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Multirealisation of linear systems

Brian D. O. AndersonFellow, IEEE,Steven W. SuMember, IEEEand Thomas S. Brinsmead

Abstract—For multiple model adaptive control systems, results will be applicable to MMAC problems for MIMO
“multi-controller” architecture can be efficiently implemented  plants.

(multirealised) by means of a ‘state-shared” parameter- — giapijity js an important issue for switched systems [1]
dependent fe_edback_system. Necessary a_nd sufﬁcner_]t c_ondltlons[4] In this paper, we assume that the time scale over which
for the multirealisation of a family of linear multivariable U . . .
systems based on matrix fractional descriptions are presented. SWitchings occur is a longer time scale than the time scale
The problem of the minimal generic multirealisation of a set of for the dynamics of the various closed loop systems; this
linear systems is introduced and solved. is virtually always the case in MMAC problems. Under
Index Terms—System multirealisation, linear multivariable this assumption, if each frozen closed loop system is stable
systems, switching systems, Multiple Model Adaptive Control. then the switched system will be stable. Furthermore, the
provided method can implement “bumpless” transfer between
linear multivariable systems. It is well known that “bumpless”
l. INTRODUCTION transfer is an effective way to improve poor transient response

) ] of switched systems [4]. One example is given here to show
J UST as one can consider a standard linear system ragk main aim of this paper.

isation problem (given a transfer function, find a state- consider two multivariable linear systems
variable realisation), and a minimal realisation problem (en- . )
sure the state-variable realisation is of minimal degree), so -1 -1 (s+3) ] wnd { 1 2
2

s+1 s-{l
. . - R 76(572) S— —1
for a finite collection of transfer functions one can consider e ey B ey Ty CHICHERCD)

a multirealisation problem and a minimal multirealisation ]

problem. The original motivation for studying multirealisa®h Parameter dependent state space equatiof, +
tion problems comes from multiple model adaptive contrdliCo, Bi, Co} can be obtained by using Method 2 (at the end
(MMAC) algorithms [1] [2] [3] [4] [5] [6]. The implementa- of Section Ill) to realise both these systems with only the
tion of “multi-controller” architecture is an important issue foParameterst; and B; system dependent:

MMAC applications. As argued in for example [4], because 31 0 0

at any instant of time only one of the constituent controllers A 2.0 0 0 10 0 0

is to be applied to the plant, it is only necessary to generate’** — | o o -3 1 |’ Co = { 001 0 } )
one control signal at any time. Often this means significant 0 0 -2 0

simplification can be achieved if all control signals are capable . -

of being generated by a single system. In other words, rathey | 1 3 -6 17 B, — 11 0 -1

than implementing each of the controllers in the family as a 1= { 01 0 1 } ’ 2= [ 2 21 1 ] ’
separate dynamical system, one can often achieve the same T T
results using a single controller with adjustable parametegs { L5 =55 } and Fy = { 1100 } _
(see Definition 1). Because the single controller state is, in 00 1 5]~ 0000

effect, shared by the family of controllers, this implementatiof should be noted thatl, is stable and the paifCy, Ao) is
is termed a “state shared” multirealisation. ~_ observable. When the transfer functions in question correspond
Almogt all qf the Ilteratpre on Ilnef?lr system .reall'satloqb multiple controllers which may be switched serially, the
deals with the implementation ofsangle linear time invariant myltirealisation form{4, + F;Co, B;,Co} can ensure that
(LT1) system [7] [8] [9] [10]. In contrast, Morse [4] presentsthe output of the switched system remains continuous across
some results for thenultirealisation of severallinearscalar  switching instants, provided its input is reasonably well be-
systems in the context of examining MMAC for scalar planthaved, e.g. is piecewise continuous, i.e. “bumpless” transfer
In this paper, we investigate the multirealisation of severp] is achieved. However, it is slightly more convenient to
linear multiple input multiple output (MIMO) systems; The jnyestigate the dual forr{ A, + ByK;, By, C;} because for

) i this multirealisation form we can directly lift known results
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matricesP; (i € {1,---,N}). A multirealisation of the set Proof: See equation (17) and associated statements on
of systemsP; is a set of state variable realisatiofigly + page 482 of [8]. ]
ByK;, By, C;} (with the pair (A, By) being controllable The following theorem relates the column degrees of a Popov
and adjustable parameter matric€s and K;) realising all polynomial matrixDg(s) and the controllability indices of a
the systemsP; (i € {1,---,N}). If all eigenvalues ofA, controllable pair 4, B) of a minimal state variable realisation
are in the left half plane{A4, + ByK;, By,C;} is termed of D.'(s). As far as the authors are aware, the following
a stably based multirealisation of the set of systemB, theorem has not been explicitly stated in the literature, though
(¢ € {1,---,N}). Furthermore, if the dimension of, is the the ideas are probably known.

smallest of all such stably based multirealisations, then we callTheorem 1:Consider a strictly proper multivariable system
{Ao+ BoK;, By, C;} aminimal stably based multirealisation H (s) described by a right polynomial matrix fraction descrip-
of the set of system#; (i € {1,---,N}). tion (MFD), i.e. H(s) = Ng(s)Dy'(s) where alsaDg(s) is a
Because of the assumption of controllability of the paiPopov polynomial matrix. Let; denote the,;, column degree
(Ao, Bo), itis evident that the requirement that the multirealief the Popov polynomial matrixDz(s), p; denote thejy,,
sation be stably based poses no extra theoretical challengec@iumn pivot index of the Popov polynomial matriz (s),

Ay is not stable, find< so thatd,+ By K is stable, and replace and d; denote thei,;, controllability index of a controllable

K; by K; — K). It is important in MMAC implementation for pair (A, B) of a state variable realisation dngl(s), Then

a multirealisation to be stably based, [4]. ) ki = d,

Standard concepts and notations, such as column degree any The reaI matrix D}, the highest-degree-coefficient ma-
column reduced polynomial matrices, are defined as in [8]. #ix of the columns of the polynomial matri¥)z(s), is the
new operator Pp.{-}) is introduced as below: identity matrix. i.e. D¢ = I, if and only if thei, column

Definition 2: Given a polynomial matrix)(s), it is always pivot index of the polynomial matri¥ (s) is equal toi (That
possible to writeD(s) = D"*S(s)+ D;.¥(s). Where,S(s) 2 s equivalent, according to i) of this theorem, to the condition
diag{s** sk, ... skm1 Fk; is the degree of the i-th columnthatd; < dy <--- < d,, ).
of D(s), D"¢ is a matrix formed from the coefficients of the Proof: i) Through post multiplication by a real matri,
highest degree polynomials in the columnsiofs) (highest- the columns of the Popov polynomial matriz(s) can be
degree-coefficient matrix), reordered so that thg; column pivot index of the reordered
T (s) 2 block diag{[s¥ =1, s,1], [sPm—1 - 8,101, polynomial matrix is equal te. If we denoteD(s) = Dg(s)R,
and D, is a matrix formed from the remaining coefficients ofind &; as thei,;, column degree of the reordered polynomial
polynomials in the columns ab(s) (lower-degree-coefficient matrix D(s), then, we have
matrix). ~

Define the operatoD;,.(-) asDy.(D(s)) = D"¢S(s). ki = kp,. ©)

In the next section, necessary and sufficient conditions er
multirealisation of multivariable systems is presented. Sectl
lll presents results for the minimal generic multlreallsatlolﬂ
problem for any given set of linear systems with compatib
input and output dimensions.

is easy to see thaD"<, the highest-degree-coefficient of
Patrix D(s)is an upper trlangular matrix. Then, we realise the
ght MFDs H (s) = N(s)D3'(s) by {A., B., C.}, which is a
Controller form realisation by using the method in [8] (pp403-
407). Considering thaD"< is an upper triangular matrix, we
can check that the controllability indices of the controllable
Il. CONDITIONS OF MULTIREALISATION pair (A, B.) ared; = k; according to [8] (see equation (8)-
To derive conditions for the multirealisation of multivariablg10) in pp406-407 and the associated discussion). Thus, we
systems, we need to recall properties of the Popov formavek; = d,,.
[8] [11] of polynomial matrices. The relationship between ii) The necessity is obvious. We prove the sufficiency here.
invariant Popov parametets;;, of a controllable paifA, B) If for eachi the i,, column pivot index of the polynomial
and the coefficients in a Popov form matriXz(s) can be matrix Dg(s) is equal toi, then according to 2.c in [8]

stated: (p481, the description of a Popov form polynomial matrix), we
Lemma 1:For a Popov form polynomial matri®z(s), if ~ conclude thatD% is an upper triangular matrix. Furthermore,

we denote according to 2.b and 2.e in [8] of the description of a Popov
form polynomial matrix (pp481-482, all entries in a row

Dg(s) = [dij(s)] = [Z diﬂsl] (1) containing apart from the pivot element have degree lower

than that of the pivot element), we conclude thglc = 1. m
Now, we present necessary and sufficient conditions for the
. . existence of a multirealisation of given MIMO systems.
diji = { 1_’ _ Z‘? ! z_kj (mi“_:,fj’ Ji <o (@ Theorem 2:(First Main Result) For a set ofi-input p-
Opjil (L <kj}or{l =k;jandi <p;}. output strictly proper system#;(s) (i € {1,---,N}), there
and d;;; otherwise is zero. Herey; denote thej,;, column exists a controllable paifAg, By) (dim{A,} = n), and
pivot index of the polynomial matriDg(s) [8] and the{«;;x} appropriately dimensioned real matric€$ and K, (for ¢ €
are the Popov parameters of any controllable state variafle - - -, N}) such thatA, is stable, and Ay + Bo K, Bo, C; }
realisation of D' (s). is a controllable realization of systen/;(s), (for i €

then



{1,---,N}), if and only if, there exists a right polyno- [1l. M INIMAL GENERIC MULTIREALISATION
mial MFD for each systemH,(s) described byH;(s) =

Ngi(s) Dy, (s) (where Dp;(s) is a Popov polynomial matrix  |n Section I, we introduced the concept of minimal stably

with degreen, i.e. deg{Dgi(s)} = n,Vi € {1,---,N}) such pased multirealisation problem (see Definition 1). It turns
th?'[ o out that solving this problem is a difficult and intricate task
i) ki = kj fori,j € {1,---,N} andl € {1,---,m}, (which we examine elsewhere), and there is another easier

wherek;; is the j;;, column degree of the matrilp;(s), and - minimisation with practical value which we examine in this
ii) the matrices D75, which are the highest-degree-section, this being a form afeneric dimension minimisation.
coefficient matrices of theDp;(s), are identical (fori & For a minimal stably based “generic” multirealisation, we
{1 "N}_)' , _ aim to achieve a multirealisation, which isdependent of
Proof:  Assume first the existence of the controllabley popoy real parameters of all multivariable systems de-
state variable multirealisation foff;(s) (i € {1,---,N}). fined by transfer function matrice;(s) = Ng;(s) D5 (s),
It is standard that there exists a column reduced polynomjal {1,---,N}. Popov real parameters are detern%ined by
matrix D; (s) with det[D;(s)] = det(sI—Ao—BoK;) and with - v sical parameters, which are prone to vary in application.
column degrees corresponding (though possibly with differeplyoy integer parameters however are related to the number
ordering) with the controllability indices; of (Ao, Bo) which ot integrators and their structure in the underlying physical
are the same as those ffly + By K, By} (see [8] or [10]).  gystem with transfer function matriéf; (s) = N, (s) D! (s),

Further,D;(s) is such that for any constant matdx < R”*", ;'c 1 ... N}. Because Popov integer parameters depend on
there exists an associatédr (s),xm such that the structure of the physical system rather than the particular
F(sI — Ay — BoK:) " By = Np(s)D7(s). real value of a physical parameter, they are relatively robust

to modelling errors that arise due to parameter drift. So, the
Conversely for any polynomial matrixVg(s) such that minimal stably based “generic” multirealisation has significant
NF(s)Djl(s) is strictly proper, there exists a real matix relevance in practical application.

satisfying this equation. Theorem 1 implies that if a controllable paid;, B;) of
Clearly, there exists a polynomial;(s) such thatH;(s) = a minimal state variable realisation of eadh '(s) (i €

N;(s)D; ' (s). Without loss of generality, we can replacg1, 2, ..., N}) has the same increasingly ordered control-

Di(s) by its Popov form Dg;(s), so that Hi(s) = lability indices (equivalent toD%: = I), then the Popov

Ngi(s)Dy; (s). Further, the column degrees of eablyi(s) real parametergaj,, } will be identical for eachi. Thus,

are the controllability indices of Ao, By) (though possibly according to Theorem 2, if the controllability indices (Popov
with different ordering). In fact, witt;; the column degree of integer parameters) are increasingly ordered for each minimal
the j, column of D;(s), there holdsk;; = d;,, by Theorem realisation of D;*(s), then the minimal multi-realisation of

1, wherep; is the ji;, column pivot index. the set of transfer function&l;(s) is independent of all the
By Theorem 3 of [11], the Popov parameteusy, of {Ao+  Popov real parametery;,, }. Based on this observation, we

BoK;, By} and{ Ao, By} are the same foj € {1,---,/ -1} introduce the definition of theninimal generic multirealisa-

(andd; > d;). (Equivalently, the parameters,, ;4, are the tion for a set of multivariable linear systems.

same forj < p;, andd,; > dp,.) Definition 3: Assume that there are given a numbérof

Now in Dg;(s), the jiu, column for alli has maximum ,, innut p-output strictly proper real rational transfer function
degreek; by equation (2). Recalling (1), we see that thg,atrices P, (i € {1,---,N}). Any set of state variable

associated column abjs is realisations{ Ao+ By K;, By, C;} (with the pair(A4,, By) being
(dyjn, dojr, - dy sp 0+ 0T controllable and havingncreasingly ordered controllability

IR IR PjIR; . . . . .
= [—0p,14,, — Opy2y, * — Oy p 1, 10 07 indices) that can realise all the systerRs with adjustable

parameters’; and K;, is termed aeneric multirealisation of
which is the same for eacPg;(s). This proves claim ii). the set of system®; (i € {1,---,N}). If all eigenvalues of
Conversely, suppose there exist right polynomial MFD4, are in the left half plane{ Ao+ By K, By, C;} is termed a
H;(s) = Ngi(s)Dy;} (s) where Dg; is a Popov polynomial genericstably basedmultirealisation of the set of systeni?
matrix of degreen for all 7, and the other conditions of (i € {1,---, N}). Furthermore, if the dimension of, is the
the theorem statement hold. Létl;, B;) be a completely smallest of all such generic stably based multirealisations, then
controllable pair in a state variable realisation bf;;(s). {Ao+BoK;, By, C;} is termed aninimal generic stably based
Lemma 1 and the hypothesis imply that the;, B;) pairs multirealisation of the set of systeniy (i € {1,---,N}).
have the same controllability indices and the invariants, It can be proved (the proof is similar with that of Theorem 2)
for j < [ are the same. Accordingly, by Theorem 3 of [11}hat the minimal generic stably based multirealisation problem
linking any two pairs(4;, B;) and (A;, B;) there exists a is equivalent to the following “minimal generic commaua-
nonsingular matrix;; and K;; such that (highest column degree) multiplier” problem:
A; = Ty (A; + BjKij)Tigl,and B; = Ty, B;. Problem 1: Gi_ven a set (_)f squarej(x m) column-reduce_d
polynomial matriced; (s), find nonsingular stable polynomial
Equivalently, there exist§Aq, By), K; and C; as in the matricesX;(s) (thatis, such that the zeros &ft(X;(s)) lie in
Theorem statement. m the left half planeRe(s) < 0) such that there exists a column



reduced polynomial matrixD,,;,(s) with the property that — Therefore, setting;(s) = r;s*<~*:, we have

DhC[Di(S)Xi(S)] = Dmin(s)v Vi € {17 o 'vN}’ (4) Dy, {d (S)} _ dhcsk’e =D, {ir(s)d(s)}
1

with Dhe = I and D,,;,(s) having the lowest possible

mink

degree. Here, the real matrik! . is the highest-degree-
coefficient matrix o, (s) which is the Popov polynomial Now, we investigate Problem 1. Let us first indicate a simpli-

form of the matrix D (s). : f{cation to Problem 1. If in the problem statement aby(s)
In order to solve Problem 1, we introduce a new concep, replaced byD;(s) — Di(s)Us(s) whereUs(s) is unimod-
}r:i;I 5222) er:t column degree) dependence on a set of pOIyrfﬁér, but otherwise arbitrary, then the problem is effectively

Definition 4: A polynomial vectord, (s)1 is he-(highest unchanged. In particular then, without loss of generality, we

column degree) dependent on a collection of polynomig?n assume; (s) is a Popov form matrixDs;(s), and seek

. . ) a column ordered, ,;,,(s).
vectorsd;(s)nx1, ¢ = 1,2, ---,m if there exists a set of scalar min (5) . L
; We present a method to achieve a generic minimal common
polynomialsr;(s) such that

he-multiplier for a set of polynomial matrice®;(s) (i €
m
{1,---,N}).
Dhelde(s)} = D’W{Z:”(S)di(s)}' Method 1: Step 1. By using column permutation, re-order
Theorem 3:(Conditions forhc-dependence) Assume therdhe columns of eactDg;(s) to make thejy, column pivot
is given a collection of polynomial vectord;(s),x1, i = index of the re-ordered matrix equal jo Thus the ordered
1,2,---,m, such that their column degrees, are ordered S€t of column degrees of the re-ordered matrix is equal to
ask) < kg < -k, the ordered set of controllability indices (see Theorem 1). We
Assume further that the matrijd; (s) da(s) - - - d,(s)] is define these indices as
such thatD"e = [dp¢ dbe,...,d"] has full column rank.
Then a given polynomial vectat. (s),,x1 (with column degree
ke) is he-dependent on the collection of polynomial V?LCtorﬁnd denote the new polynomial matrix (which is not necessar-
di(s), i = 1,2,---,m if and only if the real vectord;® ijly in Popov polynomial-echelon form) ab;(s).
(the highest-(column)degree-coefficient vectordpfs)) is a Now set

];717]}%’7]; i€17"'7N7

7
m>

linear combination of real vectorgp¢, d4¢, ---, di* where -
I = max;{arg;{k; < k.}}. o= maxi{kl}:l - .~
Proof: (Forward Implication) Y2 = max{y,ka, k3, ky'} ©)
If Do
m . .
Dhc{de(s)} = Dhc{z Ti(s)di(s)}v Ym = max{ym,_1, ];;71”7 ];.727“ T ];7];7 :
1 T . .
for some polynomial;(s), then I1-|ence,~yl Sy <o Somandy; 2k Viel, o NoVj €
gt 7m. -
S Step 2. Let Ay(s) = diag{(s + a)""F (s +
de = i(s)di(s), i 2 ’
(8) +9(s) ZT (s)di(s) a)27F2 ... (s+a)»"*a} for somea > 0.

_ , ' , Define Dg;(s) = Dgi(s)As(s), so thatDg;(s) has ordered
where g(s) is a polynomial vector with column degre;e Ies%olumn indicesy, < vo < --- < ~m. It follows that the
thant.. According to Theorem 6.3-13 on p387 of [8]Aif > Dg;(s) are in Popov form, and according to Theorem 1, the
kpwe must have',;(s) = 0. and the ordering ok; and the highest-(column)degree-coefficient matrix for eafh;(s),
definition of imply that i€ {l,---,N} is the identity matrix.

! By rewriting Hi(s) = Ni(s)D;'(s) as Ng;(s)Dg;(s)

de(s) + g(s) = > ri(s)di(s). ®) = Nri(s)Dgi(s) = Ngi(s)Ai(s) [Dri(s)Ai(s)]! =
1 Ngi(s)Dy! (s), it can be see that the necessary and suf-
If d"¢ is not a linear combination of real vecto#®, d4¢, ficient conditions of Theorem 2 for the multirealisation of
-+, dhe, thend,(s),d;(s),---,d;(s) are linearly independent. & set of multivariable systems are satisfied, and a generic
Considering that the column degree @fs) is less thank,, Mmultirealisation formD,,,(s) can be achieved @8y,.(Dg;(s))
equation (5) is impossible. Then, the necessity is proved. = diag{s”,---,s"}.
(Reverse Implication) Method 1 presents a way to derive a generic comrhen
If the real vectord"c is a linear combination of real vectorsmultiplier of a set of square polynomial matrices. Theorem
dre, dhe, -, dre, then 4 below confirms that it is also a minimal generic common

e . he he-multiplier. However, we require first a simple lemma.
de” = Biyrid;”, Lemma 2:Denote the highest-(column) degree-coefficient
wherer;, for i € {1,---,1} are real numbers. vector of a polynomial vectap(s).x1 by a real vectop):s, ;.
It follows that Suppose the elements pf¢ are structured as

dheshe = nl_ risheRigheski = Dy A8l rsheRigheshiy, P =lpipo - p_110--- 0], @)



and definek as the column degree of the polynomial vectoF;Cy, B;,Co}, a generic minimal multirealisatio 4y +
p(s). For a Popov polynomial matri® g (s).,.xm, denote the F;Cy, B;, Co} which ensurebumpless transfer can then be
i-th column degree byt;, and thei-th column pivot index constructed according to the following method.
by p;. Further denote the,; column pivot index by, i.e. Method 2: 1. Find a right irreducible MFD for eacH ! (s)
p: = L. If the polynomial vectom(s),,«1 is he-dependent on ¢ € {1,---, N}, and transfer them to Popov MFDs. That is
the columns of the Popov polynomial mattiXg(s), then HY(s) = Ngi(s)Dg; (s).

k> k. ) 2. According to Method 1, construct minimal generic

- ipli D — di M. gm
Proof: The polynomial vectop(s),,x1 is hc-dependent common fic-multiplier Dy, (s) diag{s™, 57} for

; the set of Popov polynomial matricedg,(s) ¢ €
on the columns of the Popov polynomial matiixz(s). Let T . _ 21
g be the number of columns of the matri®g(s) whose {1,---, N}. BachH; (s) can be rewritten adVp;(s) Dp; (‘?

- , -1 — Nuo , D s (s)]-1

degree is no more thah, i.e. ¢ = max;{arg;{k; < k}} o ,gfgf%g’fi(ge _Steév?éi)a;%)od[?f’(S)AZ(S)]
(i € {L,---,m}). Thus theq column degrees of the firsf gl Construct stable polynomial matrixD (s) such that
columns ofDg(s) are less than or equal o According to the .[D (s)] = Dyn(s) pB yusin the methénj ii [8] (pp403-
properties ofhc-dependence (see Theorem 3), it follows thaf <t™ ™ $)] = Dm(5). BY USING _Plp

o et he The . ghe o : 07), a controller form realisatiofA.o, Beo, Ceo } Of D, (s)
p¢is in the range ofdy; di; - - dis,] Considering equation can be found with the paifA.o, B.o) controllable andA
(7), we conclude the column whose pivot index is equal to Pal{ Ao, Zeo _ e

! ) stable. LetC,; = Ngi. and K; = D,sic — Dgie. A generic
. > =1. - j e . oo
must be one of these columns. That isk > k¢ with p; = I minimal multirealisation for the set of linear multivariable

systemsH[ (s) i € {1,---, N} is {Aco + KiBeo, Beo, Cei }-
4. Denoted, = AL, B, =CL, Cy = B}, and F;, = K.

Jhen,{Ao + F;Cy, B;,Cp} is a generic minimal stably based

multirealisation for the set of linear multivariable systems

His)ie{l,---,N}

Theorem 4:(Second Main Result) The generic comnian

multiplier D,,,(s) for a set of polynomial matrice®z;(s)

(¢ € {1,---,N}) (see Problem 1) achieved by using Metho

1 is also aminimal generic commorhc-multiplier.

Proof: For any generic commohc-multiplier D, (s) for

Lhae;\/eset of polynomial matriceBg;(s) (¢ € {1,---,N}), we V. CONCLUSION
Dne{Dgi(5)Xi(s)} = Dm(s), ) This paper provides necessary and sufficient conditions for

the multirealisation of a family of linear multivariable systems

based on matrix fraction descriptions. By introducing the

Xi(s) = [z (s) mia(s) -+ Tim(s)], (10) concept ofhc-dependence, the minimal generic stably based

Dp(s) = [dm,(8)dm,(5) -+ dum,, ()] multirealisation problem has been solved.

From equation (9), we have

DhC{DEi(s)xij(S)} = dmj (s) = DhC{dﬁ” (s)} [1] B. Anderson, T. Brinsmead, D. Liberzon, and A. Morse, “Multiple model

; ) ; _ adaptive control with safe switchingSpecial issue of the International
Thatis each column @by, (S) I he-dependent on the columns Journal of Robust and Nonlinear Control on Adaptive Control with

of each matrixDg;(s). Note that the generic multiplier gives Confidencevol. 8, pp. 446-470, 2001.
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