theoretical
nor experimental analysis is given in [1] to support this claim.

In this section, we investigate the theory underlying the
non-uniformity of Uj over

{
0, · · · , 24n − 1

}
. In addition, it

is pointed out that the non-uniformity ofUj is also very
significant whenα = 0.5, which was not noticed in [1].
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Fig. 1. The occurrence frequency ofUj = a ∈ {0, · · · , 255}, when
(α, β, x0) = (0.1, 0.7, 0.3) (1000 samples).

A. Non-Uniformity ofUj whenα 6= 0.5

In this subsection, it is shown that whenα 6= 0.5, the closer
the α is to 0 or 1, the more severe the non-uniformity ofUj

will become. Strictly speaking,α 6= 0.5 can never lead to a
uniform distribution.

Similar to Sec. III-C, assume again that the digital chaotic
orbit of the mapGα,β distributes uniformly in the discretized
space. It is then easy to deduce the following two Probabilities:

Prob{ui = 0} = α,Prob{ui = 1} = 1− α. (12)

The above equations mean thatUj will contain more 0-
bits than 1-bits whenα > 0.5, and more 1-bits than 0-
bits when α < 0.5. That is, Uj does not have a uni-
form distribution over

{
0, · · · , 24n − 1

}
if α 6= 0.5. When

(α, β, x0) = (0.1, 0.7, 0.3) and n = 2, for example, under
double-precision floating-point arithmetic, Figure 1 gives an
experimental curve of the occurrence frequency ofUj with
different values between 0 and24n − 1 = 28 − 1 = 255. It
can be seen that the frequency ofUj = 255 = (11111111)2
is close to 0.5 but many others are almost 0.

Under the assumption that all bits inUj are independent
each other,∀a ∈ {0, · · · , 24n − 1}, one can theoretically de-
duce the Probability ofUj = a: Prob{Uj = a} = αN0(a)(1−
α)4n−N0(a), whereN0(a) ∈ {0, · · · , 4n} denotes the number
of 0-bits in a. In total there are(4n + 1) different values in
all 24n Probabilities:Prob(0) = α4n, Prob(1) = α4n(1−α),
· · · , Prob(i) = α4n−i(1− α)i, · · · , Prob(4n) = (1− α)4n.

The non-uniformity of eachUj is useful for an attacker
to get its value more quickly via a specially-designed guess
order. Since the secret bit-permutation functions{fj−1} can be
reconstructed under chosen-plaintext attack (recall Sec.III-A),
the attacker can successfully decrypt any ciphertext once{Uj}
are obtained. That is,({Uj}, {fj}) can be considered as an
equivalent of the original secret key(α, β, γ,K).

To find the right value of eachUj , the following guess order
of Uj = a is suggested:∀a ∈ A0∪A4n, · · · , ∀a ∈ Ai∪A4n−i,
· · · , ∀a ∈ A2n, whereAi (i = 0 ∼ 2n) denotes the set of all
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Com(α) =
∑2n−1

i=0

(

Prob(i) ·

(

H(i) +
∑(4ni )

m=0
m

)

+ Prob(4n− i) ·

(

H(i) +

(
4n

i

)

+
∑( 4n

4n−i)

m=0
m

))

+ Prob(2n) ·

(

H(2n) +
∑(4n2n)

m=0
m

)

=
∑2n−1

i=0

(

(Prob(i) + Prob(4n− i)) ·

(

H(i) +

(
4n
i

) ((
4n
i

)
+ 1
)

2

)

+ Prob(4n− i) ·

(
4n

i

))

(13)

+ Prob(2n) ·

(

H(2n) +

(
4n
2n

) ((
4n
2n

)
+ 1
)

2

)
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Fig. 2. log2(Com(α)) vs. α ∈ {0.01, · · · , 0.01 × i, · · · , 0.99}.

4n-bit binary integers that containi 0-bits. With such a guess
order, the average number of searched integers (i.e., the guess
complexity)Com(α) can be calculated with Eq. (13), where
H(i) denotes the number of previous searched integers:

H(i) =

i−1∑

l=0

(
4n

l

)

+

i−1∑

l=0

(
4n

4n− l

)

= 2

i−1∑

l=0

(
4n

l

)

. (14)

When n = 16, for instance, the relationship between the
calculated complexity and the value ofα is shown in Fig.
2. Note that there exist calculation errors2 that make each
log2(Com(α)) a little less than the real value, but this fact
does not influence the following qualitative analysis. From
the experimental data given in Fig. 2, one can see that the
complexity is much less than24n−1 = 263 (the complexity of
the brute-force guess of a uniformly-distributed4n-bit integer)
whenα is close to 0 or 1. Apparently, the closer theα is to 0
or 1, the weaker the sub-keyα will be. As a result, to ensure
the security of the Yi-Tan-Siew cipher, the sub-keyα has to be
constrained in[α0, 1 − α0] ⊂ (0, 1), whereCom(α0) should
be cryptographically large. This, however, will further reduce
the key space to some extent.

In [1], 0.49 < α < 0.5 is suggested to avoid this security
defect. In this case, 1-bit will always occur with a higher

2The errors are natural results of the unavoidable accumulation of the
intermediate quantization errors.

Probability than 0-bit, sinceProb{ui = 1} = 1 − α >
Prob{ui = 0} = α. So, one can guess the value of each
Uj with a different order:A0 → · · · → A4n. Although
Prob{ui = 1}−Prob{ui = 0} = 1−2α ∈ (0, 0.02) is not so
much, the guess complexity will still be less than the simple
brute-force search. From such a point of view,0.49 < α < 0.5
should be replaced by its balanced version:|α− 0.5| < 0.01.

B. Non-Uniformity ofUj whenα = 0.5

From the discussion given above,α = 0.5 seems to be
the best parameter to generate uniformly distributed{Uj}
that should maximize the value ofCom(α). Unfortunately,
according to our previous studies on the digital dynamics of
piecewise-linear chaotic maps (PWLCM) realized in fixed-
point arithmetic [2, Chap. 3],α = 0.5 is the worst parameter
from the viewpoint of dynamical degradation occurring in the
discretized space, which destroys the uniform distribution of
the generated pseudo-random numbers.

Actually, as a special case of the digital PWLCM, the
digital chaotic orbit ofG0.5,β can be theoretically analyzed,
which is similar to but a little more complex than the orbit
of F0.5. Without loss of generality, assume that the least
significant bit of x0 is the nx0

-th bit after the dot, i.e.,
x0 = (0.a1a2 · · · anx0

)2, whereanx0
= 1. To facilitate the

following discussion,nx0
is called thebinary precisionof x0.

Substitutingα = 0.5 into the equation ofF0.5, one can get

F0.5 : xi =

{

2 · xi−1, 0 ≤ xi−1 ≤ 0.5,

2 · (1− xi−1), 0.5 < xi−1 ≤ 1.
(15)

It is obvious that F0.5(x0) must be in the form of
(0.a′1a

′
2 · · ·a

′
nx0

−10)2, wherea′nx0
−1 = 1. This means that the

binary precisionof x0 is decreased by 1 after one iteration.
Thus, the digital chaotic orbit ofF0.5 will always trend to the
same fixed pointx = 0 afternx0

iterations.
For G0.5,β , the introduction ofβ makes things a little

complicated: assuming that thebinary precisionof β is nβ,
the orbit ofG0.5,β will be in the following form:

x0
nx0

iterations
−−−−−−−−−−→ 0 → β

nβ iterations
−−−−−−−−−→ 0 → β · · ·

0 → β
nβ iterations
−−−−−−−−−→ 0 → β · · ·

That is, the digital chaotic orbit ofG0.5,β enters a periodic
cycle determined byβ after a transient stage determined by
x0. The period of the final cycle isnβ + 1.
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Fig. 3. The digital chaotic orbit ofG0.5,0.4 whenx0 = 0.123.

As an example, whenx0 = 0.123, the digital chaotic orbit
of G0.5,0.4 is shown in Fig. 3. Apparently, such a degraded
chaotic orbit will generate badly non-uniform{Uj}. When
n = 2, experiments show that the frequency ofUj = 170
is about0.993, which means that the non-uniformity is even
worse than the one given in Fig. 1. One more example is also
tested by changing the value ofα in Fig. 1 from 0.1 to 0.5 (but
the values ofβ andx0 are kept unchanged), and it is found
that the distribution ofUj has two prominent peaks atUj = 85
and 170 (the frequencies are 0.412 and 0.418), respectively.

The above analysis shows thatα = 0.5 is also a rather
bad parameter for the generation of{Uj} toward a uniform
distribution. So, 0.5 should be excluded from the range ofα.
For example, the range|α − 0.5| < 0.01 should be replaced
by 0 < |α− 0.5| < 0.01.

C. How to Mend This Defect?

Since the non-uniformity of{Uj} is mainly caused by the
fact thatProb{ui = 0} 6= Prob{ui = 1}, it is easy to mend
it by changing Eq. (4) to the following one:

ui =

{

0, 0 ≤ xi ≤ 0.5,

1, 0.5 < xi ≤ 1.
(16)

It has been pointed out that dynamical degradation ofG0.5,β

in the digital domain will influence the uniformity of{Uj}.
In fact, this Problem also exists for anyα 6= 0.5, which has
been clarified in [2, Sec. 2.5.1]. Following previous studies, the
average length of all digital orbit of the tent map isO(2L/2),
when L is the bit number of the employed finite-precision
arithmetic. For double-finite floating-point arithmetic,L = 62,
so the average length is about231, which is not sufficiently
large from the cryptographical point of view. To overcome
this Problem and also the non-uniformity caused by the
digital dynamical degradation, a small pseudo-random signal
is suggested to be used to perturb the digital chaotic orbit
timely, as discussed in Secs. 2.5.2 and 3.4.1 of [2].

V. I NCAPABILITY OF CHAOS FORSECURITY

In Sec. IV-A above, it was mentioned that({Uj}, {fj}) is
an equivalent of the original key. By studying the possibility
of solving for {Uj} from chosen plaintext-ciphertext pairs, it
can be shown that the security of the Yi-Tan-Siew cipher is
independent of the use of the chaotic mapGα,β .

Given a plaintextPj and the corresponding ciphertextCj ,
one can get Eq. (7) forUj+1. Under the condition thatfj−1

has been reconstructed, it is possible to solve forUj+1 with a
number of such equations. Apparently, the solvability ofUj+1

is independent of the chaotic mapGα,β . That is, the security of
the cipher is independent ofGα,β . In fact, one can replace the
chaotic map with any other PRNG to generateUj , without
influencing the security of the cipher. Therefore, from this
point of view, the Yi-Tan-Siew cipher cannot be considered as
a typical chaotic cipher.

Next, the solvability of Eq. (7) is discussed. Basically,
the mixture of three different operations, XOR, modulo24n

addition, andfj−1, makes it rather difficult to getUj+1 from
Eq. (7). Rewrite Eq. (7) as follows:

Cj ⊕ (Pj−1 ⊞ Uj+1) = fj−1 (Pj ⊕ (Cj−1 ⊞ Uj+1)) , (17)

which can be simplified as

a⊕ (b ⊞ x) = fj−1(c⊕ (d⊞ x)). (18)

The task is to find a4n-bit integer solution ofx from a
number of such equations. Considering thatfj−1 containsn
circular left-shift operations, it should have at least2n separate
branches. This implies that at least2n points of intersection
between the graph ofa⊕ (b⊞x) and that offj−1(c⊕ (d⊞x))
have to be checked to find the only right integer solution of
x. That is, a lower bound of the complexity isO(2n).

VI. CONCLUSION

This paper has studied the security of the recently-proposed
Yi-Tan-Siew chaotic cipher [1]. Some defects of this cipher
have been pointed out and analyzed in detail. The security
analyses given in this paper should provide some useful
references for better design of various chaotic ciphers in the
future.
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