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Probabilistic Optimization for FPGA
Board Level Routing Problems

Fei He, Xiaoyu Song, Ming Gu, Guowu Yang, William N. N. Hung, and Jiaguang Sun

Abstract—Field programmable gate arrays (FPGAs) are an en-
abling technology in circuit designs. We consider the board-level
multi-terminal net assignment in the FPGA-based logic emulation.
A novel probabilistic optimization method is devised for solving the
net assignment problem. The approach incorporates randomized
rounding, genetic algorithm, and solution-improvement strategies.
Experimental results demonstrate promising performance.

Index Terms—Board-level routing, Chernoff bound, field pro-
grammable gate array (FPGA), randomized rounding.

I. INTRODUCTION

VERIFICATION is an indispensable step in hardware de-
sign. An important verification method is hardware em-

ulation. A widely used hardware emulator is realized by field
programmable gate array (FPGA) [1]. In the current VLSI tech-
nology, FPGA-based hardware emulation plays a crucial role
in system validation. Since FPGA based emulation is generally
much faster than software simulation, designers can run a lot
more tests on emulators than simulators.

An FPGA-based emulator consists of many FPGAs. The
FPGAs are typically connected in two ways: directly or indi-
rectly. In direct interconnection architectures, each FPGA has
to serve two functions: logic and interconnection. In indirect ar-
chitectures, FPGAs are connected through field-programmable
interconnection chips (FPICs) [2], [3]. The FPIC serves only
interconnection function but not logic function. The indirect
approaches provide uniformed net delay between FPGAs,
which is strongly needed in today’s performance-driven design
process, where interconnect delays raise critical issues. Uni-
form delays between FPGAs also make it easier to partition
and synthesize large designs into several FPGAs.

In this paper, we consider the set of FPGAs for implementing
the logic function interconnected by a set of FPICs, where each
FPIC is used as a crossbar and can only connect to the FPGAs,
but not to each other. Given a set of FPGA chips, a set of cross-
bars and a set of inter-chip nets, we determine the possible as-
signment of nets connecting the designated pins through these
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crossbars. The problem is called the board-level net routing
problem (BLRP) [4]–[7].

An optimal algorithm for two-terminal case was proposed in
[4]. The algorithm was devised based on the iterative compu-
tation of Euler circuits in graphs of BLRPs. They also proved
that the multi-terminal routing problem is NP-hard. In [5], an
interesting satisfiability-based method for solving the multi-ter-
minal case was presented. The approach transformed the FPGA
board-level routing task into a single Boolean equation. Any as-
signment of Boolean variables that satisfies the equation speci-
fies a valid routing. Empirical results show that it is one of the
best in existing solvers for BLRP.

We devise a novel probabilistic optimization algorithm
that incorporates randomized rounding, genetic algorithm and
solution improvement strategies. With this approach, we solve
the problem of board-level multi-terminal net assignment in
FPGA-based logic emulation. The techniques based on Cher-
noff bounds are used to establish the feasibility of randomized
rounding. Experimental results demonstrate the promising
performance of the approach. Compared to [5], our approach is
more applicable to large routing instances.

The paper is organized as follows. In Section II, we formu-
late the problem as an integer programming. Section III intro-
duces the general ideas in terms of randomized rounding and
application in solving our problem. A mathematical technique,
Chernoff bound, is used to analyze the feasibility of random-
ized rounding. In Section IV, a novel probabilistic optimization
algorithm combining randomized rounding, genetic algorithm
and solution improvement method is devised. The experimental
results of our approach are presented in Section V. Section VI
concludes this paper.

II. PROBLEM FORMULATION

We refer to FPGAs as chips and assume all chips are iden-
tical. Let CHIPS be the set of all chips, NETS be the set
of all multi-terminal nets, and CROSSBARS be the set of
all crossbars. A chip has a set of I/O pins. Divide I/O pins
of each chip evenly into groups of same size (assuming
the number of all I/O pins in a chip can be divided exactly by

): . We consider every group as a subset type.
Let be the set of all subset types. No-
tice the kinds of subset types equal to the number of crossbars.
Actually the subset types and the crossbars are related one by
one. For every subset type , there is a corresponding crossbar
. Only nets coming from subset type can be connected to

crossbar . Let be a netlist. We rep-
resent each net by a -bit vector, i.e.,

, where is a 0–1
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Fig. 1. Instance of BLRP.

variable. Define if has a terminal on chip
otherwise.

Fig. 1 shows an instance of BLRP with
, and . The nets connected to crossbar 1 belong to subset

type , while nets connected to crossbar 2 and crossbar 3 come
from subset type and respectively. Nets and are
represented as nets , and are represented
as , while nets , and are represented as

.
Given a BLRP instance, we determine a function

such that in each chip there are no more than nets assigned
to the same pin subset [4]. If we view each subset type as a
bin, each net as an object, then the BLRP can be considered as
a partitioned bin-packing problem [7].

We present a new mathematical model for BLRP. Let
with . Namely,

is a matrix where is the of net .
Define the decision variable as

if net is assigned to subset type
otherwise.

(1)

and let .
A feasible solution to BLRP satisfies the following two

constraints.

1) Every net must be assigned to one and only one subset
type, i.e.,

for (2)

2) For each subset on each chip, the number of nets assigned
to it cannot exceed , i.e.,

for (3)

The matrix form of (3) is: , where
is a zero matrix with rows and columns.

The constraints (1)–(3) characterize the exact solution that
we need. We say a solution is legal if and only if it satisfies
constraints (1)–(3). However, the solution space limited by con-
straints (1)–(3) is too small. In order to extend the feasible so-

lution space, such that our search process can be performed ef-
ficiently, we relax the constraint (2) to be

for (4)

Our objective function is

(5)

Then, our integer-programming (IP) model is defined by the
objective function (5) and the constraints (1), (3), and (4). Let

be the optimal value of (IP), obviously . If ,
the optimal solution satisfies constraints (1)(3), and the solution
is legal. If the corresponding integer-programming model has a
legal solution, we say the BLRP problem is feasible.

III. RANDOMIZED ROUNDING FOR BLRP

To solve the integer-programming problems, Raghavan [8]
proposed an effective technique of solving a corresponding
linear programming problem first and then randomly rounding
it. They applied their approach to solving the global wiring
problem with promising performance [8]. The technique was
also applied to the MAX-SAT problem [9]. Using Raghavan’s
technique, we do not need to solve an integer programming,
which is shown to be NP-hard.

The Chernoff bound is an important technique in designing
and analyzing randomized algorithms. The basic ideas behind
the Chernoff bound are presented in [10]. Raghavan [8] uses the
Chernoff Bound to analyze the randomized rounding. Motwani
[11] provides a detailed survey on the Chernoff Bound.

A. Linear Program Relaxation

For the integer programming (IP) of the BLRP, we replace the
integrality constraint in (1) with

for

Then, we obtain a linear program relaxation of . We can
use several efficient methods to solve it (such as the simplex
method and so on). Let denote the linear programming. Let

, be the optimal solutions of and let be its
optimal value. Since is a relaxation of , there is .

B. Randomized Rounding

The optimal solutions of may be fractional values, and
therefore may not constitute a feasible solution to our integer
program . We must therefore round these values to 0’s and
1’s to obtain a feasible BLRP solution. The idea of randomized
rounding is to interpret the fractional solutions provided by the
linear program as probabilities for the rounding process [11].

Denote by the rounded value of . Randomized
rounding is as follows: independently for each and each
, set to 1 with the probability ; otherwise set

to 0. Thus, for each and each and
.
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C. Analysis by Chernoff Bound

Intuitively, we can always obtain a legal solution by a suf-
ficient number of randomized rounding. But what is the ap-
proximate upper bound to the number of necessary randomized
roundings? We answer the question in this section.

Theorem 1 [11]: Let be independent
Poisson trials such that, for 1 ,
where . Let .
Then, for any , if

(6)

if

(7)

Definition 1 [11]: Define

(8)

(9)

For any positive and is the value of that
satisfies

(10)

Similarly, is that value of that satisfies

(11)

Using the Chernoff bound, we can prove the feasibility of ran-
domized rounding to the BLRP instances. First, since the ran-
domized roundings are performed independently to each other,
so and 1 are independent Poisson
trials. Define and ,
then we have

Theorem 2: Let be a real number such that . With
probability , the BLRP solution produced by randomized
rounding satisfies

Proof: Omitted due to the page limitation [12].
Theorem 3: Let be a real number such that . With

probability , the BLRP solution produced by randomized
rounding satisfies

Proof: Omitted due to the page limitation [12].
Theorem 4: In the set of BLRP solutions repeatedly gen-

erated by randomized rounding, with probability , where
is a real number such that , there exists at least one

solution that satisfies

Proof: Omitted due to the page limitation [12].
Theorem 5: In the set of BLRP solutions repeatedly gen-

erated by randomized rounding, with probability , where
is a real number such that , there exists at least one

solution that satisfies

Proof: Omitted due to the page limitation [12].
Suppose we want to find a solution that satisfies

(12)

with the probability 0.999. We first substitute the value of 0.999
to Theorem 4 and 5, and get and .

In order to satisfy the former part of (12), we substitute the
values of and into (8) and (10), then

From the above equation, we can easily calculate
in the case of and in other case of

. On the other hand, for satisfying the latter part of (12), we
substitute the values of and into (9) and (11), and then with
similar calculation, we can get when , and

when .
In conclusion, to find a satisfying solution, we are likely to

perform the randomized rounding about 13 861 times in the case
of and about 1386 times in the case of .

IV. OUR APPROACH

In Raghavan’s approach, the legal solution of IP is achieved
by applying randomized rounding repeatedly. After applying the
randomized rounding sufficient times, we can always get a legal
solution. However, this process is very time consuming.

A. Optimization Procedure

In our new approach, we adopt the efficient genetic algorithm
(GA). The randomized rounding is integrated into the process of
GA. To accelerate the searching process, a solution improvement
method is designed. The solution improvement method main-
tains a short tabu list and searches the local optimal solution in
a neighbor field. The method can greatly reduce the time needed
for finding the optimal solution, thus making our algorithm prac-
tical. Our optimization procedure is given as follows.

1. Solve the linear program LP to obtain an optimal solution,
assume the corresponding optimal objective value is .
2. the linear program has no feasible solution or ,

false.
3. best ;
4. (iter to MaxIter )

a) Initialize the population with the chromosomes gener-
ated by randomized rounding;

b) (iter to MaxIter )
i. Update the chromosomes by crossover, mutation and

improvement operations;
ii. Calculate the objective value for each chromosome;
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iii. Sort chromosomes in increasing order of their objec-
tive value; if the best chromosome is better than best , substi-
tute it for best .

iv. If the objective value of best equals ,
true.

v. Select the chromosomes by spinning the roulette
wheel;

false.

There are many efficient methods for solving , such as sim-
plex method. The time needed by step 1 greatly depends on the

solver, so it is not considered into the total runtime taken by
our algorithm. stores a copy of the best solution found
so far. It is initialized in step 3, and is updated in each iteration
cycle (step iii). In step a), we initialize the population. If no legal
solution found after MaxIter2 iterations, the algorithm would be
redirected to step a), and then reinitialize the population.

B. Chromosome Coding

Assume that the nets are labeled from 1 to , and net is
denoted as . Assume the subset types are labeled from 1 to ,
and subset type is denoted as . We encode an assignment of
nets to subset types into a chromosome ,
where represents that net is assigned to subset type

.
To suit the form of chromosome coding, we transform the

constraint (1)–(3) into the following optimization model:

(13)

subject to constraints (1) and (2), where is the penalty func-
tion for unsatisfying constraint (3). Because the constraints (1)
and (2) are satisfied naturally by the structure of the chromo-
some, we only need to consider this objective function (13) in
our search process.

C. Initialization

We generate chromosomes by randomized rounding
to initialize the population. Assume the solutions of (LP) is ,
for 1 , and . We consider the value of

as the probability of assigning net to subset type , i.e.,
. Thus, the process of randomly rounding the

solution of (LP) to be a chromosome is: set independently to
be with probability .

D. Mutation

We define a parameter as the probability of mutation.
The number of chromosomes undergoing the mutation opera-
tion may most likely to be . We adopt the two-
point mutation. For traditional two-point mutation, it randomly
selects two points and in the chromosome, and then re-
places the value of every character between site and with
a random number between 1 to . In our heuristic two-point
mutation, the mutation sites and are selected similarly,
however the value of each character between site and

Fig. 2. Improvement method outline.

TABLE I
PERFORMANCE DISTRIBUTION OF OUR APPROACH

are replaced with a randomized rounding number from by
.

E. Improvement

We define a parameter as the probability of improvement.
When a new chromosome is generated, it is improved with the
probability . The number of chromosomes undergoing the im-
provement operation is most likely to be . The im-
provement method is shown in Fig. 2.

In our method, a move is to reassign a net to a subset .
The neighborhood of a given point is defined as the set of solu-
tions which can be reached in one move from the given solution.
Once a move (which reassign net to a subset ) has been
done, the opposite move (which assign back net to pre-as-
signed subset) will be considered as tabu for a given number of

iterations (in this method, is limited to be 1).

V. EXPERIMENTAL RESULTS

To test our algorithm, we coded our algorithm in
language and ran on a PC with Intel® Celeron®

2.4 GHz CPU and 512M RAM. The parameters are set
as:

, and , where is the probability of
crossover.

Our approach is an integration of GA and two techniques: ran-
domized rounding and solution improvement strategy. Table I
compares the performance contributions made by the two tech-
niques respectively. Benchmark is the name of the tested bench-
mark. The benchmark’s name implies some parameters. For ex-
ample, the name “ 5” indicates that the number
of chips is 3, the number of pin types is 2, the number of pins in
each type is 2, and the maximum number of pins for generated
net is 5. Column lists the number of nets. de-
notes our algorithm, denotes the algorithm integrated
by GA and the randomized rounding only, denotes the
algorithm integrated by GA and the improvement strategy only.
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TABLE II
PERFORMANCE OF OUR ALGORITHUM VERSUS SAT SOLVERS

Notice that the algorithm could not find the optimum so-
lution (the case that Iter column is recorded as MAX) for most of
the tested benchmarks, while the other two (with improvement
strategy) can find the legal solution in all cases. This demon-
strates that the improvement method is the main contributor to
the performance improvement.

Table II compares the performance of our algorithm to the
SAT solvers used in [5]. All experiments are conducted on the
same PC. Column Pins lists the number of pins on each chip.
DLM is the time needed to solve the problem by DLM SAT
solver, and zChaff is the time needed to solve the problem by
zChaff SAT solver. The time needed to solve the problem by
our randomized algorithm is listed in the RA column.

For the same parameters of and ,
we increase (number of nets) gradually. However, the time it
takes for the RA does not increase correspondingly. The same
phenomenon can be observed for the number of pin types .
The reason is that the RA is an iterative algorithm, thus the time
it takes depends not only on the problem size, but also its used
iterations.

For the majority of cases, our algorithm performs better
than the SAT solvers. Notice there is one benchmark

whose solution cannot be found by none
of the SAT solvers, but can be found by ours. For some of the

cases, our algorithm takes longer to compute than DLM or
zChaff. This is understandable. Since the time needed by a SAT
solver usually depends on the complexity of the CNF formula
[5] (converted from the corresponding benchmark), and the
size of the CNF formula is not necessarily proportional to the
problem size.

Furthermore, we randomly generated some large benchmarks
that mimic real-world problem size [13] (with more than 50
pins on a chip) to test our algorithm. For these benchmarks, the
SAT solvers cannot be used because the converter (converting
the benchmarks to CNF formulas) explodes already. However
our algorithm can solve all these benchmarks with rapid speed.
This demonstrates that our algorithm is more applicable to large
benchmarks.

VI. CONCLUSION

In this paper, we studied the board level routing problem.
A novel mathematical model has been proposed. A new ran-
domized algorithm combining randomized rounding, genetic
algorithm and solution improvement method has been pre-
sented. Experimental results showed promising performance of
our approach.
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